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Abstract

Speculative decoding accelerates large lan-
guage model inference by using smaller draft
models to generate candidate tokens for parallel
verification. However, current approaches are
limited by sequential stage dependencies that
prevent full hardware utilization. We present
PipeSpec, a framework that generalizes spec-
ulative decoding to use multiple models ar-
ranged in a hierarchical pipeline, enabling asyn-
chronous execution with lightweight coordi-
nation for prediction verification and rollback.
Our analytical model characterizes token gen-
eration rates across pipeline stages and proves
guaranteed throughput improvements over tra-
ditional decoding for any non-zero acceptance
rate. We further derive closed-form expres-
sions for steady-state verification probabilities
that explain the empirical benefits of pipeline
depth. We validate PipeSpec across text sum-
marization, mathematical reasoning, and code
generation tasks using LLaMA 2 and 3 models,
demonstrating that pipeline efficiency increases
with model depth, providing a scalable ap-
proach to accelerating LLM inference on multi-
device systems. Our code is available at https:
//github.com/BradMcDanel/PipeSpec.

1 Introduction

Large language models (LLMs) have transformed
natural language processing through their remark-
able ability to understand and generate human-like
text. However, the fundamental requirement of
autoregressive token generation, where each to-
ken must be generated sequentially based on all
previous tokens, creates significant performance
bottlenecks. This limitation is particularly pro-
nounced in modern LLMs with 100B or more pa-
rameters (Dubey et al., 2024), making real-time
applications challenging. Recent advances in spec-
ulative decoding have shown promise by leveraging
smaller, faster models to draft candidate tokens for
verification by larger models. However, current
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Figure 1: Comparison of different LLM decoding ap-
proaches. Top Left: Traditional autoregressive decoding
(1 token/unit). Top Right: Speculative decoding using
a small draft model (10 tokens/unit) for parallel ver-
ification by a large model (1.5 tokens/unit). Bottom:
Our PipeSpec framework with k ´ 1 draft models in a
pipeline feeding into the large model (Mk), achieving
2.25 tokens/unit through pipelined parallelism. Check-
marks (✓) show accepted predictions while crosses (✗)
indicate rejections triggering pipeline rollbacks.

approaches still face fundamental efficiency limits
due to their strict sequential dependencies between
draft and verification stages.

As illustrated in Figure 1, traditional autoregres-
sive decoding using a single large model is limited
to 1 token per unit time due to strict sequential
dependencies. Standard speculative decoding im-
proves throughput to 1.5 tokens per unit time by
employing a small draft model (10 tokens/unit) to
generate candidates for batch verification by the
large model. However, this approach still suffers
from alternating idle periods where either the draft
or verify model must wait for the other to complete.

Our key insight is that these limitations can be
overcome through pipelining of multiple models.
PipeSpec introduces a novel k-model architecture
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where each consecutive pair of models operates in
an asynchronous producer-consumer relationship.
In the three-model configuration shown in Figure 1
(bottom), an initial small model (M0) rapidly gen-
erates draft tokens (10 tokens/unit), which are pro-
gressively refined by a medium-sized model (M1,
5 tokens/unit) before final verification by the large
model (Mk, 2.25 tokens/unit). This hierarchical
structure provides two key advantages: (1) each
stage operates asynchronously, enabling continu-
ous parallel execution without idle periods, and
(2) the intermediate models provide higher-quality
draft tokens compared to single-draft approaches
while still benefiting from their own draft-verify
speedups.

PipeSpec operates through optimistic execu-
tion, where each model generates tokens assuming
downstream acceptance. When a model rejects a
prediction (marked as ✗), it triggers a rollback cas-
cade – all subsequent predictions in earlier pipeline
stages must be discarded and regenerated. This
enables PipeSpec to maintain higher throughput
than traditional Speculative Decoding. The main
contributions of this work are:

• A novel hierarchical pipeline architecture for
speculative decoding that breaks traditional
stage dependencies, enabling continuous par-
allel execution across k models of increasing
size and accuracy

• An analytical model that derives expected to-
ken generation rates and steady-state verifica-
tion probabilities for pipelined models, with
a proof of improved throughput over autore-
gressive decoding

• A complete multi-GPU implementation with
efficient inter-device communication and roll-
back mechanisms, validated through extensive
experiments showing consistent speedup over
existing state-of-the-art speculative decoding
approaches

2 Related Work

2.1 LLM Inference Acceleration

LLM inference consists of two distinct computa-
tional phases: prefill and decode. The prefill phase
processes the initial input prompt, computing at-
tention across all input tokens with quadratic mem-
ory scaling. The decode phase generates new to-
kens sequentially, requiring attention computation
only against previous tokens’ cached key-value
pairs, making it more computationally bounded

than memory bounded.
Recent research has targeted hardware-level op-

timizations for both phases. For prefill, FlashAt-
tention (Dao et al., 2022; Dao, 2023) optimizes
attention computation through tiling and recom-
putation strategies, particularly important for long
sequences where naive implementations would ex-
ceed GPU memory bandwidth. Other approaches
focus on GPU utilization (Hong et al., 2023; Vaidya
et al., 2023; Patel et al., 2024) and efficient key-
value cache management (Aminabadi et al., 2022;
Sheng et al., 2023; Kwon et al., 2023). While these
approaches optimize individual model execution,
they are complementary to our proposed PipeSpec
framework, which focuses on algorithmic speedups
through pipelined speculative execution.

2.2 Speculative Decoding
While prefill optimizations like FlashAttention ad-
dress the initial prompt processing, speculative de-
coding targets the decode phase bottleneck by lever-
aging parallel verification. First proposed by Stern
et al. (Stern et al., 2018), the core idea is to use
a smaller, faster draft model to generate multiple
tokens sequentially that are then verified in parallel
by the larger model, amortizing the cost of load-
ing model weights and KV cache across multiple
tokens (see Figure 1 top right).

Building on this foundation, researchers have
developed various approaches to improve the effi-
ciency of this draft-verify process. Tree-structured
verification approaches (Miao et al., 2024; Li et al.,
2024; Fu et al., 2024) expand beyond single-path
prediction to explore multiple candidate sequences
simultaneously, increasing the likelihood of suc-
cessful verification of draft tokens. Other tech-
niques like token distillation (Zhou et al., 2024),
layer skipping (Zhang et al., 2023; Elhoushi et al.,
2024), and retrieval-augmented drafting (He et al.,
2024) aim to enhance draft model quality while
maintaining low computational overhead. The
MEDUSA framework (Cai et al., 2024) introduced
specialized decoding heads to improve drafting effi-
ciency without requiring a separate draft model; no-
tably, all these algorithmic approaches are orthog-
onal to and could be combined with our systems-
level pipeline optimization strategy.

More recently, several approaches have explored
using multiple draft models to further accelerate
inference. TRIFORCE (Sun et al., 2024) focuses
specifically on extremely long-sequence generation
(e.g., 100k context windows) by using the original
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model with partial KV cache as an intermediate
draft stage. Spector and Ré (Spector and Re) ex-
plored tree-structured batches across multiple draft
models, though their approach remains tied to syn-
chronous execution between stages. Our evaluation
in Section 4 includes tiered speculative decoding
configurations (using multiple draft models in se-
quence) which capture some of these benefits, but
PipeSpec’s key innovation is introducing true asyn-
chronous pipelining where each model pair oper-
ates independently in a producer-consumer rela-
tionship. This fundamental architectural difference
enables significantly higher throughput by max-
imizing hardware utilization across all available
models, as demonstrated in our results.

2.3 Pipelined and Asynchronous Execution in
Speculative Decoding

While speculative decoding has seen various ad-
vancements, PipeSpec’s contribution centers on
generalizing speculative decoding to an asyn-
chronous, hierarchical pipeline designed for k inde-
pendent, off-the-shelf models. This approach seeks
to mitigate sequential dependencies and improve
hardware utilization compared to synchronous or
strictly two-stage speculative methods.

Several recent works have explored multi-model
or parallel execution strategies. For instance, cas-
caded drafting approaches (e.g., Staged Speculative
Decoding (Spector and Re), Cascade Speculative
Drafting (Chen et al., 2024)) also utilize multiple
models. These methods often focus on specific cas-
cading structures or may retain some synchronous
elements between stages. Similarly, techniques like
Lookahead Decoding (Fu et al., 2024) aim to break
sequential dependencies through different mech-
anisms, such as solving systems of equations for
future tokens, rather than a pipelined multi-model
execution.

The benefits of asynchronous execution in two-
model (draft-verify) setups have been investi-
gated (e.g., AMUSD (McDanel, 2024) and PipeIn-
fer (Butler et al., 2024) primarily for multi-node
distribution, PEARL (Liu et al., 2025) for adaptive
draft length within a two-model parallel structure).
PipeSpec extends the principle of asynchronous
operation to a deeper hierarchy, where intermediate
models in a k-stage chain concurrently verify out-
puts from predecessors and draft inputs for succes-
sors. This hierarchical and asynchronous coordina-
tion is a key aspect of our framework. SEED (Wang
et al., 2024), for instance, also implements pipeline

execution but focuses on breadth-wise paralleliza-
tion for reasoning tree construction, differing from
PipeSpec’s depth-wise, single-input pipelining.

Other highly effective techniques, such as
MEDUSA (Cai et al., 2024) or EAGLE-2 (Li et al.,
2024), achieve significant speedups by training spe-
cialized prediction heads or employing dynamic
draft trees. These methods often focus on enhanc-
ing the quality and structure of draft proposals,
potentially requiring model-specific modifications
or dedicated training phases. In contrast, PipeSpec
is designed as a systems-level execution paradigm
that can operate with existing, pre-trained models
without necessitating additional training. The ar-
chitectural design aims for continuous, overlapped
computation across multiple models to reduce idle
times (Section 4.5).

The concept of hierarchical speculation was
noted as a potential extension in earlier work (e.g.,
by (Leviathan et al., 2023)). PipeSpec offers a
concrete implementation of such an asynchronous
multi-stage pipeline, supported by a theoretical
analysis of its potential benefits (Section 3.3) and
empirical results (Section 4.2). While complemen-
tary to methods that improve draft generation qual-
ity, PipeSpec’s focus on an asynchronous, pipelined
orchestration of independent models provides a dis-
tinct approach to LLM inference acceleration.

3 Hierarchical Pipelined Speculative
Decoding

In this section, we first describe the operation
of Hierarchical Pipelined Speculative Decoding
(PipeSpec) as a k-stage pipeline (Section 3.1). We
then present the core algorithm of PipeSpec (Sec-
tion 3.2). Finally, we develop a theoretical frame-
work to analyze PipeSpec’s performance charac-
teristics and compare it with existing approaches
(Section 3.3).

3.1 Overview

Figure 2 compares token generation across differ-
ent decoding approaches. The simplest approach,
autoregressive decoding (top), uses a single large
model (M2) to generate tokens one at a time,
achieving a throughput of 1 token per time unit.
Traditional speculative decoding (second row) im-
proves upon this by using a small draft model (M0)
that can generate tokens 4 times faster than M2.
However, despite this theoretical speedup, two key
limitations prevent the system from achieving its
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Figure 2: Comparison of different decoding approaches showing token generation over time. From top to bottom: (1)
Traditional autoregressive decoding (AR) with sequential token generation using a single model M2, (2) Standard
speculative decoding (SD) using a draft model M0 to generate candidate tokens verified in batches by M2, (3)
PipeSpec (PS) with 2 models showing continuous parallel execution between M0 and M2, and (4) PipeSpec with 3
models demonstrating hierarchical speculation across {M0, M1, M2}.

full potential:

1. Synchronous Execution: The draft and ver-
ify stages operate in strict lockstep—M0 must
wait for M2 to complete verification before
generating the next batch of tokens. This
creates alternating idle periods where M0 is
blocked waiting for verification results, and
periods where M2 is idle while new draft to-
kens are generated.

2. Misprediction Penalty: When M2 rejects a
prediction (marked with ✗ in the figure), all
subsequent draft tokens in that batch become
invalid and must be discarded. For example,
in Figure 2(b), the rejection of token 6 inval-
idates the draft work done for tokens 7, 8,
and 9, incurring a significant misprediction

penalty.

These limitations combine to reduce the effective
throughput to 1.5 tokens per unit, far below the
theoretical maximum of the draft model.

PipeSpec introduces two key architectural inno-
vations to address these inefficiencies. First, in its
basic two-model configuration, we eliminate arti-
ficial synchronization requirements between draft
and verification stages. This allows M0 to opti-
mistically generate additional draft tokens while
M2 verifies the prior batch of tokens in parallel.
Assuming all tokens are accepted, the next verifica-
tion stage can start immediately with a new batch of
tokens, leading to improved throughput. However,
when draft predictions are rejected, the system still
needs to trigger a targeted rollback (shown by red
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dashed lines) and resumes generation from the last
valid token.

While this two-model configuration addresses
the synchronization problem, misprediction penal-
ties still impact performance significantly. To miti-
gate this, we introduce a three-model configuration
with an intermediate model (M1) that reduces mis-
prediction penalties in two ways: (1) it quickly fil-
ters out low-quality predictions from M0 before
they reach the expensive M2 verification stage,
and (2) it provides M2 with higher-quality draft
tokens that are less likely to be rejected. This hi-
erarchical refinement enables M1 to serve as both
a lightweight verification stage for M0 and an im-
proved draft model for M2, achieving 2.25 tokens
per unit (9 tokens verified in 4 time units) in Fig-
ure 2(d) while maintaining continuous parallel ex-
ecution. This pipeline structure naturally extends
to additional stages, with each intermediate model
further reducing misprediction penalties through
progressive refinement.

3.2 Algorithm

Algorithm 1 presents the core mechanism of
Pipelined Speculative Decoding (PipeSpec). Each
model i in our K-model pipeline maintains its own
output buffer Oi, operating asynchronously while
coordinating through a lightweight rejection mech-
anism. The first model (i “ 0) continuously gener-
ates draft tokens, while verification models (i ą 0)
compare incoming draft tokens against their own
token predictions. When a verification model re-
jects tokens (due to prediction mismatch), it signals
earlier stages to rollback their buffers Oi to main-
tain consistency. The pipeline terminates when the
final model OK generates an end token, ensuring
all tokens have been properly verified through the
complete pipeline.

3.3 Theoretical Performance Analysis

Let M “ tM0,M1, . . . ,MKu represent a collec-
tion of LLMs ordered in increasing size, with ti de-
noting the per-token generation time for model Mi.
For any consecutive pair of models Mi and Mi`1,
the token acceptance rate αi,i`1 is the probability
that tokens generated by Mi are accepted by Mi`1

during verification. In a hierarchical speculative de-
coding framework with K stages, the draft model
Mdraft can be any model from tM0, . . . ,MK´1u,
while the target model Mtarget is MK . The ex-
pected number of tokens NpMiq generated at Mi

Algorithm 1 Pipelined Speculative Decoding
Require: Input prompt, Models rM0...MKs
Ensure: Generated sequence OK

1: Let Oi be token buffer for model i with length |Oi|
2: while not finished generating do
3: for each model i running in parallel do
4: if received rejection from stage j ą i then
5: Rollback Oi to match Oj’s last token
6: if i “ 0 then Ź First generates drafts
7: Generate next token, append to O0

8: else Ź Others verify drafts
9: Get draft tokens from Oi´1

10: Generate token predictions
11: Compare against predicted tokens
12: Append matching tokens to Oi

13: if any tokens do not match predictions then
14: Signal rejection to earlier stages
15: if end token in OK then
16: break
17: return OK

at each decoding step is then defined as:

EpN pMiqq “ p1 ´ ρiq ¨ 1 ` ρi ¨ 1 ´ αγi`1
i´1,i

1 ´ αi´1,i
(1)

where ρi represents the probability that Mi ver-
ifies the draft tokens generated by Mi´1 in the
window. γi represents the number of draft tokens
from Mi´1 that Mi attempts to verify in a single
step (in PipeSpec, this is dynamically determined
by the tokens available in Mi´1’s output buffer,
unlike a fixed pre-set window in standard Spec-
ulative Decoding), and αi´1,i is the probability
that a token from Mi´1 is successfully verified
by Mi. If any draft token is rejected, the verifica-
tion model generates one token in the next step, as
illustrated in the PipeSpec workflow in Figure 2.

Otherwise,
1´α

γi`1
i´1,i

1´αi´1,i
tokens will be produced, as

derived from (Leviathan et al., 2023).
ρi should represent the probability of a steady

state, because its calculation needs to take into ac-
count all previous token generation conditions of
Mi up to the current step. To enter the verifica-
tion process, one of the following two conditions
must be met: if no verification was performed last
time, the first draft token to be verified generated
by Mi´1 is consistent with the new token gener-
ated by Mi last time. Alternatively, if verification
was performed last time, all draft tokens must pass,
then the first draft token to be verified is consis-
tent with the new token generated by Mi in the
last step. Given T “ pt0, t1, . . . , tnq, where tj rep-
resents the j-th token generation step, the model
Mi has performed calculations up to time step tj .
ρiptjq represents the probability that Mi will do
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verification at its j-th time step, which satisfies the
following recursive condition

ρiptjq “ ρiptj´1q ¨αγi`1
i´1,i ` p1´ ρiptj´1qq ¨αi´1,i

(2)
for j ą 1, and we also have ρipt0q “ αi´1,i.

According to the recursive equation 2, when
(n Ñ 8), ρi reaches its stable state, which is given
by,

ρi “ lim
nÑ8

1

n ` 1

nÿ

j“0

ρiptjq “ αi´1,i

1 ´ αγi`1
i´1,i ` αi´1,i

(3)

Theorem 1 For any 0 ă α ă 1 and 0 ă γ, the
PipeSpec scheme generates a higher number of
tokens per step.

PipeSpecpP q “ p1´ρkq¨1`ρk ¨ 1 ´ αγk`1
k´1,k

1 ´ αk´1,k
ą 1

(4)
It is obvious that PipeSpecpP q is greater than

1 for any α and γ greater than 0, so the pipeline
specification is definitely better than autoregressive
decoding.

As for standard speculative decoding, we assume
a two stage configuration Pa “ pMd,Mtq, where
Md represents draft model, Mt represents verifica-
tion model. The acceptance rate for Md and Mt is
represented by αd,t, while the window size is given
as γt. Additionally, cd,t denotes the speed ratio
between the two models. Since each verification
requires waiting for Md to generate γt draft tokens,
an additional γt

cd,t
units of time are spent generating

these draft tokens. Therefore, we can obtain the
theoretical speedup of standard speculative decod-
ing.

SDpPaq “ 1 ´ αγt`1
d,t

p1 ´ αd,tq
´

γt
cd,t

` 1
¯ (5)

If αd,t is low, standard speculative decoding
performs worse than autoregressive decoding due
to the combined overhead of waiting for draft to-
kens and frequent verification failures. PipeSpec
outperforms standard speculative decoding in this
scenario since it eliminates waiting times through
asynchronous execution. When αd,t approaches
its ideal case (higher acceptance rates), PipeSpec’s

theoretical performance improvement can be ap-
proximated as:

PipeSpecpPaq « 1 ´ αγt`1
d,t

1 ´ αd,t
(6)

Since PipeSpec does not need to spend time
waiting for the draft models to generate draft to-
kens, it clearly has better performance than stan-
dard speculative decoding. The relationship be-
tween acceptance rate αd,t and throughput is par-
ticularly evident in our HumanEval results, where
the {1B, 8B, 70B} pipeline demonstrates how in-
termediate model refinement improves acceptance
rates. This empirical improvement validates our
theoretical prediction that pipeline depth can corre-
late positively with efficiency gains. For instance,
on HumanEval using LLaMA3.1-70B (Table 2), a
three-stage PipeSpec configuration {1B, 8B, 70B}
achieves a 2.74ˆ speedup, which is approximately
15% higher than the 2.38ˆ speedup of a two-stage
PipeSpec configuration {8B, 70B}. This highlights
the benefit of an additional, smaller initial draft
model (1B) refining tokens for the intermediate
(8B) drafter, ultimately improving the quality of
drafts presented to the final 70B verifier and in-
creasing overall pipeline throughput. Each interme-
diate stage thus acts as both a verification filter and
an improved draft model for subsequent stages.

4 Evaluation

Our evaluation examines four aspects: end-to-end
performance across summarization and code gen-
eration tasks (4.2), token acceptance patterns and
timing characteristics (4.3), the impact of looka-
head window sizes on throughput (4.4), and GPU
resource utilization (4.5).

4.1 Experimental Setup

All experiments were conducted on four NVIDIA
A100-40GB GPUs interconnected via NVLink.
GPU performance metrics were collected using
nvidia-smi with 100ms sampling intervals.

We evaluated on the CNN/DM (Nallapati et al.,
2016) and XSUM (Narayan et al., 2018) text
summarization datasets, GSM8K (Cobbe et al.,
2021) for mathematical reasoning, and the Hu-
manEval (Chen et al., 2021) code generation bench-
mark. For models, we employed LLaMA-2 (Tou-
vron et al., 2023) and LLaMA-3 (Dubey et al.,
2024) variants, with each model allocated to dedi-
cated GPU(s). The 70B variants used 4-bit quan-
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tization and were split across 2 GPUs via pipeline
parallelism. All experiments used greedy decoding
(temperature=0.0) with maximum sequence length
of 512 tokens, following prior work (Zhang et al.,
2023; Elhoushi et al., 2024), to ensure a fair com-
parison.

4.2 Performance Analysis
Table 2 demonstrates the performance advantages
of PipeSpec across multiple datasets and model
configurations. The notation {M0, M1, ..., Mk}
in the Models column denotes a pipeline of mod-
els where M0 is the smallest/fastest model and
Mk is the verifier model. In traditional specula-
tive decoding, these models operate sequentially
– each model must wait for draft tokens from the
previous model before beginning generation. In
contrast, PipeSpec allows these models to operate
asynchronously as discussed earlier in Section 3.1.
Our evaluation reveals several significant trends:

First, PipeSpec consistently outperforms stan-
dard speculative decoding when using identical
model configurations. For example, with a {68M,
7B} configuration on CNN/DM, PipeSpec achieves
a 1.25ˆ speedup compared to 1.11ˆ for standard
speculative decoding. This advantage becomes
more pronounced with larger models - on Hu-
manEval using LLaMA3.1-70B, PipeSpec with
{8B, 70B} achieves 2.38ˆ speedup versus 1.21ˆ
for speculative decoding.

Second, the results demonstrate clear benefits
from longer pipeline configurations. On XSum
using LLaMA2-13B, PipeSpec with three models
{68M, 7B, 13B} achieves 2.03ˆ speedup, signifi-
cantly outperforming the two-model {68M, 13B}
configuration at 1.74ˆ. This is also shown for
HumanEval using LLaMA3.1-70B, where extend-
ing the pipeline from {8B, 70B} to {1B, 8B, 70B}
improves speedup from 2.38ˆ to 2.74ˆ. These re-
sults validate our theoretical analysis showing that
pipeline efficiency increases with depth.

To better understand the contributions of
PipeSpec’s key architectural innovations, we con-
ducted an ablation study on HumanEval using
our LLaMA3.1-70B configuration, shown in Ta-
ble 1. Disabling asynchronous pipeline execution
(forcing synchronous stage dependencies) reduces
speedup from 2.74ˆ to 1.24ˆ, highlighting the
critical importance of breaking traditional stage
dependencies. This substantial performance drop
aligns with our theoretical analysis in Section 3.3,
which predicted that eliminating synchronization

Table 1: Impact of asynchronous pipeline execution
and hierarchical model refinement on throughput using
LLaMA3.1-70B on HumanEval. Speedup is relative to
autoregressive baseline.

Hierarchical Model Pipeline

Single Draft Multi-Draft

Synchronous 1.21ˆ 1.24ˆ
Asynchronous 2.38ˆ 2.74ˆ

overhead would be the primary driver of PipeSpec’s
advantages over traditional speculative decoding
approaches.

Similarly, using only a single draft model instead
of our hierarchical pipeline drops performance
to 2.38ˆ under asynchronous execution, demon-
strating the value of progressive token refinement
through intermediate models. The baseline configu-
ration with both synchronous execution and single
draft model (effectively standard speculative decod-
ing) achieves only 1.21ˆ speedup, validating our
architectural decision to pursue both asynchronous
execution and hierarchical refinement in the full
PipeSpec framework.

Finally, PipeSpec achieves competitive or su-
perior performance compared to more complex
algorithmic approaches like LayerSkip (Elhoushi
et al., 2024) and Draft&Verify (Zhang et al.,
2023), despite these methods employing sophisti-
cated model-specific optimizations or additional
pre-training. For instance, on CNN/DM using
LLaMA2-13B, PipeSpec achieves 1.71ˆ speedup
compared to 1.81ˆ for LayerSkip. Since these
methods optimize different aspects of the inference
process, they could potentially be combined with
PipeSpec’s asynchronous pipelining to achieve
even greater speedups. (Note that speedup num-
bers for related works are taken from their original
papers, though we use identical verifier model con-
figurations and sizes for fair comparison.)

4.3 Token Generation Distribution and
Timing Analysis

Figure 3 presents a comparative analysis of token
acceptance patterns between speculative decoding
(SD) and PipeSpec (PS) across different model
configurations, aggregated across all samples in
the HumanEval dataset. The top portion shows
the frequency distribution of accepted tokens per
step by the verify model, while the bottom portion
shows the average time per token.
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Table 2: Performance across decoding strategies.
Speedup is relative to Autoregressive (AR) baseline.
Time is in milliseconds/token. PipeSpec is our method.

Method Models Time Speedup

C
N

N
/D

M

AR Baseline LLaMA2-7B 21.66 1.00ˆ
Speculative 68M,7B 19.49 1.11ˆ
LayerSkip LLaMA2-7B – 1.86ˆ
PipeSpec 68M,7B 17.35 1.25ˆ
AR Baseline LLaMA2-13B 30.41 1.00ˆ
Speculative 68M,13B 25.23 1.21ˆ
Speculative 68M,7B,13B 23.80 1.28ˆ
Draft&Verify LLaMA2-13B – 1.56ˆ
LayerSkip LLaMA2-13B – 1.81ˆ
PipeSpec 68M,13B 22.59 1.35ˆ
PipeSpec 68M,7B,13B 17.74 1.71ˆ

X
Su

m

AR Baseline LLaMA2-7B 21.85 1.00ˆ
Speculative 68M,7B 15.13 1.44ˆ
LayerSkip LLaMA2-7B – 1.54ˆ
PipeSpec 68M,7B 12.92 1.69ˆ
AR Baseline LLaMA2-13B 29.69 1.00ˆ
Speculative 68M,13B 18.43 1.61ˆ
Speculative 68M,7B,13B 23.20 1.28ˆ
Draft&Verify LLaMA2-13B – 1.43ˆ
LayerSkip LLaMA2-13B – 1.48ˆ
PipeSpec 68M,13B 17.07 1.74ˆ
PipeSpec 68M,7B,13B 14.64 2.03ˆ

G
SM

8K

AR Baseline LLaMA2-7B 20.91 1.00ˆ
Speculative 68M,7B 7.32 2.86ˆ
PipeSpec 68M,7B 6.24 3.35ˆ
AR Baseline LLaMA2-13B 27.75 1.00ˆ
Speculative 68M,13B 9.59 2.89ˆ
Speculative 68M,7B,13B 18.06 1.54ˆ
PipeSpec 68M,13B 8.60 3.23ˆ
PipeSpec 68M,7B,13B 9.01 3.08ˆ

H
um

an
E

va
l

AR Baseline LLaMA2-13B 28.12 1.00ˆ
Speculative 68M,13B 17.57 1.60ˆ
Speculative 68M,7B,13B 23.46 1.20ˆ
Draft&Verify CLLaMA2-13B – 1.46ˆ
LayerSkip LLaMA2-13B – 1.66ˆ
PipeSpec 68M,13B 17.24 1.63ˆ
PipeSpec 68M,7B,13B 14.85 1.89ˆ
AR Baseline LLaMA3.1-70B 110.31 1.00ˆ
Speculative 8B,70B 91.21 1.21ˆ
Speculative 1B,8B,70B 88.78 1.24ˆ
PipeSpec 8B,70B 46.34 2.38ˆ
PipeSpec 1B,8B,70B 40.31 2.74ˆ
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Figure 3: Analysis of token acceptance patterns and
timing across decoding strategies on HumanEval. Top:
Distribution of accepted tokens per verify step, showing
SD’s fixed window behavior versus PipeSpec’s more
flexible patterns. Bottom: Average time per token as a
function of batch size, demonstrating PipeSpec’s mini-
mal synchronization overhead.

SD exhibits a pronounced spike at 8 tokens per
verification step across all configurations, resulting
from its fixed lookahead window size. This creates
a rigid operational pattern where SD must strictly
alternate between drafting and verifying batches
of 8 tokens, balancing between batch processing
efficiency and computational waste.

PipeSpec exhibits a notable long-tail distribu-
tion in token acceptance patterns, with successful
verifications extending well beyond 20 tokens in
both two-model PS {1B, 70B} and three-model PS
{1B, 8B, 70B} configurations. The asynchronous
design enables natural acceptance patterns to man-
ifest, with a distinctive spike at 6 tokens in the
three-model setup emerging from pipeline stage
optimizations. This flexibility, combined with
the intermediate model’s filtering effect, facilitates
larger batch sizes by efficiently discarding lower-
quality predictions before they reach the compu-
tationally intensive verification stage at 70B. This
long-tail distribution indicates that PipeSpec can ef-
fectively capitalize on ‘easy’ prediction sequences
where models agree, allowing significantly larger
sequences to be processed when token predictions
align well, while still maintaining fast recovery
through the pipeline when predictions diverge.

4.4 Token Lookahead Analysis

As shown in Figure 4, the lookahead window size
(the number of tokens generated by draft models
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Figure 4: Impact of lookahead window size on token
generation time. SD shows poor performance at small
windows due to synchronization overhead and at large
windows due to wasted speculation. PS maintains lower
latency at small windows but degrades at larger sizes as
verification must wait for draft tokens.

before verification) significantly shapes the per-
formance characteristics of both approaches. For
SD, small windows (1-5 tokens) lead to high la-
tency as the verify model lacks sufficient tokens
to batch process effectively, while moderate win-
dows (5-10 tokens) improve performance through
better batching before degrading beyond 10 tokens
due to increased speculation waste. In contrast,
PS maintains lower latency at small window sizes
through continuous pipeline processing, though it
also experiences degradation with larger windows
as verification must wait for more draft tokens to
accumulate. These results reveal different optimal
operating points. SD performs best with moder-
ate lookahead windows (8-10 tokens), while PS
achieves optimal performance with minimal looka-
head. For SD experiments, we used a fixed looka-
head window of 8 tokens. PipeSpec operates by
processing available draft tokens immediately. As
shown in Figure 4, PipeSpec achieves its best per-
formance with a minimal, dynamically determined
lookahead (i.e., verifying tokens as soon as they
are drafted by the preceding stage), while forcing
larger, fixed lookahead windows degrades its per-
formance.

4.5 Resource Utilization
Figure 5 shows GPU utilization patterns across de-
coding approaches for a HumanEval sample using
LLaMA3.1-70B. While autoregressive decoding
achieves 37.2% utilization, traditional speculative
decoding exhibits pronounced idle periods where
draft models drop to near-zero utilization while
awaiting verification, resulting in 23.0% average
utilization. PipeSpec maintains consistently higher
GPU activity (39.7%) through pipelining, eliminat-
ing these idle periods. This improved hardware
utilization translates to better energy efficiency,
with PipeSpec achieving 5.8J/token compared to
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Figure 5: GPU utilization over time showing autore-
gressive (70B model split across 2 GPUs), speculative
decoding ({1B,8B,70B}), and PipeSpec ({1B,8B,70B}).
PipeSpec achieves higher average utilization (39.7%) by
eliminating idle periods between draft and verification.

16.5J/token for autoregressive decoding.

5 Conclusion

We introduced PipeSpec, a novel framework that
fundamentally rethinks speculative decoding by
breaking traditional sequential dependencies in
LLM inference through asynchronous, hierarchi-
cal pipelined execution. Our analytical model not
only proves guaranteed throughput improvements
over autoregressive decoding for any non-zero ac-
ceptance rate but also provides insights into the
steady-state behavior of such pipelined systems.
Empirically, PipeSpec consistently delivers sub-
stantial speedups, often achieving two to three-fold
improvements over autoregressive baselines and
notable gains over standard speculative decoding
across various models and tasks. This performance
is achieved by effectively utilizing multi-GPU se-
tups and minimizing idle hardware time.

A key finding is that pipeline efficiency often
increases with depth; for instance, three-model
configurations generally outperformed two-model
setups by enabling progressive token refinement
and better draft quality for the final, largest model.
This suggests a promising architectural paradigm
for future inference systems, particularly as mod-
els continue to grow in scale and complexity. By
facilitating continuous parallel execution and adapt-
able draft quality through its hierarchical structure,
PipeSpec offers a robust and scalable approach to
accelerating LLM inference.
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Limitations

A key limitation of PipeSpec lies in its static
pipeline configuration strategy. The current ap-
proach uses fixed model selections and predeter-
mined pipeline depths, which may not be opti-
mal across different tasks or input characteris-
tics. Some generation tasks might benefit from
deeper pipelines with more intermediate verifica-
tion stages, while others might achieve better per-
formance with shallower configurations. The sys-
tem lacks mechanisms to dynamically adjust its
architecture based on task complexity, resource
availability, and observed prediction patterns. This
rigidity means PipeSpec cannot adapt to changing
computational demands or leverage emerging pat-
terns in token generation that might suggest more
efficient pipeline arrangements.

From an implementation perspective, the sys-
tem’s performance is heavily dependent on the
quality of draft model predictions. While our hier-
archical approach helps mitigate poor predictions
through progressive refinement, frequent mispre-
dictions can still trigger expensive rollback cas-
cades across multiple pipeline stages. The current
design assumes all models can fit within available
GPU memory, with larger models split across de-
vices as needed. This may not scale effectively
to scenarios with more severe memory constraints
or when using very deep pipelines with many in-
termediate models. Additionally, while PipeSpec
reduces overall inference latency and can achieve
lower energy per generated token (as shown in
Section 4.5) compared to autoregressive decoding
due to efficient batched verification, its concurrent
operation of multiple models inherently requires
more hardware resources. This leads to higher
instantaneous power draw. The overall energy
efficiency depends on maintaining high token ac-
ceptance rates; frequent rollbacks could diminish
the per-token energy benefits compared to a highly
optimized single-model baseline. The continuous
parallel execution across multiple GPUs leads to
higher sustained power draw, raising important
questions about the trade-offs between speed and
efficiency as language models continue to grow in
size and complexity. Specifically, for our largest
model configurations (e.g., LLaMA3.1-70B), the
verifier was deployed using pipeline parallelism.
An autoregressive baseline for this 70B model,
if fully optimized with tensor parallelism, would
likely achieve higher throughput. Consequently,

while PipeSpec’s verifier could also leverage tensor
parallelism, the precise net speedup attributable to
PipeSpec’s hierarchical asynchronous architecture
in these specific large-model scenarios would re-
quire a re-evaluation against such an optimally par-
allelized baseline, which we defer to future work.

An important consideration for future work in-
volves the interaction between decoding strategies
and model behavior in evaluation settings. Our
experiments, following established benchmarking
protocols from prior speculative decoding research,
employed greedy decoding (temperature=0.0) with
extended sequence lengths (512 tokens) to ensure
fair comparison across methods. However, we ob-
served that greedy decoding can sometimes lead to
repetitive generation patterns, particularly in sum-
marization tasks where models may continue re-
generating portions of the original article beyond
the intended summary. While this behavior is
consistent across all evaluated methods and actu-
ally tends to favor speculative approaches (as draft
models can more easily predict such repetitive pat-
terns), it raises important questions about evalu-
ation methodology in acceleration research. The
enhanced speedups observed in longer sequence
settings may partially reflect this predictable repeti-
tion rather than solely representing improvements
in meaningful content generation. Future work
should consider evaluating speculative decoding
methods across diverse decoding strategies (includ-
ing sampling-based approaches) and with more
nuanced metrics that distinguish between produc-
tive and repetitive generation, to provide a more
comprehensive understanding of their real-world
applicability.
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