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Abstract

Can language models reliably predict that pos-
sible events are more likely than merely im-
probable ones? By teasing apart possibility,
typicality, and contextual relatedness, we show
that despite the results of previous work, lan-
guage models’ ability to do this is far from ro-
bust. In fact, under certain conditions, all mod-
els tested—including Llama 3, Gemma 2, and
Mistral NeMo—perform at worse-than-chance
level, assigning higher probabilities to impos-
sible sentences such as ‘the car was given a
parking ticket by the brake’ than to merely un-
likely sentences such as ‘the car was given a
parking ticket by the explorer’.

Data, Code, and Analyses

1 Introduction

“How often have I said to you that when
you have eliminated the impossible,
whatever remains, however improbable,
must be the truth?”

Sherlock Holmes, The Sign of the Four
(Doyle, 1890)

Consider the following scenario:

(1) Marissa forgot to bring her pillow on her
camping trip. As a substitute for her pillow,
she filled up an old sweater with...

(a) clothes
(b) leaves
(c) water

(Glenberg and Robertson, 2000)

Clothes is the obvious best answer here, and that
most preferred by humans when presented with the
options shown above (see Glenberg and Robertson,
2000). Nonetheless, leaves is also a possible con-
tinuation. In fact, Glenberg and Robertson (2000)
find that experimental participants rate leaves to be

significantly more sensible than water, despite the
fact that the sentence as a substitute for her pillow,
she filled up an old sweater with leaves describes a
highly unusual event.

This example (and indeed, all of Glenberg and
Robertson, 2000) hinges specifically on the phys-
ical properties of objects and their ‘affordances’
(i.e., what they can be used to do; Gibson, 1966,
1979). But it exemplifies a broader behavior that
humans exhibit largely unconsciously, namely, us-
ing knowledge of the world to distinguish between
the impossible and the merely atypical. In this
study, we focus on whether language models also
have the capability do so.

A growing body of work on world knowledge
and event understanding investigates whether lan-
guage models can select the most likely or plausible
of a set of possibilities (e.g., Zellers et al., 2019;
Sakaguchi et al., 2020; Bisk et al., 2020; see sub-
section 2.1). But this work often conflates different
ways that the ‘incorrect’ options can be incorrect;
some are impossible, but others are simply less typ-
ical. While finding that models are better or worse
at identifying likely events is in itself important, it
is only one component of robust event understand-
ing. In fact, any use of language models in practice,
whether as part of larger systems or directly as chat
assistants, is likely to involve novel and unexpected
situations. Thus being able to tell the difference
between the impossible and the merely unlikely is
crucial, especially in critical domains where the
use of language models has been suggested, such
as medicine (see, e.g. Van Veen et al., 2024; Liévin
et al., 2024; Singhal et al., 2025).

For this reason, we argue that it is important
to also assess the extent to which language mod-
els are able to differentiate between possible but
improbable events and impossible ones. We call
this the Sherlock Holmes Task after the famous
epigraphic quote (Doyle, 1890).

In this study, we evaluate language models on a
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specific version of the Sherlock Holmes task, ask-
ing whether they are able to reliably assign a higher
probability to sentences describing possible (but in
some cases, atypical or unlikely) events (e.g., the
car was given a parking ticket by the delinquent;
Vega-Mendoza et al., 2021) than their impossible
equivalents (e.g., the car was given a parking ticket
by the stamp). We draw on experimental stimuli
from previous research investigating how humans
process such sentences (Vega-Mendoza et al., 2021;
Chow and Phillips, 2013). Prior work shows that
language models assign impossible sentences with
words semantically related to their context higher
probabilities than equivalent sentences with unre-
lated words (Michaelov and Bergen, 2022). Thus,
we also include a further adversarial component,
specifically considering cases where impossible
sentences include related words (e.g., the car was
given a parking ticket by the brake) and possible
sentences include unrelated words (e.g., the car
was given a parking ticket by the explorer).

In contrast to previous work suggesting that lan-
guage models have relatively good world knowl-
edge and event understanding capabilities (e.g.,
Kauf et al., 2023), we find that both event atyp-
icality and semantic relatedness lead to significant
drops in performance. In the most highly adver-
sarial case, where we compare the probabilities
assigned to possible but atypical sentences with
unrelated words to those assigned to impossible
sentences with related words (e.g., the car was
given a parking ticket by the explorer vs. brake),
we find that all language models tested perform at
or below chance—that is, they assign the impossi-
ble sentences a higher probability half or more of
the time. We further find that this effect does not
disappear with scale—in fact, smaller models often
do better than their larger counterparts. Together,
these results suggest that language models may rely
on typicality and semantic relatedness cues when
making predictions rather than actual world knowl-
edge, and thus, that any previously-ascribed event
understanding capabilities are far from robust.

2 Background

2.1 Event Typicality
Texts vary in the extent to which they describe a
state of affairs that is likely and congruent with re-
ality. In studies of human language comprehension,
this has been operationalized in a variety of ways,
including plausibility (e.g., Paczynski and Kuper-

berg, 2012; Vega-Mendoza et al., 2021), sensibility
(e.g., Glenberg and Robertson, 2000), typicality
(e.g., Urbach and Kutas, 2010), combinability (e.g.,
Chow and Phillips, 2013), and canonicality (e.g.,
Nieuwland and Van Berkum, 2006). For consis-
tency, in this paper we use the term event typicality
as a general term encompassing the general unify-
ing idea behind these—the extent to which an event
described is likely to occur.

One common way to evaluate language models’
sensitivity to event typicality is in commonsense
and physical reasoning benchmarks (e.g., Levesque
et al., 2012; Sakaguchi et al., 2020; Talmor et al.,
2019; Bisk et al., 2020; Zellers et al., 2018, 2019),
which often at least implicitly target this capability
(Davis and Marcus, 2015; Storks et al., 2020). Take,
for example, the following item from the widely-
used HellaSwag dataset (Zellers et al., 2019):

(2) A woman is outside with a bucket and a dog.
The dog is running around trying to avoid a
bath. She...

(a) rinses the bucket off with soap and blow
dry [sic] the dog’s head.

(b) uses a hose to keep it from getting soapy.
(c) gets the dog wet, then it runs away

again.
(d) gets into a bath tub with the dog.

In this example, continuation (c) is ‘correct’—it
corresponds to the most typical sequence of events.
And indeed, continuation (c) is the one that actually
occurs in the ActivityNet Captions dataset (Krishna
et al., 2017) from which the example is derived.
However, the ‘incorrect’ continuations, while less
plausible and appropriate, also all describe pos-
sible continuations of the event in question—we
don’t see any truly impossible continuations such
as [she] and the dog are chased by the bucket.

Several studies have explicitly investigated event
possibility (Michaelov et al., 2023; Kauf et al.,
2023; Hanna et al., 2023). These studies generally
base their analyses on experimental stimuli derived
from human psycholinguistic studies where impos-
sible sentences always involve animacy violations
such as the peanut was in love (Michaelov et al.,
2023; Hanna et al., 2023; original stimulus from
Nieuwland and Van Berkum, 2006), or the laptop
bought the teacher (Kauf et al., 2023; original stim-
ulus from Fedorenko et al., 2020).

These studies investigate whether language mod-
els can differentiate between possible and impos-
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sible events. Yet in all cases, the best continuation
is a typical one. This is true even in the case of
Kauf et al. (2023), who investigate whether there is
a difference between the performance of language
models at distinguishing plausible from impossible
events compared to distinguishing plausible from
merely implausible (i.e., atypical) events. Thus,
none of these studies are able to successfully tease
apart the effects of possibility and typicality, which
is important because it is precisely in atypical sit-
uations that it is important to distinguish between
possible and impossible events.

2.2 Semantic Relatedness
A number of studies have shown that that the word
predictions of both humans (e.g., Ettinger et al.,
2016; Uchida et al., 2021) and language models
(e.g., Misra et al., 2020; Michaelov et al., 2024)
correlate with the word’s semantic relatedness to
its context. For example, Misra et al. (2020) find
that adding words like airplane (either alone or in a
sentence context) before sentences like I wanted to
become a... increases the probability of BERT pre-
dicting words like pilot compared to when adding
a control word such as table.

This tendency is in principle adaptive—it would
be surprising if within an utterance or connected
discourse, one were to encounter a sentence com-
pletely unrelated to anything mentioned previously
(see, e.g., Grice, 1975, 1989; Sperber, 1986). Thus,
contextual relatedness may often function as a reli-
able heuristic of what is to come next.

However, the evidence suggests that using con-
textual semantic relatedness as a partial basis for
prediction may not always be beneficial. Consider,
for example, the following text from a study by
Metusalem et al. (2012):

(3) We’re lucky to live in a town with such a
great art museum. Last week I went to see a
special exhibit. I finally got in after waiting in
a long...

(a) line
(b) painting
(c) toothbrush

Metusalem et al. (2012) find that while painting
and toothbrush are both impossible sentence con-
tinuations, and are equally unlikely to be offered up
as possible continuations by experimental partici-
pants, painting is more strongly predicted during

the process of language comprehension, which Me-
tusalem et al. (2012) argue is due to its relation to
the event discussed in context (i.e., visiting an art
museum). Michaelov and Bergen (2022) replicate
this finding in language models, finding that they
also predict painting to be more likely. While in
this context, such a result may not be particularly
harmful, as it amounts to a difference between two
impossible continuations, it does suggest that re-
liance on contextual semantic similarity could be
problematic in other cases.

2.3 Possibility
We are only aware of two studies that directly test
whether language models are able to successfully
assign sentences describing possible but atypical
events a higher probability than impossible ones.
Kauf et al. (2023) look across a large set of sen-
tences of comparable length and structure, find-
ing that overall, impossible sentences are assigned
lower probabilities than merely implausible ones.

Jones et al. (2022), on the other hand, carry out
a study on the full set of stimuli from Glenberg and
Robertson (2000), as exemplified in (1). Thus they
directly investigate cases where the texts differ only
by one word—a critical word—that determines
whether they are likely (as in she filled up an old
sweater with clothes; see (1)), possible but atypical
(i.e., afforded; e.g., she filled up an old sweater
with leaves), or impossible (i.e., nonafforded; e.g.,
she filled up an old sweater with water). Jones
et al. (2022) find that BERT and RoBERTa are not
able to consistently assign the possible but atypi-
cal events a higher probability than the impossible
ones, but (on average) GPT-3 does; though not
to the extent that it can fully account for human
sensibility judgments.

However, because this study was aimed at mod-
eling human responses, it does not report the pro-
portion of sentences where the possible continu-
ation was assigned a higher probability than the
impossible one (i.e., model accuracy). Thus, it
is unclear how consistent this pattern is across in-
dividual items. Additionally, the original stimuli,
as constructed by Glenberg and Robertson (2000)
explicitly balance the semantic relatedness of the
afforded and unafforded options in order to en-
sure that it is not used as a heuristic—that is, to
avoid cases where the afforded continuation has
a higher semantic relatedness than the unafforded
one. However, by the same token, this also re-
moves the possibility of the reverse situation where
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Lang. Sentence Possibility Typicality Relatedness

Eng. The cure for the disease was discovered by the doctor. Possible Typical Related (PTR)
The cure for the disease was discovered by the patient. Possible Atypical Related (PAR)
The cure for the disease was discovered by the guest. Possible Atypical Unrelated (PAU)
The cure for the disease was discovered by the medication. Impossible Atypical Related (IAR)
The cure for the disease was discovered by the stamp. Impossible Atypical Unrelated (IAU)

Mand. 高材生把数学题解答了
‘The student solved the math problem’ Possible Typical Related (PTR)

高材生把数学题挂起了
‘The student hung the math problem’ Possible Atypical Unrelated (PAU)

高材生把数学题难倒了
‘The student baffled the math problem’ Impossible Atypical Related (IAR)

高材生把数学题困住了
‘The student restrained the math problem’ Impossible Atypical Unrelated (IAU)

Table 1: Examples of the types of sentences used in the present study. All English sentences are drawn from
Vega-Mendoza et al. (2021), and all Mandarin sentences are drawn from Chow and Phillips (2013).

reliance on a semantic relatedness heuristic may
lead to mistakenly over-estimating the probability
of semantically related words relative to unrelated
words. Thus, the results may also over-estimate
the extent to which language models can reliably
predict possible events to be more likely than im-
possible ones.

3 The Present Study

As has been discussed, the effects of possibility,
typicality, and contextual semantic relatedness on
language model probability have each been in-
vestigated individually. However, these are all
intertwined—all else being equal, we should expect
that typical events are also possible, and that words
describing typical and possible events are more
likely to be related to their semantic contexts than
words describing atypical and impossible events.
In this study, therefore, we aim to disentangle the
effect of each by investigating the effects on pre-
diction of cases where these cues conflict.

To do this, our version of the Sherlock Holmes
task uses a minimal pairs paradigm (see, e.g.,
Linzen et al., 2016; Marvin and Linzen, 2018;
Warstadt et al., 2019, 2020) where the language
model is presented with two sentences that differ
by a critical word that makes the sentence either
possible or impossible. In order to allow any lan-
guage model to carry out our task (not just large
or finetuned models, see Hu and Frank, 2024), we
follow previous work such as BLiMP (Warstadt
et al., 2020) and directly compare the probability
that a language model assigns to each sentence to
determine the more probable one.

As shown in Table 1, with each sentence, the

critical word (underlined) is manipulated such that
the event it describes is either Possible or Impos-
sible and either Typical or Atypical. The critical
word itself is either semantically Related or Unre-
lated to its preceding context. Thus, a minimal pair
might pit a Possible-Typical-Related (PTR) sen-
tence (e.g., the cure for the disease was discovered
by the doctor) against its corresponding Impossible-
Atypical-Unrelated sentence (e.g., the cure for the
disease was discovered by the stamp). We consider
a language model to be correct if it assigns a higher
probability to the former (possible) sentence than
the latter (impossible) sentence.

In this study, as in previous work comparing pos-
sible and impossible sentences in language models
(Kauf et al., 2023), we look at impossibility arising
from animacy violations. An animacy violation
occurs when an inanimate entity has an event role
that requires animacy. For example, in the cure for
the disease was discovered by the..., the discoverer
needs to be animate, and since stamps are inan-
imate, completing the sentence with stamp is an
animacy violation. Thus, when a sentence with an
animacy violation is interpreted literally, it refers
to an impossible state of affairs.

All English stimuli were drawn from a human
study carried out by Vega-Mendoza et al. (2021;
based on Paczynski and Kuperberg, 2012), and all
Mandarin stimuli from a study carried out by Chow
and Phillips (2013). English minimal pairs are ex-
actly as shown in Table 1; while due to their nature,
the Mandarin stimuli are embedded in larger sen-
tences as they appear in Chow and Phillips (2013),
which are identical across experimental conditions.
All English tasks were made up of 154 sentence
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pairs, and all Mandarin tasks of 57 sentence pairs.

4 Experiment 1: Typical vs. Atypical

4.1 Introduction
In our first experiment, we first assess how well lan-
guage models tell apart sentences denoting typical
and atypical (both possible and impossible) events.
Like Kauf et al. (2023), we also test whether there
is a difference in performance based on the type of
atypical sentence compared (impossible vs. pos-
sible but atypical). We go beyond previous work
both by looking at how performance is impacted by
semantic relatedness, and by looking at a language
other than English, namely, Mandarin.

4.2 Method
We construct minimal pairs based on the conditions
described in Table 1. For both languages, we test
whether language models assign a higher probabil-
ity to Possible-Typical-Related events compared
to impossible critical words (see Table 1). For En-
glish, we are also able to test whether language
models assign a higher probability to Possible-
Typical-Related sentences than to sentences with
possible but atypical critical words.

We run our analyses using the Language Model
Evaluation Harness (Gao et al., 2021) on 35 lan-
guage models of the BLOOM (BigScience Work-
shop et al., 2023), Gemma (Gemma Team et al.,
2024a,b), Llama (Llama Team, 2024), mGPT (Shli-
azhko et al., 2024), Mistral (Jiang et al., 2023),
OLMo (Groeneveld et al., 2024), Qwen (Yang et al.,
2024; Qwen et al., 2025), SmolLM (Allal et al.,
2024), XGLM (Lin et al., 2022), and Yi (01.AI
et al., 2025) model families (see Appendix A for
full list). Because we are interested in language
models’ world knowledge and the extent to which
it is used in prediction—rather than their ability to
answer questions about it—we limit our analysis
to pretrained-only (or ‘base’) models.

4.3 Results
The results are shown in Figure 1 (the individual
accuracy scores for all models is provided in Ap-
pendix A). In addition to comparing the accuracies
of different tasks numerically, we also run pairwise
statistical tests. Specifically, to test whether there is
a difference between language model performance
at two different tasks, we use logistic mixed-effects
regressions to predict whether a given answer is
correct or not, and predict this based on which task

it is, as well as including the maximal random ef-
fects structure that would converge with no singular
fits, namely, random intercepts for each language
model and sentence context. The specific statis-
tical test was a likelihood ratio test including or
excluding task as a predictor.

First, we see that on the typical vs. impossible
tasks, accuracy is lower when the impossible criti-
cal word is related compared to when it is unrelated
in both English (χ2(1) = 616.36, p < 0.0001) and
Mandarin (χ2(1) = 163.06, p < 0.0001). The
same is true with the typical vs. atypical compari-
son on English stimuli, where performance is lower
when the implausible sentence is related rather than
unrelated (χ2(1) = 1417.80, p < 0.0001). Fi-
nally, we replicate the result found by Kauf et al.
(2023) that language models tend to be worse at
the typical vs. atypical than the typical vs. im-
possible tasks. We find that this is the case both
when the atypical or impossible critical word is
related (χ2(1) = 587.32, p < 0.0001), and when
it is unrelated (χ2(1) = 63.09, p < 0.0001).

4.4 Discussion
In line with previous work (Kauf et al., 2023), our
results show that language models can differentiate
between possible and impossible events as well as
typical and atypical events, and are better at the
former comparison.

In addition, we show for the first time that per-
formance at each of these is affected by contextual
semantic relatedness. If the atypical critical word
(either possible or impossible) is semantically re-
lated to the event described in its context, it leads
to decreased performance relative to when the atyp-
ical word is unrelated. This suggests that in cases
where the atypical word is semantically related to
the event in the context, there is an increased risk
of it being calculated as more probable than the
actually typical word than when the atypical word
is semantically unrelated, including in cases where
the atypical word renders the sentence impossible.

5 Experiment 2: Atypical vs. Impossible

5.1 Introduction
In Experiment 1, we showed that while language
models can tell apart sentences denoting typical and
atypical events, the extent to which this is the case
is impacted by semantic relatedness, and specif-
ically, the extent to which the critical word in a
sentence is semantically related to its context. In
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Typical vs. Impossible Typical vs. Atypical
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Figure 1: Language model scores for all tasks comparing sentences describing typical events (Possible-Typical-
Related) to those describing impossible (Impossible-Atypical-Related or Impossible-Atypical-Unrelated) or merely
atypical (Possible-Atypical-Related or Possible-Atypical-Unrelated) events. Individual model scores are shown in
black (standard error calculated as in Biderman et al., 2024), while the mean over all models is shown in purple
(standard error calculated over model means).

Experiment 2, we instead focus on the more conse-
quential question of how well language models can
tell apart impossible and merely atypical events,
again looking at how this is impacted by the seman-
tic relatedness of the critical word to the context.
However, in this experiment we evaluate models
on the more difficult case where possible events
are also atypical (Possible-Atypical-Unrelated or
Possible-Atypical-Related).

5.2 Method
The method is the same as in Experiment 1, as are
the impossible stimuli. However, for the possible
stimuli, we instead draw on the atypical but possi-
ble sentence types: Possible-Atypical-Unrelated
(English and Mandarin) and Possible-Atypical-
Related (English only). We also limit our anal-
ysis to the subset of the language models used in
Experiment 1 that were trained on Mandarin.

5.3 Results
The results are shown in Figure 2 (individual accu-
racy scores for all models provided in Appendix A).
First, we see that in all cases, an atypical but possi-
ble critical word leads to worse performance than
a typical critical word.

There is a drastic drop in performance when
the impossible critical word is related compared
to when it is unrelated, both when the possi-
ble but atypical critical word is related (English
only: χ2(1) = 1879.50, p < 0.0001) and when
it is unrelated (χ2(1) = 3792.85, p < 0.0001;

Mandarin1: z = 13.18, p < 0.0001). There
is also a drop in performance on the English
stimuli when the possible but atypical critical
word is related compared to when it is unrelated
(vs. Impossible-Atypical-Unrelated: χ2(1) =
1277.45, p < 0.0001; vs. Impossible-Atypical-
Related: χ2(1) = 3570.05, p < 0.0001). When
we compare performance to Experiment 1, we
also see that for tasks where the possible criti-
cal word is related, the models perform signif-
icantly worse when the word is atypical rather
than typical (vs. Impossible-Atypical-Unrelated:
χ2(1) = 273.69, p < 0.0001; vs. Impossible-
Atypical-Related: χ2(1) = 1240.70, p < 0.0001)

5.4 Discussion
These results show that language models are worse
at differentiating between implausible and impos-
sible events than they are between plausible and
impossible events. While this may not be a surpris-
ing result given previous work (e.g., Jones et al.,
2022; Kauf et al., 2023), as far as we know, this is
the first study to provide direct evidence of this.

In addition, this experiment highlights, perhaps
even more strikingly than Experiment 1, the role
of semantic relatedness in prediction. We see that
performance is impacted not only by the extent to
which the critical word of impossible sentences is
related to the context, but also the extent to which

1For this comparison, the null regression to be used in the
likelihood ratio test did not converge, so we instead used the
asymptotic Wald test to calculate the effect of task.
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Atypical (Possible) vs. Impossible
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Figure 2: Language model scores for all tasks comparing sentences describing possible but atypical (Possible-
Atypical-Related or Possible-Atypical-Unrelated) events to those describing impossible (Impossible-Atypical-
Related or Impossible-Atypical-Unrelated) events. Individual model scores are shown in black, and overall mean
scores in purple.

the critical word of the possible sentences is related.
In all cases, sentences with semantically related
critical words are assigned higher probabilities.

Crucially, in the specific case where there is an
event-unrelated possible critical word and event-
related impossible word, we see that performance
drops below chance in both languages—that is,
the language models calculate the event-related
impossible words to be more likely than the event-
unrelated possible words more than half of the time.

6 Experiment 3: Statistical Reliability

6.1 Introduction
In addition to replicating Kauf et al. (2023), we also
make several novel findings in Experiments 1–2.
Performance drops across the board when the pos-
sible critical word is atypical rather than typical, as
well as when it is semantically unrelated rather than
related. Additionally, performance drops when the
impossible critical word is related rather than unre-
lated. While it may be unsurprising that language
models appear to predict typical words to be more
probable than atypical ones and semantically re-
lated words to be more probable than semantically
unrelated words (especially given, e.g., Michaelov
and Bergen, 2022; Michaelov et al., 2024), we show
for the first time that this has a significant impact
on their ability to assign higher probabilities to
possible sentences than impossible ones.

6.2 Method
To investigate how robust this is and account for
possible confounds, we carry out an analysis testing
the extent to which the relatedness and typicality
of each critical word impact language model per-
formance. Because Vega-Mendoza et al. (2021)
provide both the numeric values of relatedness
(calculated using Latent Semantic Analysis; Du-
mais et al., 1988) and typicality (operationalized
as human plausibility ratings), we use these, and
thus only carry out our analyses on the English-
language stimuli. We construct a logistic mixed-
effects regression predicting whether a given lan-
guage model correctly assigns the possible sen-
tence a higher probability than the impossible one.
As predictors, we include the semantic relatedness
of the possible and impossible critical words, the
typicality of the possible and impossible critical
words, and the frequency of the possible and im-
possible critical words (a possible confound; see,
e.g., McCoy et al., 2024). We also include random
intercepts for each language model and sentence
context, as well as random uncorrelated slopes of
each predictor for each of these. Thus, we test the
extent to which each predictor explains language
model performance while accounting for the ef-
fects of the other predictors. We use likelihood
ratio tests to compare the fit of regressions includ-
ing or excluding the predictor of interest.
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Figure 3: Pythia language model scores at all English tasks (from Experiments 1–2) over the course of training.

6.3 Results and Discussion
The results align with the results of Experiments
1–2. Specifically, we see that, for a given pair, the
possible critical word being more semantically re-
lated improves performance (χ2(1) = 176.17, p <
0.0001), while the impossible critical word be-
ing more semantically related degrades perfor-
mance (χ2(1) = 197.58, p < 0.0001). Simi-
larly, we see that the possible critical word be-
ing more typical improves performance ( χ2(1) =
128.76, p < 0.0001) and the impossible word be-
ing more typical degrades performance (χ2(1) =
127.39, p < 0.0001). Thus, we see that plausi-
bility and semantic relatedness do increase the
probability assigned to a sentence by a language
model to the extent that it significantly alters per-
formance at the task. We also see that higher possi-
ble critical word frequency improves performance
(χ2(1) = 394.32, p < 0.0001) while higher impos-
sible critical word frequency degrades performance
(χ2(1) = 302.54, p < 0.0001), suggesting that
this is indeed a possible confound, and one that
should be studied in future work.

7 Experiment 4: Scaling Effects

7.1 Introduction
Experiments 1 and 2 demonstrated fragility in lan-
guage models’ ability to differentiate between pos-
sible and impossible events, resulting from whether
or not critical words in the sentences are related or
unrelated to the context. However, there is a lot
of variation between models. Given the general
trend that larger models trained on more data tend
to generally perform better (Kaplan et al., 2020;

Rae et al., 2022; Wei et al., 2022; Hoffmann et al.,
2022), one might expect that the best-performing
models on our tasks are the larger, more powerful
models, and thus, that ultimately we may expect
the relatedness effect on event understanding to
disappear eventually with scale.

However, a preliminary examination of individ-
ual model performance at the Possible-Atypical-
Unrelated vs. Impossible-Atypical-Related event
comparison (see Table 2) suggests that this is not
the case. In fact, for some model families we
see the opposite pattern: BLOOM 560M, 1B, and
1.7B are all better-performing than the 3B and 7B
models, XGLM 564M out-performs other XGLM
models, mGPT 1.3B out-performs mGPT 13B, and
Gemma 1 models out-perform Gemma 2 models.

In this experiment, therefore, we take a system-
atic approach to investigating whether the perfor-
mance of language models at the English tasks in
Experiments 1 and 2 is correlated with their scale
(i.e., number of parameters and number of training
tokens). To do this, we turn to the Pythia models
(Biderman et al., 2023), a suite of language models
of different sizes (in terms of number of parame-
ters) that are provided at various checkpoints over
the course of training. We investigate the patterns
in model performance based on different numbers
of parameters and over the course of training.

7.2 Method
The datasests are the same as those in Experiments
1 and 2. We use the 14M, 31M, 70M, 160M, 410M,
1B, 1.4B, 2.8B, 6.9B, and 12B parameter Pythia
models (Biderman et al., 2023), at training steps 0,
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000, 2000,

13535



4000, 8000, 16000, 32000, 64000, 128000, and
143000 (the fully-trained model), where each train-
ing step comprises of ∼2M tokens.

7.3 Results
Figure 3 shows a striking difference between
the Possible-Atypical-Unrelated vs. Impossible-
Atypical-Related (the cure for the disease was dis-
covered by the guest vs. medication) comparison
and all other tasks. With the other tasks, there is
a general pattern of improvement over the course
of training, with the larger models showing numer-
ically the best final scores. However, for the crit-
ical Possible-Atypical-Unrelated vs. Impossible-
Atypical-Related comparison—where in Experi-
ment 2, we saw at best chance accuracy across
all models in both languages—performance never
increases above chance.

7.4 Discussion
The effect of relatedness is not one that lan-
guage models can fully ‘grow out of’. On
the Possible-Atypical-Unrelated vs. Impossible-
Atypical-Related task, there is little difference be-
tween larger and smaller models, and if anything,
the performance of larger models deteriorates over
the course of training.

8 General Discussion

Previous work has shown that the predictions of lan-
guage models are highly correlated with event typ-
icality (Kauf et al., 2023; Michaelov et al., 2024).
In our study, we similarly find that language mod-
els are sensitive to large differences in typicality,
for example when distinguishing between impos-
sible events and typical events. However, we also
find that they perform significantly worse when
distinguishing between impossible events and less-
typical but still possible events. Thus, our results
suggest that there is ample room for potential im-
provement at this end of the scale.

A larger and perhaps more striking result is the
effect of semantic relatedness. A language model
will become worse at distinguishing between a pos-
sible and impossible event when the possible event
involves a critical word that is semantically unre-
lated to its preceding context, when the impossible
critical word is semantically related, and especially
when both of these are the case.

Combined with previous work showing that all
else being equal, language models will often tend

to predict that words that are semantically related
to the context are more likely than unrelated ones
(Misra et al., 2020; Michaelov and Bergen, 2022),
these results suggest that language models at least
in part rely on this relatedness (in addition to typi-
cality) as a cue for which words are more probable.

The presence of such a heuristic would be in
line with other work showing that the strong perfor-
mance of language models and other artificial in-
telligence systems can often be explained by them
learning simpler ‘shortcuts’ or other heuristics that
correlate (often but not always) with the task at
hand (see, e.g., Gururangan et al., 2018; McCoy
et al., 2019, 2024; Abdou et al., 2020; Geirhos
et al., 2020; Schramowski et al., 2020; Shah et al.,
2020; Zhang et al., 2020; Du et al., 2021, 2022;
Elazar et al., 2021; Kavumba et al., 2021; Ye and
Kovashka, 2021; Stefanik, 2022).

As previously noted, such a surface-level heuris-
tic is likely adaptive. Generally, words that are
semantically related to their context are likely to
be more appropriate sentence continuations than
unrelated words—indeed, all the critical words in
the typical sentences are semantically related to
their context. This may at least in part explain why
such a heuristic exists, not just in language models,
as our study suggests, but also in humans (see, e.g.,
Chwilla et al., 2007; Parviz et al., 2011; Ettinger
et al., 2016; Frank and Willems, 2017; Broderick
et al., 2018; Uchida et al., 2021).

Crucially, this effect of contextual semantic re-
latedness does not disappear with increased model
scale—in fact, while models trained on more data
appear to become better at detecting larger differ-
ences in typicality, they also appear to increasingly
rely on semantic relatedness to the context as a cue.
Thus, this issue is not likely to disappear as lan-
guage models continue to be trained on ever more
data—in fact, it may get worse.

9 Conclusions

While contemporary language models can tell apart
possible and impossible events (Jones et al., 2022;
Kauf et al., 2023), we find that this breaks down
when the possible events are not highly typical,
and when semantic relatedness is not a cue to event
possibility. This suggests that much of language
models’ reported performance at reflecting event
probability in previous work may be explained by
language models’ sensitivity to differences in typi-
cality and contextual semantic relatedness.
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Limitations

Our study is limited in that it only looks at one type
of impossibility—namely, animacy violations—but
there are also many other ways in which a sen-
tence could refer to an impossible event. Addi-
tionally, one possible issue with animacy-violating
sentences, as Vega-Mendoza et al. (2021) note, is
that they can be read as the beginning of a plausi-
ble sentence or figuratively as a plausible sentence.
The former issue may be somewhat addressed by
the fact that we add a period or full stop character
at the end of each sentence (i.e., ‘.’ for English and
‘。’ for Mandarin). Additionally, Vega-Mendoza
et al. (2021) explicitly address these issues by con-
structing their stimuli to avoid such interpretations,
and further verify this by carrying out a norming
study where experimental participants were asked
to rate the plausibility of their sentences. They
find that the impossible (i.e., animacy-violating
sentences) were rated as significantly less plausible
than possible sentences. Thus, we do not believe
that this issue is likely to be of concern for the
English stimuli. While Chow and Phillips (2013)
do not report such a norming process for the Man-
darin stimuli, the fact that we see almost indetical
patterns in both the English and Mandarin stimuli
suggests that this is unlikely to be a confound in
their stimuli either.

A second limitation is that while we do expand
our study beyond just English, the other language
we include is Mandarin, which is another extremely
widely-spoken high-resource language for which
there are many high-quality language models. How-
ever, given that our study tests the limitations of
such models, this is less of an issue—results of the
kind that we find are more concerning for language
models that otherwise show good performance and
thus might be more likely to be erroneously trusted
(for discussion, see, e.g., Bender et al., 2021; Raji
et al., 2022).

Finally, we note that our dataset sizes are small.
Each English-language task only includes 154
pairs, and each Mandarin task only includes 57
pairs. In principle, this means that the results may
not be as robust as with a larger dataset. One way
in which we address this is by including error bars
in our figures, following the recommendation of the
Association for Computational Linguistics Rolling
Review Responsible Natural Language Processing
Research checklist (i.e., the ARR Responsible NLP
Research checklist; Carpuat et al., 2024; based

on Dodge et al., 2019; Beygelzimer et al., 2021;
Rogers et al., 2021), which give an indication of
the level of uncertainty in the results (for further
discussion, see also, e.g., Reimers and Gurevych,
2017; Henderson et al., 2018; Forde and Paganini,
2019; Gundersen and Kjensmo, 2018; Marie et al.,
2021; Gundersen et al., 2023; Kapoor et al., 2024;
Biderman et al., 2024). Another is that the analyses
reported in Experiment 3 on the English tasks are
carried out at the item rather than task level, and
thus also account for the number of experimental
items.

Ethical Considerations

We do not believe that our study raises any ethical
concerns. In fact, we hope that in demonstrating
the limitations of contemporary language models,
we will increase the extent to which readers are
careful in their use of such technologies.

From an environmental perspective, our study is
of minimal impact. All experiments were carried
out on a computing cluster on NVIDIA A100 GPUs
in under 2 GPU hours.

Our use of all the language models for research
purposes falls within their terms of use and license
agreements, as does our use of the Language Model
Evaluation Harness. The experimental stimuli from
Chow and Phillips (2013) and Vega-Mendoza et al.
(2021) are scientific research materials, and as such,
we believe that their use for scientific research falls
under the category of fair use.

We provide all of our data, code and anal-
yses at: https://osf.io/r6xns/?view_only=
0567164a44f64530bde24c3bc5f1ddbd
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Model
PTR
vs.

IAR

PTR
vs.

IAU

PTR
vs.

PAR

PTR
vs.

PAU

PAR
vs.

IAR

PAR
vs.

IAU

PAU
vs.

IAR

PAU
vs.

IAU

01-ai/Yi-1.5-6B 0.858 0.955 0.800 0.942 0.690 0.871 0.277 0.684
01-ai/Yi-1.5-9B 0.961 0.994 0.877 0.987 0.710 0.948 0.226 0.761
01-ai/Yi-6B 0.961 0.994 0.852 0.994 0.742 0.935 0.265 0.748
01-ai/Yi-9B 0.948 0.994 0.871 0.987 0.729 0.961 0.310 0.723
HuggingFaceTB/SmolLM-1.7B 0.884 0.987 0.832 0.981 0.710 0.987 0.277 0.703
HuggingFaceTB/SmolLM-135M 0.903 0.987 0.748 0.948 0.787 0.974 0.355 0.774
HuggingFaceTB/SmolLM-360M 0.923 0.974 0.819 0.987 0.768 0.974 0.252 0.729
Qwen/Qwen2-0.5B 0.935 1.000 0.839 1.000 0.761 0.981 0.335 0.800
Qwen/Qwen2-1.5B 0.942 1.000 0.832 0.994 0.761 0.961 0.348 0.813
Qwen/Qwen2-7B 0.942 1.000 0.877 1.000 0.723 0.942 0.361 0.787
Qwen/Qwen2.5-0.5B 0.935 0.994 0.800 0.981 0.781 0.987 0.381 0.839
Qwen/Qwen2.5-1.5B 0.955 0.987 0.852 0.994 0.755 0.968 0.342 0.787
Qwen/Qwen2.5-14B 0.974 1.000 0.903 0.994 0.794 0.948 0.387 0.774
Qwen/Qwen2.5-3B 0.916 0.968 0.781 0.935 0.729 0.910 0.342 0.768
Qwen/Qwen2.5-7B 0.955 1.000 0.890 0.994 0.761 0.955 0.400 0.781
ai-forever/mGPT 0.865 0.987 0.710 0.935 0.755 0.942 0.368 0.774
ai-forever/mGPT-13B 0.923 0.994 0.800 0.968 0.716 0.955 0.297 0.703
allenai/OLMo-2-1124-13B 0.961 1.000 0.903 0.981 0.768 0.948 0.394 0.800
allenai/OLMo-2-1124-7B 0.955 1.000 0.890 0.981 0.723 0.935 0.348 0.806
bigscience/bloom-1b1 0.929 1.000 0.710 0.961 0.774 0.955 0.419 0.826
bigscience/bloom-1b7 0.910 0.994 0.768 0.942 0.781 0.955 0.426 0.794
bigscience/bloom-3b 0.903 0.987 0.800 0.974 0.755 0.961 0.355 0.748
bigscience/bloom-560m 0.890 0.987 0.735 0.935 0.781 0.942 0.413 0.845
bigscience/bloom-7b1 0.942 0.994 0.800 0.981 0.768 0.955 0.381 0.794
facebook/xglm-1.7B 0.916 0.987 0.755 0.974 0.761 0.974 0.297 0.748
facebook/xglm-2.9B 0.910 0.994 0.774 0.987 0.742 0.981 0.277 0.768
facebook/xglm-4.5B 0.903 0.994 0.781 0.981 0.729 0.955 0.303 0.787
facebook/xglm-564M 0.884 0.994 0.703 0.968 0.761 0.974 0.329 0.794
facebook/xglm-7.5B 0.903 0.994 0.794 0.974 0.716 0.955 0.245 0.761
google/gemma-2-2b 0.929 1.000 0.852 0.994 0.697 0.961 0.181 0.761
google/gemma-2-9b 0.935 1.000 0.865 1.000 0.729 0.974 0.168 0.748
google/gemma-2b 0.942 1.000 0.826 0.981 0.742 0.948 0.400 0.794
google/gemma-7b 0.923 0.987 0.884 0.961 0.742 0.948 0.413 0.826
meta-llama/Llama-3.1-8B 0.981 1.000 0.903 1.000 0.794 0.974 0.310 0.794
meta-llama/Llama-3.2-1B 0.942 1.000 0.826 0.994 0.710 0.955 0.277 0.781
meta-llama/Llama-3.2-3B 0.942 1.000 0.871 0.994 0.755 0.955 0.297 0.813
meta-llama/Meta-Llama-3-8B 0.981 1.000 0.884 1.000 0.761 0.955 0.310 0.794
mistralai/Mistral-7B-v0.1 0.955 0.994 0.903 0.994 0.742 0.948 0.284 0.781
mistralai/Mistral-7B-v0.3 0.948 1.000 0.890 0.994 0.742 0.942 0.290 0.774
mistralai/Mistral-Nemo-Base-2407 0.955 1.000 0.897 0.987 0.755 0.942 0.310 0.787

Table 2: Scores on the English tasks for all models used in Experiments 1 and 2.
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Model
PTR
vs.

IAR

PTR
vs.

IAU

PAU
vs.

IAR

PAU
vs.

IAU

01-ai/Yi-1.5-6B 0.759 0.914 0.500 0.690
01-ai/Yi-1.5-9B 0.897 0.983 0.362 0.621
01-ai/Yi-6B 0.845 0.966 0.414 0.586
01-ai/Yi-9B 0.879 0.966 0.362 0.603
Qwen/Qwen2-0.5B 0.776 0.931 0.414 0.569
Qwen/Qwen2-1.5B 0.862 0.931 0.310 0.500
Qwen/Qwen2-7B 0.897 0.948 0.345 0.552
Qwen/Qwen2.5-0.5B 0.793 0.914 0.328 0.569
Qwen/Qwen2.5-1.5B 0.862 0.897 0.345 0.638
Qwen/Qwen2.5-14B 0.828 0.931 0.362 0.500
Qwen/Qwen2.5-3B 0.707 0.776 0.483 0.638
Qwen/Qwen2.5-7B 0.862 0.931 0.293 0.517
ai-forever/mGPT 0.655 0.862 0.293 0.534
ai-forever/mGPT-13B 0.741 0.966 0.328 0.500
bigscience/bloom-1b1 0.828 0.931 0.293 0.552
bigscience/bloom-1b7 0.810 0.931 0.224 0.517
bigscience/bloom-3b 0.828 0.914 0.259 0.569
bigscience/bloom-560m 0.793 0.914 0.345 0.534
bigscience/bloom-7b1 0.862 0.966 0.310 0.517
facebook/xglm-1.7B 0.810 0.948 0.276 0.534
facebook/xglm-2.9B 0.776 0.931 0.310 0.552
facebook/xglm-4.5B 0.793 0.914 0.345 0.466
facebook/xglm-564M 0.759 0.862 0.328 0.483
facebook/xglm-7.5B 0.741 0.931 0.293 0.466
mistralai/Mistral-Nemo-Base-2407 0.862 0.948 0.379 0.483

Table 3: Scores on the Mandarin tasks for all models used in Experiments 1 and 2. Note that we only ran these
analyses on language models that were reported to be trained on Mandarin.

Model Step
PTR
vs.

IAR

PTR
vs.

IAU

PTR
vs.

PAR

PTR
vs.

PAU

PAR
vs.

IAR

PAR
vs.

IAU

PAU
vs.

IAR

PAU
vs.

IAU

EleutherAI/pythia-14m 0 0.452 0.419 0.535 0.484 0.419 0.477 0.445 0.406
EleutherAI/pythia-14m 1 0.452 0.419 0.535 0.484 0.419 0.477 0.445 0.406
EleutherAI/pythia-14m 2 0.452 0.419 0.548 0.484 0.419 0.477 0.445 0.400
EleutherAI/pythia-14m 4 0.452 0.419 0.548 0.484 0.426 0.477 0.445 0.394
EleutherAI/pythia-14m 8 0.452 0.413 0.542 0.490 0.413 0.471 0.458 0.394
EleutherAI/pythia-14m 16 0.445 0.419 0.529 0.490 0.452 0.465 0.452 0.426
EleutherAI/pythia-14m 32 0.445 0.406 0.484 0.497 0.465 0.452 0.477 0.439
EleutherAI/pythia-14m 64 0.439 0.374 0.458 0.452 0.484 0.484 0.452 0.471
EleutherAI/pythia-14m 128 0.439 0.432 0.484 0.426 0.503 0.452 0.452 0.503
EleutherAI/pythia-14m 256 0.381 0.426 0.452 0.458 0.452 0.439 0.445 0.484
EleutherAI/pythia-14m 512 0.355 0.374 0.477 0.490 0.413 0.419 0.381 0.445
EleutherAI/pythia-14m 1000 0.426 0.490 0.510 0.548 0.452 0.535 0.355 0.439
EleutherAI/pythia-14m 2000 0.581 0.703 0.523 0.723 0.606 0.742 0.361 0.606
EleutherAI/pythia-14m 4000 0.613 0.806 0.548 0.755 0.555 0.781 0.329 0.613
EleutherAI/pythia-14m 8000 0.632 0.787 0.542 0.723 0.619 0.755 0.387 0.645
EleutherAI/pythia-14m 16000 0.658 0.787 0.542 0.716 0.632 0.806 0.413 0.677
EleutherAI/pythia-14m 32000 0.652 0.755 0.542 0.697 0.606 0.768 0.387 0.671
EleutherAI/pythia-14m 64000 0.600 0.723 0.555 0.703 0.574 0.755 0.374 0.594
EleutherAI/pythia-14m 128000 0.581 0.774 0.535 0.755 0.587 0.735 0.342 0.568
EleutherAI/pythia-14m 143000 0.606 0.755 0.548 0.735 0.561 0.742 0.297 0.561

Table 4: Pythia 14M scores on the English-language tasks.
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Model Step
PTR
vs.

IAR

PTR
vs.

IAU

PTR
vs.

PAR

PTR
vs.

PAU

PAR
vs.

IAR

PAR
vs.

IAU

PAU
vs.

IAR

PAU
vs.

IAU

EleutherAI/pythia-31m 0 0.419 0.406 0.465 0.465 0.426 0.452 0.503 0.445
EleutherAI/pythia-31m 1 0.419 0.406 0.465 0.465 0.426 0.452 0.503 0.445
EleutherAI/pythia-31m 2 0.413 0.406 0.458 0.458 0.426 0.452 0.497 0.445
EleutherAI/pythia-31m 4 0.413 0.413 0.458 0.465 0.426 0.465 0.490 0.445
EleutherAI/pythia-31m 8 0.413 0.406 0.471 0.465 0.426 0.452 0.503 0.452
EleutherAI/pythia-31m 16 0.419 0.426 0.477 0.452 0.452 0.471 0.471 0.452
EleutherAI/pythia-31m 32 0.432 0.432 0.471 0.484 0.465 0.458 0.439 0.510
EleutherAI/pythia-31m 64 0.387 0.413 0.497 0.465 0.477 0.477 0.413 0.490
EleutherAI/pythia-31m 128 0.387 0.400 0.484 0.452 0.406 0.413 0.413 0.406
EleutherAI/pythia-31m 256 0.406 0.413 0.503 0.477 0.426 0.400 0.426 0.445
EleutherAI/pythia-31m 512 0.413 0.432 0.503 0.497 0.452 0.471 0.426 0.452
EleutherAI/pythia-31m 1000 0.484 0.652 0.484 0.652 0.490 0.671 0.355 0.516
EleutherAI/pythia-31m 2000 0.574 0.723 0.535 0.761 0.516 0.723 0.303 0.587
EleutherAI/pythia-31m 4000 0.671 0.832 0.529 0.832 0.600 0.832 0.290 0.690
EleutherAI/pythia-31m 8000 0.742 0.897 0.600 0.832 0.645 0.845 0.329 0.697
EleutherAI/pythia-31m 16000 0.697 0.852 0.587 0.839 0.600 0.813 0.297 0.600
EleutherAI/pythia-31m 32000 0.645 0.852 0.535 0.800 0.652 0.832 0.323 0.671
EleutherAI/pythia-31m 64000 0.703 0.890 0.548 0.845 0.581 0.819 0.329 0.619
EleutherAI/pythia-31m 128000 0.742 0.884 0.574 0.806 0.632 0.839 0.374 0.639
EleutherAI/pythia-31m 143000 0.716 0.890 0.581 0.806 0.619 0.832 0.381 0.639

Table 5: Pythia 31M scores on the English-language tasks.

Model Step
PTR
vs.

IAR

PTR
vs.

IAU

PTR
vs.

PAR

PTR
vs.

PAU

PAR
vs.

IAR

PAR
vs.

IAU

PAU
vs.

IAR

PAU
vs.

IAU

EleutherAI/pythia-70m 0 0.445 0.426 0.477 0.477 0.529 0.471 0.432 0.516
EleutherAI/pythia-70m 1 0.445 0.426 0.477 0.477 0.529 0.471 0.432 0.516
EleutherAI/pythia-70m 2 0.445 0.426 0.465 0.477 0.535 0.471 0.439 0.529
EleutherAI/pythia-70m 4 0.452 0.419 0.452 0.477 0.529 0.471 0.426 0.516
EleutherAI/pythia-70m 8 0.445 0.413 0.465 0.477 0.523 0.471 0.432 0.516
EleutherAI/pythia-70m 16 0.394 0.413 0.477 0.452 0.510 0.477 0.432 0.490
EleutherAI/pythia-70m 32 0.381 0.413 0.465 0.445 0.477 0.452 0.419 0.503
EleutherAI/pythia-70m 64 0.400 0.439 0.477 0.445 0.452 0.406 0.439 0.484
EleutherAI/pythia-70m 128 0.406 0.394 0.458 0.445 0.439 0.439 0.458 0.471
EleutherAI/pythia-70m 256 0.374 0.387 0.503 0.471 0.400 0.394 0.426 0.419
EleutherAI/pythia-70m 512 0.432 0.477 0.529 0.497 0.452 0.542 0.413 0.458
EleutherAI/pythia-70m 1000 0.568 0.684 0.497 0.690 0.535 0.723 0.394 0.574
EleutherAI/pythia-70m 2000 0.671 0.832 0.600 0.800 0.581 0.806 0.413 0.645
EleutherAI/pythia-70m 4000 0.781 0.923 0.594 0.826 0.639 0.858 0.419 0.684
EleutherAI/pythia-70m 8000 0.755 0.935 0.652 0.832 0.671 0.865 0.394 0.710
EleutherAI/pythia-70m 16000 0.774 0.942 0.619 0.839 0.677 0.890 0.394 0.735
EleutherAI/pythia-70m 32000 0.703 0.903 0.581 0.845 0.639 0.865 0.290 0.677
EleutherAI/pythia-70m 64000 0.806 0.968 0.632 0.884 0.671 0.897 0.329 0.710
EleutherAI/pythia-70m 128000 0.781 0.955 0.594 0.871 0.690 0.923 0.439 0.761
EleutherAI/pythia-70m 143000 0.729 0.923 0.632 0.832 0.645 0.858 0.381 0.710

Table 6: Pythia 70M scores on the English-language tasks.
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Model Step
PTR
vs.

IAR

PTR
vs.

IAU

PTR
vs.

PAR

PTR
vs.

PAU

PAR
vs.

IAR

PAR
vs.

IAU

PAU
vs.

IAR

PAU
vs.

IAU

EleutherAI/pythia-160m 0 0.426 0.368 0.471 0.503 0.445 0.413 0.445 0.471
EleutherAI/pythia-160m 1 0.426 0.368 0.471 0.503 0.445 0.413 0.445 0.471
EleutherAI/pythia-160m 2 0.426 0.368 0.477 0.503 0.458 0.413 0.452 0.465
EleutherAI/pythia-160m 4 0.426 0.381 0.471 0.503 0.452 0.406 0.452 0.484
EleutherAI/pythia-160m 8 0.426 0.387 0.471 0.503 0.452 0.445 0.439 0.471
EleutherAI/pythia-160m 16 0.406 0.394 0.484 0.490 0.490 0.465 0.439 0.445
EleutherAI/pythia-160m 32 0.406 0.374 0.477 0.471 0.419 0.465 0.471 0.426
EleutherAI/pythia-160m 64 0.413 0.394 0.458 0.490 0.439 0.426 0.458 0.439
EleutherAI/pythia-160m 128 0.413 0.419 0.490 0.497 0.445 0.413 0.445 0.439
EleutherAI/pythia-160m 256 0.406 0.413 0.503 0.484 0.406 0.387 0.426 0.413
EleutherAI/pythia-160m 512 0.471 0.497 0.523 0.535 0.503 0.555 0.400 0.510
EleutherAI/pythia-160m 1000 0.619 0.761 0.516 0.690 0.606 0.774 0.374 0.645
EleutherAI/pythia-160m 2000 0.781 0.916 0.600 0.826 0.671 0.865 0.432 0.742
EleutherAI/pythia-160m 4000 0.774 0.955 0.568 0.871 0.703 0.903 0.355 0.690
EleutherAI/pythia-160m 8000 0.839 0.981 0.645 0.890 0.729 0.942 0.348 0.729
EleutherAI/pythia-160m 16000 0.845 0.974 0.697 0.935 0.723 0.942 0.368 0.794
EleutherAI/pythia-160m 32000 0.877 0.974 0.665 0.935 0.742 0.955 0.348 0.755
EleutherAI/pythia-160m 64000 0.865 0.974 0.697 0.935 0.723 0.916 0.297 0.710
EleutherAI/pythia-160m 128000 0.871 0.981 0.658 0.923 0.729 0.910 0.361 0.748
EleutherAI/pythia-160m 143000 0.819 0.987 0.684 0.923 0.723 0.910 0.329 0.716

Table 7: Pythia 160M scores on the English-language tasks.

Model Step
PTR
vs.

IAR

PTR
vs.

IAU

PTR
vs.

PAR

PTR
vs.

PAU

PAR
vs.

IAR

PAR
vs.

IAU

PAU
vs.

IAR

PAU
vs.

IAU

EleutherAI/pythia-410m 0 0.471 0.445 0.471 0.490 0.490 0.426 0.471 0.465
EleutherAI/pythia-410m 1 0.471 0.445 0.471 0.490 0.490 0.426 0.471 0.465
EleutherAI/pythia-410m 2 0.465 0.445 0.465 0.497 0.484 0.419 0.471 0.471
EleutherAI/pythia-410m 4 0.445 0.439 0.458 0.484 0.477 0.432 0.465 0.465
EleutherAI/pythia-410m 8 0.452 0.413 0.445 0.477 0.471 0.432 0.458 0.452
EleutherAI/pythia-410m 16 0.445 0.394 0.445 0.452 0.471 0.432 0.432 0.477
EleutherAI/pythia-410m 32 0.432 0.400 0.445 0.445 0.477 0.490 0.452 0.497
EleutherAI/pythia-410m 64 0.452 0.432 0.445 0.465 0.490 0.426 0.471 0.497
EleutherAI/pythia-410m 128 0.419 0.406 0.484 0.445 0.452 0.394 0.394 0.465
EleutherAI/pythia-410m 256 0.406 0.387 0.503 0.458 0.419 0.406 0.426 0.413
EleutherAI/pythia-410m 512 0.432 0.452 0.497 0.510 0.477 0.490 0.452 0.452
EleutherAI/pythia-410m 1000 0.561 0.684 0.523 0.716 0.555 0.761 0.348 0.581
EleutherAI/pythia-410m 2000 0.735 0.910 0.581 0.839 0.632 0.884 0.303 0.690
EleutherAI/pythia-410m 4000 0.800 0.955 0.658 0.897 0.684 0.935 0.297 0.690
EleutherAI/pythia-410m 8000 0.826 0.981 0.716 0.923 0.742 0.923 0.342 0.735
EleutherAI/pythia-410m 16000 0.890 0.994 0.729 0.968 0.742 0.935 0.252 0.761
EleutherAI/pythia-410m 32000 0.858 1.000 0.723 0.994 0.742 0.961 0.335 0.800
EleutherAI/pythia-410m 64000 0.865 0.994 0.742 0.974 0.748 0.981 0.342 0.819
EleutherAI/pythia-410m 128000 0.890 0.994 0.774 0.968 0.697 0.961 0.271 0.774
EleutherAI/pythia-410m 143000 0.877 1.000 0.774 0.981 0.703 0.961 0.284 0.742

Table 8: Pythia 410M scores on the English-language tasks.
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Model Step
PTR
vs.

IAR

PTR
vs.

IAU

PTR
vs.

PAR

PTR
vs.

PAU

PAR
vs.

IAR

PAR
vs.

IAU

PAU
vs.

IAR

PAU
vs.

IAU

EleutherAI/pythia-1b 0 0.503 0.426 0.490 0.477 0.484 0.477 0.471 0.516
EleutherAI/pythia-1b 1 0.503 0.426 0.490 0.477 0.484 0.477 0.471 0.516
EleutherAI/pythia-1b 2 0.510 0.426 0.490 0.477 0.490 0.477 0.471 0.516
EleutherAI/pythia-1b 4 0.503 0.439 0.497 0.484 0.484 0.477 0.465 0.510
EleutherAI/pythia-1b 8 0.465 0.432 0.490 0.477 0.484 0.458 0.477 0.523
EleutherAI/pythia-1b 16 0.439 0.452 0.510 0.477 0.535 0.465 0.484 0.561
EleutherAI/pythia-1b 32 0.445 0.432 0.471 0.477 0.484 0.452 0.439 0.510
EleutherAI/pythia-1b 64 0.432 0.439 0.477 0.490 0.452 0.439 0.432 0.497
EleutherAI/pythia-1b 128 0.406 0.406 0.477 0.452 0.432 0.406 0.419 0.419
EleutherAI/pythia-1b 256 0.439 0.374 0.497 0.471 0.432 0.432 0.452 0.432
EleutherAI/pythia-1b 512 0.458 0.490 0.516 0.523 0.458 0.561 0.406 0.529
EleutherAI/pythia-1b 1000 0.619 0.826 0.535 0.735 0.587 0.800 0.368 0.581
EleutherAI/pythia-1b 2000 0.794 0.948 0.600 0.858 0.710 0.916 0.406 0.723
EleutherAI/pythia-1b 4000 0.865 0.974 0.684 0.916 0.716 0.916 0.361 0.710
EleutherAI/pythia-1b 8000 0.858 1.000 0.723 0.929 0.755 0.942 0.374 0.729
EleutherAI/pythia-1b 16000 0.871 0.994 0.716 0.955 0.755 0.961 0.361 0.748
EleutherAI/pythia-1b 32000 0.897 0.987 0.723 0.968 0.729 0.948 0.284 0.742
EleutherAI/pythia-1b 64000 0.916 1.000 0.710 0.968 0.748 0.968 0.323 0.800
EleutherAI/pythia-1b 128000 0.903 1.000 0.774 0.981 0.781 0.961 0.335 0.774
EleutherAI/pythia-1b 143000 0.903 1.000 0.794 0.981 0.723 0.974 0.335 0.781

Table 9: Pythia 1B scores on the English-language tasks.

Model Step
PTR
vs.

IAR

PTR
vs.

IAU

PTR
vs.

PAR

PTR
vs.

PAU

PAR
vs.

IAR

PAR
vs.

IAU

PAU
vs.

IAR

PAU
vs.

IAU

EleutherAI/pythia-1.4b 0 0.432 0.419 0.503 0.452 0.484 0.497 0.458 0.465
EleutherAI/pythia-1.4b 1 0.432 0.419 0.503 0.452 0.484 0.497 0.458 0.465
EleutherAI/pythia-1.4b 2 0.439 0.419 0.503 0.445 0.484 0.497 0.471 0.465
EleutherAI/pythia-1.4b 4 0.432 0.426 0.484 0.445 0.471 0.503 0.458 0.452
EleutherAI/pythia-1.4b 8 0.439 0.406 0.510 0.445 0.452 0.510 0.452 0.458
EleutherAI/pythia-1.4b 16 0.432 0.342 0.484 0.439 0.452 0.497 0.426 0.477
EleutherAI/pythia-1.4b 32 0.432 0.355 0.497 0.458 0.413 0.497 0.413 0.471
EleutherAI/pythia-1.4b 64 0.413 0.394 0.503 0.490 0.400 0.445 0.406 0.400
EleutherAI/pythia-1.4b 128 0.400 0.400 0.471 0.465 0.394 0.413 0.426 0.419
EleutherAI/pythia-1.4b 256 0.387 0.387 0.490 0.452 0.432 0.432 0.445 0.439
EleutherAI/pythia-1.4b 512 0.452 0.484 0.452 0.529 0.477 0.516 0.426 0.503
EleutherAI/pythia-1.4b 1000 0.665 0.781 0.548 0.716 0.606 0.742 0.426 0.652
EleutherAI/pythia-1.4b 2000 0.761 0.942 0.581 0.839 0.735 0.903 0.406 0.742
EleutherAI/pythia-1.4b 4000 0.845 0.981 0.690 0.923 0.761 0.942 0.368 0.806
EleutherAI/pythia-1.4b 8000 0.877 0.987 0.710 0.961 0.735 0.935 0.316 0.729
EleutherAI/pythia-1.4b 16000 0.903 0.994 0.710 0.968 0.768 0.955 0.323 0.768
EleutherAI/pythia-1.4b 32000 0.884 1.000 0.742 0.981 0.723 0.974 0.323 0.768
EleutherAI/pythia-1.4b 64000 0.910 0.994 0.781 0.981 0.768 0.961 0.303 0.800
EleutherAI/pythia-1.4b 128000 0.890 1.000 0.787 0.994 0.723 0.961 0.323 0.781
EleutherAI/pythia-1.4b 143000 0.897 1.000 0.781 0.994 0.690 0.961 0.252 0.774

Table 10: Pythia 1.4B scores on the English-language tasks.
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Model Step
PTR
vs.

IAR

PTR
vs.

IAU

PTR
vs.

PAR

PTR
vs.

PAU

PAR
vs.

IAR

PAR
vs.

IAU

PAU
vs.

IAR

PAU
vs.

IAU

EleutherAI/pythia-2.8b 0 0.439 0.419 0.490 0.497 0.439 0.426 0.426 0.445
EleutherAI/pythia-2.8b 1 0.439 0.419 0.490 0.497 0.439 0.426 0.426 0.445
EleutherAI/pythia-2.8b 2 0.439 0.432 0.484 0.503 0.439 0.432 0.426 0.439
EleutherAI/pythia-2.8b 4 0.452 0.452 0.484 0.497 0.419 0.419 0.406 0.439
EleutherAI/pythia-2.8b 8 0.432 0.426 0.490 0.503 0.406 0.426 0.406 0.400
EleutherAI/pythia-2.8b 16 0.394 0.439 0.477 0.477 0.452 0.445 0.439 0.452
EleutherAI/pythia-2.8b 32 0.484 0.458 0.510 0.503 0.419 0.413 0.477 0.394
EleutherAI/pythia-2.8b 64 0.419 0.426 0.497 0.497 0.400 0.413 0.426 0.413
EleutherAI/pythia-2.8b 128 0.400 0.406 0.503 0.471 0.406 0.381 0.406 0.374
EleutherAI/pythia-2.8b 256 0.387 0.368 0.490 0.471 0.413 0.439 0.439 0.439
EleutherAI/pythia-2.8b 512 0.477 0.523 0.484 0.516 0.484 0.542 0.445 0.555
EleutherAI/pythia-2.8b 1000 0.529 0.716 0.490 0.735 0.529 0.729 0.303 0.548
EleutherAI/pythia-2.8b 2000 0.819 0.948 0.600 0.884 0.729 0.916 0.297 0.716
EleutherAI/pythia-2.8b 4000 0.832 0.987 0.690 0.935 0.748 0.955 0.316 0.761
EleutherAI/pythia-2.8b 8000 0.871 0.994 0.761 0.968 0.781 0.955 0.277 0.742
EleutherAI/pythia-2.8b 16000 0.903 0.994 0.748 0.974 0.768 0.968 0.355 0.800
EleutherAI/pythia-2.8b 32000 0.910 1.000 0.774 0.994 0.748 0.961 0.323 0.761
EleutherAI/pythia-2.8b 64000 0.923 0.994 0.768 0.994 0.755 0.968 0.348 0.794
EleutherAI/pythia-2.8b 128000 0.935 0.994 0.781 0.994 0.735 0.955 0.355 0.774
EleutherAI/pythia-2.8b 143000 0.929 0.994 0.794 0.994 0.703 0.955 0.323 0.768

Table 11: Pythia 2.8B scores on the English-language tasks.

Model Step
PTR
vs.

IAR

PTR
vs.

IAU

PTR
vs.

PAR

PTR
vs.

PAU

PAR
vs.

IAR

PAR
vs.

IAU

PAU
vs.

IAR

PAU
vs.

IAU

EleutherAI/pythia-6.9b 0 0.445 0.419 0.477 0.477 0.490 0.477 0.465 0.465
EleutherAI/pythia-6.9b 1 0.445 0.419 0.477 0.477 0.490 0.477 0.465 0.465
EleutherAI/pythia-6.9b 2 0.445 0.413 0.477 0.477 0.490 0.477 0.465 0.465
EleutherAI/pythia-6.9b 4 0.445 0.419 0.484 0.477 0.484 0.477 0.458 0.471
EleutherAI/pythia-6.9b 8 0.413 0.394 0.465 0.452 0.477 0.471 0.458 0.477
EleutherAI/pythia-6.9b 16 0.400 0.406 0.484 0.465 0.497 0.432 0.445 0.497
EleutherAI/pythia-6.9b 32 0.387 0.445 0.445 0.413 0.471 0.484 0.477 0.477
EleutherAI/pythia-6.9b 64 0.458 0.439 0.503 0.432 0.458 0.452 0.426 0.471
EleutherAI/pythia-6.9b 128 0.445 0.400 0.523 0.445 0.419 0.406 0.439 0.426
EleutherAI/pythia-6.9b 256 0.419 0.413 0.465 0.477 0.445 0.419 0.445 0.413
EleutherAI/pythia-6.9b 512 0.400 0.387 0.465 0.471 0.432 0.452 0.445 0.432
EleutherAI/pythia-6.9b 1000 0.574 0.690 0.510 0.652 0.542 0.690 0.419 0.619
EleutherAI/pythia-6.9b 2000 0.761 0.948 0.581 0.852 0.703 0.903 0.374 0.723
EleutherAI/pythia-6.9b 4000 0.826 0.981 0.671 0.923 0.742 0.948 0.316 0.742
EleutherAI/pythia-6.9b 8000 0.858 0.981 0.710 0.968 0.735 0.942 0.290 0.755
EleutherAI/pythia-6.9b 16000 0.916 1.000 0.768 0.981 0.723 0.942 0.290 0.768
EleutherAI/pythia-6.9b 32000 0.923 1.000 0.787 0.987 0.735 0.961 0.381 0.781
EleutherAI/pythia-6.9b 64000 0.923 1.000 0.748 0.987 0.742 0.968 0.335 0.819
EleutherAI/pythia-6.9b 128000 0.942 0.994 0.768 0.994 0.716 0.968 0.310 0.755
EleutherAI/pythia-6.9b 143000 0.929 0.994 0.813 0.994 0.710 0.961 0.284 0.748

Table 12: Pythia 6.9B scores on the English-language tasks.
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Model Step
PTR
vs.

IAR

PTR
vs.

IAU

PTR
vs.

PAR

PTR
vs.

PAU

PAR
vs.

IAR

PAR
vs.

IAU

PAU
vs.

IAR

PAU
vs.

IAU

EleutherAI/pythia-12b 0 0.426 0.439 0.471 0.490 0.419 0.426 0.458 0.458
EleutherAI/pythia-12b 1 0.426 0.439 0.471 0.490 0.419 0.426 0.458 0.458
EleutherAI/pythia-12b 2 0.419 0.439 0.471 0.490 0.426 0.426 0.458 0.458
EleutherAI/pythia-12b 4 0.426 0.432 0.477 0.484 0.419 0.432 0.458 0.458
EleutherAI/pythia-12b 8 0.419 0.400 0.452 0.510 0.419 0.432 0.413 0.419
EleutherAI/pythia-12b 16 0.400 0.419 0.471 0.490 0.445 0.439 0.419 0.452
EleutherAI/pythia-12b 32 0.413 0.426 0.471 0.458 0.452 0.465 0.394 0.465
EleutherAI/pythia-12b 64 0.413 0.406 0.445 0.484 0.439 0.503 0.458 0.471
EleutherAI/pythia-12b 128 0.432 0.348 0.452 0.477 0.426 0.426 0.419 0.445
EleutherAI/pythia-12b 256 0.426 0.419 0.490 0.439 0.471 0.452 0.458 0.452
EleutherAI/pythia-12b 512 0.458 0.426 0.516 0.510 0.445 0.510 0.413 0.445
EleutherAI/pythia-12b 1000 0.574 0.632 0.484 0.665 0.529 0.671 0.368 0.510
EleutherAI/pythia-12b 2000 0.761 0.942 0.606 0.884 0.677 0.897 0.368 0.716
EleutherAI/pythia-12b 4000 0.858 0.994 0.684 0.916 0.774 0.942 0.355 0.806
EleutherAI/pythia-12b 8000 0.877 0.994 0.748 0.961 0.716 0.948 0.252 0.768
EleutherAI/pythia-12b 16000 0.897 0.994 0.787 0.987 0.729 0.948 0.277 0.761
EleutherAI/pythia-12b 32000 0.929 0.994 0.755 0.987 0.723 0.968 0.290 0.761
EleutherAI/pythia-12b 64000 0.923 0.987 0.781 0.987 0.716 0.955 0.265 0.774
EleutherAI/pythia-12b 128000 0.923 1.000 0.787 0.994 0.742 0.942 0.265 0.729
EleutherAI/pythia-12b 143000 0.923 1.000 0.774 0.981 0.735 0.948 0.290 0.735

Table 13: Pythia 12B scores on the English-language tasks.
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