
Findings of the Association for Computational Linguistics: ACL 2025, pages 13783–13800
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Divide-Verify-Refine: Can LLMs Self-Align with Complex Instructions?

Xianren Zhang1, Xianfeng Tang2, Hui Liu2, Zongyu Wu1, Qi He2

Dongwon Lee1, Suhang Wang1

1The Pennsylvania State University 2Amazon
{xzz5508,dongwon,zzw5373,szw494}@psu.edu, {liunhu,xianft}@amazon.com

Abstract

Recent studies show LLMs struggle with com-
plex instructions involving multiple constraints
(e.g., length, format, sentiment). Existing
works address this issue by fine-tuning, which
heavily relies on fine-tuning data quality and
is computational expensive. An alternative is
leveraging LLMs’ self-correction to refine re-
sponses for better constraint adherence. How-
ever, this is limited by the feedback quality,
as LLMs cannot generate reliable feedback or
detect errors. Moreover, its effectiveness re-
lies on few-shot examples illustrating response
modifications. As constraints in complex in-
structions are diverse, manually crafting such
examples for each constraint type can be labor-
intensive and sub-optimal. To address these
two challenges, we propose the Divide-Verify-
Refine (DVR) framework with three steps: (1)
Divide complex instructions into single con-
straints and prepare appropriate tools; (2) Ver-
ify responses using tools that provide rigorous
check and textual guidance (e.g., Python toolkit
for format checks or pre-trained classifiers for
content analysis); (3) Refine: To maximize re-
finement effectiveness, we propose dynamic
few-shot prompting, where a refinement repos-
itory collects successful refinements, and these
examples are selectively retrieved for future re-
finements. Recognizing the lack of complexity
in existing datasets, we create a new dataset of
complex instructions. DVR doubles Llama3.1-
8B’s constraint adherence and triples Mistral-
7B’s performance. The code is available here.

1 Introduction

Large language models (LLMs), like ChatGPT,
have shown significant improvements across var-
ious language tasks (Touvron et al., 2023; Wang
et al., 2024b,a; Zhang et al., 2025). The success
of LLMs relies on the ability to execute complex
instructions. Failures to follow instructions can re-
sult in unintended outputs, which may have severe
consequences (Mu et al., 2023; Zhou et al., 2023;

Tseng et al., 2024). This issue becomes critical
when LLMs are deployed in high-stakes environ-
ments, such as legal documentation or technical
writing. For example, when drafting legal contracts,
LLMs must strictly adhere to constraints related to
format, specific terminology, and precise language
usage to avoid misinterpretations or legal liabilities.
Similarly, in technical writing, adhering to strict
format guidelines, word limits, and inclusion of
essential technical terms is critical to ensure clarity
and compliance with industry standards.

Recent studies show that LLMs, especially open-
source ones, struggle to follow complex instruc-
tions with multiple constraints like response length
or formatting (He et al., 2024a; Jiang et al., 2024b;
Chen et al., 2024b). While this issue is well rec-
ognized, research on enhancing LLMs’ constraint
adherence ability is still limited, with most ef-
forts focused on evaluating the ability (Jiang et al.,
2024b; Chen et al., 2024b). Few studies improve
LLMs’ constraint-following via fine-tuning (He
et al., 2024a; Sun et al., 2024; Li et al., 2024). For
example, He et al. 2024a adopt a teacher model
(e.g., GPT-4) to generate data and fine-tune a stu-
dent model with the generated data to improve its
multi-constraint adherence ability. While effective,
it requires a large amount of computation resources
and heavily depends on the generated data quality.

In contrast, the concept of “self-correction” of-
fers an alternative approach, where LLMs au-
tonomously correct their responses (Madaan et al.,
2024; Shinn et al., 2024). Self-correction has been
applied on other tasks such as question answer-
ing (Dhuliawala et al., 2023; Shinn et al., 2024)
or mathematics (Madaan et al., 2024), where an
LLM will evaluate its responses, give feedback,
and further refine responses. However, whether
LLMs can effectively self-align with diverse and
complex constraints remains an open question.
This is particularly important for agent LLMs to
be deployed in high-stakes environments. For

13783

https://github.com/Zood123/DVR_ACL25


Response: 

Sustainable fashion is 

transforming the industry, 

emphasizing…(125 words)

LLM LLM

Feedback: 

The response has 85

words, which satisfies the 

constraint

Refinement 

(next round)

Instruction: Compose a statement with a fashion topic

and make sure the response has less than 100 words.

Figure 1: The LLMs hallucinate and struggle to give
reliable feedback.

constraint-following, this self-correction process
can be divided into two phases: verification and
self-refinement (Fig. 1). During the verification
phase, LLMs assess whether their responses align
with the specified constraints. If the responses do
not align with the constraints, the LLMs will give
feedback that pinpoints errors and suggests adjust-
ments. Following this, the self-refinement phase
takes place where LLMs use the feedback to refine
and improve their responses accordingly.

However, there are several challenges. The first
one is feedback reliability. Studies show that the
performance gains by LLM self-correction is un-
stable, occasionally even degrading performance
in question answering (Huang et al., 2024) and
code generation (Olausson et al., 2024). The bottle-
neck in self-correction lies in the feedback quality
(Tyen et al., 2024; Gou et al., 2024; Jiang et al.,
2024a). LLMs, including advanced models like
GPT-4 and Claude 3, tend to have low recall in de-
tecting LLMs errors, underperforming significantly
compared to humans (Kamoi et al., 2024). On the
other hand, research reveals that the self-correction
performance on reasoning tasks is boosted if the er-
ror location is given, indicating LLMs have the self-
correction ability given reliable feedback (Tyen
et al., 2024). From the constraint-following per-
spective, LLMs are also not good at checking sim-
ple and easy-to-verify constraints. As shown in
Fig. 1, given a response, LLMs struggle to accu-
rately count the number of words. The second
challenge is constraint diversity which lies in the
self-refinement process. Given the response and
the feedback, LLMs should refine the response ac-
cording to the feedback. However, to perform this
task effectively, a set of representative few-shot
examples is needed to demonstrate how to appro-

priately modify the response (Brown et al., 2020).
These constraints can vary widely, from adhering
to a length limit to including specific keywords.
Each type of constraint needs distinct modifica-
tions. For example, meeting a length limit might
require removing content, whereas incorporating
specific keywords requires adding text. Manually
crafting representative few-shot examples for each
constraint type is labor-intensive.

To address these challenges, we propose a novel
framework named Divide-Verify-Refine (DVR) as
shown in Fig. 2. To enhance feedback reliabil-
ity, we observe that constraints that LLMs struggle
to verify can be readily assessed using external
tools. These tools include python toolkit for quan-
titative measures, such as Regular Expressions (re)
(Friedl, 2006) and the Natural Language Toolkit
(NLTK) (Bird et al., 2009) for counting the number
of words, sentences, paragraphs, or bullet points, as
well as pre-trained classifiers for content analysis,
such as topic and sentiment analysis, which are eas-
ily accessible and widely available on hugging face
(Antypas et al., 2022; Loureiro et al., 2022). We en-
hance LLMs by enabling interaction with external
tools. First, we instruct LLMs to break down com-
plex instructions into individual constraints and
assign an appropriate tool to each. These tools then
rigorously verify the LLM’s response and provide
textual guidance for refinement if any constraints
are violated. To address the problem of constraint
diversity, we propose the dynamic few-shot prompt-
ing. Since the verification reliability is ensured by
external tools, we incorporate a novel refinement
repository, which serves as a memory module to
collect and store successful refinements for future
use. When a new refinement task arises, we select
few-shot examples with the same constraint type to
maximize refinement effectiveness.

Our main contributions are: (i) Our framework
enhances feedback reliability by integrating easily
accessible tools that provide strict verification and
textual guidance for LLMs. (ii) To maximize the
refinement effectiveness, we propose dynamic few-
shot prompting with a refinement repository that
stores successful refinements. This enables LLMs
to learn from past experiences and retrieve more
similar few-shot examples for future refinements,
improving refinement effectiveness. (iii) Most
benchmarks only contain 1-2 constraints (Chen
et al., 2024b). We construct a new complex in-
struction dataset with instructions containing 1-6
constraints.

13784



2 Related Work

Instruction-Following of LLMs. Recent studies
show that LLMs struggle to follow complex in-
structions, especially as the number of constraints
increases (Dubois et al., 2024; Zhou et al., 2023;
Jiang et al., 2024b; Chen et al., 2024b; Zhou et al.,
2023; He et al., 2024b; Lin et al., 2025). To ad-
dress this challenge, some works (Chen and Wan,
2023; Sun et al., 2024; Wang et al., 2024c; He et al.,
2024a; Dong et al., 2024) generate instructions and
responses with advanced LLMs (e.g., GPT4) and
then use the generated data to fine-tune the student
LLMs. Among them, He et al. (2024a) focuses
on improving LLMs’ alignment with multiple con-
straints. They iteratively refine student model re-
sponses using GPT-4 as a teacher. The student
model is fine-tuned on both intermediate modifi-
cations and final refined responses. Although ef-
fective, these methods rely heavily on the teacher
model and are resource-consuming. Different from
previous methods, our framework uses ins-context
learning with tool interaction to effectively refine
unsatisfactory responses, offering a more practical
solution.

Self-Correction of LLMs. Self-correction is
a framework where LLMs refine their responses
during inference by reflecting on their initial re-
sponses (Shinn et al., 2024; Madaan et al., 2024).
This process has two phases. Initially, LLMs are
prompted to analyze and provide feedback on their
responses. Subsequently, based on the feedback
LLMs refine the responses to correct their mistakes.
However, recent studies report negative results indi-
cating that LLMs cannot self-correct their own mis-
takes (Hong et al., 2024; Tyen et al., 2024; Kamoi
et al., 2024; Gou et al., 2024). A study (Kamoi
et al., 2024) reveals that top LLMs like GPT-4
and Claude 3 have low recall in detecting LLM
errors, with LLMs significantly underperforming
compared to humans. Additionally, feedbacks pro-
vided by LLM self-correction tend to hallucinate
and lack reliability. This unreliability suggests that
even when errors are detected, the guidance of-
fered for corrections may be incorrect or mislead-
ing. (Hong et al., 2024) find that LLMs struggle to
accurately identify logical fallacies, casting doubt
on their inherent ability to detect errors and conduct
self-verification reasoning effectively. However,
the self-correction performance on reasoning tasks
is boosted if the error location is given (Tyen et al.,
2024). All these observations indicate that LLMs

are not reliable in analyzing their responses and
a more reliable feedback mechanism is needed to
pinpoint the mistakes. More introduction to related
works is in Appendix A.8.

3 The Proposed Framework: DVR

As shown in Fig. 2, we propose the Divide-Verify-
Refine (DVR) framework, which consists of three
modules: (a) Divide instructions and prepare tools
accordingly, (b) Verify responses and provide feed-
back, and (c) Refine and store responses in a repos-
itory. First, the tool preparation module aims to
identify constraints, select appropriate tools, and
fill out parameters. In this module, LLMs first
decompose the complex instructions into single
constraints. For each single constraint, the LLMs
will prepare appropriate tools for verification. Sec-
ond, the prepared tools will verify the response
and give detailed textual guidance if the response
does not adhere to the constraint. Third, in the
self-refinement module, given the textual guidance,
LLMs will refine the response to adhere to the tar-
get constraint. Since similar few-shot examples
usually yield better results, DVR retrieves past re-
finement experience with the same constraint type
few-shot examples. The successfully refined re-
sponse will be stored for future use. Next, we
introduce each module in detail.

3.1 Divide: Tool Preparation

To provide accurate feedback, we propose to adopt
tools for verification. These tools are widely avail-
able and easily accessible (Qin et al., 2024): (i)
There are abundant publicly available tools on-
line. For instance, over 16,000 tools are accessible
through RESTful API collections. Additionally,
libraries like Regular Expressions (re) and the Nat-
ural Language Toolkit (NLTK) (Bird et al., 2009)
are commonly used for checking text format, pat-
terns, and length constraints. Hugging Face also
provides numerous open-source models, such as
topic classifiers (Antypas et al., 2022) and senti-
ment classifiers (Loureiro et al., 2022), which can
be directly integrated and utilized by LLMs; and
(ii) When no suitable tool is available, existing
works have shown that LLMs can be effectively
used to generate reliable tools through code syn-
thesis (Guo et al., 2024). Since tool generation is
a one-time cost, it can be efficiently handled by
advanced models. In our setup, we use GPT-4o to
generate tools, and as shown in Section 4.8, our

13785



Response R:

Fashion is a dynamic expression of ……

⚫ The cyclical nature …

⚫ Sustainable fashion is ….
Feedback: f

Response R

Few-shots Examples: 

(R1, I1, f1, R1’)….

Refinement Repository

…. Refined Response R’:

Fashion is a dynamic 

expression…

● The cyclical …

● Sustainable …

● ….

● ….

Compose a statement 

whose topic is fashion 

or style. The number 

of sentences in your 

response should be at 

least 5. Include 

exactly 4 bullet points 

in your response. ….

Feedback: The response only 

contains 2 bullet points. 2 more 

bullet points should be added. 

Decompose

Tool options: Topic_cls, 

Sent_num, Bullet_points ….

LLM Generation

Feed Forward

Sent_num(at least, 5)

Bullet_points(4)

Topic_cls(fashion&style)

Prepare

C2: At least 5 sentences. 

C3: 4 bullet points.

C1: fashion&style topic.

Tools

(a) Divide: Tool Prepare

(b) Verify: Verification and Feedback

(c) Refine: Self-refine

Input Instruction

Tools

Instruction I

Save: (𝑰, 𝑹, 𝒇, 𝑹′| bullet points)

Retrieve

Few-shots Examples: 

(𝐼𝑖 , 𝑅𝑖 , 𝑓𝑖 , 𝑅𝑖
′) ….

….

Few-shots Examples: 

(𝐼𝑖 , 𝑅𝑖 , 𝑓𝑖 , 𝑅𝑖
′
| bullet points) ….

(𝐼𝑖 , 𝑅𝑖 , 𝑓𝑖 , 𝑅𝑖
′
| Bullet Points)…

Figure 2: The DVR framework: (a) Divide: The LLMs decompose constraints and instantiate tools for each
constraint, (b) Verify: Tools will give feedback on the response, (c) Refine: The refinement repository provides past
refinement process as few-shot examples. The current refinement process will be stored in the repository.

experiments confirm that these generated tools are
highly reliable.

Given an input instruction I , the LLM M first
decomposes it into a series of individual constraints.
We use a decomposition prompt pdecomp asking
LLMs for decomposition. With input instruction
and decomposition prompt, LLM then generates a
set of decomposed constraints: M(pdecomp, I) →
{ci}i=1,2,3..., where ci is the i-th single constraint.
For each constraint ck, the LLM determines the
appropriate tool by matching ck to a tool tk from
the predefined toolset: M(pselect, ck) → tk, where
tk ∈ {ti}i=1,2,3... is the selected tool for the con-
straint ck. The prompts for decomposition pdecomp

and tool selection pselect are in Fig. 7 in Appendix.
After selecting the tools, the LLM sets the neces-
sary parameters for each tool, such as specifying
the required number of bullet points or the desired
sentiment for the response. Finally, all tools rel-
evant to instruction I are compiled into the set
TI = {ti}i=1,2,3..., ready to be utilized in the sub-
sequent verification and feedback phase.

3.2 Verify: Verification and Textual Guidance
Given the instruction, the LLM will first generate
the initial response R0 = M(pgenerate, I), where
pgenerate is the prompt for generation (detailed in
Fig. 7 in Appendix). We denote the current re-
sponse as R and R = R0 for the first round of
refinement and will be updated to the refined re-
sponse in subsequent rounds. The current response
is verified by each tool in toolset TI as follows:

fi = ti(R), ∀ti ∈ TI , (1)

where fi is the feedback from tool ti for constraint
ci. If the response adheres to the constraint, the

feedback is a boolean value “true”. Otherwise,
fi is a textual feedback that first identifies the er-
ror in the response and then suggests modification.
For example, as shown in Fig. 2, the tool “Bul-
let_points(4)” counts the number of bullet points
in the response and outputs “true” if there are 4
bullets; while the response only contains 2 bullets.
It finds that the response does not satisfy the con-
straint and gives out the feedback “The response
only contains 2 bullet points. 2 more bullet points
should be added.” This detailed feedback points
out the errors in the response and gives directional
information for LLMs to modify the response. We
collect all feedback FI = {fi}i=1,2,3... which will
be used to refine the response R.

3.3 Self-refine with Dynamic Few-shot
Prompting

In the self-refinement phase, the LLM leverages
the textual feedback to refine the response. As
constraints vary widely, each type of constraint re-
quires demonstrations with similar constraint types
for effective refinement. Manually creating one
fixed set of few-shot examples can be sub-optimal.
Instead of using a fixed set of few-shot examples,
we propose dynamic few-shot prompting where
few-shot examples with the same constraint type as
the current refinement task are selected from the re-
finement repository. If the response is successfully
refined, this process will be stored in the refinement
repository for future use.

Specifically, the refinement process targets one
unsatisfied constraint at a time, cycling through
a refine-verify-refine loop until all constraints are
satisfied. For a given response R and the feedback
f ∈ FI , f ̸= True, the refinement response can be

13786



written as follows:

R′ = M(prefine, s
t, I, R, f), (2)

where prefine is the prompt for refinement (detailed
in Fig. 7), st = {(Ii, Ri, fi, R

′
i)
t}i=1,2,3... is the set

of refinement examples selected from the refine-
ment repository Q, which contains refinement ex-
amples having the same constraint type associated
with f . There might be many refinement examples
having the same constraint type with f available in
the refinement repository. Retrieval techniques like
semantic similarity can be employed to select the
most relevant examples. In this paper, we randomly
select relevant examples for simplicity and leave
more advanced techniques for future work. Some
refinement examples are in Fig. 6 in the Appendix.

If the refined response adheres to the constraint,
i.e., t(R′) = True, the current successful refine-
ment process will be stored in the repository as
Q = Q ∪ {(I,R, f,R′)t}.
Discussion. Our proposed DVR is a novel ap-
proach to enhancing LLMs’ ability to follow com-
plex instructions with multiple constraints. The
detailed algorithm of DVR is shown in Algorithm 1
in Appendix A.1. By integrating external tools for
reliable and detailed textual guidance and a refine-
ment repository for storing successful refinement
examples, we provide a scalable and robust frame-
work for improving instruction compliance without
the need for extensive retraining. Moreover, the
external tools and the refinement repository work
jointly. Without reliable feedback, the refinement
repository would risk accumulating incorrect or
noisy examples, which could deteriorate the perfor-
mance of LLMs over time. The detailed feedback
gives “directional” information, which guides the
LLMs to adjust their responses. Compared to di-
rectly following complex instructions, decompos-
ing these instructions and selecting the appropriate
tools are simpler tasks for LLMs. This inherent ad-
vantage allows our DVR to be very effective, as it
leverages these easier tasks to build a robust system
that enhances LLMs’ adherence to constraints.

4 Empirical Validation

In this section, we conduct experiments to an-
swer the following research questions: (RQ1) Can
our DVR improve the ability of LLMs to follow
complex constraints? (RQ2) How does the per-
formance of LLMs differ across various types of
constraints, and which constraints pose the great-
est challenges? (RQ3) How does each module

of DVR (the tool-assisted verification and the few-
shot self-refinement library) individually contribute
to improving LLMs’ ability to follow constraints?

4.1 Experimental Setup
Datasets. We conduct experiments on two datasets:
(i) CoDI (Chen et al., 2024b): A dataset of 500
instructions, each with a topic constraint and a
sentiment constraint. (ii) ComplexInstruct: Due
to CoDI’s limited complexity, we construct Com-
plexInstruct, a new dataset of complex instructions.
Using CoDI’s topic instruction set as seed instruc-
tions, we refine them by removing implicit length
constraints (e.g., replacing "paragraph" or "sen-
tence" with "text") to avoid conflicts and hidden
constraints. Then, we synthesize complex instruc-
tions by adding constraints to these seed instruc-
tions (Zhou et al., 2023). To generate instructions
of different levels, we generate 6,000 complex in-
structions across six levels (1–6 constraints per in-
struction, 1,000 instructions per level). The dataset
includes 21 constraint types across 8 general cat-
egories (e.g., length, punctuation, case changes),
with each type expressed in 8 different ways. The
detailed information is in Appendix A.3.

Baselines. We compare our method with state-
of-the-art baselines, which can be categorized into
three main types: (i) Self-reflection based methods,
which iteratively improve response via feedback
from LLMs reflection, such as Reflexion (Shinn
et al., 2024); (ii) Prompting based methods, which
use different prompting strategies to get the best
response, including Branch-solve-Merge (BSM)
(Saha et al., 2024) and Universal Self-Consistency
(U-SC) (Chen et al., 2024a); and (iii) Tool based
methods, which use external tools for feedback or
selection, such as Rejection sampling (R-Sample)
(Saunders et al., 2022), React (Yao et al., 2023),
and CRITIC (Gou et al., 2024). The details of
these baselines are in Appendix A.2.

Implementation. We test on popular open-
source models including Mistral-7B, Llama3-8B,
Llama3.1-8B and Llama3.1-70B. The temperature
of the model is 0.8. We set the number of few-shot
demonstrations for initial response generation and
self-refinement (without repository) as 5 for our
method and every baseline. We use the same set
of few-shot demonstrations both for baselines and
our method. We also set the maximum number
of few-shot demonstrations for refinement (with
repository) as 8. We set the number of trials as 5 for
our method and every baseline. For the refinement

13787



Table 1: Instruction Satisfaction Rate (ISR) across levels
1 to 6 (Llama-3.1-8B-Instruct). The values in parenthe-
ses (+xx) indicate the improvement compared to the
best performing baseline.

Method Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Vanilla 90.5 76.6 62.5 50.1 35.6 25.3
Reflexion 91.6 78.1 63.7 49.8 35.8 25.7
BSM 90.1 75.3 62.0 47.5 35.5 24.1
U-SC 90.9 76.3 62.4 47.1 36.0 25.8
R-Sample 92.1 86.7 71.1 60.4 49.8 36.3
ReAct 94.2 86.1 72.5 60.7 50.2 37.2
CRITIC 93.8 87.1 75.4 64.4 52.4 43.2
DVRCS 94.5 (+0.7) 87.9 (+0.8) 78.4 (+3.0) 69.5 (+5.1) 60.9 (+8.5) 49.2 (+6.0)

DVRWS 95.2 (+1.4) 88.7 (+1.6) 79.2 (+3.8) 69.7 (+5.3) 60.5 (+8.1) 49.6 (+6.4)

Table 2: Instruction Satisfaction Rate (ISR) across levels
1 to 6 (Mistral-7B-Instruct-v0.3).

Method Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Vanilla 77.0 55.3 34.1 19.9 12.4 6.3
Reflexion 77.2 55.8 35.1 20.1 12.0 5.8
BSM 78.1 56.2 33.8 19.3 11.3 5.2
U-SC 76.8 56.0 34.3 20.4 12.9 5.8
R-Sample 78.4 58.3 37.6 23.0 13.5 6.8
ReAct 86.0 67.8 46.0 32.5 18.2 10.7
CRITIC 88.9 72.5 55.6 43.5 28.1 18.1
DVRCS 94.9 (+6.0) 80.2 (+7.7) 64.1 (+8.5) 49.3 (+5.8) 35.8 (+7.7) 23.6 (+5.5)

DVRWS 95.0 (+6.1) 81.3 (+8.8) 66.6 (+11.0) 51.4 (+7.9) 36.4 (+8.3) 23.4 (+5.3)

repository of our DVR, we consider two variants,
i.e., warm-start and cold-start. For warm-start, we
have an additional set of instructions (6000 samples
for ComplexInstruct and 500 samples for CoDI).
Note that these data samples are totally indepen-
dent with test set. Our framework will first run
on these samples to collect examples to fill the
refinement repository. For cold-start, since the re-
finement repository is empty at beginning, we use
5 fixed few-shot examples if there are no examples
that can be retrieved from the repository.

Evaluation Metrics. We assess the constraint-
following ability by calculating the Instruction Sat-
isfaction Rate (ISR) (Jiang et al., 2024b). Specifi-
cally, each single instruction is satisfied when all
constraints in that instruction are satisfied. It is cal-
cualted as ISR = 1

N

∑N
i=1

∏mi
j=1 cij , where N is

the total number of instructions in the dataset, mi

is the number of constraints in the i-th instruction,
cij = 1 if the j-th constraint in i-th instruction is
satisfied; otherwise cij = 0.

4.2 RQ1: Constraint-Following Ability

To answer RQ1, we evaluate DVR on two datasets.
We evaluate structural constraints (e.g., text length,
number of sections, and bullet points) on Complex-
Instruct and content constraints (e.g., topic and sen-
timent constraints) on CoDI respectively. DVRCS

and DVRWS are cold-start and warm-start.
Results are shown in Table 1 and Table 2 (i)

Single vs Multi-constraints: As constraint com-

Table 3: Performance by Self-training (zero-shot)
Model Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Mistral-7B 60.1 41.7 23.8 14.2 8.4 3.7
Mistral-7B(DPO) 85.0 67.8 47.0 33.9 18.4 12.9
Llama3.1-8B 62.5 38.9 23.2 14.6 9.6 6.3
Llama3.1-8B(DPO) 83.7 69.8 55.6 39.3 28.0 17.0

plexity increases, satisfaction rates drop. While
ISR at Level 1 approaches 95%, Level 6 ISR drops
to 25% for Llama3.1-8B and 6.3% for Mistral-7B,
showing LLMs struggle with multiple constraints
even when they handle them individually. (ii)
Intrinsic self-reflection is unreliable: Reflxion
(Shinn et al., 2024), which relies on LLMs to re-
flect and self-correct, shows minimal improvement
over Vanilla, indicating LLMs struggle to identify
their own constraint violations. Similar results can
be observed on Branch-Solve-Merge and Univer-
sal Self-consistence. (iii) Textual Guidance mat-
ters: ReAct (Yao et al., 2023) and CRITIC (Gou
et al., 2024) can be viewed as two variants of DVR,
where feedback is provided as boolean signals on
the instruction level or specific constraint viola-
tions. Compared with ReAct and CRITIC, DVR
has better performance, which means detailed anal-
ysis and textual guidance can make the refinement
more effective. The refinement repository further
maximizes the refinement effectiveness. The re-
sults in Figure 3 show the distribution of satisfied
constraints per instruction at Level 6 difficulty. Our
framework shifts the distribution rightward, indi-
cating improved adherence to multiple constraints.
Notably, for Mistral-7B, our framework moves the
central tendency from satisfying 4 constraints to 5.

Self-improving: To enable self-improvement
without relying on labeled data or external mod-
els, we leverage the output of DVR as training
data. The refined response and the original model
response are selected as positive-negative a pair
if their constraint satisfaction rate gap is over 0.4.
These pairs are further used for Direct Preference
Optimization (DPO) tuning (Rafailov et al., 2024).
This allows the model to iteratively enhance its
performance based on its outputs. For fine-tuning,
we use Llama3.1-8B and Mistral-7B as the base
models and apply LoRA (Hu et al., 2021) with a
rank of 32 and an α value of 64. For DPO tuning,
β is set as 0.2.

The results, presented in Table 3, demonstrate
that DPO-tuned models (DPO-DVR) significantly
outperform the vanilla model across all constraint
levels, particularly at higher complexity levels.
This highlights the effectiveness of the self-training

13788



1 2 3 4 5 6
Number of Constraints Satisfied

0
5

10
15
20
25
30
35

Pe
rc

en
ta

ge
 o

f I
ns

tru
ct

io
ns

 (%
) Mistral-7B

Vanilla
DVR

1 2 3 4 5 6
Number of Constraints Satisfied

0

10

20

30

40

Pe
rc

en
ta

ge
 o

f I
ns

tru
ct

io
ns

 (%
) Llama3-8B

Vanilla
DVR

1 2 3 4 5 6
Number of Constraints Satisfied

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f I
ns

tru
ct

io
ns

 (%
) Llama3.1-8B

Vanilla
DVR

1 2 3 4 5 6
Number of Constraints Satisfied

0
10
20
30
40
50
60

Pe
rc

en
ta

ge
 o

f I
ns

tru
ct

io
ns

 (%
) Llama3.1-70B

Vanilla
DVR

Figure 3: Distribution of satisfied constraints number per instruction (level 6).

Table 4: Comparison Across Constraints Types

Mistral-7B Llama3-8B Llama3.1-8B

Constraint Type Vanilla DVR Vanilla DVR Vanilla DVR

Detectable Content 76.36 88.90 84.18 96.81 86.29 96.31
Keywords 76.04 84.23 83.84 88.32 84.94 88.77
Punctuation 24.34 72.93 91.03 95.64 97.01 98.04
Case Change 70.08 81.28 81.28 93.38 82.97 90.71
Start End 81.29 90.41 84.88 90.03 84.07 91.92
Detectable Format 69.59 80.70 81.57 89.23 84.69 92.31
Language 69.11 81.80 77.06 88.38 81.96 89.76
Length Constraints 50.42 73.23 65.29 80.85 68.55 83.57

approach in improving constraint adherence.
Additional Results: Additional experimental re-

sults on models such as LLaMA 3.1-70B, LLaMA
3-8B, and GPT-4 can be found in Appendix A.4,
along with some evaluations on the CoDI (Chen
et al., 2024b) and IFeval (Zhou et al., 2023) bench-
marks. We also test DVR efficiency by testing the
time used for inference and results are in Appendix
A.7. Discussion on the influence of DVR on flu-
ency and readability can be found in A.5.

4.3 RQ2: Comparison Across Different
Constraint Types

Comparison across different constraint types is
shown in Table 4 (warmstart). Coldstart results
are provided in Table 10 in Appendix A.4. We
have the following observations. (i) Length con-
straints are the most challenging: Every model
struggles with length constraints, which include
minimum/maximum word counts, sentence counts,
and exact paragraph requirements. This difficulty
likely stems from a lack of such constraints in
instruction-tuning datasets, making it hard for mod-
els to map output structure to length requirements.
Additionally, length constraints require models to
plan responses from the outset while maintaining
coherence and completeness. (ii) Language con-
straints, which require the use of languages such as
Italian, German, or Japanese, are the second most
challenging. This might be due to the limited mul-
tilingual capabilities of the LLMs. (iii) Punctuation
constraint which requires LLMs not to use any com-
mas in their responses, is especially challenging for

Mistral-7B. However, our framework improves it
significantly and triples the performance from 24%
to 73%. DVR’s feedback not only verifies correct-
ness but also explicitly highlights the locations of
commas, providing precise guidance.

4.4 RQ3: Contribution of Individual Modules

We conduct an ablation study to evaluate the im-
pact of key components. We examine three vari-
ants: (i) w/o Detailed Feedback:Removes detailed
feedback from the tool but retains the refinement
repository, which provides relevant few-shot exam-
ples showing responses before and after refinement.
The repository starts empty (coldstart). (i) w/o
Repository: Removes the refinement repository,
using only five fixed examples for self-refinement.
(i) w/o both: The refinement repository and de-
tailed feedback are all removed. Figure 4 shows
performance gaps between each method and the
Vanilla. Both detailed feedback and the refinement
repository are crucial. Without the repository, per-
formance gains are limited, as fixed few-shot exam-
ples are suboptimal for diverse refinement needs.
Detailed feedback is essential as it pinpoints errors
and provides direction for response modification.

2 4 6
Difficulty Level

10

20

30

Pe
rfo

rm
an

ce
 G

ai
n 

(%
) ISR Gain for Mistral-7B

2 4 6
Difficulty Level

10

20

ISR Gain for Llama3.1-8B

2 4 6
Difficulty Level

10

20

ISR Gain for Llama3-8B

w/o Detailed Feedback w/o Repository w/o both Ours (coldstart) Ours (warmstart)

Figure 4: Ablation study on Mistral-7B, Llama3.1-8B
and Llama3-8B.

4.5 Hyper-Parameter Sensitivity Analysis

We also conduct a hyper-parameter sensitivity anal-
ysis of our framework, testing different numbers
of refinement few-shots and trials for successful
refinement on Llama3.1-8B. As shown in Figure
5, performance improves with more trials but satu-
rates at five, with minimal gains beyond that. Simi-
larly, increasing the few-shot examples boosts per-

13789



0 2 4 6 8

Number of Trials
1
2
34

56Levels

0
5

10
15
20
25ISR Gain (%

)

ISR Gain

0 2 4 6 8 10

Number of Shots1
2

3456

Levels

5
10
15
20
25ISR Gain (%

)

ISR gain

Figure 5: Parameter study on ComplexInstruct.

formance in the beginning. The performance satu-
rates after 8 shots. This indicates that the first few
numbers of trials and few-shot examples are most
effective for refining the response.

Table 5: LLMs Performance on Tool Selection. (HL:
Hamming Loss)

Models HL Acc Precision Recall F1

Mistral-7B 4.13 52.85 92.98 81.39 86.80
Llama3-8B 2.64 67.60 94.39 89.48 91.87
Llama3.1-8B 2.90 61.77 94.69 87.50 90.95
Llama3.1-70B 0.86 86.40 98.41 96.38 97.38

4.6 Tool Selection Accuracy

Correctly decomposing and selecting tools are es-
sential for feedback and refinement. We define
tool selection as a multi-label prediction task for
LLMs, evaluated using hamming score, accuracy,
precision, recall, and F1-score. The total number
of tools is 21. Results are shown in Table 18. Ham-
ming loss, which measures the fraction of incorrect
labels, is low across all models, indicating minimal
mispredictions. Every model demonstrates a very
high precision score, meaning that the tools they
select are mostly correct, avoiding misleading feed-
back with incorrect tool selection. Accuracy, which
measures the exact match between the selected
tools and the ground truth, is the strictest metric.
Despite this, all models achieve over 50% accuracy.
Considering the limited performance of these mod-
els on constraint-following tasks, tool selection is a
relatively easier task for LLMs. This performance
gap makes it possible for our method to provide
reliable feedback, collect past refinement examples
and be effective in improving LLMs’ constraint-
following ability. We evaluate DVR’s robustness to
tool errors, with detailed experiments in Appendix
A.6. We also evaluate the tool selection at scale in
Appendix A.9.

Table 6: LLMs Self-verification Accuracy (%)

Model Mistral-7B Llama3-8B Llama3.1-8B
53.1 56.8 55.7

4.7 LLM Self-verify Ability

We evaluate the LLM ability to verify whether the
responses meet the given constraints. Specifically,
we present response-constraint pairs and ask LLMs
to determine if the response aligns with the con-
straint. As shown in Table 6, the verification ac-
curacy is around 0.5, similar to random guessing.
This suggests that LLMs struggle to accurately as-
sess responses, making them unreliable for self-
feedback. In contrast, compared with LLM self-
verification ability, LLMs perform significantly bet-
ter in tool selection. This performance gap ensures
the effectiveness of DVR. Future work can explore
this further, including developing benchmarks for
scenarios involving thousands of tools.

4.8 Tool Generation Accuracy

We use GPT-4o to generate Python scripts as tools,
testing all 21 types of tools. Among them, 20 func-
tioned correctly. One script designed to check the
existence of a title fails for an edge case where the
title is blank ("«»"). This demonstrates that tool
generation is overall reliable and scalable. To bal-
ance reliability and cost, a practical strategy is to
generate tools with GPT-4o and save them locally
for reuse, reducing API costs. Some tool examples
are shown in Appendix Fig 8.

5 Conclusion

We propose the Divide-Verify-Refine (DVR) frame-
work to enhance LLMs’ ability to follow multi-
constraint instructions. DVR has three steps: (1)
Divide complex instructions into single constraints
and assign appropriate tools for each constraint.
(2) Verify: To tackle the feedback quality prob-
lem, these tools rigorously verify the response and
generate textual guidance for refinement. (3) Re-
fine: To maximize the refinement effectiveness,
we design the dynamic few-shot prompting with a
refinement repository to store past refinement expe-
riences. DVR improves LLMs’ adherence to com-
plex multi-constraint instructions. Additionally, we
construct a new dataset free from hidden or conflict-
ing constraints, providing a more comprehensive
and accurate evaluation of LLM performance on
multi-constraint following.

13790



6 Limitations

There are several limitations and potential future
works. (1) Currently, we consider multiple inde-
pendent constraints. However, the instructions in
real-world might be more complex and constraints
might have dependency with each other (Wen et al.,
2024). For example, the instruction can ask the
response to have 4 bullet points and 2 sentences in
each bullet point. In such a scenario, LLMs need
to assign different priorites to these constraints. (2)
Moreover, tools may not be available for new con-
straints. Here, we assume that we have tools for
all existing constraints. However, users’ require-
ments can be very diverse and we would not have
certain tools for new constraints. (3) As shown in
Appendix A.6, DVR performance would decline
when tools produce errors.

7 Acknowledgment

This material is based upon work supported by, or
in part by the Army Research Office (ARO) under
grant number W911NF-21-10198, the Department
of Homeland Security (DHS) under grant number
17STCIN00001-05-00, and Cisco Faculty Research
Award.

References

Dimosthenis Antypas, Asahi Ushio, Jose Camacho-
Collados, Vitor Silva, Leonardo Neves, and
Francesco Barbieri. 2022. Twitter topic classification.
In Proceedings of the 29th International Conference
on Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Proceedings of the 34th International
Conference on Neural Information Processing Sys-
tems, pages 1877–1901.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Xiang Chen and Xiaojun Wan. 2023. A comprehensive
evaluation of constrained text generation for large
language models. arXiv preprint arXiv:2310.16343.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Ke-
fan Xiao, Pengcheng Yin, Sushant Prakash, Charles
Sutton, Xuezhi Wang, and Denny Zhou. 2024a. Uni-
versal self-consistency for large language models. In
ICML 2024 Workshop on In-Context Learning.

Yihan Chen, Benfeng Xu, Quan Wang, Yi Liu, and
Zhendong Mao. 2024b. Benchmarking large lan-
guage models on controllable generation under diver-
sified instructions. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
17808–17816.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and Ja-
son Weston. 2023. Chain-of-verification reduces hal-
lucination in large language models. arXiv preprint
arXiv:2309.11495.

Guanting Dong, Keming Lu, Chengpeng Li, Tingyu
Xia, Bowen Yu, Chang Zhou, and Jingren Zhou.
2024. Self-play with execution feedback: Improving
instruction-following capabilities of large language
models. arXiv preprint arXiv:2406.13542.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat-
sunori B Hashimoto. 2024. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. Conference on Language Modeling.

Jeffrey Friedl. 2006. Mastering regular expressions.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Nan Duan, Weizhu Chen, et al. 2024. Critic:
Large language models can self-correct with tool-
interactive critiquing. In The Twelfth International
Conference on Learning Representations.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
YK Li, et al. 2024. Deepseek-coder: When the large
language model meets programming–the rise of code
intelligence. arXiv preprint arXiv:2401.14196.

Qianyu He, Jie Zeng, Qianxi He, Jiaqing Liang, and
Yanghua Xiao. 2024a. From complex to simple: En-
hancing multi-constraint complex instruction follow-
ing ability of large language models. arXiv preprint
arXiv:2404.15846.

Qianyu He, Jie Zeng, Wenhao Huang, Lina Chen, Jin
Xiao, Qianxi He, Xunzhe Zhou, Jiaqing Liang, and
Yanghua Xiao. 2024b. Can large language models

13791



understand real-world complex instructions? In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 18188–18196.

Ruixin Hong, Hongming Zhang, Xinyu Pang, Dong Yu,
and Changshui Zhang. 2024. A closer look at the
self-verification abilities of large language models
in logical reasoning. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL
2024).

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2024. Large language
models cannot self-correct reasoning yet. In The
Twelfth International Conference on Learning
Representations.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou,
Timothee Lacroix, Jiacheng Liu, Wenda Li, Mateja
Jamnik, Guillaume Lample, and Yuhuai Wu. 2023.
Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. In The Eleventh Inter-
national Conference on Learning Representations.

Dongwei Jiang, Jingyu Zhang, Orion Weller, Nathaniel
Weir, Benjamin Van Durme, and Daniel Khashabi.
2024a. Self-[in] correct: Llms struggle with re-
fining self-generated responses. arXiv preprint
arXiv:2404.04298.

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun
Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin
Jiang, Qun Liu, and Wei Wang. 2024b. Follow-
bench: A multi-level fine-grained constraints fol-
lowing benchmark for large language models. In
Proceedings of the 62nd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2024).

Ryo Kamoi, Sarkar Snigdha Sarathi Das, Renze Lou,
Jihyun Janice Ahn, Yilun Zhao, Xiaoxin Lu, Nan
Zhang, Yusen Zhang, Ranran Haoran Zhang, Su-
jeeth Reddy Vummanthala, et al. 2024. Evaluating
llms at detecting errors in llm responses. In Proceed-
ings of the 2024 Conference on Language Modeling
(COLM 2024).

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models. In International Conference on Learning
Representations.

Ming Li, Han Chen, Chenguang Wang, Dang Nguyen,
Dianqi Li, and Tianyi Zhou. 2024. Ruler: Improv-
ing llm controllability by rule-based data recycling.
arXiv preprint arXiv:2406.15938.

Minhua Lin, Hui Liu, Xianfeng Tang, Jingying Zeng,
Zhenwei Dai, Chen Luo, Zheng Li, Xiang Zhang,
Qi He, and Suhang Wang. 2025. How far are
llms from real search? a comprehensive study on
efficiency, completeness, and inherent capabilities.
arXiv preprint arXiv:2502.18387.

Daniel Loureiro, Francesco Barbieri, Leonardo Neves,
Luis Espinosa Anke, and Jose Camacho-Collados.
2022. Timelms: Diachronic language models from
twitter. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 251–260.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Norman Mu, Sarah Chen, Zifan Wang, Sizhe
Chen, David Karamardian, Lulwa Aljeraisy, Dan
Hendrycks, and David Wagner. 2023. Can llms fol-
low simple rules? arXiv preprint arXiv:2311.04235.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Theo X Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2024. Is self-repair a silver bullet for code genera-
tion? In The Twelfth International Conference on
Learning Representations.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2024. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
In The Twelfth International Conference on Learning
Representations.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Swarnadeep Saha, Omer Levy, Asli Celikyilmaz, Mohit
Bansal, Jason Weston, and Xian Li. 2024. Branch-
solve-merge improves large language model evalu-
ation and generation. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 8345–8363.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills,
Long Ouyang, Jonathan Ward, and Jan Leike. 2022.
Self-critiquing models for assisting human evaluators.
arXiv preprint arXiv:2206.05802.

13792



Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Marco Siino. 2024. All-mpnet at semeval-2024 task 1:
Application of mpnet for evaluating semantic textual
relatedness. In Proceedings of the 18th International
Workshop on Semantic Evaluation (SemEval-2024),
pages 379–384.

Haoran Sun, Lixin Liu, Junjie Li, Fengyu Wang, Bao-
hua Dong, Ran Lin, and Ruohui Huang. 2024.
Conifer: Improving complex constrained instruction-
following ability of large language models. arXiv
preprint arXiv:2404.02823.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

PeiYu Tseng, ZihDwo Yeh, Xushu Dai, and Peng Liu.
2024. Using llms to automate threat intelligence anal-
ysis workflows in security operation centers. arXiv
preprint arXiv:2407.13093.

Gladys Tyen, Hassan Mansoor, Victor Cărbune,
Yuanzhu Peter Chen, and Tony Mak. 2024. Llms
cannot find reasoning errors, but can correct them
given the error location. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
13894–13908.

Fali Wang, Runxue Bao, Suhang Wang, Wenchao Yu,
Yanchi Liu, Wei Cheng, and Haifeng Chen. 2024a.
Infuserki: Enhancing large language models with
knowledge graphs via infuser-guided knowledge in-
tegration. In Findings of the Association for Com-
putational Linguistics: EMNLP, pages 3675–3688.
Association for Computational Linguistics.

Fali Wang, Zhiwei Zhang, Xianren Zhang, Zongyu Wu,
Tzuhao Mo, Qiuhao Lu, Wanjing Wang, Rui Li, Jun-
jie Xu, Xianfeng Tang, et al. 2024b. A comprehen-
sive survey of small language models in the era of
large language models: Techniques, enhancements,
applications, collaboration with llms, and trustwor-
thiness. arXiv preprint arXiv:2411.03350.

Fei Wang, Chao Shang, Sarthak Jain, Shuai Wang,
Qiang Ning, Bonan Min, Vittorio Castelli, Yassine
Benajiba, and Dan Roth. 2024c. From instruc-
tions to constraints: Language model alignment with
automatic constraint verification. arXiv preprint
arXiv:2403.06326.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao
Huang, Jinfeng Zhou, Wenchuang Li, Binxin Hu,
Wendy Gao, Jiaxin Xu, et al. 2024. Bench-
marking complex instruction-following with mul-
tiple constraints composition. arXiv preprint
arXiv:2407.03978.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Zhiwei Zhang, Fali Wang, Xiaomin Li, Zongyu Wu,
Xianfeng Tang, Hui Liu, Qi He, Wenpeng Yin, and
Suhang Wang. 2025. Catastrophic failure of llm
unlearning via quantization. In The International
Conference on Learning Representations.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. 2023. Instruction-following evaluation for
large language models. In The Twelfth International
Conference on Learning Representations.

A Appendix

A.1 Algorithm

DVR algorithm is shown in Algorithm 1. The pro-
cess begins with the LLM selecting the appropri-
ate tools for each instruction. The selected tools
assess whether the generated response meets the
constraints and provide textual feedback if any vi-
olation is detected. To improve adherence, few-
shot examples with the same constraint type are
retrieved from a refinement repository. If the re-
sponse is successfully refined and passes the tool-
based validation, this refined version is stored in the
repository for future use. The response is output
when it passes all tools or the budget is met.

A.2 Baseline Details

We conduct experiments on 6 baselines, encom-
passing reflexion-based approaches, prompting
strategies, and tool-assisted techniques. The de-
tails are as follows:

• Reflexion (Shinn et al., 2024): This method
allows LLMs to self-reflect on their own re-
sponses and provide valuable feedback for
future outputs. With the feedback, LLMs will
refine their responses.

• Branch-solve-Merge (BSM) (Saha et al.,
2024): BSM uses a "Divide and Conquer"
approach to break complex instructions as in-
dividual branches. Then the LLMs will merge

13793



Algorithm 1 Algorithm for DVR
Input: LLM M, Instructions X , Toolset T
Output: Response set Y
Select: Trial number n

1: Initialize the refinement repository Q = {}
2: for I ∈ X do
3: Generate response: R0 = M(pgenerate, I).

4: Initialize the toolset for I: TI = {}.
5: Decompose:M(pdecomp, I) → {ci}i=1,2...

6: for c ∈ {ci}i=1,2,3... do
7: M(pselect, c) → t, where t ∈ T .
8: M sets parameters for t.
9: TI = TI ∪ t.

10: end for
11: R = R0, a = n.
12: while a > 0 do
13: a = a− 1
14: Verify and get feedback from tools: FI =

{fi}i=1,2,3..., where fi = t(R).
15: if f = True,∀f ∈ FI then
16: return R
17: end if
18: Retrieve: st = {(Ii, Ri, fi, R

′
i)
t}i=1,2...,

where st ⊆ Q.
19: Refine: R′ = M(prefine, s

t, I, R, f),
where f ∈ Fi and f ̸= True.

20: if t(R′) = True then
21: Save: Q = Q ∪ {(I,R, f,R′)t}
22: Update the response: R = R′

23: a = n
24: end if
25: end while
26: Y = Y ∪R
27: end for

the responses from branches as the final an-
swer. Similarly, in our experiment, we use
LLMs to generate a response for each single
constraint and then merge them together.

• Universal Self-Consistency (U-SC) (Chen
et al., 2024a): This study extends the idea
of Self-Consistency (Wang et al., 2023) to
free-form generation. It first generates several
candidate responses and then asks LLMs to
select the most consistent one.

• Rejection Sampling (Saunders et al., 2022):
Since we have tools for reliable verification,
the most simple method is to select the best
one from a set of responses. Here, we give the

maximum number of trials as 5.

• ReAct (Yao et al., 2023): In ReAct, LLMs
take actions based on the observation of the
environment. Here, we adopt this method by
letting the tools as the environment and giving
LLMs boolean signals indicating whether the
generated response adheres to all constraints
in the instruction.

• CRITIC (Gou et al., 2024): CRITIC uses ex-
ternal API to evaluate the toxicity score of a
generated response, focusing on a single pre-
defined task. We adopt this method as a vari-
ant of our DVR framework, where tools will
pinpoint which constraint of the instruction is
not satisfied.

A.3 ComplexInstruct

We have 21 types of constraints which can be di-
vided into 8 general categories (Zhou et al., 2023)
as shown below:

• Keywords:

(1) Include keyword,
(2) Include keyword at least/less than certain
frequency,
(3) Forbidden word,
(4) At least/less than certain frequency of let-
ters.

• Length:

(1) At least/less than certain number of words,
(2) At least/less than certain number of sen-
tences,
(3) Exact number of paragraphs.

• Detectable Content:
(1) postscript,
(2) Exact number of placeholders.

• Detectable Format:
(1) Number of bullet points,
(2) Add title,
(3) Answer from options,
(4) Minimum of highlighted sections,
(5) Json format.

• Change Cases:
(1) All uppercase,
(2) All lowercase,
(3) At least/less than certain number of all-
capital words.

13794



• Startend:
(1) End the text with a certain sentence,
(2) Wrap whole response in double quotation.

• Punctuation:
(1) No commas in response.

• Language:
(1) Respond with certain language.

A.4 Detailed experiments
Additional experiments on Llama3-8B and
Llama3.1-70B are shown in Table 7 and Table 8 re-
spectively. We can observe that our methods consis-
tently outperform baselines on different LLMs. In
Table 9, we also observe that LLMs perform over-
all good on the CoDI dataset (Chen et al., 2024b).
There are two reasons. The first reason is that in-
structions are relatively simple, and only contain
two constraints. Additionally, another study also
shows that LLMs perform relatively better on sen-
timent and topic constraints (Chen et al., 2024b)
compared with format constraints. The LLMs in-
herently have better performance on semantic con-
straints over structural constraints. Our methods
also outperform baselines and successfully improve
the instruction satisfaction rate on CoDI.

Table 7: Performance of methods across levels 1 to 6
(Llama-3-8B-Instruct)

Method Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Vanilla 89.1 71.7 56.4 44.2 30.4 20.4
Reflexion 88.8 72.1 57.5 41.5 30.0 20.9
BSM 89.2 71.9 56.0 41.3 28.8 19.5
U-SC 89.5 71.8 56.7 45.1 31.2 20.6
R-Sample 90.8 80.9 64.5 52.9 39.8 31.0
ReAct 93.6 81.3 68.8 54.4 39.1 30.7
CRITIC 94.1 85.8 74.4 61.2 51.1 41.5
DVRCS 95.0 86.7 76.9 65.3 53.7 43.8
DVRWS 95.4 87.6 77.0 67.4 55.4 46.9

Table 8: Performance of methods across levels 1 to 6
(Llama-3.1-70B-Instruct-AWQ-INT4)

Method Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Vanilla 95.5 83.7 72.4 63.2 51.3 35.9
Reflexion 95.3 83.5 72.8 63.0 51.6 36.1
BSM 95.0 84.5 72.6 64.8 49.6 34.2
U-SC 96.0 83.3 71.8 64.0 52.5 36.3
R-Sample 97.3 90.8 83.2 72.2 63.8 50.7
ReAct 97.5 91.0 83.5 72.4 65.0 52.1
CRITIC 98.1 93.2 87.6 79.1 73.7 61.3
DVRCS 98.0 94.3 88.2 82.0 75.7 63.1
DVRWS 98.2 94.6 88.7 82.2 76.0 64.2

Experiments on IFEval: We conduct exper-
iments on IFEval (Zhou et al., 2023) which is

Table 9: Instruction Satisfaction Rate (ISR) on CoDI

Method Mistral 7B Llama3 8B Llama3.1 8B
Vanilla 68.8 68.8 68.6
Reflexion 69.4 70.0 69.8
BSM 68.2 68.4 68.6
USC 69.2 70.2 69.6
Reject Sample 79.8 80.8 81.4
ReAct 80.4 81.0 81.8
CRITIC 88.6 93.0 91.2
DVR (coldstart) 92.0 94.2 94.6
DVR (warmstart) 93.2 94.4 94.6

Table 10: Comparison Across Different Constraints
Types (coldstart)

Mistral-7B Llama3-8B Llama3.1-8B Llama 3.1-70B

Constraint Type Vanilla DVR Vanilla DVR Vanilla DVR Vanilla DVR

Detectable Content 76.36 88.49 84.18 95.82 86.29 96.19 97.06 98.14
Keywords 76.04 84.32 83.84 87.53 84.94 88.77 87.88 92.05
Punctuation 24.34 71.31 91.03 95.47 97.01 98.29 98.38 98.38
Case Change 70.08 80.15 81.28 93.20 82.97 89.96 80.23 96.24
Start End 81.29 88.71 84.88 88.71 84.07 91.78 89.37 95.94
Detectable Format 69.59 81.30 81.57 89.29 84.69 92.38 90.52 95.56
Language 69.11 82.72 77.06 86.24 81.96 89.30 90.83 94.34
Length Constraints 50.42 72.61 65.29 79.66 68.55 83.93 80.50 90.17

an instruction-following benchmark widely used
for industry. The IFEval dataset evaluates the
instruction-following ability and is one of the core
benchmarks used in the Open LLM Leaderboard
(Hugging Face). We conduct experiments on
Mistral-7B-v0.3 and the results are shown in Table
11. DVR outperforms all other baselines on IFEval
benchmark.

Table 11: ISR (%) for IFEval Dataset

Method Vanilla Reflexion BSM U-SC R-Sample ReAct CRITIC DVR
ISR 47.32 47.13 47.87 46.95 53.23 53.97 55.53 60.44

Experiments on GPT4: We conduct experi-
ments on GPT-4-turbo. Shown in Table 12, we
can observe that GPT-4-turbo performs better than
open-source models (Mistral and Llama). Surpris-
ingly, applied on Llama3.1-8B, DVR can still out-
perform GPT-4-turbo, indicating that DVR exploits
the potential of the open-source model.

Table 12: Performance Comparison to GPT4-turbo
(zero shot).

Model Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Mistral-7B 77.0 55.3 34.1 19.9 12.4 6.3
DVR (Mistral-7B) 95.0 81.3 66.6 51.4 36.4 23.4
Llama3.1-8B 90.5 76.6 62.5 50.1 35.6 25.3
DVR (Llama3.1-8B) 95.2 88.7 79.2 69.7 60.5 49.6
GPT4-turbo(zero shot) 95.3 88.4 78.8 65.2 53.7 42.6

A.5 Fluency and Readability
In this subsection, we investigate if our framework
would sacrifice comprehensibility and fluency in or-

13795



der to follow complex-constraints. We evaluate key
metrics such as readability, perplexity, and coher-
ence. These metrics assess the comprehensibility
and fluency of the responses. Results of Complex-
Instruct and CoDI are shown in Table 13 and Table
14. They both show that our framework has perfor-
mance comparable to those of Vanilla, indicating
that it does not degrade fluency and readability.
The reason is that our method does not change any
weights in LLMs, which maintains their ability in
generating fluent and comprehensible text.

Table 13: Descriptive Statistics of Responses (Complex-
Instruct), where Coherence_or1 is first order coherence
and Coherence_2 is the second order coherence.

Model Method Readability ↑ Perplexity ↓ Co_or1 ↑ Co_or2 ↑
mistral7B

Vanilla 62.24 18.22 0.61 0.59
DVR 61.93 18.95 0.59 0.57

llama3-8B
Vanilla 63.77 18.49 0.57 0.57
DVR 63.58 18.08 0.59 0.56

llama3.1-8B
Vanilla 63.43 19.68 0.62 0.61
DVR 62.75 18.30 0.62 0.60

llama3.1-70B
Vanilla 61.96 17.99 0.64 0.63
DVR 63.51 18.04 0.63 0.62

Table 14: Descriptive Statistics of Responses (CoDI)

Model Method Readability ↑ Perplexity ↓ Co_or1 ↑ Co_or2 ↑
mistral7B

Vanilla 63.62 15.27 0.82 0.81
DVR 63.53 15.98 0.83 0.82

llama3-8B
Vanilla 63.79 14.25 0.79 0.76
DVR 64.14 16.07 0.80 0.77

llama3.1-8B
Vanilla 62.18 16.27 0.81 0.83
DVR 62.02 17.58 0.81 0.80

A.6 Robustness of DVR
We also conduct experiments to assess DVR’s per-
formance in the presence of tool errors. Two types
of errors are introduced: random noise and system-
atic bias. Specifically, we evaluate the framework
on instructions with length constraints, using 600
samples (from ComplexInstruct) for word count
control and another 600 for sentence count control.
A constraint example: “The response needs to be
less than (or at least) x number of words/sentences.”
where x ranges from 10 to 100 for words and 3 to 5
for sentences. We add two types of noises to tools:

Noise: Gaussian noise with a mean of 0 is added
to the counted number of words (or sentences) to
simulate random errors. The DVR’s performance
is then measured across different deviation levels.

Bias Errors: A fixed bias is added to the
counted values of words (or sentences) to introduce
systematic errors. The tables below demonstrate
DVR’s performance under different bias values.

Observations: We have several observations in
Table 15 and Table 16. (1) The performance will
decrease as the noise levels (deviation, bias values)

increase. (2) As the errors become large, the perfor-
mance degradation will saturate. (3) Overall, DVR
will not perform much worse than vanilla even if
the bias and errors are large (20 for word count and
4 for sentence count). (4) The impact of noise on
the overall instruction satisfaction rate is less severe
compared to its influence on specific constraints.

Table 15: Satisfaction Rate for Word Number Con-
straints (%)

Deviation 0 5 10 20 Vanilla

Words Number Satisfaction Rate 88.00 87.17 82.83 81.50 68.16
Instruction Satisfaction Rate 48.17 45.00 43.67 43.67 10.17

Bias 0 5 10 20 Vanilla

Words Number Satisfaction Rate 88.00 87.17 84.33 82.67 68.16
Instruction Satisfaction Rate 48.17 47.83 47.00 45.67 10.17

Table 16: Satisfaction Rate for Sentence Number Con-
straints (%)

Deviation 0 1 2 4 Vanilla

Sentences Number Satisfaction Rate 74.50 68.17 62.50 60.50 56.33
Instruction Satisfaction Rate 42.83 38.17 35.33 34.33 10.17

Bias 0 1 2 4 Vanilla

Sentences Number Satisfaction Rate 74.50 64.67 58.67 56.50 56.33
Instruction Satisfaction Rate 42.83 40.50 32.67 31.33 10.17

A.7 Computation Time
We conducted experiments with 20 instructions,
each containing 6 constraints, using Mistral-7B.
The number of trials was set to 5, consistent with
the paper’s settings. The average running time is
summarized below:

Table 17: The Average Running Time for One Sample

Method Vanilla Reflexion U-SC BSM RS ReAct CRITIC DVR

Time (s) 5.91 20.53 41.34 46.21 32.32 36.48 37.98 33.91

As shown in Table 17, our method does not ex-
hibit significantly higher running time compared
to other baselines. Considering the performance
gains (Table 2), our method demonstrates a balance
between efficiency and effectiveness.

A.8 Related Work Details
Instruction Following. (1) Evaluation: Recent
studies evaluate instruction-following capability of
LLMs from various perspectives (Dubois et al.,
2024; Zhou et al., 2023; Jiang et al., 2024b; Chen
et al., 2024b; Zhou et al., 2023; He et al., 2024b).
They evaluate LLMs’ instruction-following abil-
ity by testing on length (Dubois et al., 2024), for-
mat (Zhou et al., 2023), semantic and topic con-

13796



straints (Chen et al., 2024b). Most works only
test LLMs on simple instructions with only 1-2
constraints. Recently, some works test on instruc-
tions with multiple constraints (He et al., 2024a;
Jiang et al., 2024b). They find that LLMs strug-
gle to follow complex instructions as the number
of constraints increases. Moreover, there is a big
performance gap between the open-source mod-
els and the closed-source models on instruction-
following. (2) Methods: Upon finding these prob-
lems, some works (Chen and Wan, 2023; Sun et al.,
2024; Wang et al., 2024c; He et al., 2024a) use var-
ious prompting strategies to generate instructions
and responses with advanced LLMs (e.g., GPT4)
and then use the generated data to fine-tune open-
source LLMs. While most methods consider only a
few constraints, He et al. (2024a) focus on improv-
ing LLMs’ adherence to multiple constraints. They
generate complex instruction datasets by merging
instructions with external constraints and iteratively
refine student model responses using GPT-4 as a
teacher. The student model is tuned on both inter-
mediate modifications and final refined responses.

LLMs Using Tools. Tools have been extensively
employed to enhance the capabilities of LLMs
across various domains. For instance, retrievers are
used to augment the response generation of LLMs
by fetching relevant information (Khandelwal et al.,
2019; Gou et al., 2024), while search engines en-
hance the model’s access to real-time data (Nakano
et al., 2021). Similarly, calculators are adopted
to support math reasoning of LLMs (Cobbe et al.,
2021), interpreters are used to facilitate accurate
code generation (Chen et al., 2022; Gao et al., 2023)
and mathematical provers help in verifying theo-
retical proofs (Jiang et al., 2023). CRITIC (Gou
et al., 2024) uses external API to evaluate the tox-
icity score of a generated response, focusing on a
single predefined task. In contrast, DVR involves
preparing and selecting multiple tools, allowing for
greater flexibility. Moreover, while CRITIC pro-
vides feedback as a single numerical score, DVR
offers textual guidance, which has more detailed
analysis for response. Another key distinction is
that DVR incorporates dynamic few-shot prompt-
ing, further enhancing refinement effectiveness.

A.9 Tool Selection at Scale
Currently, there is no large-scale benchmark for
instruction-following with such an large toolset. To
evaluate tool selection at scale, we expand the tool
pool to 2,000 entries by combining our original

tools descriptions with fictitious tool descriptions
generated by GPT-4-Turbo. For example, a tool
description is like: “Citation Format Validator: It
ensures that all citations in the text adhere to a spec-
ified citation style like APA, MLA, or Chicago.”

We then design a retrieval method. All tool de-
scriptions are embedded using the all-mpnet-base-
v2 model (Siino, 2024). The LLM (Llama-3.1-
8B-Instruct) generates a tool query, which is also
embedded. We use cosine similarity to match the
query against the tool pool. The top 10 most sim-
ilar tools are retrieved. The LLM selects the final
tool from this top-10 set. We test on 1,000 con-
straints and report both the recall of retrieval and
final accuracy of the tool selection.

The results are shown in Table 18. As the tool
pool size increases, recall and final accuracy grad-
ually decrease. Overall recall remains high, indi-
cating that the correct tool is still very likely to be
selected, even with a large candidate pool.

Tool Numbers 100 200 500 1000 2000

Recall@10 0.982 0.980 0.977 0.963 0.961
Final ACC 0.931 0.931 0.925 0.920 0.917

Table 18: Tool selection performance.

13797



Refinement Example

Prompt: Excuse me, could you please provide text that focuses on the music-topic? use the
keywords artists. highlight at least 1 key point by wrapping it with *. For example: *highlighted
key point*. The number of sentences in your response should be less than 5. be sure the letter e
appears at least 4 times in your response. Make sure to include at least 3 placeholder represented
by square brackets, such as [address], [name]. the total number of words in your response should
be at least 23.
Response:
«Music Unites» From festivals to online communities, music continues to bridge cultural and
geographical gaps like never before. *Electronic music has especially seen a surge in popularity
among the younger generation*. Talented artists from all over the world have been coming together
to create beautiful melodies and harmonies. [name] is one such artist who has been making waves
in the industry with his eclectic beats. His music can be found on various platforms, including
[address] and [website]. Many emerging artists, including [another name], are also experimenting
with different genres.
Unsatisfied Constraint: The number of sentences in your response should be less than 5.
Feedback: The response contains 6 sentences, which is 2 more than allowed. Please remove at
least 2 sentences.
Refined Response: «Music Unites» From festivals to online communities, music continues to
bridge cultural and geographical gaps like never before. *Electronic music has especially seen
a surge in popularity among the younger generation*. Talented artists from all over the world
have been coming together to create beautiful melodies and harmonies. [name] is one such artist
who has been making waves in the industry with his eclectic beats and his music can be found on
various platforms, including [address] and [website].

Figure 6: The refinement process example

13798



Decomposition Prompt

You are an advanced assistant specializing in identifying and listing output constraints from
provided instructions. The instructions typically include a task related to generating content on a
specific topic and one (or multiple) format constraint(s). Your goal is to focus only on extracting
and listing all the format constraints required for the output, ignoring the content-related task.
Instruction:
Generate a few lines of text that touch on the topic of tv. Put your entire answer in JSON format...
Format Constraints:
#1. Put your entire answer in JSON format.
#2. The word ’show’ should not appear in your response.
... (more examples)
Instruction:
{current instruction}
Format Constraints:

Tool Selection Prompt

You will be given a list of constraints. Each constraint belongs to a specific category. Your task is
to recognize and categorize each constraint. Only output the category from the following options:
postscript, placeholder, include keyword, exclude keyword, letter frequency, keyword frequency,
sentence count constraint, word count constraint, *** separator, bullet points, fixed responses,
highlighted, JSON format, title format, quoted response, end phrase, no commas, all capital letters,
all lowercase, capital word frequency, language restriction
Please ensure to categorize each constraint accurately according to its description. There is
definitely a valid category option for each constraint. Here are examples:
Prompt: Make sure to include the word ’mutations’.
Category: include keyword
...(more examples)
Prompt: {Current Prompt}
Category:

Refinement Prompt

You are an AI assistant responsible for refining a given response. Given a prompt, its response, and
the analysis of the response, your task is to modify the response according to the analysis.
#Prompt: I’m looking for text that explores arts or culture, can you assist? There should be no
commas in your reply......
#Original Response: Art has the power to bring people together and transcend cultural boundaries.
It can evoke emotions and spark conversations that might not be possible through other means.
*At the [address] museum, ......
#It does not satisfy the constraint: There should be no commas in your reply.
#Analysis: The response contains 4 comma(s). Here are the detected commas: (museum, visitors)
(installations, each)... Please remove all commas.
#Modified Response: Art has the power to bring people together and transcend ...(more examples)
#Prompt: current prompt
#Original Response: current response
#It does not satisfy the constraint: current unsatisfied constraint
#Analysis: current feedback
#Modified Response:

Figure 7: The prompts used in DVR

13799



Word Counting

This example is obtained through GPT4-o with zero-shot. It demonstrates that reliable tools can be
easily created. The details are as follows:

def feedback(response, max_words=None, min_words=None):
# Count the number of words in the response
word_count = len(response.split())

# Check for maximum word constraint
if max_words is not None and word_count > max_words:
return f"Response failed because it has {word_count} words,
exceeding the maximum allowed limit of {max_words} words."

# Check for minimum word constraint
if min_words is not None and word_count < min_words:
return f"Response failed because it has only {word_count}
words, fewer than the minimum required {min_words} words."

# If all constraints are satisfied
return True

Lowercase Validation
This example validates whether a given text is entirely in lowercase. If any word contains uppercase
letters, it provides feedback on which words need correction. The implementation is as follows:

class LowercaseLetter:
def __init__(self):

pass

def feed_back(self, value):
# Split the input string into words
words = value.split()

# Find words that are not fully in lowercase
upper_case_words = [word for word in words if
any(char.isupper() for char in word)]

if value.islower():
return True

else:
return f"The response contains words that are not in
all lowercase letters: {', '.join(upper_case_words)}.
Please lowercase all of them."

Figure 8: The tool examples

13800


