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Abstract

Most Large language models (LLMs) adopt
an autoregressive architecture, predicting the
next word token based on the preceding context.
While this approach is robust for language gen-
eration tasks such as writing and summariza-
tion, it has limitations for high-level reasoning
tasks, such as prediction and decision-making.
To overcome these limitations, we introduce a
new method called Prediction-Augmented Gen-
eration (PAG). PAG can improve the generation
quality and predictive accuracy of large lan-
guage models in inference-driven tasks by inte-
grating task-specific predictive models as exter-
nal tools, enabling more structured and precise
reasoning. Moreover, our method does not sim-
ply copy the inferences of a predictive model,
but improves the inference results with knowl-
edge from the large language model to create
better predictions. We comprehensively evalu-
ate our proposed method on diverse datasets for
automatic diagnosis tasks requiring extensive
domain knowledge and advanced reasoning.

1 Introduction

Large language models (LLMs) have gained at-
tention for their ability to perform human’s tasks
like writing, summarizing, and translation. These
models are trained on vast text datasets encom-
passing books, articles, and web content (Brown,
2020; Radford et al., 2019), enabling them to un-
derstand context, syntax, and semantics. LLMs are
becoming an important factor in both industry and
academia due to its potential to assist and efficien-
tize human work with large amounts of knowledge
and language understanding ability.

However, LLMs use an autoregressive structure
that predicts the next word token based on the previ-
ous tokens, which is less similar to human thinking
and relies more on generating natural linguistic
flow through memorization (Bender et al., 2021).
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Figure 1: Performance comparison of Predictive models
(light blue), single LLMs (light green), and RAG (light
red) on the PolyMed dataset (Ju and Lee, 2023).

In addition, unlike prediction-based models that
directly output the correct label in inference tasks,
LLMs rely on indirectly predicting the word to-
kens that collectively represent the correct answer,
which can degrade their predictive performance
overall. This limitation often leads to “halluci-
nations” where the model generates unsupported
text (Jiang et al., 2024b; McKenna et al., 2023).
Moreover, even under identical conditions, small
changes in the input words can lead to variations in
the generated token probabilities and the resulting
conclusions, highlighting the system’s inherent in-
stability. This problem is present in most language
models, making generative models less consistent
and reliable in their answers.

Retrieval-augmented generation (RAG) tries to
solve this issue by providing rationale and reduc-
ing the generation scope to minimize inaccuracies
(Lewis et al., 2020; Nakano et al., 2021). How-
ever, the tasks expected of LLMs require a huge
amount of experience and predictive ability, such
as disease diagnosis, judgment, and strategic deci-
sions, beyond knowledge-intensive tasks. LLMs
are not expected to perform these advanced tasks
adequately due to their limitations (Huang et al.,
2023; Ullah et al., 2024), even with RAG. Figure 1
compares the performance of predictive models,
generative models, and RAG in disease prediction
tasks, showing that predictive models generally per-
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Figure 2: Key Concept of PAG

form better. Despite LLMs being trained on vast
general data and medical knowledge, we found that
this knowledge was not effectively utilized in the
prediction task.

To overcome this limitation, we propose
Prediction-Augmented Generation (PAG), illus-
trated in Figure 2, which can facilitate LLM’s pre-
diction task beyond RAG. Inspired by RAG’s strat-
egy of supplementing LLMs with external knowl-
edge, we propose a novel method that leverages
predictive models to make label predictions and
then integrates these results with the knowledge
provided by LLMs. Instead of merely copying the
predicted labels, our method refines the results by
leveraging the LLM’s extensive knowledge, lead-
ing to improved predictive accuracy. We also pro-
pose a novel method for evaluating generative mod-
els for traditional classification tasks, overcoming
the difficulty of evaluating LLMs on label-centric
prediction problems. Our method enables auto-
mated evaluation of LLMs even in conventional
label prediction tasks by matching generated text
with label text. We evaluate PAG in a compre-
hensive disease diagnosis setting, covering both
single and multiple tasks to enable a thorough per-
formance analysis from multiple perspectives.

Our contributions are summarized as follows:

• To our knowledge, our method is the first to in-
troduce the concept of prediction-augmented
generation, providing analysis and ground-
work for future research.

• Our proposed PAG achieves state-of-the-art
performance on the disease diagnosis task, sur-
passing existing predictive models and LLMs.

• We introduce a novel evaluation method, fa-
cilitating a more quantitative and objective
evaluation of language models rather than re-
lying solely on abstract assessments.

2 Related Work

External Tools for Enhanced LLMs Early re-
search on LLMs focused on their proficiency in
language understanding and generation tasks such
as machine translation, summarization, and ques-
tion and answer (Kenton and Toutanova, 2019;
Brown, 2020). While these models demonstrate
remarkable abilities in generating contextually rel-
evant text, they also face challenges related to the
cost of retraining for updated knowledge and the
occurrence of hallucinations in their outputs. To
overcome these limitations, previous work has ex-
plored the use of external tools to compensate for
the weaknesses of LLMs, such as retrieval (Guu
et al., 2020; Lewis et al., 2020), extensive external
tool support via API calls (Schick et al., 2024), and
computational assistance via code executors (Gao
et al., 2023). These external tools can extend the
context processing capabilities using external mod-
ules, thus moving away from the pure language
modeling paradigm (Mialon et al., 2023).

Evaluation of LLMs Evaluating the perfor-
mance of LLMs is an important topic in the natural
language processing community. Early methods
relied on word-count-based metrics (Papineni et al.,
2002; Lin, 2004) that compare surface overlap with
reference text, failing to capture deeper meaning.
Vector-based similarity measures (Papineni et al.,
2002) later improved semantic evaluation by em-
bedding words in continuous spaces, though they
remain dependent on the quality of the underlying
embedding models.

To evaluate LLMs automatically, some re-
searchers developed multiple-choice question and
answering datasets (Clark et al., 2018; Hendrycks
et al., 2020; Rein et al., 2023). While this approach
can automatically evaluate LLMs, it requires con-
structing a dedicated dataset for evaluation. In
addition, LLMs may still rely on statistical patterns
without genuine comprehension or deep reasoning.

In recent years, there has been a shift toward us-
ing LLMs themselves as evaluation tools (Chiang
and Lee, 2023; Shi et al., 2023). This approach
involves using one LLM to evaluate the outputs of
another, based on pre-defined criteria. While this
method allows for more flexible and nuanced as-
sessments, it introduces new challenges that LLMs
tend to produce median scores or neutral judgments
(Liu et al., 2023).
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Figure 3: Overall process of Prediction-Augmented Generation for automatic diagnosis system

3 Preliminaries

3.1 Challenges of ADS

Automatic diagnosis systems (ADS) have gained
attention for predicting diseases using a patient’s
self-report, such as age, gender, and symptoms.
One challenge in ADS research is the difficulty of
collecting diagnostic data, especially for statisti-
cally less informed diseases. Existing research has
tried to solve this problem by combining indepen-
dent knowledge inference result with prediction
(Ju et al., 2023) or injecting knowledge into neural
networks to help improve performance (Xu et al.,
2019a; Lin et al., 2021; Zhang et al., 2023; Zhao
et al., 2022; Tiwari et al., 2022). Motivated by this
challenge, we expected that PAG could contribute
to this work by combining LLM’s vast knowledge
with predictive models to solve the problem. Our
method is elaborated in the next section.

3.2 Problem Formulation

Figure 3 illustrates the overall process of PAG for
ADS. In the input stage, unstructured patient utter-
ances U are processed by the large language model
FE for feature extraction to produce structured data
EI . Next, during the feature alignment stage, the
extracted data EI is mapped to standardized fea-
tures EM using the medical term dictionary T and
the mapping function FM. In the alignment stage,
the mapped features EM are transformed into nu-
merical representations X for the predictive model
FP . The predictive model then operates on these
numerical representations in the prediction stage,
predicting disease labels LN as outputs, which also
have corresponding textual labels LT . Following

this, the knowledge generation stage uses large lan-
guage models to enrich the predicted disease text
LT with relevant medical knowledge K. In the
diagnosis stage, the patient utterances U , predicted
disease text LT , and generated knowledge K are
integrated to produce an initial diagnosis.

P (DT |U) = LLM(U,LT ,K) (1)

P (DL|DT , U) = LLM(U,LT ,K,DT ) (2)

where DL denotes the disease labels about textual
diagnosis DT . To derive the final diagnosis, an
aggregation mechanism combines the predictive
model’s outputs and the LLM-generated diagnosis:

D = argmax
d∈LN ,DL

∑

s∈LN ,DL

Ss(d) (3)

where Ss(d) represents the score assigned to dis-
ease d by source of s.

4 Prediction-Augmented Generation

4.1 Feature Extraction and Alignment
The pipeline begins with Feature Extraction (Step
1), where relevant medical concepts are extracted
from a patient utterance U according to a pre-
defined schema matching the predictive model’s
input. LLMs perform this extraction, filling in
missing attributes and normalizing the concepts
to match the schema. Since the extracted medi-
cal concepts are generated in natural language by
LLMs, they require transformation into a prede-
fined token suitable for the predictive model. To
address this problem, a feature alignment (Step
2) function, denoted as FM , maps the extracted
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medical concepts EI to a predefined medical term
dictionary T = {t1, t2, ..., tm}. Each of the ex-
tracted information is inserted into a query set
Q = {q1, q2, ..., qn} for word matching. The n is
the number of extracted query terms, and m is the
number of predefined medical terms in the dictio-
nary. To match the query terms to medical terminol-
ogy, a two-stage matching approach is employed.
First, an exact match search is conducted. If a query
term qn is found in T , it is directly assigned. If no
exact match is found, the process moves to the sec-
ond stage, which ranks term candidates based on
lexical-based and semantic-based similarity scores.
The lexical-based scoring method measures the
overlap between query words and medical terms.
The score for a given query-key pair is computed
as:

Lexical(qn, tm) = |W (qn) ∩W (tm)| (4)

where W (qn) and W (tm) represent the sets of
words in a query term and a predefined medical
term, respectively. For example, if the query is
"pain on right side of the lower abdomen" and the
key is "right side lower abdomen pain", the lexical
score of this key would be 5. The semantic-based
scoring method measures conceptual similarity us-
ing word embeddings. Each query qn and key tm
is transformed into a word embedding representa-
tion, denoted as vqn and vtm , respectively. The
semantic similarity score is calculated as:

Semantic(qn, tm) =
vqn · vtm

∥vqn∥∥vtm∥
(5)

This method captures conceptual similarities,
such as recognizing "headache" and "pain in the
head" as semantically equivalent. The final rank-
ing score for each query-key pair is computed by
combining lexical and semantic similarity scores:

Score(qn, tm) = RL(qn, tm) + RS(qn, tm) (6)

where RL(qn, tm) and RS(qn, tm) denote the
ranking positions of tm in the lexical and semantic
similarity rankings, respectively. The top-ranked
term receives a score of k, the second-ranked term
is assigned k − 1, and this pattern continues decre-
mentally until the lowest-ranked term within the
top k receives a score of 1. The top-k candidate
terms, denoted as C = {c1, c2, . . . , ck}, are pro-
vided to the LLM through a structured prompt,
where the model selects the most contextually ap-
propriate medical term as:

t∗ = LLM(qn, C) (7)

where qn represents the query term, and C is the
set of candidate terms. The selected term t∗ is then
used for word matching, ensuring consistency with
the predefined terminology schema. The matched
medical information is subsequently utilized as in-
put for the predictive model. To prepare the input
X for the predictive model, the selected medical
term can be transformed using one-hot encoding,
word embeddings, or statistical representations.

4.2 Prediction and Knowledge Integration

Once the input X is prepared, it is fed into the
predictive model (Step 3), yielding k prediction
results. The predicted numerical disease labels are
represented as LN , while the corresponding textual
labels are denoted as LT . To enhance the explain-
ability and provide context, LT is further processed
by an LLM (Step 4), which generates detailed med-
ical knowledge for each predicted disease. This
generated knowledge for a disease is represented
as Kd.

Subsequently, the initial diagnosis is formed by
integrating the patient’s original utterances U , the
predictive results LT , and the generated medical
knowledge Kd. This integrated information is pro-
vided to the LLM to produce the refined diagnosis
text DT and the corresponding disease label DL

(Step 5).
The final step (Step 6) involves an aggregation

mechanism to combine the predictive model’s out-
put and the LLM-generated diagnosis. The pre-
dicted disease labels LN and the LLM-generated
labels DL are ranked based on their likelihood. For
each source, the most probable disease is assigned
the highest score k, the second most probable re-
ceives k − 1, and this continues until the k-th dis-
ease, which receives a score of 1.

The score for each disease is computed as:

Vote(d) =
∑

s∈LN ,DL

Ss(d) (8)

where Ss(d) represents the score assigned to dis-
ease d by source s, reflecting the confidence or rank
provided by each model. The final diagnosis D is
the disease with the highest aggregated score:

D = argmax
d∈LN ,DL

Vote(d) (9)

This final diagnosis represents a comprehensive
conclusion that integrates insights from both the
predictive model and the LLM.
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Models MDD MZ DXY Mean

GPT-4o 87.40 71.69 96.88 84.58
GPT-3.5 81.38 65.44 92.66 79.72
gemma227b 85.61 69.19 93.21 82.31
llama3.18b 79.79 67.96 89.21 78.12
llama3.170b 86.21 75.14 95.10 82.19
mixtral8×22b 85.96 68.72 94.19 83.11
mistral-large123b 90.12 74.19 95.06 86.08

Table 1: Feature alignment recall (FAR) scores of
LMMs across MDD, MZ, and DXY datasets.

5 Experiments

5.1 Experimental Settings

Dataset We evaluate our method on two diag-
nostic tasks. For single disease prediction, we
employ three publicly available datasets—MDD1,
Muzhi (MZ) (Wei et al., 2018), and Dxy (Xu et al.,
2019b)—using standard train/test splits that com-
bine both implicit and explicit symptom informa-
tion. Additionally, the PolyMed dataset (Ju and
Lee, 2023) challenges the model under three sce-
narios: Single test (predicting diseases seen during
training), Unseen test (predicting diseases absent
from training), and Multi test (predicting multiple
diseases simultaneously). Further details are pro-
vided in Appendix A.2.

Metrics We evaluate our model using Recall@K,
Precision@K, and NDCG (Normalized Discounted
Cumulative Gain)@K—which measures ranking
quality by assigning lower importance to correct
predictions at lower ranks. To aggregate the three
PolyMed tests, we use the Weighted arithmetic
mean (WAM) score, detailed in Appendix A.3.

Baselines We employ Linear Discriminant Anal-
ysis (LDA), TabNet (Arik and Pfister, 2021), XB-
Net (Sarkar, 2022), M2DIA (Ju et al., 2023),
and MAEA (Ju and Lee, 2024) as predictive
models. For LLMs, we use closed-source mod-
els gpt-4o-2024-08-06(GPT-4o) (OpenAI, 2024)
and gpt-3.5-turbo-0125(GPT-3.5-turbo) (Ope-
nAI, 2023), alongside quantized open-source mod-
els from the llama3.1 family (Dubey et al., 2024)
(llama3.1:8b, llama3.1:70b), gemma2:27b (Team
et al., 2024), mixtral:8x22b (Jiang et al., 2024a),
and mistral-large (Mistral AI Team, 2024). Fur-
ther details on each model and RAG are in Ap-
pendix A.1 and Appendix A.4.

1https://competitions.codalab.org/competitions/29706

Base LLM Models MDD MZ DXY

GPT-4o

LDA 67.78 54.92 70.19
PAG(LDA) 79.07 58.45 76.92

XBNet 69.87 59.15 67.30
PAG(XBNet) 74.89 64.08 72.11

TabNet 78.66 50.00 75.96
PAG(TabNet) 82.42 62.67 76.92

mixtral
8×22b

LDA 67.78 54.92 73.07
PAG(LDA) 78.66 67.60 75.96

XBNet 69.03 58.45 69.23
PAG(XBNet) 73.22 64.78 72.11

TabNet 76.98 51.40 76.92
PAG(TabNet) 81.59 65.49 76.92

mistral-large
123b

LDA 60.25 52.81 65.38
PAG(LDA) 66.94 64.78 70.19

XBNet 61.92 57.04 64.42
PAG(XBNet) 67.78 63.38 75.96

TabNet 69.45 57.74 68.26
PAG(TabNet) 71.96 66.90 72.11

Table 2: Recall@1 score of PAG and competitors on
restored MDD, MZ, and DXY datasets, aligned as in
Table 1. The Base LLM is used for data restoration and
the PAG process.

5.2 Data Restoration Test

We conducted a data restoration experiment to as-
sess the extraction of structured data from unstruc-
tured patient text and its mapping to predefined
terms. Virtual patient utterances were generated
from structured symptom data in the MDD, MZ,
and DXY datasets, and then processed through our
alignment system to verify accurate reconstruction,
detailed in Appendix A.1. Table 1 shows the Fea-
ture alignment recall (FAR) scores for each dataset
and model, as defined in Equation 10. The results
indicate that the mistral large model performs best,
followed by GPT-4o. The performance of each
dataset is influenced by the quality of the prede-
fined terminology dictionary. Redundant terms
(e.g., "poor appetite" versus "loss of appetite")
sometimes caused contextual confusion, hindering
accurate reconstruction. Moreover, smaller models
tended to exhibit text generation errors, such as
typos and inaccurate token outputs, which lowered
restoration performance. Detailed generated case
are provided in Table 12 and Table 13 in Appendix.
Table 2 presents the results of the comparison be-
tween the performance of a single predictive model
and PAG on the restored data with each large lan-
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Models
MDD MZ DXY

R@1 R@3 ND@3 R@1 R@3 ND@3 R@1 R@3 ND@3

PM

LDA 75.73 84.93 81.10 67.60 98.59 86.78 79.80 97.11 90.34
gemma227b + PAG(LDA) 82.00 89.95 86.75 71.83 98.59 88.43 81.73 98.07 91.41

XBNet 77.82 90.37 85.19 69.71 97.18 86.67 71.15 98.07 87.51
gemma227b + PAG(XBNet) 80.75 92.05 87.71 71.12 99.29 88.43 76.92 99.03 90.75

TabNet 86.61 92.46 90.03 72.53 100 89.67 81.73 95.19 89.72
gemma227b + PAG(TabNet) 86.61 94.97 91.39 73.94 100 89.83 82.69 97.11 91.28

LLM

GPT-4o 39.33 83.26 65.57 38.02 97.18 73.41 31.73 86.53 63.54
GPT-4o + RAG 65.27 89.95 79.53 66.19 95.07 83.58 66.34 98.07 84.60
GPT-4o + PAG(TabNet) 86.19 95.39 91.28 69.71 99.29 87.91 79.80 97.11 90.22

GPT-3.5 37.65 81.17 63.35 34.50 95.77 71.41 31.73 87.50 64.90
GPT-3.5 + RAG 60.25 83.68 74.15 66.19 92.95 82.80 66.34 95.19 83.28
GPT-3.5 + PAG(TabNet) 75.73 94.14 86.96 61.26 98.59 84.17 62.50 96.15 82.60

gemma227b 33.89 71.12 55.79 23.94 79.57 55.72 21.15 55.76 40.47
gemma227b + RAG 58.15 82.42 72.21 60.56 95.07 81.59 42.30 90.38 69.74
gemma227b + PAG(TabNet) 86.61 94.97 91.39 73.94 100 89.83 82.69 97.11 91.28

llama3.18b 29.70 74.89 56.24 40.84 92.95 72.43 31.73 81.73 60.12
llama3.18b + RAG 58.99 84.51 74.00 58.45 95.07 80.17 65.38 93.26 81.71
llama3.18b + PAG(TabNet) 84.51 93.72 89.94 68.30 92.95 83.03 71.15 95.19 85.18

llama3.170b 41.84 82.42 65.85 41.54 95.77 74.00 43.26 85.57 67.94
llama3.170b + RAG 63.59 89.53 78.86 61.26 95.07 82.04 64.42 98.07 83.64
llama3.170b + PAG(TabNet) 83.26 94.14 89.68 70.42 98.59 88.10 71.15 99.03 87.99

mixtral8×22b 36.40 71.96 57.58 39.43 90.84 70.02 17.30 71.15 48.76
mixtral8×22b + RAG 63.59 86.61 77.29 64.08 92.95 81.93 68.26 95.19 83.87
mixtral8×22b + PAG(TabNet) 84.51 94.56 90.58 72.53 99.29 89.05 76.92 98.07 89.51

mistral-large123b 18.82 59.41 42.84 28.16 83.80 61.88 25.00 68.27 49.90
mistral-large123b + RAG 62.76 87.86 77.50 63.38 94.36 82.19 71.15 97.11 86.65
mistral-large123b + PAG(TabNet) 78.66 94.56 88.25 71.12 99.29 88.62 75.00 98.07 88.93

Table 3: Experimental results of Predictive Models (PM), LLMs, and PAG on MDD, Muzhi, and DXY datasets,
using Recall(R), Precision(P), and NDCG(ND) metrics. Extended results are presented in Table 10 of the Appendix.

guage model used in Table 1, using the Recall@1
score. We have conducted experiments on the three
large language models that performed the high-
est in Table 1 and found that PAG significantly
improves the diagnosis performance. The PAG
with GPT-4o and LDA combination recorded the
largest performance improvement, and the GPT-
4o-based PAG-applied model performed the best
overall. The Mistral-large model had the highest
data restoration performance in Table 1, but it per-
formed relatively poorly compared to GPT-4o and
Mixtral in Table 2. This suggests that data restora-
tion performance does not ensure final prediction
performance. Since PAG involves a variety of tasks,
including word matching, knowledge generation,
and prediction refinement, a model that maintains
balanced performance at each stage is likely to be
more suitable for our method.

5.3 Single Diagnosis Task

We evaluated the performance of disease prediction
using original data from MDD, MZ, and DXY to
validate the performance of pure PAG, excluding
the impact of data restoration quality. We used
the prediction performance of Recall@1 and 3,
and the NDCG@3 metrics. The experimental re-
sults in Table 3 show that PAG significantly im-
proves prediction performance across all datasets.
Although some older and smaller models exhibit
performance degradation, PAG still yields an over-
all enhancement in predictive accuracy.

We evaluated the LLM’s performance by align-
ing its generated diagnostic text with the correct dis-
ease labels using our feature alignment process. In
the single LLM performance, models with poor pre-
diction performance, such as Mistral-large, showed
significant performance improvement after apply-
ing PAG. This suggests that PAG can be utilized
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Models R@1 R@3 R@5 P@1 P@3 P@5 ND@1 ND@3 ND@5

PM

XBNet 18.96 38.47 49.59 27.36 17.33 13.07 21.31 33.71 38.75
GPT-4o + PAG(XBNet) 20.00 45.76 57.30 26.77 19.92 14.84 21.87 38.02 43.19

MAEA 25.78 47.56 58.82 34.65 20.75 15.22 28.21 41.90 46.96
GPT-4o + PAG(MAEA) 24.65 50.13 63.72 32.07 21.56 16.34 26.66 42.64 48.73

M2DIA 24.73 45.75 56.11 33.19 19.95 14.55 27.06 40.24 44.89
GPT-4o + PAG(M2DIA) 24.09 49.18 61.38 31.55 21.17 15.73 26.12 41.93 47.42

LLM

GPT-4o 12.50 33.96 43.28 16.01 14.45 11.04 13.45 26.77 30.95
GPT-4o + RAG 14.68 31.39 42.13 18.55 13.27 10.70 15.66 25.95 30.82
GPT-4o + PAG(M2DIA) 24.09 49.18 61.38 31.55 21.17 15.73 26.12 41.93 47.42
GPT-4o + PAG(M2DIA) w/o Kd 25.20 48.20 59.03 33.55 20.86 15.22 27.50 41.99 46.87

GPT-3.5 12.46 28.50 36.21 15.92 12.14 9.24 13.39 23.33 26.78
GPT-3.5 + RAG 15.12 29.68 37.49 19.16 12.57 9.53 16.17 25.28 28.78
GPT-3.5 + PAG(M2DIA) 22.53 46.84 57.71 29.40 20.26 14.88 24.40 39.69 44.58
GPT-3.5 + PAG(M2DIA) w/o Kd 22.51 44.76 56.10 29.94 19.45 14.51 24.57 38.53 43.62

gemma227b 14.13 35.17 44.22 18.06 14.96 11.28 15.17 28.14 32.20
gemma227b + RAG 13.65 30.37 40.39 17.40 12.84 10.26 14.59 25.10 29.64
gemma227b + PAG(M2DIA) 22.93 49.78 62.22 30.18 21.36 15.97 24.90 41.77 47.34
gemma227b + PAG(M2DIA) w/o Kd 23.57 45.89 56.18 31.39 19.98 14.56 25.73 39.80 44.43

llama3.18b 9.10 21.74 30.69 11.58 9.24 7.81 9.77 17.64 21.69
llama3.18b + RAG 12.87 29.63 38.68 16.20 12.56 9.84 13.71 24.11 28.21
llama3.18b + PAG(M2DIA) 21.53 44.47 57.86 28.40 19.27 14.91 23.40 37.81 43.81
llama3.18b + PAG(M2DIA) w/o Kd 21.98 43.51 55.17 29.23 18.96 14.30 23.99 37.50 42.73

llama3.170b 11.91 27.91 36.91 15.26 11.87 9.41 12.80 22.53 26.58
llama3.170b + RAG 14.09 30.82 40.53 17.74 13.03 10.30 15.02 25.44 29.81
llama3.170b + PAG(M2DIA) 21.67 47.35 60.16 28.59 20.44 15.48 23.55 39.66 45.40
llama3.170b + PAG(M2DIA) w/o Kd 21.19 44.83 57.42 28.25 19.47 14.84 23.12 37.86 43.55

mixtral8×22b 14.02 32.13 40.61 17.90 13.65 10.37 15.05 26.09 29.88
mixtral8×22b + RAG 10.83 24.93 34.00 13.84 10.59 8.66 11.58 20.39 24.56
mixtral8×22b + PAG(M2DIA) 22.63 47.37 59.21 29.46 20.35 15.26 24.47 39.99 45.34
mixtral8×22b + PAG(M2DIA) w/o Kd 23.46 46.97 57.74 31.50 20.42 14.90 25.69 40.50 45.36

mistral-large123b 13.58 31.85 40.89 17.43 13.55 10.42 14.60 25.77 29.85
mistral-large123b + RAG 10.83 27.61 36.06 13.83 11.69 9.17 11.58 21.96 25.81
mistral-large123b + PAG(M2DIA) 22.68 48.59 60.12 29.35 20.92 15.45 24.48 40.78 45.97
mistral-large123b + PAG(M2DIA) w/o Kd 24.89 47.96 58.11 33.13 20.76 15.00 27.14 41.69 46.29

Table 4: Overall WAM score for Predictive Models (PM), LLMs, and our PAG with three tests of PolyMed. Metrics
"R", "P", and "ND" denote Recall, Precision, and NDCG respectively. "w/o Kd" denotes PAG that omits the
knowledge generation module. Extended results are presented in Table 11 of the Appendix.

as a robust external tool to complement the perfor-
mance of LLMs in prediction tasks.

We compared PAG with a Retrieval-augmented
generation (RAG) approach and found that PAG
outperformed RAG overall. RAG retrieves the top
five disease documents by calculating similarity
between the user’s symptoms embedding and dis-
ease information from medical organizations and
uses these documents to generate diagnosis text.
In the MZ and DXY datasets having less than five
disease labels, PAG still outperformed RAG in pre-
diction, even though we provided information for
all disease labels to exclude the impact of retrieval
performance. This suggests that PAG can improve
the accuracy of generation over RAG in the predic-
tion task.

5.4 Multiple Diagnosis Task

Table 4 shows experimental results in multiple di-
agnosis task of PolyMed. We measured WAM
score (Equation 13) to aggregate the single, unseen,
and multi test results. The experimental results
show that the model with PAG improves the pre-
diction performance in all experiments. Especially
in Top-5 predictions, PAG significantly improves
scores, demonstrating superior alignment of multi-
ple disease candidates compared to predictive mod-
els. Predictive models typically trained for a single
label output, so they often fail to produce multiple
candidates. By leveraging LLM knowledge, PAG
refines predictions and enhances the candidate pool,
which is especially beneficial for automatic diagno-
sis systems offering multiple suspected diseases.
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Models A@1 R@5 P@5 ND@5

M2DIA 12.63 31.04 6.20 22.03

GPT-4o 11.15 46.09 9.21 29.79
gemma227b 15.61 45.91 9.18 31.94
mistral-large123b 13.94 43.68 8.73 29.56

PAG(GPT-4o,M2DIA) 16.17 43.86 8.77 30.66
PAG(GPT-4o,M2DIA) w/o Kd 14.12 35.68 7.13 25.62

PAG(gem2,M2DIA) 14.86 44.79 8.95 30.77
PAG(gem2,M2DIA) w/o Kd 12.63 31.22 6.24 22.57

PAG(mistral,M2DIA) 17.28 40.70 8.14 29.74
PAG(mistral,M2DIA) w/o Kd 14.31 34.38 6.87 25.12

Table 5: Experiments result of the unseen test dataset.
Metrics "R", "P", and "ND" denote Recall, Precision,
and NDCG respectively. A@1 denotes the top-1 score
for all metrics. In PAG(a,b), a and b are LLMs and
predictive models respectively.

The RAG approach uses association rules to rank
diseases by counting the overlap between PolyMed
knowledge data and patient symptoms, then re-
trieves the top 20 disease information to generate
diagnoses. However, the RAG-based diagnosis gen-
eration method showed overall lower performance
than PAG. This suggests that in disease diagnosis,
inference-based tools are more crucial for perfor-
mance than knowledge retrieval.

5.5 LLM Knowledge Impact

Table 4 also evaluates the effect of LLM knowledge
by comparing the full PAG model to a variant with-
out its knowledge generation component (w/o Kd).
The full model outperforms in Top-3 and Top-5
metrics, while the variant shows an advantage in
Top-1, suggesting that LLM knowledge enhances
the overall quality of the prediction pool. Table 5
focuses on the PolyMed unseen test, where diseases
absent from the training data must be inferred using
medical knowledge. In this test, the PAG without
the knowledge generation, which is more reliant on
the predictive model, performs worse. By integrat-
ing the predictive model with LLM-derived knowl-
edge, the full PAG model demonstrates enhanced
performance, even surpassing the standalone per-
formance of the LLM on some metrics. More-
over, LLM knowledge generation improves both
predictive accuracy and explainability. This is es-
pecially valuable in applications like disease pre-
diction, where understanding the rationale behind a
prediction is critical. Examples of LLM-generated
knowledge and prediction cases are provided in
Table 14 in the Appendix.

Figure 4: Graph showing PAG performance as the num-
ber of disease candidates varies. The dotted lines repre-
sent individual open-source LLM (with M2DIA) perfor-
mance, while the black line shows the average.

Figure 5: Ablation study presenting average Top-1 and
Top-5 metrics for three model groups (Mistral123b, GPT-
4o, Mixtral8×22b). Bars compare the full PAG model
with variants excluding LLM knowledge (Kd), the pre-
dictive model (PM), or the large language model (LLM).

5.6 Impact of Information Quantity

We evaluated performance by varying the number
of disease predictions fed to the open-source LLM
with PAG(M2DIA) using the mean of all metrics’
WAM scores on the PolyMed dataset (see Figure 4).
We excluded the LLM’s knowledge generation of
PAG (w/o Kd) to solely assess its ability to process
increasing amounts of disease candidates. While
performance initially improves, gains plateau or
even decline beyond a certain point. Optimal per-
formance is achieved with 25 to 35 disease pre-
dictions. This behavior likely reflects the LLM’s
limited capacity to process excessive information
and inherent diagnostic constraints, indicating that
the number of predictions in PAG should be treated
as a hyperparameter to optimize.
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5.7 Ablation Study

We conducted an ablation study to evaluate the con-
tributions of components in the PAG framework.
We compare the full PAG model with three ablated
variants: (1) removing the knowledge generation
module (w/o Kd), (2) using only the LLM with-
out the predictive model and knowledge(w/o Kd,
PM), and (3) using only the predictive model with-
out LLM and knoweldge (w/o Kd, LLM). Perfor-
mance was measured using the average of Recall,
Precision, and NDCG at Top-1 and Top-5 ranks.

As shown in Figure 5, the full PAG model
achieves better Top-1 performance than the LLM-
only variant but is below the predictive model alone
and the version without knowledge. This is ex-
pected, as predictive models are trained to optimize
single-label accuracy, while LLMs are better suited
for broader reasoning. In Top-5 metrics, however,
full PAG consistently outperforms all other variants.
This demonstrates that integrating LLM-generated
knowledge enhances the overall quality of candi-
date predictions.

5.8 Case Study

To illustrate how PAG refines disease prediction
through step-wise reasoning, we present a case
in Table 6. The input includes structured symp-
tom data indicating a burning sensation behind the
breastbone and stomach ache, with the absence of
nausea and acid reflux. Although the predictive
model identifies several potential conditions, in-
cluding coronary heart disease and esophagitis, the
final diagnosis is refined through knowledge and
reasoning powered by large language models.

Using retrieved knowledge about symptom pro-
files, the LLM identifies esophagitis as the most
plausible diagnosis, based on the specificity of the
chest-burning symptom and lack of cardiac-related
indicators. This demonstrates the ability of PAG
to incorporate both statistical predictions and con-
textual medical reasoning. The refined prediction
matches the ground truth, highlighting the value
of LLM knowledge in narrowing down ambiguous
or overlapping diagnostic candidates. Additionally,
our PAG enhances explainability by providing the
rationale behind its reasoning, based on the knowl-
edge it has generated about each condition, thereby
clarifying the cognitive process that leads to the
final diagnosis. These strengths demonstrate the
potential of PAG for real-world deployment in med-
ical tasks where trust and reliability are critical.

Component Content

Meta Data { ’symptoms’: { ’Burning sensation behind the breastbone’: True,
’Nausea’: False, ’Acid reflux’: False, ’Stomach ache’: True },
’disease_tag’: ’Esophagitis’ }

Target Disease Esophagitis

PM Prediction [Coronary heart disease, Esophagitis, Rhinitis, Pneumonia, Enteritis . . . ]
LLM Kd Coronary heart disease: [Chest pain, Shortness of breath, Fatigue, Nausea,

Lightheadedness, Sweating, Pain in arms or shoulders]
Esophagitis: [Difficulty swallowing, Chest pain, Painful swallowing, Heartburn,
Acid regurgitation, Sore throat, Hoarseness, Cough, Nausea, Vomiting, Food
getting stuck in the esophagus] ...

LLM Reasoning The symptoms of a burning sensation behind the breastbone and a stomach ache,
in the absence of nausea and acid reflux, align most closely with esophagitis.
While nausea and acid reflux are common in esophagitis, the central symptom
of chest pain or a burning sensation (heartburn) and stomach ache are highly
indicative of inflammation or irritation of the esophagus lining, characteristic of
esophagitis. Other related conditions, such as coronary heart disease, are less
likely due to the absence of other critical symptoms like shortness of breath,
pain in arms or shoulders, and lightheadedness. This diagnosis fits the noted
symptom pattern without the presence of symptoms more indicative of other
diseases on the list.’, ’1’: ’Esophagitis’

Refined Result Esophagitis

Table 6: Case study illustrating step-wise reasoning
from prediction to LLM-based refinement in PAG.

6 Conclusion

We proposed the Prediction-Augmented Genera-
tion (PAG) technique, which utilizes predictive
models as an external tool to support large language
models in inference-driven tasks. We evaluated our
method on a wide range of disease diagnosis tasks
and found that it can effectively improve not only
the diagnosis generation of large language models,
but also the prediction performance of predictive
models. In particular, we found that the interven-
tion of large language models effectively improves
the quality of the disease prediction pool. As a
result, PAGs can be utilized as a key technology to
effectively combine prediction models and LLMs
to improve the reliability of medical diagnosis, and
can contribute as a powerful tool for practical med-
ical applications. Our approach is based on recent
research trends suggesting that generation through
multi-step reasoning can enhance the predictive
performance of large language models, and we
demonstrated that integrating the output of a predic-
tive model into this process enables more accurate
predictions. In future work, we will refine the in-
tegration method and evaluate PAG’s effectiveness
across various prediction tasks.

Limitations

Knowledge Integration. Our PAG effectively
combines predictive models with LLM-derived
knowledge to enhance predictive capability and
overall performance. However, further research
is needed to optimize the fusion of prediction re-
sults with LLM knowledge. Our experiments show
that while PAG excels at generating multiple dis-
ease candidates, its ability to pinpoint the single
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most probable diagnosis is comparatively weaker.
This trade-off indicates a need for improved fu-
sion strategies, and future work should focus on
developing knowledge integration methods that can
simultaneously optimize both Top-1 and Top-5 per-
formance.

Controllability. Despite the robust language gen-
eration capabilities of LLMs, they often struggle
with controllability. Our case studies in Table 12
show that LLM-generated text sometimes fails
to follow the rules and structure provided in the
prompts, and smaller, quantized models can make
errors like typos. Addressing these issues could
lead to more robust and reliable performance.

Explainability. PAG offers meaningful explain-
ability by incorporating explicit knowledge genera-
tion and rationale into its diagnostic output. How-
ever, this explainability is derived not from a direct
analysis of the model’s internal computations, but
from conventional post-hoc methods that generate
coherent textual explanations. Thus, while PAG’s
explainability enhances trust and transparency in
its predictions, it does not fully elucidate all inter-
nal processes. To overcome this limitation, further
integration of inherently explainable AI techniques
is required.
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A Experimental Details

We run all quantized open-source LLMs using
the Ollama framework, which provides stream-
lined deployment and execution of large language
models with quantized weights. Experiments are
conducted on a workstation equipped with three
NVIDIA A6000 GPUs (48 GB each). All LLMs
are executed using Ollama’s default inference pa-
rameters, including decoding strategy, temperature,
and token limits.

A.1 Implementations Details

Data Restoration Test. We constructed a patient
symptom table by integrating implicit and explicit
symptom attributes from the MDD, MZ, and DXY
datasets. We generated synthetic patient utterance
data using the GPT-4o model based on this con-
solidated information. To ensure data quality, we
employed a dual-validation process. Initially, the
GPT-4o model generated patient utterances based
on the integrated symptom data. Subsequently, we

prompted GPT-4o to review its own output by com-
paring them with the original data, verifying that
no symptom information was omitted. Only the
utterances that passed this validation process were
used in our experiments. The prompt used for data
generation is provided in Table 15, and sample ut-
terances are shown in Table 13. Additionally, Ope-
nAI’s text-embedding-ada-002 was employed
for obtaining word embeddings during the Feature
Alignment process.

Structured Data Evaluation. To evaluate PAG
on the original data of MDD, MZ, DXY, and Poly-
Med, we replaced the patient utterance information
with structured patient data. Using these original
data, a predictive model generated 30 disease pre-
dictions, which were then used by the LLM to
produce related knowledge. Finally, we generate
the diagnosis of PAG based on structured patient
data, inferences from the predictive model, and the
disease knowledge generated by LLM.

LLM Prediction. For the label prediction task
of all evaluation datasets, we utilized our proposed
feature alignment module. Patient information was
provided as a prompt to the LLM, which then gen-
erated five candidate disease texts in a structured
format. The generated disease texts were com-
pared with a predefined disease label dictionary to
retrieve the 15 most similar terms. Consequently,
the retrieved candidate terms and the target dis-
ease text are combined in the prompt, enabling the
LLM to select the most appropriate term. OpenAI’s
text-embedding-ada-002 was also used for word
embedding.

RAG Prediction. We employed two Retrieval-
augmented generation (RAG) methods in this study.
The first method is based on a document embed-
ding search and is applied to the MDD, MZ, and
DXY datasets, which do not provide explicit dis-
ease knowledge. In this approach, we first integrate
the implicit and explicit symptom attributes from
the datasets to construct a comprehensive repre-
sentation of patient symptoms, which is then em-
bedded. Concurrently, we collect documents con-
taining disease overviews and symptom informa-
tion from medical institutions (See Table 8) and
embed these as well. By comparing the patient
symptom embedding with the document embed-
dings, we retrieve the five most similar documents
and provide them as input to the LLM for diag-
nosis. The embedding model used is OpenAI’s
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text-embedding-ada-002. The second method
employs association rule-based retrieval on the
PolyMed dataset, which consists of predefined
medical terms for each disease. This approach
constructs all combinations of patient symptoms
and disease symptoms, calculates the intersection
count between these sets to rank the diseases, and
then supplies the top 20 disease knowledge entries
to the LLM prompt.

A.2 Dataset

Dataset #Train #Test #Diseases #Symptoms

MDD 1912 223 12 118
MZ 568 142 4 66

DXY 423 104 5 44

Table 7: Statistic information of MDD, MZ, DXY.
"#Train" and "#Test" are the total number of train and
test data, and "#Diseases" and "#Symptoms" indicate
the number of unique diseases and symptoms.

Source

https://www.hopkinsmedicine.org/health/conditions-and-diseases
https://my.clevelandclinic.org/health/diseases
https://www.mayoclinic.org/diseases-conditions
https://my.clevelandclinic.org/health/articles
https://www.msdmanuals.com/professional/ear-nose-and-throat-disorders
https://www.ninds.nih.gov/health-information/disorders
https://www.stanfordchildrens.org/en/topic
https://kidshealth.org/en/parents

Table 8: Knowledge source of MDD, MZ, DXY for
RAG.

Dataset #Data #Diseases #Symptoms

Train 3636 57 352
Single test 909 57 248
Unseen test 538 74 290
Multi test 867 53 179

Total 5950 131 433

Table 9: Statistic information of PolyMed-case. "#Data"
is the total number of data, and "#Diseases" and "#Symp-
toms" indicate the number of unique diseases and symp-
toms.

MDD, MZ, DXY We evaluated disease diagno-
sis capability in a single-task setting using the pub-
lic datasets MDD, MZ, and DXY. These datasets
were originally designed to assess conversational
automatic diagnosis systems, including tasks that
extract implicit symptoms from explicit symptoms.

However, to measure PAG’s diagnostic perfor-
mance, we employ a symptom set that integrates
both explicit and implicit symptoms. Detailed in-
formation about each dataset is provided in Table 7.

PolyMed The PolyMed dataset is used to eval-
uate automatic diagnosis systems from three per-
spectives.

The first is a Single test to evaluate the disease
prediction performance of the model on diseases
learned from the Train dataset. This evaluation is
equivalent to evaluating the Train-test split data, as
is the evaluation of a typical learning-based model.

The second is the Unseen test, which requires
the model to make predictions on diseases that it
has not learned from the Train data. This task is
solved by utilizing disease knowledge data con-
tained in PolyMed data, which is derived from the
challenge of supplementing the lack of disease data
with knowledge information to overcome the lim-
itation that training data for many common ADS
diseases are not available.

The last task is Multi test, which is a test for
cases where a patient is diagnosed with more than
one suspected disease, and requires prediction for
multiple related diseases.

These tasks can evaluate ADS from different
angles and allow for a comprehensive assessment.
Table 9 provides statistical information about the
PolyMed data.

A.3 Metrics
Recall@K Recall@K measures the fraction of
correct diseases retrieved in the top K predictions
relative to the total number of correct diseases. It
is defined as:

Recall@K =

∑K
i=1 1{diseasei is correct}

Total number of correct diseases
(10)

where 1{·} is an indicator function. In the data
restoration test, "diseases" can be replaced with
"symptoms".

Precision@K Precision@K quantifies the pro-
portion of correct diseases among the top K pre-
dictions:

Precision@K =

∑K
i=1 1{diseasei is correct}

K
(11)

NDCG@K The Normalized Discounted Cumu-
lative Gain at K (NDCG@K) evaluates the ranking
quality of predicted diseases. In our setting, every
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correct disease is assigned the same relevance score
(i.e., reli = 1). Consequently, the Discounted Cu-
mulative Gain at K (DCG@K) simplifies to:

DCG@K =
K∑

i=1

1{diseasei is correct}
log2(i+ 1)

,

The Ideal DCG at K (IDCG@K) is computed by
placing all correct diseases in the top n positions:

IDCG@K =

n∑

i=1

1

log2(i+ 1)
,

where n = min(K,Total number of correct diseases).
NDCG@K is then given by:

NDCG@K =
DCG@K
IDCG@K

(12)

Weighted Arithmetic Mean To collectively eval-
uate the three assessments of PolyMed data, we
used the Weighted Arithmetic Mean method to cal-
culate a composite score. WAM score can calcu-
lated by:

R = {Single, Unseen,Multi},

wi = 1− Ri∑
i∈R Ri

,

WAM =

∑
i∈R wiRi∑
i∈R wi

(13)

where Ri is the score of each Recall@k,
Precision@k, and NDCG@k results for the
three test datasets. This weighting system penal-
izes imbalanced improvements, leading to a de-
crease in the WAM score if there is an unequal
enhancement in the scores. This approach prevents
an exclusive focus on specific task optimization to
improve model performance.

A.4 Details of baselines
A.4.1 Predictive Models
LDA, XBNet, TabNet For LDA, we used a Sin-
gular Value Decomposition solver to fit the data.
XBNet (Sarkar, 2022) was trained with the Adam
optimizer at a learning rate of 0.01 over 500 epochs
using a two-linear-layer architecture, and the best-
performing model was selected. TabNet (Arik and
Pfister, 2021) was optimized using Optuna (Ak-
iba et al., 2019) with a maximum of 3000 epochs
and a batch size of 256; from 1000 training runs,
the model yielding the highest performance was
chosen.

M2DIA M2DIA (Ju et al., 2023) is a predictive
model for the PolyMed task, utilizing a multimodal
ensemble approach that combines predictive model-
ing with knowledge inference techniques to achieve
superior diagnostic performance. In our implemen-
tation, we adopted the original model’s ensemble
structure, which integrates six prediction models
with their corresponding weights.

MAEA MAEA (Ju and Lee, 2024) is a state-of-
the-art model for the PolyMed task that refines the
aggregation approach of M2-DIA. It introduces a
model-agnostic confidence measurement to quan-
tify the reliability of each modality’s contribution
and dynamically weight ensemble predictions.

A.4.2 Large Language Models
Llama 3.1 Meta’s Llama 3.1 was used in
two configurations: an 8B model (ollama’s
llama3.1:8b-instruct-fp16, FB16 quantiza-
tion, 16GB memory) and a 70B model (ollama’s
llama3.1:70b-instruct-q8_0, Q8 quantization,
75GB memory).

Gemma 2 Gemma 2 is a 27B model from Google,
deployed as ollama’s 27b-instruct-fp16 with
FB16 quantization (54GB memory).

Mixtral Mixtral comprises eight 22B models, im-
plemented as ollama’s mixtral:8x22b with Q4
quantization (80GB memory).

Mistral-large Mistral-large is a 123B model, pro-
vided as ollama’s mistral-large:123b with Q4
quantization (69GB memory).
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Models
MDD MZ DXY

R@1 R@3 ND@3 R@1 R@3 ND@3 R@1 R@3 ND@3

LDA 75.73 84.93 81.10 67.60 98.59 86.78 79.80 97.11 90.34
gemma227b + PAG(LDA) 82.00 89.95 86.75 71.83 98.59 88.43 81.73 98.07 91.41
llama3.170b + PAG(LDA) 70.71 90.37 82.46 68.30 100.00 87.56 74.03 98.07 88.57
mixtral8×22b + PAG(LDA) 81.59 90.37 86.75 67.60 97.18 85.99 78.84 97.11 90.12
mistral-large123b + PAG(LDA) 66.94 89.95 80.75 64.08 97.88 84.76 75.00 99.03 89.53

XBNet 77.82 90.37 85.19 69.71 97.18 86.67 71.15 98.07 87.51
gemma227b + PAG(XBNet) 80.75 92.05 87.71 71.12 99.29 88.43 76.92 99.03 90.75
llama3.170b + PAG(XBNet) 76.56 93.72 86.68 68.30 95.07 84.73 66.34 99.03 86.09
mixtral8×22b + PAG(XBNet) 76.56 92.88 86.26 69.01 97.18 86.23 76.92 99.03 90.12
mistral-large123b + PAG(XBNet) 66.10 92.46 82.02 66.90 97.18 85.73 77.88 98.07 90.12

Table 10: Experimental results of Predictive Models (PM) and PAG on MDD, Muzhi, and DXY datasets, using
Recall(R), Precision(P), and NDCG(ND) metrics.

Models R@1 R@3 R@5 P@1 P@3 P@5 ND@1 ND@3 ND@5

LDA 20.26 39.35 46.62 27.30 17.34 12.21 22.19 34.27 37.62
gemma227b + PAG(LDA) 22.36 42.78 51.87 29.63 18.59 13.42 24.33 37.22 41.33
llama3.18b + PAG(LDA) 18.88 37.88 47.95 25.17 16.62 12.52 20.59 32.58 37.16
llama3.170b + PAG(LDA) 19.43 41.19 50.97 25.88 18.01 13.26 21.18 34.85 39.32
mixtral8×22b + PAG(LDA) 22.04 41.61 50.15 29.11 18.16 13.06 23.95 36.26 40.13
mistral-large123b + PAG(LDA) 21.48 41.25 50.45 28.43 17.98 13.13 23.35 35.85 40.06

XBNet 18.96 38.47 49.59 27.36 17.33 13.07 21.31 33.71 38.75
gemma227b + PAG(XBNet) 20.57 46.67 58.40 27.77 20.29 15.09 22.53 38.79 44.11
llama3.18b + PAG(XBNet) 17.91 40.57 54.08 24.77 17.93 14.06 19.81 33.95 40.07
llama3.170b + PAG(XBNet) 18.75 44.00 56.80 25.53 19.20 14.70 20.63 36.24 42.02
mixtral8×22b + PAG(XBNet) 20.51 44.76 56.10 27.26 19.50 14.53 22.37 37.49 42.62
mistral-large123b + PAG(XBNet) 19.43 45.87 57.25 25.81 19.98 14.77 21.17 37.72 42.85

TabNet 17.05 31.77 42.04 25.30 14.92 11.35 19.35 28.68 33.32
gemma227b + PAG(TabNet) 20.03 42.74 53.78 27.84 18.82 13.98 22.18 36.35 41.36
llama3.18b + PAG(TabNet) 15.72 35.71 46.33 22.86 16.07 12.28 17.68 30.20 35.04
llama3.170b + PAG(TabNet) 16.49 37.90 49.79 23.55 17.05 13.13 18.45 31.92 37.30
mixtral8×22b + PAG(TabNet) 18.33 39.63 50.16 25.34 17.66 13.17 20.26 33.74 38.52
mistral-large123b + PAG(TabNet) 18.45 40.13 50.12 25.43 17.84 13.17 20.37 34.14 38.65

MAEA 25.78 47.56 58.82 34.65 20.75 15.22 28.21 41.90 46.96
gemma227b + PAG(MAEA) 25.43 52.29 63.79 32.91 22.42 16.36 27.46 44.21 49.38
llama3.18b + PAG(MAEA) 21.92 47.71 60.66 28.89 20.56 15.60 23.81 39.78 45.61
llama3.170b + PAG(MAEA) 23.05 48.45 60.95 30.21 20.90 15.67 25.00 40.90 46.50
mixtral8×22b + PAG(MAEA) 23.73 49.12 62.18 30.68 21.14 15.97 25.59 41.75 47.63
mistral-large123b + PAG(MAEA) 23.06 49.18 61.97 29.86 21.21 15.94 24.88 41.30 47.08

Table 11: WAM score of Predictive Models (PM) and PAG with three tests of PolyMed. Metrics "R", "P", and "ND"
denote Recall, Precision, and NDCG respectively.
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Utterance I’ve been feeling really tired and without much energy lately. I’ve also been
throwing up and having really watery stools. I don’t have much of an appetite, either.
Extraction {"symptoms": {"Fatigue": True, "Nausea": False, "Vomiting": True,
"Diarrhea": True, "Loss of appetite": True}}
Validation {"symptoms": {"Fatigue": True, "Nausea": True, "Vomiting": True,
"Diarrhea": True, "Loss of appetite": True}}

Utterance I’ve been having a lot of trouble lately with persistent coughing and I’m also
coughing up quite a bit of phlegm. On top of that, I’m experiencing some shortness of breath,
and there’s this uncomfortable feeling in my throat that just won’t go away. It’s really starting
to worry me.
Extraction {"symptoms": {"Persistent coughing": True, "Coughing up phlegm":
True, "Shortness of breath": True, "Uncomfortable feeling in the throat":
True}}
Validation <NPB>

Utterance I’ve been having a really tough time with this persistent stuffiness lately. My
nose feels completely congested, and there’s noticeable swelling inside. It’s like my nasal
passages are constantly blocked and swollen, making it uncomfortable to breathe. However,
I haven’t had any fever or experienced any double vision.
Extraction Here is the structured summary of the patientś reported symptoms:{"symptoms":
{"Stuffy nose": True, "Nasal congestion": True, "Swelling in nasal passages": True, "Diffi-
culty breathing": True, "Fever": False, "Double vision": False}}
Validation The following information from the text data is missing in the structured data: *
"persistent stuffiness"* "noticeable swelling inside"* "nasal passages are constantly blocked
and swollen"Corrected Structured Data:{"symptoms": {"Stuffy nose": True,"Nasal con-
gestion": True,"Swelling in nasal passages": True,"Difficulty breathing": True,"Fever":
False,"Double vision": False,"Persistent stuffiness": True,"Noticeable swelling inside":
True,"Constant blockage and swelling of nasal passages": True}}

Utterance "I’ve been dealing with a fever and these red spots that have turned into blisters.
My mouth has been sore, and I really haven’t felt like eating anything. I’m quite worried
because it seems to be progressively getting worse. Can you help me understand what’s
going on?"
Extraction It seems you haven’t provided any text related to a patient’s dialogue with their
doctor. Could you please provide the necessary information so I can assist you in extracting
a structured summary of the patient’s reported symptoms, medical history, and specific
concerns?
Validation <NPB>

Table 12: Feature extraction examples. Utterance is a patient symptom utterance generated by Table 15 prompt.
Extraction and Validation is corresponding extracted feature and validation using Table 16 prompt. The red text
shows examples of incorrect information extraction.
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Original {"Restlessness": true, "Fever": true, "Rash": true, "Blisters": true, "Lethargy": true,
"Coughing": false, "Vomiting": false, "Anorexia (Loss of appetite)": false}
Draft I’ve been feeling really restless and I’ve had this fever that just won’t go away. There’s
also this rash that’s appeared and some blisters have started forming. I’m also feeling more
tired and lethargic than usual. It’s been pretty uncomfortable and I’m not sure what’s going
on.
Validation Lately, I’ve been feeling really restless and can’t shake off this persistent fever.
I’ve noticed a rash and some blisters developing, and overall, I’ve been feeling much more
tired and lethargic than usual. Despite these symptoms, I haven’t been experiencing any
coughing or vomiting, and my appetite remains normal without any signs of anorexia.

Original {"Chest tightness": true, "Pain behind the breastbone": true, "Diarrhea": true,
"Acid reflux": true}
Draft I’ve been dealing with some really uncomfortable chest tightness and pain right behind
my breastbone. On top of that, I’ve been experiencing diarrhea and a lot of acid reflux. It’s
starting to get pretty concerning, and I’m not sure what’s causing all of this.
Validation <NPB>

Table 13: Utterance generation examples. The Original is the symptom data of the ADS dataset. Draft and
Validation are generated by the prompt of Table 15
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User Prompt Disease information:
Mastitis - (51.25%) Breast swelling, breast pain, skin redness, warmth to touch, lump or
thickening of tissue, fever, chills. Coronary heart disease - (44.31%) Chest pain (angina),
Shortness of breath, Fatigue, Irregular heartbeat. Enteritis - (2.81%) Abdominal pain,
Diarrhea, Nausea, Vomiting, Fever, Bloody stools, Loss of appetite, Weight loss, Fatigue.
Pneumonia - (1.37%) cough, fever, chills, difficulty breathing/shortness of breath, chest pain
when breathing or coughing, fatigue, nausea or vomiting, diarrhea, confusion (especially in
older adults), loss of appetite. Asthma - (0.2%) Coughing (especially at night), Wheezing,
Shortness of breath, Chest tightness or pain, Difficulty breathing, Fatigue. Esophagitis
- (0.03%) Difficulty swallowing, chest pain, heartburn, regurgitation of food or liquids,
sensation of a lump in the throat, chronic cough, hoarse voice, frequent hiccups. Traumatic
brain injury - (0.02%) Headache, dizziness, confusion, nausea or vomiting, fatigue, speech
difficulties, sleeping problems, memory loss, mood changes, sensitivity to light and sound,
blurred vision, ringing in the ears, seizures. Thyroiditis - (0.01%) Neck swelling, Pain in
the neck or throat, Fatigue, Weight gain, Cold intolerance, Constipation, Dry skin, Muscle
weakness, Joint pain, Irregular menstrual periods, Depression, Thinning hair. Conjunctivitis -
(0.0%) [Redness of the eye, Itching or burning sensation, Excessive tearing, Thick yellow
discharge that crusts over the eyelashes during sleep, Blurred vision, Increased sensitivity to
light, Swollen lymph nodes, Gritty feeling in the eyes] Rhinitis - (0.0%) ["Sneezing", "Runny
nose", "Stuffy nose", "Coughing", "Itchy nose", "Postnasal drip", "Watery eyes", "Fatigue",
"Headache"] External otitis - (0.0%) Ear pain, itching, discharge from ear, difficulty hearing,
redness or swelling of outer ear. Dermatitis - (0.0%) [itchy skin, redness, swelling, rash,
burning sensation, dry and scaly skin, blisters, crusting, oozing and weeping sores, skin color
changes]
Patient symptom:
Lately, I’ve been feeling really fatigued and have a fever that just won’t go away. There are
times when I feel dizzy and have even started vomiting. I’ve also noticed some discomfort in
my throat and an unusual sensitivity to cold. However, I haven’t been experiencing a cough,
incontinence, body aches, expectoration, or nausea. Can you help me figure out what’s going
on? Diagnosis:
DT Generation Based on the symptoms provided - fatigue, fever that won’t go away,
dizziness, vomiting, throat discomfort, and unusual sensitivity to cold - the most likely
diagnosis is Mastitis with a probability of 51.25%. The key symptoms that support this
conclusion are the persistent fever, fatigue, and throat discomfort. These align well with
the typical presentation of mastitis, which often includes breast swelling, pain, skin redness,
warmth to touch, and fever or chills.
It is important to note that while these symptoms do not perfectly match those of Mastitis
(there’s no mention of specific breast-related symptoms), they are the closest fit given the
disease information provided. However, a comprehensive medical evaluation by a healthcare
professional would be necessary for an accurate diagnosis.
DL Generation Mastitis Traumatic brain injury Thyroiditis Rhinitis

Table 14: PAG Diagnostic Example. User Prompt supplies the LLM with diagnostic details, including the
patient’s symptom utterance and "Disease information"—which aggregates the predictive model’s output with
LLM-generated knowledge for each disease. The DT Generation is the corresponding text-based rationale, while
the DL Generation represents the final disease label inferred from the user prompt and DT . The LLM Diagnosis
was produced using system messages provided in Table 18.
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Task Prompt

Utterance Generation You are tasked with generating a patient’s utterance that conveys their symptoms
to a doctor in a natural and convincing way. You will be provided with a
diagnosis, a list of symptoms the patient has, and a list of symptoms the patient
does not have. Your job is to create an utterance that reflects the patient’s
condition by describing only the symptoms they experience, while avoiding the
use of any disease names or direct references to medical diagnoses.
Make the response sound like a genuine patient seeking medical attention. Be
concise but descriptive enough to convey the severity or concerns.
DO NOT INCLUDE INFORMATION THAT IS NOT IN THE PATIENT
SYMPTOMS
DO NOT INCLUDE DOCTOR’S TALK. ONLY NEED PATIENT’S UT-
TRANCE
DO NOT INCLUDE DISEASE NAME IN THE UTTERANCE, ONLY IN-
CLUDE SYMPTOMS
YOU MUST INCLUDE ALL THE PAITENT’S SYMTPOMS
Here is the patient’s information:

Utterance Validation You are tasked with verifying whether a patient’s utterance fully captures both
the symptoms they are experiencing and those they are not experiencing. You
will be provided with two lists: one containing symptoms the patient has and
one containing symptoms the patient does not have.
- If there is no missing symptoms, generate <NPB> token.
- If any symptoms (experienced or not experienced) are missing, rewrite the
utterance to include all relevant information. The rewritten utterance should
sound natural and reflect how a patient would describe both their symptoms
and the absence of specific symptoms to the doctor.

Table 15: system messages for utterance generation.
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Task Prompt

Feature Extraction Analyze this patient’s dialogue with their doctor and extract a structured sum-
mary of the patient’s reported symptoms, medical history, and any specific
concerns they mention. Organize the information in a clear and concise format.
{#Feature schema example}
IF THERE IS NO CORRESPONDING INFORMATION, MARK IT AS
NULL.
IF THERE ARE MULTIPLE ELEMENTS SEPARATE THEM WITH A
COMMA.
ENTER SYMPTOMS AS A DICTIONARY TYPE AND VALUES AS True
IF THE PATIENT HAS THE SYMPTOM OR False IF THE PATIENT DOES
NOT.
STRUCTURED DATA MUST BE DICTIONARY STRUCTURE.
EXTRACT INFORMATION WITHOUT EXPLANATIONS AND GREET-
INGS.
COLLECT INFORMATION ONLY ABOUT THE USER’S SYMTPOMS
AND DO NOT COLLECT ANY OTHER INFORMATION SUCH AS MEDI-
CAL HISTORY, SPECIFIC CONCERNS.
Here is the patient’s information:

Feature Validation Given the following text data and corresponding structured data, check if all
the information from the text data is accurately and completely included in the
structured data. If any information is missing in structured data, specify which
details are not present.
{#Feature schema example}
- If there is no missing information, generate <NPB> token.
- If there is missing information, add missing data to the structured data.
- Ensure there are no syntax errors. If any errors exist, correct them to make the
output a valid Python dictionary.
STRUCTURED DATA MUST BE DICTIONARY STRUCTURE
EXTRACT STRUCTURED INFORMATION WITHOUT EXPLANATIONS
AND GREETINGS AND TITLES

Table 16: system messages for feature extraction.
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Task Prompt

Term match You are an expert in medical terminology. Given a query term and a list of
retrieved terms, match the retrieved term that has the same meaning as the
query term. Provide only the term that matches. Match the term with the same
meaning as the query term. If there is no appropriate match, return <NW>.
Example Query Term: Hypertension
Retrieved Terms: High blood pressure Hypotension Tachycardia Bradycardia
Arrhythmia Hyperglycemia Hypoglycemia Hypertrophy Hyperlipidemia Hy-
poxia
Correct Match: High blood pressure

LLM Diagnosis You are an expert in medical diagnostics. Given patient information provided by
a patient, predict up to 5 suspected diseases that the patient may have. Provide
the list of predicted diseases without any numbering or explanation or hyphen.
Example Patient Information: Sex: Female Age: 45 Family History: Heart
disease, high cholesterol Background: Non-smoker, regular exercise, no alcohol
Underlying Disease: Hypertension Symptoms: Chest pain, shortness of breath,
dizziness, fatigue, irregular heartbeat
Predicted Diseases: Common Cold Influenza Pneumonia Allergic Rhinitis
Bronchitis

RAG You are an expert in medical diagnostics. Given patient information provided
by a patient, predict up to 5 suspected diseases that the patient may have by
referring to the Disease Knowledge. Provide the list of predicted diseases
without any numbering or explanation.
Example Patient Information: Sex: Female Age: 45 Family History: Heart
disease, high cholesterol Background: Non-smoker, regular exercise, no alcohol
Underlying Disease: Hypertension Symptoms: Chest pain, shortness of breath,
dizziness, fatigue, irregular heartbeat
Disease Knowledge: Upper respiratory infections: Knowledge of Upper respi-
ratory infections Influenza: Knowledge of Influenza Pneumonia: Knowledge of
Pneumonia Allergic rhinitis: Knowledge of Allergic rhinitis Bronchitis: Knowl-
edge of Bronchitis Sinusitis: Knowledge of Sinusitis Tuberculosis: Knowledge
of Tuberculosis Asthma: Knowledge of Asthma COVID-19: Knowledge of
COVID-19 Lung Cancer: Knowledge of Lung Cancer
Predicted Diseases: Upper respiratory infections Influenza Pneumonia Allergic
Rhinitis Bronchitis

Table 17: system messages for LLM prediction and RAG with Term match.

14245



Task Prompt

Kd Generation What symptoms will appear in the {} disease? List only symptom, without any
description, following form [symptom1, symptom2, ...].

DT Generation Given the patient’s symptoms and relevant disease information, provide a con-
cise diagnosis. Briefly explain the reasoning behind this diagnosis, identifying
key symptoms, relevant medical history, or any notable patterns that support
the conclusion. Do not include any disclaimers, warnings, or mentions of AI
generation

DL Generation You are an expert in medical diagnostics. Given patient information (pi) pro-
vided by a patient, predict suspected diseases that the patient may have by
referring to the retrieved Disease information (di) and diagnosis (ds). Provide
the list of predicted diseases without any numbering or explanation.
Example:
Patient information: pi
Disease information: di
Diagnosis: ds
Predicted Diseases: Upper respiratory infections Influenza Pneumonia Allergic
Rhinitis Bronchitis

PAG w/o Kd You are an expert in medical diagnostics. Given a patient’s information, a
query disease diagnosed by a predictive model, and a list of predicted diseases,
remove any inaccurate or irrelevant diseases. If no modifications are necessary,
return <NW>. Provide only the filtered list of diseases without any numbering
or explanation.
Patient Information:
Sex: Female
Age: 35
Family History: History of respiratory diseases
Background: Non-smoker, no known allergies
Underlying Disease: None
Symptoms: Fever, cough, sore throat, fatigue, body aches
Predicted Diseases:
Common Cold Influenza Pneumonia Allergic Rhinitis Bronchitis Sinusitis
Tuberculosis Asthma COVID-19 Lung Cancer
Filtered List:
Common Cold Influenza Pneumonia Allergic Rhinitis Bronchitis Sinusitis
COVID-19

Table 18: system messages for PAG.

14246


