
Findings of the Association for Computational Linguistics: ACL 2025, pages 13055–13071
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Instruction-Tuning LLMs for Event Extraction with Annotation Guidelines

Saurabh Srivastava∗, Sweta Pati∗, Ziyu Yao
George Mason University, Fairfax, VA
{ssrivas6, spati, ziyuyao}@gmu.edu

Abstract

In this work, we study the effect of annota-
tion guidelines—textual descriptions of event
types and arguments, when instruction-tuning
large language models for event extraction. We
conducted a series of experiments with both
human-provided and machine-generated guide-
lines in both full- and low-data settings. Our
results demonstrate the promise of annotation
guidelines when there is a decent amount of
training data and highlight its effectiveness
in improving cross-schema generalization and
low-frequency event-type performance.1

1 Introduction

Event Extraction (EE) aims to identify and struc-
ture what, who, when, where, and how of real-
world events from given textual resources (Dod-
dington et al., 2004; Ji and Grishman, 2008; Li
et al., 2022; Xu et al., 2024). Translating this ab-
straction requires complex schema specifications
that define event types, argument roles, and their
interrelationships, yet being able to precisely cap-
ture the language nuances and distinguish between
event types and argument roles, which posits the
task as an inherently challenging problem.

Recently, large language models (LLMs) have
transformed NLP research and practices dramati-
cally, owing to the rich knowledge and other capa-
bilities (e.g., reasoning) they have obtained from
extensive pre-training (Wei et al., 2022; Chen et al.,
2023; Shi and Lipani, 2023). This transformation
has similarly impacted the broader research field of
Information Extraction (IE). Existing applications
of LLMs to IE can be categorized into two lines.
The prompt engineering-based approaches, often
based on proprietary LLMs, consider an LLM as
a black box, querying it with task specifications

*The first two authors contribute equally.
1Our source code and datasets are available at

https://github.com/Ziyu-Yao-NLP-Lab/PyCode-TextEE.

via zero- or few-shot prompting and relying on
its latent knowledge to extract interested informa-
tion (Gao et al., 2023; Wang et al., 2023b; Li et al.,
2023a; Srivastava et al., 2023). However, these
approaches not only lead to inferior performance
but also incur prohibitive costs, especially when
the task is complex.

Our work will thus focus on the second line of
approach, namely, instruction-tuning open-weight
LLMs. This line of approach adapts an LLM to
specific IE tasks and schemas by directly training
it to follow the task instructions, which offers a
promising yet cost-effective solution. For exam-
ple, Wang et al. (2023a) leverages natural language
instructions to guide large language models for
IE tasks; Li et al. (2024) proposed a two-phase
learning framework that enhances schema under-
standing and following ability via automatically
annotated data. More recently, Sainz et al. (2024)
instruction-tuned LLaMA (Touvron et al., 2023)
on multiple IE datasets and discovered annota-
tion guidelines—textual descriptions of an event
type and its argument roles used by human an-
notators when collecting the dataset, as effective
components of an IE task’s instruction. Despite the
promise of the existing explorations, however, most
of them have focused on the relatively simpler task
of Named Entity Recognition, yet how to properly
instruction-tune LLMs for the structured EE task
is still understudied.

To fill this gap, we study instruction-tuning
LLMs for EE, with a focus on the role of anno-
tation guidelines in task instructions (Fig. 1). We
conduct a systematic analysis using LLaMA-3.1-
8B-Instruct on two EE datasets (ACE05 (Dodding-
ton et al., 2004) and RichERE (Song et al., 2015))
under varied training settings. Our key findings are
organized around four themes:

1) Effect of Annotation Guidelines on Event Ex-
traction — We found that annotation guidelines
improve performance by helping the model dis-

13055

https://github.com/Ziyu-Yao-NLP-Lab/PyCode-TextEE

This is an event extraction task ...
The following lines describe the task definition
@dataclass
class Extradite(JusticeEvent):
 mention
 agent
 person
 destination

This is the text to analyze
After getting caught they were transferred to
the U.S. for trial.

text =

result = []

Event
Schema

Code Prompt

You are an expert in annotating NLP datasets for event extraction. Your task is to generate annotation guidelines for the event
type Extradite which is a child event type of super class JusticeEvent.
The event schema is as follows:

The following examples are negative examples, as they illustrate different event types provided for contrast and differentiation:

The below examples are positive examples, as they match the Event Type being annotated

Instructions
1. Identify and List All Unique Arguments.
2. Define the Event Type: Write 5 clear and specific definitions, starting with "The event is triggered by ...":
3. Define Each Argument:** For each argument, provide 5 definitions.

Guideline Generation Prompt (Guideline-PN)

10 Positive Event Samples

15 Negative Event Samples

Event

Trans
-port

Move-
ment

Extra
dite Convict

Justice
...

Event
Ontology

@dataclass
class Extradite(JusticeEvent):
 mention
 (...)

This is an event extraction task ...
The following lines describe the task definition
@dataclass
class Extradite(JusticeEvent):

This is the text to analyze
After getting caught they were transferred to the U.S. for trial.text =

"""The event is triggered by the formal request and subsequent transfer of an individual from one state or country to another for legal reasons. Triggers such as 'extradition', 'transfer' are
indicative of this event type, not 'Transport' which involves general movement without legal context."""
 mention
 agent
 person
 destination

The text span that triggers the event.
The agent plays a crucial role in the extradition process, often being a legal or governmental body.
Examples are 'she', 'him', 'her'. The person is the individual being extradited.

Examples are 'jurisdiction', 'Hague', 'state'. The destination is the place to which the person is being extradited.

 result = [Extradite(mention="transferred"), person = ["they"], destination=["U.S."]]

Code Prompt
With Annotated Schema

More Task Instructions (...)

Figure 1: Overview of our exploration of automatically generating annotation guidelines to augment code-format
instruction tuning for EE. Prompt template for Guideline-PN and the example outputs are shown.

tinguish fine-grained event types. However, this
advantage may diminish when negative sampling
is introduced during training, which allows the
model to learn event distinctions from additional
contrastive examples instead.

2) Comparing Machine-Generated and Human-
Written Guidelines — Prior work assumed access
to human-authored guidelines, which may not hold
in practice. We thus proposed 5 different ways to
automatically generate annotation guidelines. We
find that they outperform human-written ones by
up to 11% and 7% in trigger and argument classifi-
cations, respectively.

3) Guidelines in Data-Scarce Scenarios — Our
results show that with only 2000 training sam-
ples, guidelines allow LLMs to reach performance
levels comparable to full-data training. However,
when data is extremely scarce (100 samples), mod-
els tend to rely more on memorization than on
guideline-driven schema constraints.

4) Cross-Schema Generalization — We assess
whether structured guidelines help models gen-
eralize to different EE schemas. While models
trained on RichERE transfer well to ACE (suggest-
ing fine-to-coarse schema adaptation is feasible),
the reverse scenario sees a performance drop due
to RichERE’s more complex event structures and
expanded argument roles.

Finally, we validated the consistency of our find-
ings across both model scale and diversity. Us-
ing the smaller LLaMA-3.2-1B-Instruct model,
we observed that annotation guidelines retain
their benefits, reducing common EE errors and
supporting both frequent and rare event types.
Extending beyond the LLaMA family, experi-
ments with Qwen2.5-Coder-1.5B-Instruct (Hui
et al., 2024), a code-oriented model with a dis-
tinct pertaining objective, revealed similarly robust
gains. We also evaluated on Speed++ (Parekh
et al., 2024), a domain-shifted dataset of infor-
mal epidemic-related tweets, where guidelines con-
tinued to significantly improve performance. To-
gether, these results confirm the broad utility of
machine-generated guidelines across model archi-
tectures, data regimes, and textual domains.

2 Approach

2.1 Task Formulation

Given an input sentence X , the goal of EE is to
extract the structured event information Y from
the sentence, adhering to predefined schema con-
straints E . The extraction task consists of (1) Trig-
ger Extraction, which localizes an event trigger
span and classifies its event type, and (2) Argu-
ment Extraction, where the task is to identify

13056

spans in X that serve as argument roles within
the extracted event instance.

When an autoregressive LLM is tasked with
EE, the extraction of event instances is formulated
in a generative way, with the LLM generating a
sentence describing the extracted event instances.
Specifically, the prompt to the LLM is defined as
P = [I ⊕ Ee ⊕X], where ⊕ is the concatenation
operation, I represents the task instruction, which
specifies the structured output format and task defi-
nition, and Ee ∈ E denotes the event schema of an
interested type e from a predefined set E .

Let D = {(ei, Xi, Yi)}Ni=1 denote a dataset of
annotated event examples, where each Xi cor-
responds to a prompt instance Pi for the inter-
ested event type ei. The objective function of in-
struction tuning for EE is as follows: L(D; θ) =
−∑

i

∑
j log pθ(Yij | Pi, Yi,<j), where Yi,<j rep-

resents previously generated tokens in the struc-
tured output sequence, ensuring an autoregressive
formulation.

Existing work identified the structure of EE out-
puts to be critical (Jiao et al., 2023; Wang et al.,
2023b). In particular, Wang et al. (2023b) found
that formulating the EE output in a code format can
take advantage of Programming Language features
such as inheritance and type annotation to intro-
duce external knowledge or add constraints. In our
work, we follow the same formatting strategy and
represent the EE task as a code generation problem.
Specifically, the event schema Ee is represented as
a Python class; accordingly, every extracted event
instance is represented as a Python object of the
corresponding event class. When there are multiple
event instances implied in the input X , a list of
Python objects will be generated; when there is no
event specified in X , we expect an empty Python
list to be the model output. An example is shown
in Figure 1.

During training, we provide only the ground-
truth event schema in the prompt; when the text
input X does not include any event, a random event
schema will be chosen. At inference time, given a
test instance X , we pair the input with every possi-
ble event type in the schema set E , prompt the LLM
to extract any implied event instances, and perform
model evaluation based on the aggregated extrac-
tion outputs. As such, a well-performing LLM
needs both extract the complete event instances
and avoid events that are not indicated in X .

2.2 Instruction-Tuning LLMs with
Annotation Guidelines

Recent work by Sainz et al. (2024) demon-
strated the effectiveness of integrating annotation
guidelines in the code-format instructions of IE
tasks. Specifically, when describing the event type
schema Ee, a textual description is added to the
event type and each of its argument roles (Figure 1).
As such, the LLM is expected to more easily un-
derstand the meaning of the event type while be-
ing instructed to extract any occurring events from
the input X . While Sainz et al. (2024) evaluated
annotation guidelines in the broad IE task, their
main focus has been on Named Entity Recogni-
tion, rather than the complicated EE task. Further-
more, their approach assumed the availability of
pre-existing human-curated guidelines, an assump-
tion that may not always hold in real-world appli-
cations. To bridge this gap, we explore methods to
automatically generate annotation guidelines and
assess their effectiveness in comparison to human-
authored ones.2

To develop a scalable and cost-effective ap-
proach for guideline generation, we employ a re-
verse engineering strategy, leveraging both anno-
tated event examples and the strong generative ca-
pabilities of LLMs. As illustrated in Figure 1, we
construct a guideline generation prompt for each
event type e by providing a few annotated exam-
ples {(Xi, Yi)} demonstrating the existence or non-
existence of event instance of type e, and then
prompt an LLM (GPT-4o in our experiment) to
generate annotation guidelines for e. In total, we ex-
perimented with five variants of machine-generated
guidelines: (1) Guideline-P: We prompt the LLM
with 10 positive annotated examples of type e to
generate the annotation guidelines. Inspired by
Sainz et al. (2024), we sample 5 distinct guidelines
for each event type, which can be used during the
model training to ensure that the model is exposed
to multiple rephrasings of the guidelines rather than
memorizing and overfitting to a specific one. (2)
Guideline-PN (Positive + Negative Examples):
In addition to 10 positive event annotations, we also
provide 15 negative annotations where the input X
does not imply event instances of type e. Simi-
larly, we prompt the LLM to generate 5 distinct
guidelines for each event type. (3) Guideline-PS
(Positive + Sibling Events): Similar to Guideline-
PN, we prompt the LLM with both positive and

2Human-written guidelines for ACE05 are available here.

13057

https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf

Examples of Annotation Guidelines for Event Type: Extradite (ACE05)

GUIDELINE-H
Avg. Length - 107.67 tokens

Event Type: An EXTRADITE Event occurs whenever a PERSON is sent by a state actor from one PLACE to
another place for the purposes of legal proceedings there.
Arguments:
- AGENT: The extraditing agent.
- PERSON: The person being extradited.

GUIDELINE-P
Avg. Length - 163.87 tokens

Event Type: The Extradition event refers to the formal process where one jurisdiction delivers a person accused
(...) The event can be triggered by terms such as ‘extradition’ (...) Edge cases include situations where the term
‘extradition’ is used metaphorically or in a non-legal context.
Arguments:
- AGENT:(...) the agent is the organization or authority (...). Examples include ‘court’, ‘government’, (...)
- PERSON: (...) individual who is being transferred to another jurisdiction. Examples are ‘she’, (...)

GUIDELINE-PN
Avg. Length - 285.24 tokens

Event Type: The event is triggered by the formal request (...) for legal reasons. Triggers such as ‘extradition’
are indicative of this event type, not ‘Transport’ which involves general movement without legal context.
Arguments:
- AGENT: The agent is responsible for the legal and procedural aspects of the extradition,(...). An example is
‘the original court’ (...)
- PERSON: (...) one who is being moved from one place to another under legal authority. For example, ‘he’ (...)

GUIDELINE-PS
Avg. Length - 159.79 tokens

Event Type: (...) person being moved to a new jurisdiction (...). This differs from events like ‘TrialHearing’ or
‘Convict’, which focus on the legal proceedings and outcomes within a single jurisdiction.
Arguments:
- AGENT: (...) Edge cases may include international organizations or coalitions (...) such as the U.N. (...)
- PERSON: Unlike the ‘defendant’ in events like ‘TrialHearing’ or ‘Convict’, the person in the ‘Extradite’ event
is specifically being transferred for legal proceedings or punishment.

GUIDELINE-PN-INT
Avg. Length - 439.94 tokens

(...) Key triggers include terms like ‘extradite’, ‘extradition’, and ‘extraditing’. It is distinct from events like
‘ArrestJail’ and ‘ReleaseParole’, as it specifically involves (...)
Arguments:
- AGENT: The agent (...) typically a legal or governmental body. Examples include ‘court’, ‘government’(...)
- PERSON: The person is the individual being extradited, the subject of the legal transfer. Examples include
‘she’, ‘him’, and ‘her’.

GUIDELINE-PS-INT
Avg. Length - 434.64 tokens

The ’Extradite’ event involves the legal transfer of a person (...). It is distinct from events like ‘ArrestJail’, (...),
and ‘ReleaseParole’ or ‘Pardon’, (...)
Arguments:
- AGENT: The agent is the entity (...) such as a court, government, or police department. This entity ensures the
transfer is conducted according to legal protocols (...)
- PERSON: (...) They are the central figure in the extradition process, distinct from a ‘defendant’ in other legal
events, (...) This may include high-profile individuals or groups.

Table 1: Examples of annotation guidelines for the event type Extradite from ACE05. Due to space limits, only
agent and person were shown for arguments, and only 1 out of the 5 guideline samples were shown for P, PN, and
PS. We highlight distinctions from other event types, example mentions, and edge cases in guidelines.

negative event annotations. However, the nega-
tive annotations are selected from the sibling event
types of the target type e (e.g., Arrest vs. Jail), as
defined by the event ontology. We hypothesize that
the critical challenge for EE lies in distinguishing
between sibling event types; hence, an instructed
LLM can benefit from following annotation guide-
lines that particularly emphasize the difference be-
tween sibling event types. As in the earlier variants,
we generate 5 guideline samples per event type.
(4) Guideline-PN-Int and (5) Guideline-PS-Int:
Finally, we create two more variants that Integrate
the 5 diverse guideline samples from Guideline-
PN and Guideline-PS into a comprehensive one,
respectively. Examples of the 5 guideline variants
are shown in Table 1. The prompt templates used
for generating guidelines and example generations
are provided in Appendix C and E, respectively.

3 Experiments

3.1 Experimental Setup

Datasets. We perform experiments on two stan-
dard EE datasets: ACE05 (Doddington et al.,
2004) and RichERE (Song et al., 2015). Both
of them exhibit fine-grained event distinctions, and
RichERE includes sparser event annotations (i.e.,
fewer event-labeled sentences), which makes it
more challenging. Moreover, RichERE does not
come with human-written annotation guidelines.
Datasets were split following the TextEE bench-
mark (Huang et al., 2024) and then converted to
code format automatically by our scripts.

Evaluation. Following prior work (Huang et al.,
2024), we evaluate the model on four F1 met-
rics: (1) Trigger Identification (TI), which mea-
sures correct trigger span extraction, (2) Trigger

13058

Classification (TC), which additionally requires
event-type correctness, (3) Argument Identifica-
tion (AI), which ensures correct argument role as-
sociation with the predicted trigger, and (4) Argu-
ment Classification (AC), which further requires
role-type correctness and is thus the most com-
prehensive metric on a model’s EE performance.
When evaluating the model on the Guideline-P, PN,
and PS variants, one guideline is randomly selected
each time.

As a side benefit of representing events in a struc-
tured code format, we can easily evaluate an ex-
tracted event instance by directly instantiating its
corresponding Python object based on the event
schema’s Python class definitions, checking if the
object is valid (e.g., missing arguments or including
hallucinated arguments) and comparing it with the
ground truth. This code-based evaluation thus pre-
vents the tedious string-matching process adopted
in prior work (Li et al., 2021).

Model Training. We experimented with the
LLaMA-3.1-8B-Instruct model (Grattafiori et al.,
2024), selected for its demonstrated proficiency in
processing structured code-based inputs and gen-
erating coherent outputs. When instruction-tuning
the model under the Guideline-P, PN, and PS vari-
ants, we randomly sample one of the generated
guidelines, a strategy found to prevent the model
from memorizing specific guidelines in Sainz et al.
(2024). For parameter-efficient training, we imple-
mented rsLoRA (Kalajdzievski, 2023) using the
Unsloth framework (Daniel Han and team, 2023).

We include all details about datasets, evalua-
tion, and model training in Appendix A-C. We
will open-source our scripts for automatically con-
verting datasets in TextEE (Huang et al., 2024)
into Python code format (we dub the processed
version as PyCode-TextEE) and for evaluating
extracted events automatically via code execution
at our GitHub repository https://github.com/
Ziyu-Yao-NLP-Lab/PyCode-TextEE.

3.2 RQ1: Do the annotation guidelines allow
an LLM to more precisely extract
occurring events?

To assess the impact of incorporating annotation
guidelines in the EE instructions, we compare
instruction-tuning an LLM with and without guide-
lines. We hypothesize that including the annotation
guidelines can help the LLM more easily distin-
guish between similar event types. To understand

its impact, we also compare this approach with a
“negative sampling (NS)” approach. Specifically,
we instruction-tune the LLM on an augmented
training set, where each training example is supple-
mented with 15 randomly selected negative sam-
ples, i.e., triplets of (eneg, X, ϕ) with non-existing
event type eneg yielding empty extraction output.
We note that annotation guidelines and negative
sampling are two complementary approaches for
an LLM to learn to distinguish between event types.
In our experiments, we thus evaluated the effect of
annotation guidelines in two independent settings:
(1) training on the original training set (w/o NS)
and (2) training on the negative sample-augmented
training set (w/ NS). Additional details on example
selections are provided in Appendix B.

Table 2 shows the results. In the w/o NS set-
ting, including annotation guidelines (Guideline-P,
PN, and PS) consistently improves performance
across both datasets. Our analysis in Section 3.6
further validated that the guidelines indeed enable
the LLM to understand the nuanced differences
between event types. On ACE w/o NS, Guideline-
P achieves the highest scores across all four met-
rics, leading to around 10% TC and 5% AC gains
over NoGuideline. Similarly, on RichERE w/o NS,
Guideline-PN outperforms NoGuideline by about
around 5% TC and 2% AC.

Training the LLM with augmented negative sam-
ples, as we expected, helps the model better distin-
guish between event types; for example, NoGuide-
line in the w/ NS setting achieves 30% higher AC
on ACE and 6% higher AC on RichERE, compared
to its counterparts in the w/o NS setting. However,
the effects of annotation guidelines in the w/ NS
setting diverge between the two datasets. For ACE,
adding the guidelines in the instruction does not
offer a further advantage, where NoGuideline and
Guideline-PN achieved a comparable, the best per-
formance, while all other guideline variants do not
show to help. On RichERE, however, the benefit
of annotation guidelines complements the negative
samples’, where Guideline-PN and Guideline-PS
achieve around 25% gain on AC over NoGuide-
line. We notice that RichERE is annotated with a
smaller training set but defines more fine-grained
event schemas than ACE; for example, the courser-
grained Transport event type in ACE is repre-
sented by two event types, i.e., TransportPerson
and TransportArtifact. As the guideline pro-
vides not only a detailed description of an event
type but also a comparison with similar ones (Ta-

13059

https://github.com/Ziyu-Yao-NLP-Lab/PyCode-TextEE
https://github.com/Ziyu-Yao-NLP-Lab/PyCode-TextEE

Experiments
ACE w/o NS ACE w/ NS RichERE w/o NS RichERE w/ NS

TI TC AI AC TI TC AI AC TI TC AI AC TI TC AI AC

NoGuideline 39.57 39.57 31.05 29.73 84.15 84.15 64.99 61.96 35.11 35.11 27.16 25.32 42.27 42.27 32.38 31.56
Guideline-H 40.71 40.71 30.76 28.64 56.30 56.30 44.82 43.13 – – – – – – – –
Guideline-P 51.46 51.46 37.82 35.20 72.86 72.86 55.01 53.73 34.38 34.38 28.04 26.35 67.92 67.92 52.29 44.93
Guideline-PN 49.60 49.60 35.80 32.81 80.77 80.77 63.20 60.34 40.89 40.89 30.04 27.18 75.35 75.35 60.85 57.10
Guideline-PS 47.93 47.93 37.19 34.88 79.23 79.23 59.00 56.88 32.41 32.41 24.63 22.78 76.45 76.45 60.42 56.26
Guideline-PN-Int 40.17 40.17 30.46 28.34 51.95 51.95 41.09 39.32 27.11 27.11 21.93 20.81 42.40 42.40 33.22 31.67
Guideline-PS-Int 39.51 39.51 31.27 30.26 53.70 53.70 42.62 41.10 31.61 31.61 26.70 24.96 52.60 52.60 41.06 39.46

Table 2: Evaluation results (%) for end-to-end EE tasks trained on complete train data. Models trained with
Negative Samples (w/ NS) include negative example augmentation. (Best and Second Best performances)

Experiments
ACE w/o NS ACE w/ NS RichERE w/o NS RichERE w/ NS

TI TC AI AC TI TC AI AC TI TC AI AC TI TC AI AC

NoGuideline 10.60 10.60 5.19 3.68 31.64 31.64 25.91 24.22 19.87 19.87 13.34 11.69 36.29 36.29 28.15 25.58
Guideline-H 29.01 29.01 16.37 14.78 32.62 32.62 25.35 22.87 – – – – – – – –
Guideline-P 36.91 36.91 24.17 21.24 56.99 56.99 43.44 40.51 40.28 40.28 21.97 18.33 62.04 62.04 46.33 42.03
Guideline-PN 30.94 30.94 19.27 17.64 60.29 60.29 42.88 39.95 31.23 31.23 19.48 17.51 67.16 67.16 47.85 43.39
Guideline-PS 40.53 40.53 28.03 26.12 55.1 55.1 41.57 38.91 26.16 26.16 16.64 15.19 58.95 58.95 42.79 38.1
Guideline-PN-Int 34.11 34.11 22.73 21.18 28.31 28.31 23.82 22.37 25.73 25.73 16.75 14.6 33.59 33.59 28.06 26.0
Guideline-PS-Int 30.04 30.04 19.69 16.9 27.96 27.96 21.55 20.37 23.33 23.33 15.35 13.38 34.92 34.92 27.31 25.04

Table 3: Evaluation results (%) on full test data, for end-to-end EE tasks, trained on 2000 train data samples.

ACE w/ NS RichERE w/ NS

TI TC AI AC TI TC AI AC

NoGuide 37.08 37.08 21.53 19.18 24.98 24.98 15.05 13.15
H 29.00 29.00 17.93 16.34 – – – –
P 27.95 27.95 15.94 14.21 23.93 23.93 13.56 12.71
PN 29.60 29.60 17.87 15.92 27.43 27.43 17.10 15.28
PS 29.85 29.85 19.49 17.04 19.61 19.61 11.77 10.48
PN-Int 24.34 24.34 14.08 12.56 27.59 27.59 16.21 14.47
PS-Int 22.51 22.51 13.59 12.48 18.99 18.99 10.67 9.56

Table 4: Evaluation results (%) for end-to-end EE tasks
on full test data, averaged over three runs using 100
training samples. We did not experiment with the “w/o
NS” setting because the model performance with 100
training samples is negligible for all variants.

ble 1), the LLM can leverage this information for
better EE performance.

3.3 RQ2: Are machine-generated annotation
guidelines effective?

Interestingly, from Table 2, we noticed that the
guidelines provided by the ACE annotators do not
yield a performance gain and that the machine-
generated guideline variants are not equally effec-
tive. Specifically, Guideline-H achieves a com-
parable performance in w/o NS and an inferior
one in w/ NS on ACE; Guideline-PN-Int and
Guideline-PS-Int provide either no or limited per-

formance gain in both w/o NS and w/ NS settings,
while Guideline-P and Guideline-PS are not con-
sistently better than NoGuideline. Guideline-PN
shows to be the most stable, outperforming NoGu-
ideline on RichERE and performing comparably
to the best model on ACE.

Qualitatively, as shown in Table 1, the human-
written guidelines (Guideline-H) lack explicit con-
trasts, making event boundaries ambiguous—for
instance, Transport (a movement event) and
Extradite (a justice event) both involve reloca-
tion, yet the fact that only the latter is legally en-
forced is not clarified in the guidelines. Guideline-
P provides examples and edge cases of the tar-
get event, but these may not be sufficient for the
model to distinguish between similar event types.
While both Guideline-PS and Guideline-PN have
supplied this comparison, -PS shows to be lim-
ited by focusing on only sibling differentiations
(e.g., Extradite vs. Convict). Finally, surpris-
ingly, the two -Int variants, despite being compre-
hensive, lead to mixed results. We observed that
models tend to overfit to these comprehensive in-
structions. In contrast, training the models with 5
diverse guidelines per event type as in -PN and -PS
avoids this issue, which shares a similar finding as
Cai et al. (2024); Sainz et al. (2024).

13060

Experiments
RichERE w/o NS → ACE RichERE w/ NS → ACE ACE w/o NS → RichERE ACE w/ NS → RichERE

TI TC AI AC TI TC AI AC TI TC AI AC TI TC AI AC

NoGuideline 29.55 29.55 21.34 16.60 44.10 44.10 33.91 25.17 33.41 33.41 24.34 22.68 37.19 37.19 27.74 25.87
Guideline-P 31.78 31.78 22.51 15.90 61.69 61.69 39.83 27.93 42.95 42.95 31.61 27.79 54.72 54.72 38.63 35.00
Guideline-PN 40.12 40.12 27.78 19.77 63.97 63.97 48.74 36.24 41.72 41.72 29.54 26.10 64.87 64.87 48.25 44.51
Guideline-PS 29.28 29.28 20.13 15.38 64.23 64.23 44.12 32.84 42.33 42.33 29.93 26.73 65.54 65.54 45.57 41.68
Guideline-PN-Int 27.00 27.00 18.91 14.66 35.35 35.35 28.07 21.82 28.65 28.65 22.13 19.87 38.60 38.60 27.46 26.02
Guideline-PS-Int 31.96 31.96 23.60 19.00 51.71 51.71 39.36 31.34 34.33 34.33 26.65 24.24 36.85 36.85 27.69 26.19

In-Distribution 39.57 39.57 31.05 29.73 84.15 84.15 64.99 61.96 35.11 35.11 27.16 25.32 42.27 42.27 32.38 31.56

Table 5: Evaluation of models (%) in cross-schema generalization. In-Distribution represents the NoGuideline
performance when trained and tested on the same dataset and the same setting (w/o or w/ NS). We did not experiment
with Guideline-H as RichERE does not come with human-annotated guidelines.

3.4 RQ3: Are the annotation guidelines
helpful when there is only a small amount
of training data?

With 2000 samples (Table 3), Guideline-P,
Guideline-PN and Guideline-P improve NoGu-
ideline on ACE and RichERE w/o NS by up to 30%
TC and 20% AC. Unlike our observation on the full-
training setting, this trend also holds in ACE w/
NS, where guidelines provide a similar advantage.
Excitingly, the results also show that annotation
guidelines can compensate for limited training data,
enabling models trained with only 2000 samples to
achieve performance comparable to full-data train-
ing. For example, on ACE, Guideline-P w/ NS
(2k) outperforms NoGuideline w/o NS (full) by
10% AC; on RichERE, Guideline-PN w/ NS (2k)
outperforms NoGuideline (full) by 18% AC in
“w/o NS ” and 12% AC in “w/ NS”.

However, when training data is reduced to 100
samples (Table 4), the benefits become dataset-
dependent. In ACE w/ NS, NoGuideline slightly
outperforms guideline-based models, suggesting
that with extremely limited data, the model resorts
to memorization rather than learning schema con-
straints. In contrast, in RichERE w/ NS, which
has more diverse and fine-grained event structures,
guidelines remain beneficial—Guideline-PN sur-
passes NoGuideline by 2% AC, indicating that
guidelines help in settings where direct memoriza-
tion is insufficient.

3.5 RQ4: Do annotation guidelines improve
cross-schema generalization?

In Table 5, we evaluate different variants’ gen-
eralizability to a new schema in EE. Notably,
while ACE and RichERE share the same domain,
RichERE has a finer schema design. In RichERE

ACE RichERE

TI TC AI AC TI TC AI AC

NoGuide w/o NS 29.90 29.90 20.70 19.44 32.74 32.74 24.18 22.35
PN w/o NS 30.88 30.88 21.82 20.15 33.72 33.72 25.24 24.48
NoGuide w/ NS 79.81 79.81 56.41 53.85 45.70 45.70 35.68 32.69
PN w/ NS 77.95 77.95 57.30 54.21 69.10 69.10 49.26 44.10

Table 6: Evaluation results (%) of LLaMA-3.2-1B-
Instruct trained on full ACE and RichERE.

w/o NS → ACE, performance remains below
the in-distribution baseline. While Guideline-
PN achieves 40% TC, nearly matching the in-
distribution score, its AC drops by nearly 10%,
likely due to RichERE’s expanded argument roles
that do not always align well with ACE’s simpler
schema. This suggests that fine-to-coarse schema
migration is partially feasible but still faces chal-
lenges in argument mapping. Contrastive learn-
ing helps mitigate some of this gap, as seen in
Guideline-PS (w/ NS), which improves TC to 64%
and AC to 32%, highlighting the benefits of struc-
tured alignment. In contrast, ACE → RichERE
generalizes even better, with Guideline-PN (w/
NS) achieving 64% TC and 44% AC, surpass-
ing the in-distribution baseline by over 22% TC
and 12% AC. This suggests that training on ACE,
which has well-defined event boundaries, provides
a stronger foundation for adapting to RichERE’s
more detailed schema. Since RichERE introduces
additional argument roles for certain events in ACE,
structured guidelines play a key role in prevent-
ing role confusion and ensuring more consistent
schema adaptation.

3.6 Further Analysis

Generalization to a Smaller LLM We experi-
mented with LLaMA-3.2-1B-Instruct for NoGu-
ideline and the best-performing guideline variant

13061

CA

PEMAE

AE

TTE LN

10 20 30 40

ACE

CA

PEMAE

AE

TTE LN

10 20 30 40

RichERE

No Guideline w/o NS
No Guideline w/ NS

Guideline-P w/o NS
Guideline-PN w/NS

Figure 2: Error categorization: CA (Context Am-
biguity), PE (Parsing Errors), MAE (Missing Argu-
ments/Events), AE (Argument Errors), TTE (Type/Trig-
ger Errors), and LN (Label Noise).

Guideline-PN. Results in Table 6 display a con-
sistent observation compared to experiments with
the larger LLaMA-3.1-8B model (Table 2). That
is, Guideline-PN achieves a comparable or better
result than NoGuideline and shows the advantage
of guidelines, particularly on RichERE w/ NS.

Error Analysis We randomly selected 100 ex-
amples on each dataset where NoGuideline w/o
NS made mistakes and compared them with errors
made by other variants. The results in Figure 2
show that, on ACE w/o NS, including the annota-
tion guidelines leads to increasing ungrammatical
code outputs and parsing errors (PE), although it
dramatically reduces the event type and trigger er-
rors (TTE). In the case of w/ NS, guidelines help
in almost all aspects, with the majority of remain-
ing errors being caused by missing arguments or
events (MAE) and label noise (LN). On RichERE,
however, we observe that for both w/o and w/ NS
cases, the annotation guidelines enhance the model
performance in all dimensions.

Setup TI TC AI AC

NoGuide w/o NS 33.91 33.91 25.24 23.82
PN w/o NS 32.38 32.38 26.19 25.32
NoGuide w/ NS 46.33 46.33 36.29 33.22
PN w/ NS 68.92 65.54 48.25 45.57

Table 7: RichERE results with Qwen2.5-Coder-1.5B.
Machine-generated guidelines and negative samples
consistently improve performance.
Generalization to a CodeLLM To further assess
the robustness and generalizability of our findings
beyond the LLaMA family, we conducted addi-
tional experiments using Qwen2.5-Coder-1.5B-
Instruct, a code-oriented LLM with a distinct ar-
chitectural design and pretraining objective. We
focused specifically on replicating the RichERE ex-
periments (see Table 6), comparing the PN Guide-

line variant against the baseline NoGuideline, both
with and without negative samples. As shown in
Table 7, Qwen2.5-Coder demonstrates substantial
improvements. Notably, we observe a 2% abso-
lute increase in AC performance when guidelines
are applied without negative samples (23.82 Vs.
25.32) and a significant 12.35% gain in TI perfor-
mance when negative samples are included (46.33
Vs. 68.92). These consistent improvements further
reinforce the efficacy of incorporating machine-
generated annotation guidelines, highlighting their
generalizability across diverse LLM architectures
and instruction-tuning paradigms.

Setup TI TC AI AC

NoGuide w/o NS 31.99 30.56 22.27 21.57
PN w/o NS 43.03 43.03 29.19 28.15
NoGuide w/ NS 47.95 47.08 34.01 32.50
PN w/ NS 62.56 62.56 42.00 40.18

Table 8: Speed++ with LLaMA-3.2-1B. Machine-
generated guidelines and negative samples consistently
improve performance.

Generalization Beyond the News Domain
To study the utility of guidelines for domain
generalization, we extended our evaluation to
Speed++ (Parekh et al., 2024), a dataset from the
epidemic domain containing informal social media
posts (tweets), contrasting significantly with the for-
mal newswire text in ACE05 and RichERE. We uti-
lized the same code-format conversion pipeline em-
ployed in previous experiments to maintain method-
ological consistency. For these experiments, we se-
lected the LLaMA-3.2-1B model, aligning with
our earlier analysis settings. Although our pri-
mary experiments leveraged larger models (e.g.,
LLaMA-3.1-8B), we opted for the smaller vari-
ant due to resource constraints. Nevertheless, this
setup provides sufficient validation of our guideline
approach across diverse textual domains. Table 8
summarizes our findings. Consistent with previous
outcomes, we observed substantial improvements
when incorporating machine-generated guidelines.
Specifically, with negative sampling (w/ NS), TI
increased by 14.61% (47.95 Vs. 62.56), and AC im-
proved by 7.68% (32.50 Vs. 40.18). These results
further underscore the robustness and generalizabil-
ity of our proposed method, effectively extending
its applicability beyond formal news articles to in-
formal social media contexts.

Effectiveness of Guidelines per Event Type
Frequency Figure 3 visualizes the change in

13062

AC scores across individual event types for both
ACE05 and RichERE. It compares the perfor-
mance of prompts without guidelines (dashed lines)
against those enriched with machine-generated
guidelines (solid lines). On average, machine-
generated guidelines improve AC scores by +5.47
points on ACE05 (29.73% Vs. 35.2%) and +1.86
points on RichERE (25.32% Vs. 27.18%).

Event types on the y-axis are sorted by training
frequency, and the green/red bars show per-event
gains or drops. Among the 15 least frequent event
types (indices ≥15), we observe gains in 8 ACE05
types and 5 RichERE types. For the remaining
5 event types in each dataset show no improve-
ment (+0.0%) is observed, and a small decline is
observed for 2 types in ACE05 and 5 in RichERE.

Upon inspection, most of the event types with
limited or negative gains have extremely sparse
training data, often less than 10 examples (e.g.,
Marry event), and in some cases as few as 2-3
instances (e.g., Acquit event). In such settings, the
model may not receive enough signals to generalize.
While our machine-generated guidelines cannot
fully compensate for this sparsity, they still improve
performance on several rare events, highlighting
their potential to support low-resource settings.

4 Related Work

LLMs for IE and EE With the growing ca-
pabilities of LLMs, recent efforts have explored
their potential in IE (Xu et al., 2024) and stud-
ied EE as an auxiliary task. Existing LLM-based
IE methods generally fall into two categories:
In-Context Learning (ICL) and Supervised Fine-
Tuning (SFT). ICL-based approaches (Li et al.,
2023b; Guo et al., 2023; Ashok and Lipton, 2023;
Wang et al., 2023b) rely on providing a few-shot
context within prompts, enabling LLMs to infer
structured information without explicit parameter
updates. While being data-efficient, they were
found to misinterpret the task specifications (Gao
et al., 2024) and suffer from brittle sensitivity to
prompt phrasing and example ordering (Gao et al.,
2023). In addition, they also incur prohibitive costs
due to the lengthy reasoning chains especially for
complex tasks. In contrast, SFT-based methods (Lu
et al., 2023; Wang et al., 2023a; Gui et al., 2024;
Zhou et al., 2024; Wei et al., 2024) fine-tune LLMs
on annotated datasets, which can significantly im-
prove their EE performance. Our work deepens
this line of research and particularly explores the

0 20 40 60 80 100
F-Score (%)

0

5

10

15

20

25

E
ve

nt
 In

de
x

+8.6%
+7.7%

+7.3%
+9.8%

+6.2%
+13.2%
-2.3%

+10.0%
+16.7%

+2.9%
+30.5%

+9.3%
+4.7%
+16.2%

-3.0%
+10.2%

+30.9%
+16.7%

+40.0%
+1.7%

+42.9%
-28.6%

0.0%
0.0%

+30.0%
-33.3%
+100.0%

0.0%
0.0%

0.0%29.73% 35.2%
ACE w/o NS

0 20 40 60 80 100
F-Score (%)

0

5

10

15

20

25

E
ve

nt
 In

de
x

+4.0%
-3.1%

+6.6%
+2.8%

+15.5%
+14.3%

+9.1%
-5.9%

-5.5%
-1.7%

+1.7%
-3.3%

+7.9%
+33.3%

+27.0%
0.0%

+14.2%
-16.5%

+13.3%
0.0%

-4.8%
0.0%

-19.0%
+33.3%

-7.3%
+33.3%

0.0%
0.0%
-20.0%
+100.0%25.32% 27.18%

RichERE w/o NS

Figure 3: Impact of guidelines on AC scores per ET,
sorted by frequency in the full training set. Smaller
index indicate a higher frequency. Green/red bars indi-
cate improvements/declines. Dashed/solid lines denote
average AC scores without/with guidelines.

inclusion of annotation guidelines in instructions.
While there have been existing works on similar
topics, they did not focus on EE (Sainz et al., 2024)
or instruction tuning (Pang et al., 2023).

Code Prompts for EE While EE tasks are typ-
ically represented in texts, code-based prompting
has emerged as a promising alternative, leverag-
ing structured representations to enhance schema
adherence. Early works have applied code-style
prompts to event argument extraction (Wang et al.,
2023b) and other IE tasks (Li et al., 2023b), demon-
strating potential but often underperforming com-
pared to SFT-based models due to the absence of
fine-tuning. EventRL (Gao et al., 2024) utilizes out-
come supervision with specific reward functions
to reduce information mismatch and hallucination.
KnowCoder (Sainz et al., 2024; Li et al., 2024)
addresses this limitation by introducing a compre-
hensive schema representation in code format, in-
tegrating taxonomies, constraints, and structured
definitions. Complementary to these works, we
study generating annotation guidelines to enhance
the instruction tuning of LLMs for code-formatted
EE and demonstrate their effectiveness.

5 Conclusion

We demonstrate that incorporating structured anno-
tation guidelines improves the instruction-tuning
of LLMs for EE, bridges the data gap when only
a limited amount of training data is available, and
enhances the model’s cross-schema generalization.
Our explorations of guideline generation also high-
light the promise of automatically generating effec-
tive instructions.

13063

6 Limitations

While our study demonstrates the benefits of struc-
tured annotation guidelines for event extraction,
several limitations remain. First, while our eval-
uation includes ACE and RichERE, both within
the news domain, and an additional experiment on
Speed++ from the epidemic domain, our study still
lacks coverage of other domains such as biomedical
or legal texts. This limited domain diversity may
affect the generalizability of our findings. Future
work should assess whether schema differences
in other domains exhibit similar trends. Second,
while we analyze guideline length and diversity,
we do not explicitly optimize guideline generation,
leaving open the question of how to best balance
conciseness and informativeness. Exploring adap-
tive methods that retrieve or refine guidelines dy-
namically during training and inference could fur-
ther improve efficiency. Lastly, our study primarily
focuses on instruction-tuning an LLM with pre-
defined event schemas; however, real-world ap-
plications often require handling previously un-
seen event types. Investigating how structured
guidelines can aid zero-shot or few-shot event ex-
traction remains an important avenue for future
research. Additionally, future work could ex-
plore how machine-generated guidelines can assist
human annotators during dataset creation, poten-
tially improving annotation consistency and inter-
annotator agreement in complex event extraction
tasks.

Acknowledgements

This project was sponsored by the College of
Computing and Engineering and the Department
of Computer Science at George Mason Univer-
sity. This project was also supported by re-
sources provided by the Office of Research Com-
puting at George Mason University (URL: https:
//orc.gmu.edu) and funded in part by grants from
the National Science Foundation (Award Number
2018631).

References
Dhananjay Ashok and Zachary C. Lipton. 2023.

Promptner: Prompting for named entity recognition.
Preprint, arXiv:2305.15444.

Zefan Cai, Po-Nien Kung, Ashima Suvarna, Mingyu
Ma, Hritik Bansal, Baobao Chang, P. Jeffrey Brant-
ingham, Wei Wang, and Nanyun Peng. 2024. Improv-

ing event definition following for zero-shot event de-
tection. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2842–2863, Bangkok,
Thailand. Association for Computational Linguistics.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Michael Han Daniel Han and Unsloth team. 2023. Un-
sloth.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

George Doddington, Alexis Mitchell, Mark Przybocki,
Lance Ramshaw, Stephanie Strassel, and Ralph
Weischedel. 2004. The automatic content extrac-
tion (ACE) program – tasks, data, and evaluation. In
Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC‘04),
Lisbon, Portugal. European Language Resources As-
sociation (ELRA).

Jun Gao, Huan Zhao, Wei Wang, Changlong Yu, and
Ruifeng Xu. 2024. Eventrl: Enhancing event ex-
traction with outcome supervision for large language
models. Preprint, arXiv:2402.11430.

Jun Gao, Huan Zhao, Changlong Yu, and Ruifeng Xu.
2023. Exploring the feasibility of chatgpt for event
extraction. Preprint, arXiv:2303.03836.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, et al. 2024. The
llama 3 herd of models. Preprint, arXiv:2407.21783.

Honghao Gui, Shuofei Qiao, Jintian Zhang, Hongbin
Ye, Mengshu Sun, Lei Liang, Jeff Z. Pan, Huajun
Chen, and Ningyu Zhang. 2024. Instructie: A bilin-
gual instruction-based information extraction dataset.
Preprint, arXiv:2305.11527.

Yucan Guo, Zixuan Li, Xiaolong Jin, Yantao Liu, Yutao
Zeng, Wenxuan Liu, Xiang Li, Pan Yang, Long Bai,
Jiafeng Guo, and Xueqi Cheng. 2023. Retrieval-
augmented code generation for universal information
extraction. Preprint, arXiv:2311.02962.

Kuan-Hao Huang, I-Hung Hsu, Tanmay Parekh, Zhiyu
Xie, Zixuan Zhang, Prem Natarajan, Kai-Wei Chang,
Nanyun Peng, and Heng Ji. 2024. Textee: Bench-
mark, reevaluation, reflections, and future challenges
in event extraction. In Findings of the Association for
Computational Linguistics ACL 2024, pages 12804–
12825.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,
Yichang Zhang, An Yang, Rui Men, Fei Huang,

13064

https://orc.gmu.edu
https://orc.gmu.edu
https://arxiv.org/abs/2305.15444
https://doi.org/10.18653/v1/2024.acl-long.157
https://doi.org/10.18653/v1/2024.acl-long.157
https://doi.org/10.18653/v1/2024.acl-long.157
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://aclanthology.org/L04-1011/
https://aclanthology.org/L04-1011/
https://arxiv.org/abs/2402.11430
https://arxiv.org/abs/2402.11430
https://arxiv.org/abs/2402.11430
https://arxiv.org/abs/2303.03836
https://arxiv.org/abs/2303.03836
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2305.11527
https://arxiv.org/abs/2305.11527
https://arxiv.org/abs/2311.02962
https://arxiv.org/abs/2311.02962
https://arxiv.org/abs/2311.02962

Bo Zheng, Yibo Miao, Shanghaoran Quan, Yun-
long Feng, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. 2024. Qwen2.5-coder tech-
nical report. Preprint, arXiv:2409.12186.

Heng Ji and Ralph Grishman. 2008. Refining event
extraction through cross-document inference. In Pro-
ceedings of ACL-08: HLT, pages 254–262, Colum-
bus, Ohio. Association for Computational Linguis-
tics.

Yizhu Jiao, Ming Zhong, Sha Li, Ruining Zhao, Siru
Ouyang, Heng Ji, and Jiawei Han. 2023. Instruct
and extract: Instruction tuning for on-demand in-
formation extraction. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 10030–10051, Singapore.
Association for Computational Linguistics.

Damjan Kalajdzievski. 2023. A rank stabilization
scaling factor for fine-tuning with lora. Preprint,
arXiv:2312.03732.

Bo Li, Gexiang Fang, Yang Yang, Quansen Wang, Wei
Ye, Wen Zhao, and Shikun Zhang. 2023a. Evaluating
chatgpt’s information extraction capabilities: An as-
sessment of performance, explainability, calibration,
and faithfulness. arXiv preprint arXiv:2304.11633.

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuan-
bin Wu, Xuanjing Huang, and Xipeng Qiu. 2023b.
CodeIE: Large code generation models are better
few-shot information extractors. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15339–15353, Toronto, Canada. Association
for Computational Linguistics.

Qian Li, Jianxin Li, Jiawei Sheng, Shiyao Cui, Jia Wu,
Yiming Hei, Hao Peng, Shu Guo, Lihong Wang,
Amin Beheshti, et al. 2022. A survey on deep learn-
ing event extraction: Approaches and applications.
IEEE Transactions on Neural Networks and Learning
Systems.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-level
event argument extraction by conditional generation.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 894–908, Online. Association for Computa-
tional Linguistics.

Zixuan Li, Yutao Zeng, Yuxin Zuo, Weicheng Ren,
Wenxuan Liu, Miao Su, Yucan Guo, Yantao Liu, Lix-
iang Lixiang, Zhilei Hu, Long Bai, Wei Li, Yidan
Liu, Pan Yang, Xiaolong Jin, Jiafeng Guo, and Xueqi
Cheng. 2024. KnowCoder: Coding structured knowl-
edge into LLMs for universal information extraction.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 8758–8779, Bangkok, Thailand.
Association for Computational Linguistics.

Keming Lu, Xiaoman Pan, Kaiqiang Song, Hongming
Zhang, Dong Yu, and Jianshu Chen. 2023. PIVOINE:

Instruction tuning for open-world entity profiling. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 15108–15127, Singa-
pore. Association for Computational Linguistics.

Chaoxu Pang, Yixuan Cao, Qiang Ding, and Ping Luo.
2023. Guideline learning for in-context information
extraction. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 15372–15389, Singapore. Association for
Computational Linguistics.

Tanmay Parekh, Jeffrey Kwan, Jiarui Yu, Sparsh Johri,
Hyosang Ahn, Sreya Muppalla, Kai-Wei Chang, Wei
Wang, and Nanyun Peng. 2024. SPEED++: A mul-
tilingual event extraction framework for epidemic
prediction and preparedness. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 12936–12965, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Oscar Sainz, Iker García-Ferrero, Rodrigo Agerri,
Oier Lopez de Lacalle, German Rigau, and Eneko
Agirre. 2024. GoLLIE: Annotation guidelines im-
prove zero-shot information-extraction. In The
Twelfth International Conference on Learning Repre-
sentations.

Zhengxiang Shi and Aldo Lipani. 2023. Don’t stop
pretraining? make prompt-based fine-tuning power-
ful learner. In Thirty-seventh Conference on Neural
Information Processing Systems.

Zhiyi Song, Ann Bies, Stephanie Strassel, Tom Riese,
Justin Mott, Joe Ellis, Jonathan Wright, Seth Kulick,
Neville Ryant, and Xiaoyi Ma. 2015. From light
to rich ERE: Annotation of entities, relations, and
events. In Proceedings of the 3rd Workshop on
EVENTS: Definition, Detection, Coreference, and
Representation, pages 89–98, Denver, Colorado. As-
sociation for Computational Linguistics.

Saurabh Srivastava, Gaurav Singh, Shou Matsumoto,
Ali Raz, Paulo Costa, Joshua Poore, and Ziyu Yao.
2023. MailEx: Email event and argument extraction.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
12964–12987, Singapore. Association for Computa-
tional Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze
Chen, Yuansen Zhang, Rui Zheng, Junjie Ye,
Qi Zhang, Tao Gui, Jihua Kang, Jingsheng Yang,
Siyuan Li, and Chunsai Du. 2023a. Instructuie:
Multi-task instruction tuning for unified information
extraction. Preprint, arXiv:2304.08085.

13065

https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://aclanthology.org/P08-1030/
https://aclanthology.org/P08-1030/
https://doi.org/10.18653/v1/2023.emnlp-main.620
https://doi.org/10.18653/v1/2023.emnlp-main.620
https://doi.org/10.18653/v1/2023.emnlp-main.620
https://arxiv.org/abs/2312.03732
https://arxiv.org/abs/2312.03732
https://doi.org/10.18653/v1/2023.acl-long.855
https://doi.org/10.18653/v1/2023.acl-long.855
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2024.acl-long.475
https://doi.org/10.18653/v1/2024.acl-long.475
https://doi.org/10.18653/v1/2023.findings-emnlp.1009
https://doi.org/10.18653/v1/2023.findings-emnlp.1009
https://doi.org/10.18653/v1/2023.emnlp-main.950
https://doi.org/10.18653/v1/2023.emnlp-main.950
https://doi.org/10.18653/v1/2024.emnlp-main.720
https://doi.org/10.18653/v1/2024.emnlp-main.720
https://doi.org/10.18653/v1/2024.emnlp-main.720
https://openreview.net/forum?id=Y3wpuxd7u9
https://openreview.net/forum?id=Y3wpuxd7u9
https://openreview.net/forum?id=s7xWeJQACI
https://openreview.net/forum?id=s7xWeJQACI
https://openreview.net/forum?id=s7xWeJQACI
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.18653/v1/2023.emnlp-main.801
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2304.08085
https://arxiv.org/abs/2304.08085
https://arxiv.org/abs/2304.08085

Xingyao Wang, Sha Li, and Heng Ji. 2023b.
Code4struct: Code generation for few-shot event
structure prediction. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3640–
3663.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Kangda Wei, Aayush Gautam, and Ruihong Huang.
2024. Are LLMs good annotators for discourse-level
event relation extraction? In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 1–19, Miami, Florida, USA. Association for
Computational Linguistics.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, Yang
Wang, and Enhong Chen. 2024. Large language mod-
els for generative information extraction: A survey.
Frontiers of Computer Science, 18(6):186357.

Wenxuan Zhou, Sheng Zhang, Yu Gu, Muhao Chen,
and Hoifung Poon. 2024. Universalner: Targeted dis-
tillation from large language models for open named
entity recognition. Preprint, arXiv:2308.03279.

A Preprocessing and Data Sampling

For both datasets, ACE and RichERE, we follow
the TextEE standardization (Huang et al., 2024) and
formulate them as sentence-level EE tasks. We use
the “split 1” data split of TextEE, but only sample a
subset of 100 examples from its development (dev)
set for better training efficiency. Specifically, we
ensure that for each event type, two event instances
will be included in our dev set, prioritizing those
with larger coverages of arguments, with the re-
maining being examples with no event occurrences.
The datasets are then converted to the code format
shown in Figure 1. Table 9 summarizes dataset
statistics.

Dataset #Event
Types

#Role
Types

#Instances
(train/dev/test)

ACE05 (Dodding-
ton et al., 2004)

33 22 16531/1870/2519

RichERE (Song
et al., 2015)

38 35 9105/973/1163

Table 9: Dataset statistics. For efficiency purposes, in
our experiments, we curated a subset of 100 examples
as our development (dev) set.

To perform the low-data experiments (RQ3), we
additionally create the following subsets of the full
training set for each dataset. Train2k includes

uniformly sampled 2,000 examples from the full
training set. Train100-1/2/3 are three distinct sub-
sets including 100 examples from the full training
set, each of which was selected following the same
procedure as how we prepare the dev set, ensur-
ing all event types are included and prioritizing
instances covering more arguments.

B Selection of Negative Examples for
Guideline Generation

For each event type, we selected 15 negative ex-
amples using a fixed random seed to ensure repro-
ducibility. These negative examples were sampled
from event instances belonging to types other than
the target event type, as required by the definition
of Guideline-PN. Each of these examples was used
to inform the LLM that a given input does not ex-
press the event type in question. In our preliminary
explorations, we did not observe any obvious dis-
crepancy when we repeated the guideline genera-
tion with different random selections of 15 negative
examples.

C Evaluation Methodology and Metrics

Evaluation Methodology. Our methodology
contrasts with GoLLIE (Sainz et al., 2024), which
follows a pipeline-based structure and selectively
includes only parent event types in its prompts, lim-
iting granularity in event representation. For argu-
ment extraction, GoLLIE further restricts schema
inclusion to sibling event types, introducing man-
ual design choices that reduce automation and scal-
ability. To ensure fair and comprehensive evalu-
ation, we adopt a methodology that enumerates
all possible event types for each test and develop-
ment sample during prompt construction. Unlike
setups where only the gold-standard event schema
is included in the prompt, we avoid implicit event
detection bias—if the correct event type were pro-
vided, the model would not need to identify the
event type itself and could directly extract argu-
ments, which would not reflect its real performance
on real-world data. Due to these fundamental dif-
ferences in methodology, we do not compare our
results with GoLLIE.

D Prompt Design and Model Training

Model. We conducted experiments on an
instruction-tuned LLaMA-3-8B model, selected
for its demonstrated proficiency in processing struc-
tured code-based inputs and generating coherent

13066

https://doi.org/10.18653/v1/2024.findings-emnlp.1
https://doi.org/10.18653/v1/2024.findings-emnlp.1
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2308.03279

outputs. For parameter-efficient adaptation, we
implement RSLoRA (Kalajdzievski, 2023), apply-
ing LoRA transformations to all linear layers in
the transformer blocks following the methodol-
ogy of Dettmers et al. (2024). Key hyperparam-
eters—including LoRA rank (64), scaling factor
α (128), and batch size (32)—were determined
through preliminary experiments to balance com-
putational efficiency with model performance. The
models were trained for 10 epochs using a single
NVIDIA A100 GPU (80GB VRAM), with early
stopping triggered after three consecutive valida-
tion steps without improvement. We adopt a co-
sine learning rate scheduler with an initial rate of
1e-5 and a warmup period of 350 steps. Input se-
quences are padded to 3,000 tokens to maintain
consistency while accommodating long-form code
structures. To ensure reproducibility and minimize
memory fragmentation, we implement determinis-
tic padding and truncation strategies.

Prompt Design. We adopt a structured prompt
format consisting of four components: (i) task in-
struction,(ii) event schema, (iii) input text, and (iv)
expected output, formatted as a structured event
representation. Our approach follows a schema-
first prompting strategy, where event definitions are
explicitly encoded in a structured format to enhance
model comprehension of event relations and argu-
ment constraints. For each input instance, a ran-
domly sampled guideline definition is used to anno-
tate the event schema, ensuring that the model is ex-
posed to multiple rephrasings rather than memoriz-
ing and overfitting on a static definition. Formally,
we prepare the input sequence as follows: “[BoS]
$-task_instruction (I) $-annotated event
schema (Ee) $-input_sample (Xi) [EoS]”
where the event schema Ee for an event e is an-
notated with one of the generated guideline defini-
tions.

You are an expert in annotating NLP
datasets for event extraction. Your
task is to generate "detailed"
annotation guidelines for the event
type Acquit which is a child event
type of super class JusticeEvent.

Input Format will be as following
```
Event Schema:
Event Name and its parent class
Arguments:
Arguments separated by new lines. If

there are no arguments None will be
given.

Examples
```
Instructions:
1) Identify and list all unique

arguments related to the event type.
2) Define the event type and each

argument. You can take help of
examples below to understand the
events and their arguments.

3) Please remember that the examples may
not cover all the arguments in the

list. In some cases, you may not
have arguments at all, in such cases
, you can have an empty list for
arguments.

4) For each definition, provide 5
illustrative definitions in JSON
format. For events you can add
example triggers and the explanation
of the events such as edge cases

and other critical details starting
with "The event can be triggered by
... ". Similarly for arguments also
you can add examples, and detailed
information for them including any
edge case or domain knowledge
starting with "Examples are ... ".

5) Remember to not generate any
additional information such as
examples, etc. and strictly follow
the output format shown below.

6) Remember also to add detailed
information for the events and
arguments so that the annotators who
are not familiar with machine

learning and NLP can still solve the
task. Remember to add required

domain knowledge and please cover
the edge cases when possible.

7) Remember that while generating
examples for the event or attributes
you should generate diverse set of

triggers or argument values rather
than picking them from the examples
I have provided for each of the 5
generated guidelines.

Output Format:
{

"Event Definition": [
"Definition 1",
"Definition 2",
"Definition 3",
"Definition 4",
"Definition 5"

],
"Arguments Definitions": {

"Argument1": [
"Definition 1",
"Definition 2",
"Definition 3",
"Definition 4",
"Definition 5"

],
"Argument2": [

"Definition 1",
"Definition 2",
"Definition 3",
"Definition 4",

13067

"Definition 5"
]
// Add additional arguments as

necessary
}

}

Event Schema:
Acquit which is a child event type of

super class JusticeEvent
Arguments:
Argument 1 -> adjudicator
Argument 2 -> defendant

Example 1
Input Text
Sentence 1.
Event Trigger
[event trigger]
Event Arguments
For argument "defendant" extracted spans

['x']
For argument "adjudicator" extracted

spans ['y']

Example 2
Input Text
Sentence 2.
Event Trigger
[event trigger]
Event Arguments
For argument "defendant" extracted spans

['a']

(...)

Listing 1: Prompt example for generating Guideline-P,
Guideline-PN, and Guideline-PS.

Prompt for Generating Consolidated Guidelines.
The exact prompts used for generating consolidated
guidelines - Guideline-PN-Int, and Guideline-PS-
Int is shared below

You are an expert in summarizing NLP
event extraction guidelines. Your
goal is to consolidate multiple
detailed descriptions into a single
concise, comprehensive "Intergrated"
guideline.

Input Format
Event Type: Event Type Name
```json
{

"Event Definition": [
"Definition 1",
"Definition 2",
"Definition 3",
"Definition 4",
"Definition 5"

],
"Arguments Definitions": {

"mention": [
"Definition 1",
"Definition 2",
"Definition 3",

"Definition 4",
"Definition 5"

],
"Argument1": [

"Definition 1",
"Definition 2",
"Definition 3",
"Definition 4",
"Definition 5"

],
// Add additional arguments as

necessary
}

}
```

Task
1. Integrated the 5 definitions under "

Event Definition" into a single
definition:
- Highlight all critical points and

examples from the five
definitions.

- Ensure the description is concise,
comprehensive, and clear, using
formal language that non -experts
can understand.

2. Do the same for each argument under "
Arguments Definitions," producing a
single intergrated definition for
each.

Output Format
```json
{

"Event Definition": "Consolidated
intergrated guideline for the
event type.",

"Arguments Definitions": {
"mention": "Consolidated intergrated

guideline for the mention
argument .",

"Argument1": "Consolidated
intergrated guideline for
Argument1.",

"Argument2": "Consolidated
intergrated guideline for
Argument2."

// Add additional arguments as
necessary

}
}
```

Guidelines to Summarize
Event Type: prompt_Acquit(JusticeEvent)
```json
{

"Acquit(JusticeEvent)": {
"description": [

"Definition 1",
"Definition 2",
"Definition 3",
"Definition 4",
"Definition 5"

]
},
"attributes": {

"mention": "The text span that

13068



triggers the event."
"adjudicator": [

"Definition 1",
"Definition 2",
"Definition 3",
"Definition 4",
"Definition 5"

],
"defendant": [

"Definition 1",
"Definition 2",
"Definition 3",
"Definition 4",
"Definition 5"

]
}

}
```

Listing 2: Prompt example for generating consolidated
guidelines: Guideline-PN-Int, and Guideline-PS-Int.

E Dataset Examples Across Multiple
Guideline Settings

The below JSON example illustrates an event ex-
traction task from the ACE dataset under the No
Guideline setting. It defines how structured events
are extracted from text, specifying event triggers,
types, arguments, and roles. The instruction ex-
plains the task, the input provides a natural lan-
guage sentence and its conversion into a structured
Python-style format. The output presents the ex-
tracted event, including its trigger ("extradited")
and associated arguments (e.g., "government" as
the agent, "him" as the person).

{
"doc_id": "APW_ENG_20030306.0191",
"wnd_id": "APW_ENG_20030306.0191-6",
"instance_id": "821",
"dataset_name": "ace05-en",
"task_type": "E2E",
"is_auth": "0",
"instruction": "# This is an event

extraction task where the goal is
to extract structured events from
the text. A structured event
contains an event trigger word, an
event type, the arguments

participating in the event, and
their roles in the event. For each
different event type, please

output the extracted information
from the text into python -style
dictionaries where the first key
will be 'mention ' with the value
of the event trigger. Next, please
output the arguments and their

roles following the same format.
The event type definitions and
their argument roles are defined
next.",

"input": "# The following lines

describe the task definition\n\
n@dataclass\nclass Extradite(
JusticeEvent):\n mention: str\n

agent: List\n destination:
List\n origin: List\n person
: List\n\n# This is the text to
analyze\ntext = \"The post -
Milosevic government later
extradited him to the U.N. war
crimes tribunal in The Hague, the
Netherlands .\"\n\n# The list
called result should contain the
instances for the following events
according to the guidelines above

:\nresult = \n",
"output": "[Extradite (\n mention =\"

extradited \",\n person =[\" him
\"], \n destination =[\" Hague \"]
, \n agent =[\" government \"],\n

origin =[]\n)]"
}

Listing 3: Dataset example from ACE-05 with no
guidelines.

NoGuideline Shown below is an example from
the NoGuideline setting in python code format with
no doc string and argument definitions.
#Task Instruction
This is an event extraction task where

the goal is to extract structured
events from the text. A structured
event contains an event trigger word
, an event type , the arguments
participating in the event , and
their roles in the event. For each
different event type , please output
the extracted information from the
text into python -style dictionaries
where the first key will be 'mention
' with the value of the event
trigger. Next , please output the
arguments and their roles following
the same format. The event type
definitions and their argument roles
are defined next.

#Input
The following lines describe the task

definition

@dataclass
class Extradite(JusticeEvent):

mention: str
agent: List
destination: List
origin: List
person: List

This is the text to analyze
text = "The post -Milosevic government

later extradited him to the U.N. war
crimes tribunal in The Hague , the

Netherlands."

The list called result should contain
the instances for the following

13069

events according to the guidelines
above:

result =

#Output
[Extradite(

mention="extradited",
person =["him"],
destination =["Hague"],
agent =["government"],
origin =[]

)]

Guideline-PN Shown below is an example from
the Guideline-PN setting in python code format.
#Task Instruction
This is an event extraction task where

the goal is to extract structured
events from the text. A structured
event contains an event trigger word
, an event type , the arguments
participating in the event , and
their roles in the event. For each
different event type , please output
the extracted information from the
text into python -style dictionaries
where the first key will be 'mention
' with the value of the event
trigger. Next , please output the
arguments and their roles following
the same format. The event type
definitions and their argument roles
are defined next.

#Input
The following lines describe the task

definition

@dataclass
class Extradite(JusticeEvent):

""" The event is triggered by the act
of transferring a person from

one jurisdiction to another for
legal proceedings. Example
triggers include 'extradite ', '
extradition ', and 'extraditing '.
"""

mention: str # The text span that
triggers the event.

agent: List # Examples are 'court ',
'government ', 'police

department '. The agent is the
authority or entity responsible
for initiating or carrying out
the extradition process.

destination: List # Examples are '
jurisdiction ', 'Hague ', 'state '.
The destination is the place to
which the person is being

extradited.
origin: List # Examples are 'state

', 'headquarters '. The origin is
the place from which the person
is being extradited.

person: List # Examples are 'she ',
'him ', 'her '. The person is the
individual being extradited.

This is the text to analyze

text = "The post -Milosevic government
later extradited him to the U.N. war
crimes tribunal in The Hague , the

Netherlands."

The list called result should contain
the instances for the following
events according to the guidelines
above:

result =

#Output
[Extradite(

mention="extradited",
person =["him"],
destination =["Hague"],
agent=["government"],
origin =[]

)]

Guideline-PN-Int Similarly, shown below is
an example from the Guideline-PN-Int setting in
python code format.
The following lines describe the task

definition

@dataclass
class Extradite(JusticeEvent):

"""The Extradite event is triggered
by the legal process of
transferring a person from one
jurisdiction to another for
legal proceedings , such as
facing charges or serving a
sentence. This event involves
formal actions by legal
authorities and the movement of
the individual across
jurisdictions. Key triggers
include terms like 'extradite ',
'extradition ', and 'extraditing
'. It is distinct from events
like 'ArrestJail ' and '
ReleaseParole ', as it
specifically involves cross -
jurisdictional transfer rather
than initial detention or
release from custody."""

mention: str # The text span that
triggers the event.

agent: List # The agent is the
authority or entity responsible
for initiating or carrying out
the extradition process ,
typically a legal or
governmental body. Examples
include 'court ', 'government ',
and 'police department '.

destination: List # The destination
is the place to which the

person is being extradited ,
where they will face legal
proceedings or serve a sentence.
Examples include 'jurisdiction

', 'Hague ', and 'state '.
origin: List # The origin is the

place from which the person is
being extradited , where they are
currently held or from where

13070

they are being transferred.
Examples include 'state ' and '
headquarters '.

person: List # The person is the
individual being extradited , the
subject of the legal transfer.

Examples include 'she ', 'him ',
and 'her '.

This is the text to analyze
text = "The post -Milosevic government

later extradited him to the U.N. war
crimes tribunal in The Hague , the

Netherlands."

The list called result should contain
the instances for the following
events according to the guidelines
above:

result =

#Output
[Extradite(

mention="extradited",
person =["him"],
destination =["Hague"],
agent =["government"],
origin =[]

)]

13071

