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Abstract

Direct Preference Optimization (DPO) is
broadly utilized for aligning Large Language
Models (LLMs) with human values because of
its flexibility. Despite its effectiveness, it has
been observed that the capability of DPO to
generate human-preferred response is limited
and the results of DPO are far from resilient.
To address these limitations, in this paper we
propose a novel Self-Guided Direct Preference
Optimization algorithm, i.e., SGDPO, which in-
corporates a pilot term to steer the gradient flow
during the optimization process, allowing for
fine-grained control over the updates of chosen
and rejected rewards. We provide a detailed the-
oretical analysis of our proposed method and
elucidate its operational mechanism. Further-
more, we conduct comprehensive experiments
on various models and benchmarks. The ex-
tensive experimental results demonstrate the
consistency between the empirical results and
our theoretical analysis and confirm the effec-
tiveness of our proposed approach (up to 9.19%
higher score).

1 Introduction

Large Language Models (LLMs) pretrained with
next-token prediction have experienced rapid ad-
vancements (OpenAI, 2024; DeepSeek-AI et al.,
2025; Anthropic, 2024; Google, 2024). This
progress underscores the necessity to align LLM
outputs with human values and preferences while
safeguarding societal values from harm. Reinforce-
ment Learning from Human Feedback (RLHF) has
emerged as a critical method for achieving this
alignment and has become an essential component
within the LLM training pipeline (Stiennon et al.,
2020; Bai et al., 2022; Bi et al., 2024).

Traditional RLHF typically involves three key
steps: Supervised Fine-Tuning (SFT), reward learn-
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ing, and Reinforcement Learning (RL) optimiza-
tion. Because the RL optimization step relies heav-
ily on the reward model, it is essential to train a
high-quality reward model. However, this neces-
sity adds complexity to the RLHF training process,
making it intricate (Ilyas et al., 2020; Engstrom
et al., 2020). To tackle this issue, Direct Prefer-
ence Optimization (DPO) removes the need for
reward training by reparameterizing the reward
model (Rafailov et al., 2023). Specifically, it maps
reward functions to optimal policies by employ-
ing the Bradley-Terry Model (Bradley and Terry,
1952a), thereby transforming preference feedback
from online reward models into offline implicit
modeling. As a result, DPO simplifies the post-
training process.

While it has been widely adopted for its flexi-
bility with similar performance levels compared to
classic RLHF methods, e.g., PPO (Dubois et al.,
2023), ChatGLM-RLHF (Hou et al., 2024), the
limitations of DPO are observed in a bunch of in-
vestigation, which lead to suboptimal alignment
performance in LLM training. These limitations
include high computational costs (Ethayarajh et al.,
2024; Hong et al., 2024; Meng et al., 2024), ver-
bosity (Park et al., 2024; Liu et al., 2024f; Lu et al.,
2024), and overfitting (Azar et al., 2023; Jung et al.,
2024a; Gheshlaghi Azar et al., 2024). In addition,
DPO may still incur inferior capability of LLMs in
producing responses that resonate with human pref-
erences (Feng et al., 2024). While LLMs trained
with DPO tend to avoid generating responses hu-
mans dislike, they struggle to generate responses
that humans prefer. Furthermore, the efficacy of
DPO is inconsistent while being sensitive to the
effectiveness of Supervised Fine-Tune (SFT) (Feng
et al., 2024; Xu et al., 2024). For instance, LLMs
with improper and ineffective settings may lead to
poor DPO performance. As illustrated in Figures
1 (a), (b), (c), and (d), the training reward curves
of DPO on various base models using the same
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Figure 1: Reward curves on various base models: (a) DPO reward curves on Llama-3.1 instruct 8B; (b) DPO reward
curves on Llama-3.1 base 8B; (c) DPO reward curves on Qwen-2 instruct 7B; (d) DPO reward curves on Qwen-2
base 7B. (e) Our SGDPO reward curves on Llama-3.1 instruct 8B; (f) Our SGDPO reward curves on Llama-3.1 base
8B; (g) Our SGDPO reward curves on Qwen-2 instruct 7B; (h) Our SGDPO reward curves on Qwen-2 base 7B.

preference dataset exhibit extremely high diversity.

Recently, some theoretical works (Pal et al.,
2024; Feng et al., 2024) reveal the reasons behind
the limitations of DPO. First, the standard DPO
loss can lead to a reduction in the likelihood of
preferred examples generated by LLMs (Pal et al.,
2024), especially when the Hamming distance be-
tween preferred and dispreferred responses is low.
Second, the limitations of DPO may be attributed to
undesired distinct update patterns in gradient flow
between chosen and rejected rewards (Feng et al.,
2024). When the optimization process enters an
undesired region, the gradient flow of DPO tends
to generate an unbalanced update to different vari-
ables or incurs difficulties in escaping saddle points,
leading to inferior optimization performance.

In this paper, we propose a novel Self-Guided
Direct Preference Optimization algorithm, i.e.,
SGDPO, to address the aforementioned limitations.
We introduce a pilot term into the objective func-
tion of SGDPO. This pilot term can be adjusted
to steer gradient updates towards different regions,
resulting in diverse gradient update patterns and
consequently leading to distinct optimization pro-
cesses. In this case, SGDPO can enhance the align-
ment capability of LLMs to generate responses
preferred by humans, while contributing to the sta-
bilization and resilience of the LLM training pro-
cess, as well. In addition, we carry out a detailed
theoretical analysis to illustrate the robustness and
resilience of SGDPO. Furthermore, we conduct

extensive experiments across various models and
benchmarks to demonstrate the superb performance
of SGDPO. The major contributions are summa-
rized as follows:

• We propose a novel preference alignment al-
gorithm, i.e., Self-Guided Direct Preference
Optimization (SGDPO), designed to stabilize
the LLM training process and enhance the ca-
pability of LLMs so as to generate responses
preferred by humans. By incorporating a pi-
lot term into the objective function, SGDPO
guides the gradient flow to balanced updates,
thereby improving the updates of chosen and
rejected rewards.

• We provide a thorough theoretical analysis
of SGDPO, elucidating its underlying mecha-
nisms for its robustness and resilience. This
analysis offers a scheme for controlling the up-
dates of chosen and rejected rewards as well.

• We conduct extensive experiments across 4
models and 8 benchmarks. Experimental re-
sults demonstrate the alignment between our
theoretical analysis and empirical observation,
which validates the effectiveness of SGDPO.
Specifically, our method has achieved a sig-
nificant improvement over the DPO method,
with the relative increase reaching up to a max-
imum of 9.19%.
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2 Related Work

RLHF has been proven effective in aligning LLMs
with human values and has seen widespread adop-
tion across various applications, e.g., summariza-
tion (Stiennon et al., 2020), safety alignment (Bai
et al., 2022), instruction following (Ouyang et al.,
2022), and translation (Xu et al., 2024). Neverthe-
less, RLHF requires a complex training pipeline,
which has spurred the proposal of DPO (Rafailov
et al., 2023) to simplify the LLM training pipeline.

Since the introduction of DPO, a variety of ex-
tensions have been proposed to either address its
limitations or provide theoretical interpretations.
These include new preference optimization tech-
niques (Xiao et al., 2024; Zeng et al., 2024; Razin
et al., 2025) and analytical studies (Pal et al., 2024;
Feng et al., 2024). For instance, SimPO (Lu et al.,
2024) reduces computational overhead by adopting
a reference-free training strategy, while SimPER
(Xiao et al., 2025) introduces an inverse perplexity
objective to lower the complexity and fine-tuning
time of large language models (LLMs). Although
SimPER results in a smaller decrease in chosen
likelihoods compared to SimPO, it still exhibits
a declining trend in chosen likelihoods, indicat-
ing limited flexibility. In contrast, our method in-
troduces a mechanism that allows for adjustable
control over both chosen and rejected likelihoods,
thereby offering greater adaptability.

Similarly, SamPO and LD-DPO (Liu et al.,
2024f) aim to reduce the verbosity often introduced
by alignment algorithms due to prior biases in pref-
erence data, ultimately improving alignment per-
formance. TDPO (Zeng et al., 2024) enhances
alignment and diversity through a token-level op-
timization approach. IPO (Gheshlaghi Azar et al.,
2024) mitigates overfitting by introducing a reg-
ularization term that pulls the solution toward a
reference policy. Cal-DPO (Xiao et al., 2024), on
the other hand, improves performance by incor-
porating absolute reward values instead of relying
solely on relative ones—similar in spirit to IPO’s
regularization goal. However, in many practical
scenarios, exact absolute reward values may not be
available, requiring approximations that can lead
to suboptimal outcomes. Our method avoids this
issue entirely, as it does not depend on absolute
reward values and instead provides additional flexi-
bility through tunable parameters for both chosen
and rejected likelihoods, as well as their ratios.

Unintentional Unalignment (Razin et al., 2025)

investigates how similar embeddings from prefer-
ence data can lead to unintended misalignment.
The authors introduce a metric called Centered
Hidden Embedding Similarity (CHES) to improve
training sample selection. While this approach is
promising for dataset curation, our method oper-
ates at the optimization level rather than the data
level, making it more robust and independent of
dataset modifications. Additionally, NCA (Chen
et al., 2024) leverages Noise Contrastive Estima-
tion (NCE) to achieve robust alignment, and BCO
(Jung et al., 2024b) proposes training a binary clas-
sifier where the logit serves as a reward signal, also
yielding robust results.

Despite these advances, none of the existing
methods effectively tackle both the issue of reduced
updates on preferred examples and the challenge
of unbalanced updates with difficulties in escap-
ing saddle points simultaneously. Our approach
addresses both concerns, offering a more compre-
hensive and flexible solution to preference-based
alignment.

3 Method

3.1 Preliminary of DPO
DPO is a widely adopted technique for optimizing
the preferences of LLMs. This method stands out
because of the innovative utilization of an analyt-
ical mapping that translates reward functions into
optimal policies, streamlining the alignment pro-
cess without necessitating a direct reward model.
The cornerstone of DPO lies in its specific transfor-
mation, which can be mathematically formulated
by the following equation:

r(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x), (1)

where r(x, y) is the reward function, β serves as
a scaling factor, πθ(y|x) represents the policy in-
ferred from the reward model, and πref(y|x) indi-
cates the reference policy. Here, Z(x) functions as
a normalization constant ensuring the probabilities
are properly scaled.

By leveraging the Bradley-Terry preference
model (Bradley and Terry, 1952b), DPO expresses
the probability that chosen outcome yw is preferred
over rejected outcome yl, given an input prompt
instruction x, as formulated as follows:

p(yw > yl|x) =
exp (r(x, yw))

exp (r(x, yw)) + exp (r(x, yl))
.

(2)
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The Formula 2 quantifies the relative preference be-
tween two responses by comparing their associated
reward values. Within this probabilistic framework,
the loss function of DPO, denoted by LDPO, is
formulated as Formula 3:

LDPO = −E(x,yw,yl)∼D [lDPO(πθ, πref)] , (3)

where lDPO(πθ, πref) is defined by:

lDPO(πθ, πref) = log σ(∆) (4)

Here

∆ = β

[
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

]
(5)

σ represents the sigmoid function, and β serves
as a scaling factor as that in Formula 1. Formulas
3 and 4 thereby encapsulate the principles of the
Bradley-Terry model, integrating preference data
into the learning process. In this way, DPO ensures
that the responses of LLMs align with observed
human preferences.

3.2 Optimization Process of DPO

Given the chosen reward X1 = πθ(yw|x)
πref(yw|x) and the

rejected reward X2 =
πθ(yl|x)
πref(yl|x) , the partial deriva-

tives of lDPO with respect to X1 and X2 are calcu-
lated in Formulas 6 and 7 (Feng et al., 2024):

∂lDPO

∂X1
=

βX β
2

X1(X β
1 + X β

2 )
, (6)

∂lDPO

∂X2
= − βX β−1

2

X β
1 + X β

2

. (7)

Furthermore, the ratio of the increase in the prob-
ability of a human-preferred response to the de-
crease in the probability of a human-dispreferred
response is given by:

∣∣∣∣
∂lDPO/∂X1

∂lDPO/∂X2

∣∣∣∣ =
X2

X1
(8)

The DPO gradient flow for the chosen and re-
jected rewards are shown in Figure 2. Based on
the theoretical framework outlined above and this
figure, we can make the following observations:

• When X2 is small, as illustrated in the lower
part of Figure 2, the DPO gradient flow tends
to decrease X2 rapidly while making only mi-
nor adjustments to X1. This behavior limits
the ability of LLMs to effectively generate
highly preferred responses.
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Figure 2: Gradient flow of DPO (β = 0.1) with large
values truncated at 1.5.

• As DPO optimization progresses, the chosen
reward X1 increases while the rejected re-
ward X2 decreases. Consequently, X2

X1
< 1.

According to Equation 8, this results in the
gradient for the rejected reward being updated
more quickly than that for the chosen reward.

3.3 SGDPO

The theoretical framework discussed above sug-
gests several directions for improving DPO:

• G1: Prevent the rejected reward X2 from
rapidly dropping to a very small value, which
otherwise halts meaningful updates to the cho-
sen reward X1 or enhance the gradient update
of chosen rewards X2.

• G2: Increase the ratio in Equation 8 to allow
for more substantial updates to the chosen
reward, thereby enhancing the capability of
LLMs to generate preferred responses.

These adjustments aim to refine the optimization
process of RLHF and enhance the performance of
LLM in aligning with human preferences.

To achieve the aforementioned goals, we pro-
pose incorporating an adjusted preference optimiza-
tion objective in the loss function of SGDPO as
defined in Formula 9:

Lpilot := −1

2
E(x,yw,yl∼D)

[
lpilot(πθ, πpilot)

]
, (9)
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where lpilot(πθ, πpilot) is defined in Formula 10.

lpilot(πθ, πpilot) :=

log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πpilot(ŷl|x)
πref(ŷl|x)

)

+ log σ

(
β log

πpilot(ŷw|x)
πref(ŷw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
,

(10)

where ŷw and ŷl denote the sub-sequences of yw
and yl, respectively. See details for the construc-
tion of ŷw and ŷl in Section 3.4. In order to simplify
the calculations, we introduce Y1 =

πpilot(ŷw|x)
πref(ŷw|x)

and Y2 =
πpilot(ŷl|x)
πref(ŷl|x) . Let us denote the length of

the token sequence of y by T , with yt represent-
ing the token at the t-th index and y<t denoting all
tokens preceding the t-th index. Given that ŷ is a
subsequence of y, and considering π⋆(y|x) can be
represented as

∏T
t=1 π⋆(yt|y<t, x) on a token level

basis, where ⋆ belongs to the set {pilot, ref, θ}, we
can express X2 = p2Y2 and X1 = p1Y1, where
X1 and X2 are defined in Section 3.2. p1 and p2
represent the product of the token probability ratios
for the remaining tokens in sequences X1 and X2,
excluding the sub-sequences Y1 and Y2.

The πpilot in Formula 10 is the guiding policy
model to steer the reward updates, we then demon-
strate the advantages of the adjusted preference
optimization objective to be leveraged to enhance
preference optimization:
Theorem 1. The partial derivatives of lpilot with
respect to X1 and X2 are given by:

∂lpilot

∂X1
=

βYβ
2

X1(X β
1 + Yβ

2 )
(11)

∂lpilot

∂X2
= − βX β−1

2

Yβ
1 + X β

2

(12)

Proof. We defer the detailed proof to Appendix
A.1.

From Theorem 1, we can observe that the gra-
dients of X1 and X2 depend on Y1 and Y2, respec-
tively. Consequently, by manipulating Y1 and Y2,
we can control the gradient flow within the align-
ment method, thereby influencing the updates to
the chosen and rejected rewards. We present the vi-
sualized representation of these functions in Figure
10 in the Appendix.

Theorem 2. The partial derivative |∂lpilot
∂X1

| in-
creases as Y2 increases, while the partial deriva-
tive |∂lpilot

∂X2
| decreases as Y1 increases.

Proof. Please see detailed proof in Appendix A.1.

As preference alignment algorithms enhance the
generation probability of preferred text while di-
minishing that of non-preferred text during fine-
tuning, we have p2 < 1. Consequently, Y2 > X2.
Comparing Formula 11 with Formula 6, we can
see that the difference lies in just one variable. For
instance, X2 in Formula 6 is replaced with Y2 to
derive Formula 11. Based on Theorem 2, we then
have:

∣∣∣∣
∂lpilot

∂X1

∣∣∣∣ >
∣∣∣∣
∂lDPO

∂X1

∣∣∣∣ (13)

Formula 13 reveals that SGDPO can enlarge the
gradient of chosen rewards, which enhances the up-
dating of chosen rewards. Consequently, SGDPO
boosts the generation of preferred responses.

Theorem 3. Let πpilot = πθ and z = Y1
Y2

, for
each pairwise preference instance (x, yw, yl) ∈ D,
the ratio between the increase in the probability of
a human-preferred response and the decrease in
the probability of a human-dispreferred response
is given by:

∣∣∣∣
∂lpilot

∂X1
/
∂lpilot

∂X2

∣∣∣∣ =
X2

X1
· f(z), (14)

where

f(z) =
1

pβ2

zβ + pβ2

pβ1z
β + 1

. (15)

f(z) is a monotonic function of z. When p1p2 < 1
, the function f(z) is a monotonically increasing
function of z. Conversely, when p1p2 > 1 , the
function f(z) is a decreasing function of z. Fur-
thermore, f(z) > 1 when p1p2 < 1 .

Proof. Please see detailed proof in Appendix A.1.

When the rejected reward decreases rapidly, it
leads to p1p2 < 1. Consequently, this results in
f(z) > 1, which boosts the ratio value given by
Equation 14. As z = Y1

Y2
increases, f(z) also in-

creases throughout the training process. This be-
havior aligns with our goal G2, thereby enhancing
the capability of LLM to generate preferred text.
We present the visual representation of f(z) in Fig-
ure 9 in the Appendix. A comparison between
Figure 1 (c) and (g) illustrates an example of how
Theorem 3 works, wherein both DPO and SGDPO
are trained on the same base model using the same
preference dataset.
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3.4 Sub-sequence Construction
Based on Theorems 1, 2, and 3, we derive sub-
sequences ŷw and ŷl from the sequences yw and
yl, respectively. ŷw and ŷl serve as indicators to
guide the refinement of updates for chosen and
rejected reward adjustments. Let l1 and l2 denote
the lengths of the sequences yw and yl. We define lc
as the minimum length between l1 and l2. From the
pairs (yw, yl), we randomly select preference data
pairs (ŷw, ŷl) with lengths (r1 · lc, r2 · lc), where r1
and r2 are hyper-parameters.

While generating ŷw and ŷl for both the pilot
model and the reference model, we can exploit the
same random index or different random indices.
Utilizing the same random index ensures that the
sub-sequences are constructed from an identical set
of tokens. Conversely, employing different random
indices results in sub-sequences derived from dis-
tinct sets of tokens. We refer to the setting with
the same index as Pilots and that with different
indices as Pilotd. As different random indices may
introduce an element of randomness into the learn-
ing space so as to allow SGDPO to explore more
thoroughly and avoid overfitting with superb per-
formance, we exploit Pilotd in SGDPO.

Adjusting r1 and r2 is critical to the gradient
changes associated with the chosen and rejected
rewards during the preference optimization process,
as indicated by Theorem 2. Smaller values of r2
lead to shorter pilot sequences, which in turn in-
creases Y2. As the model converges, the likelihood
of encountering tokens from ŷl decreases. Hence,
decreasing r2 typically leads to larger magnitudes
of the partial derivatives

∣∣∣∂lpilot
∂X1

∣∣∣. Then, the chosen
rewards are updated rapidly and the capability of
generating human-preferred responses is improved.
However, to conserve the semantic meanings of re-
sponses, we empirically set r1 ≥ 0.6 and r2 ≥ 0.6.
Moreover, some randomness may exist in the sub-
sequence construction and training process, thus,
we fine-tune the values of r1 and r2 to achieve su-
perb performance compared with that of r1 = 0.6
and r2 = 0.6 (see details in Section 4.3.2).

4 Experimental Evaluation

In this section, we compare SGDPO with 6 state-
of-the-art performance optimization algorithms, ex-
ploiting 4 model configurations and 8 tasks. We
first present the experimental setup. Then, we illus-
trate the experimental results. Finally, we show the
ablation study.

4.1 Experimental Setup

We compare SGDPO against 6 baselines, includ-
ing DPO (Rafailov et al., 2023), SamPO (Lu et al.,
2024), IPO (Gheshlaghi Azar et al., 2024), Token-
Level DPO (Zeng et al., 2024), NCA (Chen et al.,
2024), and BCO (Jung et al., 2024b). These com-
petitive baselines cover a broad range of meth-
ods, addressing issues such as eliminating ver-
bosity, avoiding overfitting, ensuring robust align-
ment, and more. In addition, we consider Llama-
3.1 8B (AI@Meta, 2024) and Qwen-2 7B (Yang
et al., 2024) across two configurations: Instruct
and Base, which corresponds to 4 model config-
urations. For the Instruct configuration, we use
the instructed model as the Supervised Fine-Tuned
(SFT) model, which has already undergone a Su-
pervised Fine-Tuning phase. In contrast, for the
Base configuration, we fine-tune the base model
with the UltraChat-200k dataset (Ding et al., 2023)
to create the SFT model, which enhances the base
LLM capacity to follow instructions. We leverage
the publicly available UltraFeedback dataset (Cui
et al., 2023) as human preference data. Each entry
in the UltraFeedback dataset follows the format
(x, yw, yl), designed to reflect human values such
as helpfulness and honesty.

We exploit two open-ended generation bench-
marks, i.e., MT-Bench (Zheng et al., 2023) and
AlpacaEval-2 (Li et al., 2023; Dubois et al., 2024)
(see details in Appendix). For the conditional
benchmarks, we evaluate our models on the follow-
ing 6 tasks: MMLU in a 5-shot setting (Hendrycks
et al., 2021), GSM8K in an 8-shot setting (Cobbe
et al., 2021), PiQA in a 3-shot setting (Bisk et al.,
2020), TruthfulQA in a 3-shot setting (Lin et al.,
2022), IFEVAL in a 3-shot setting (Zhou et al.,
2023), and ARC in a 3-shot setting (Clark et al.,
2018). Please see details of the experimental setup
in Appendix A.2.

4.2 Evaluation of SGDPO

In this section, we present the experimental com-
parison of SGDPO with 7 state-of-the-art optimiza-
tion algorithms. We first present the experimen-
tal results on two open-ended benchmarks, i.e.,
MT-Bench and AlpacaEval-2. Then, we show the
results on conditioned benchmarks. Finally, we
present the training rewards of SGDPO compared
with DPO.

As shown in Table 1, SGDPO achieves the high-
est average score compared to other approaches
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Methods Llama-3.1 instruct 8B Llama-3.1 base 8B

Score1 Score2 Scoreavg Tokenlen Score1 Score2 Scoreavg Tokenlen

SFT 8.40 7.54 7.97 287 7.47 6.60 7.03 247
DPO (Rafailov et al., 2023) 8.27 7.36 7.82 329 7.29 6.41 6.85 263

NCA (Chen et al., 2024) 8.13 7.21 7.67 308 7.47 6.75 7.11 256
BCO (Jung et al., 2024b) 8.22 7.25 7.74 305 7.44 6.43 6.94 278

IPO (Gheshlaghi Azar et al., 2024) 8.57 7.51 8.04 383 7.51 7.00 7.26 255
SamPO (Lu et al., 2024) 8.34 7.66 8.00 289 7.70 6.52 7.11 262
TDPO (Zeng et al., 2024) 8.39 7.37 7.88 296 7.30 6.38 6.84 268

SGDPO 8.38 7.90 8.14 312 7.98 6.90 7.44 264

Qwen-2 instruct 7B Qwen-2 base 7B

Score1 Score2 Scoreavg Tokenlen Score1 Score2 Scoreavg Tokenlen

SFT 8.14 7.64 7.78 311 7.94 6.80 7.37 269
DPO (Rafailov et al., 2023) 8.44 7.99 8.21 307 7.87 6.99 7.43 293

NCA (Chen et al., 2024) 8.41 8.12 8.27 303 7.83 7.34 7.58 291
BCO (Jung et al., 2024b) 8.49 7.97 8.23 309 7.87 6.62 7.25 326

IPO (Gheshlaghi Azar et al., 2024) 8.31 8.04 8.17 312 7.65 7.42 7.54 351
SamPO (Lu et al., 2024) 8.56 7.86 8.21 307 8.09 7.09 7.59 320
TDPO (Zeng et al., 2024) 8.32 7.94 8.13 313 7.91 6.88 7.39 327

SGDPO 8.68 8.04 8.36 318 8.26 7.09 7.67 329

Table 1: MT-Bench Results across different model configurations. Here, Score1 refers to the score from the first
turn, Score2 to the score from the second turn, and Scoreavg represents the average score. Tokenlen indicates the
average length of output tokens for each method. we set r1 = r2 for SGDPO in this experiment.

Method GSM8K MMLU PiQA TruthfuQA IFEval ARC Avg.

SFT 0.5625 0.7060 0.8096 0.5734 0.4251 0.8582 0.6558
DPO (Rafailov et al., 2023) 0.5989 0.7065 0.8112 0.5774 0.4140 0.8628 0.6618

NCA (Chen et al., 2024) 0.5921 0.7057 0.8079 0.5782 0.4140 0.8607 0.6598
BCO (Jung et al., 2024b) 0.5898 0.7065 0.8074 0.5776 0.4251 0.8620 0.6614

IPO (Gheshlaghi Azar et al., 2024) 0.6406 0.7039 0.7894 0.5876 0.3974 0.8535 0.6620
SamPO (Lu et al., 2024) 0.6133 0.7067 0.8074 0.5844 0.3993 0.8632 0.6623
TDPO (Zeng et al., 2024) 0.5951 0.7055 0.8089 0.5763 0.3967 0.8589 0.6569

SGDPO 0.6111 0.7069 0.8107 0.5806 0.4196 0.8641 0.6655

Table 2: Evaluation results on conditional benchmarks for various approaches, using Qwen-2 instruct 7B as the base
model.

with the MT-Bench benchmark across various base
models. Specifically, SGDPO significantly out-
performs DPO (from 1.83%, to 8.61%), which
highlights the broad applicability of our proposed
method across different base models and confirms
its effectiveness through high average scores. More-
over, the table reveals that DPO does not invariably
enhance the MT-Bench score, which is in line with
previous findings (Liu et al., 2024f). This result
can be attributed to the limitations of DPO as dis-
cussed in Section 3.2. In addition, compared to
the SFT baseline, most alignment methods tend
to produce longer response lengths. Notably, the
response length of SGDPO is similar to that of
DPO with negligible length bias brought by the
pilot term, e.g., SGDPO has a shorter response
length on Llama-3.1 instruct 8B, while it has a

longer response length on Qwen-2 instruct 7B com-
pared to DPO. Furthermore, the experimental re-
sults confirm the capability of SGDPO to escape
saddle points. IPO and SamPO have similar perfor-
mance while their response lengths differ signifi-
cantly. Meanwhile, the average scores of IPO and
SamPO are lower than that of SGDPO, which in-
dicates that SamPO and IPO may become trapped
in different local optima. In contrast, SGDPO uti-
lizes a self-guide scheme to avoid getting trapped
in a suboptimal policy. In addition, on AlpacaEval-
2 benchmark, our experimental results show that
SGDPO outperforms DPO by 2.51% on the LC win
rate metrics when evaluating the Llama-3.1 instruct
8B model (see details in Appendix).

As shown in Table 2, SGDPO achieves the high-
est average score (up to 0.0097) compared with
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7 competitive baselines based on the conditional
benchmarks. In addition, the experimental results
demonstrate that all alignment algorithms improve
the average score when compared to the SFT base-
line. This implies that these alignment algorithms
can enhance the capabilities of LLMs to a certain
extent. IPO and SamPO achieve higher scores on
the GSM8K benchmark, which may suggest that
avoiding overfitting and eliminating length bias
could improve the reasoning abilities of LLMs.
From Tables 1 and 2, we can also observe that the
performance of different algorithms varies between
open-ended and conditional benchmarks. Hence,
different alignment algorithms correspond to di-
verse capability aspects of LLMs.

In order to show the robust performance of
SGDPO, we present the training awards with di-
verse model configurations in Figure 1. In this
experimentation, the training reward curve for
SGDPO was generated using hyper-parameters
r1 and r2, both set to 0.6. The figure demon-
strates that SGDPO is much more stable than DPO
across all the base model configurations. We em-
pirically observe that the patterns of the training
rewards for DPO vary significantly across differ-
ent base models. For instance, the chosen reward
of DPO on Llama-3.1 instruct 8B first increases,
then drops to a low value, while the chosen reward
of DPO on Qwen-2 instruct 7B shows the well-
observed decreasing-likelihood phenomenon. In
contrast, SGDPO exhibits consistent reward pat-
terns. These findings reveal that SGDPO offers
greater resilience compared to the DPO method.

4.3 Ablation Study

In this section, we first present experimental re-
sults for selecting between Pilots and Pilotd. Next,
we analyze the impact of the hyper-parameters r1
and r2 on Pilot and overall model performance.
We further investigate the behavior of SGDPO un-
der settings where r1 ̸= r2. Finally, we compare
SGDPO with ORPO, a recent method for prefer-
ence optimization.

4.3.1 Sub-sequence Construction
As shown in Figure 4, we carry out an experiment
for the comparison between Pilots and Pilotd with
Llama-3.1 instruct 8B and MT-Bench. The exper-
imental results demonstrate that both Pilots and
Pilotd achieve higher average scores (from 2.56%
to 4.09%) compared to DPO. This indicates the
effectiveness of SGDPO. Moreover, Pilotd attains

r1 r2 Score1 Score2 Scoreavg

0.9 0.5 7.72 6.50 7.11
0.9 0.6 8.01 6.95 7.48
0.9 0.7 7.84 6.89 7.37
0.9 0.8 7.84 6.68 7.26
0.9 0.9 7.98 6.90 7.44

Table 3: MT-Bench Results across different r1 and r2
on Llama-3.1 base 8B model.

a higher average score (1.50%) than Pilots. This is
expected as different random indices introduce an
element of randomness into the learning space cor-
responding to superior performance as explained
in Section 3.4.

4.3.2 The Pilot Term
While r1 and r2 are critical to pilot, we conduct
experimentation to evaluate the influence of r1 and
r2 on the performance of SGDPO, including the
robustness and the reward patterns.

Robustness. While pilot exploits r1 and r2 to
regulate the lengths of the token sequences, we
carry out an experimentation with diverse r1 and
r2 (r1 = r2 = r) so as to verify the correspond-
ing performance and robustness of SGDPO. As
shown in Figure 5, SGDPO significantly outper-
forms DPO in all settings, achieving notably higher
scores in the first turn (from 4.25% to 9.19%), sec-
ond turn (from 1.56% to 10.14%), and on average
(from 3.06% to 8.61%). SGDPO achieves its low-
est value at r = 1, yet it still exhibits a relative
improvement of 3.06% over DPO. The length of
the generated response tokens remains comparable
to that of DPO. These experimental results show
the robustness of SGDPO across varying r1 and r2.

Reward Patterns. As shown in Figure 3, when
r1 and r2 range from 0.6 to 0.9, both the aver-
age Convergence Chosen Reward (CCR) and the
average Convergence Reject Reward (CRR) over
the last 80 iterations of fine-tuning decrease. A
more significant CRR corresponds to a modest de-
crease in rejected rewards, which is in line with
G1 explained in Section 3.3. Correspondingly, as
shown in Figure 5, the average score is negatively
correlated with r (from 0.6 to 1.0), with the excep-
tion of a fluctuation occurring at r = 0.9. This
fluctuation may be due to the randomness in sub-
sequence construction. As a consequence, in our
experimentation, we take the best values of r to
achieve excellent performance (see experimental
setting details of r in Appendix).
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CCR = 0.7542
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Figure 3: Training reward curves for the Llama-3.1 base 8B model using the SGDPO method: (a) r1 = 0.6 and
r2 = 0.6. (b) r1 = 0.7 and r2 = 0.7. (c) r1 = 0.8 and r2 = 0.8. (d) r1 = 0.9 and r2 = 0.9. “CCR” represents
the average (last 80 iterations) convergence chosen reward and “CRR” represents the average (last 80 iterations)
convergence reject reward.
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Figure 4: MT-Bench Results across different model
configurations, using Llama-3.1 instruct 8B as the base
model.

Method Score1 Score2 Scoreavg

DPO 7.29 6.41 6.85
ORPO 7.40 6.04 6.78

SGDPO 8.01 6.95 7.48

Table 4: MT-Bench Results across different methods on
Llama-3.1 base 8B model.

Different r1 and r2. In previous experiments,
we set r1 = r2 to evaluate model performance. To
further investigate the effectiveness of SGDPO, we
conduct additional experiments with different val-
ues of r1 and r2. As shown in Table 3, varying
these parameters leads to further improvements in
performance. Specifically, setting r1 = 0.9 and
r2 = 0.6 achieves an average score of 7.48, outper-
forming the baseline configuration (r1 = r2 = 0.9,
score = 7.44). This result also represents a signifi-
cant improvement over DPO, with a relative gain
of 9.19%.

Compared with ORPO. ORPO (Hong et al.,
2024) presents a novel approach to preference opti-
mization by proposing a unified odds ratio-based
framework that does not rely on a separate refer-
ence model. This innovative method effectively
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Figure 5: MT-Bench results of SGDPO across various
configurations, using Llama-3.1 base 8B as the base
model. The dashed lines represent the score and the
token length of DPO.

integrates preference learning into a single training
stage, thereby removing the need for an additional
alignment step and significantly streamlining the
overall optimization process.

We conduct an ablation study to compare
SGDPO, DPO, and ORPO. As shown in Table 4,
SGDPO outperforms both DPO and ORPO by a
large margin, which demonstrates the effectiveness
of SGDPO.

5 Conclusions

In this paper, we present a novel self-guided
direct preference optimization algorithm, i.e.,
SGDPO, for aligning LLMs with human prefer-
ences. SGDPO incorporates a pilot term in the
objective function in order to guide the gradient
updates of the rewards during training. We provide
a detailed theoretical explanation of SGDPO. Fur-
thermore, extensive experimental results across var-
ious model settings and benchmarks demonstrate
the significant advantages (up to 9.19% higher
score) of SGDPO.
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Limitations

SGDPO includes the resampling of a sub-sequence
from the logits of the output layer, which introduces
extra computational steps. Nevertheless, as demon-
strated in Table 8 within the Appendix, this results
in a minor increase (up to 0.4%) in computational
overhead.

While SGDPO exploits public centralized prefer-
ence datasets to fine-tune models in order to align
LLMs with human values, the datasets may con-
tain unhelpful or misleading preferred information
leading to unexpected responses. SGDPO may be
subject to this potential drawback. In addition, the
datasets may be distributed in diverse data centers
or edge devices (Chen et al., 2025; Liu et al., 2024b,
2022a, 2015), which may restrict the application of
SGDPO. In the future, we plan to investigate the
adaptation of SGDPO into a broader setting, e.g.,
federated learning (Liu et al., 2024e,d; Jia et al.,
2024; Liu et al., 2024a,c,c; Che et al., 2023; Liu
et al., 2023b, 2022b; Zhang et al., 2022; Zhou et al.,
2022) and distributed machine learning (Liu et al.,
2023a).
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A Appendix

A.1 Proof of 1, 2, and 3
Theorem 1. The partial derivatives of lpilot with
respect to X1 and X2 are given by:

∂lpilot

∂X1
=

βYβ
2

X1(X β
1 + Yβ

2 )
(1)

∂lpilot
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= − βX β−1

2
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2
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Proof. By variable substitution, we have:
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X β
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Theorem 2. The partial derivative |∂lpilot
∂X1

| in-
creases as Y2 increases, while the partial deriva-
tive |∂lpilot

∂X2
| descreases as Y1 increases.

Proof. For |∂lpilot
∂X1

| , we have

∂| ∂lpilot
∂X1

|
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β2Yβ−1X β
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> 0 (7)
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< 0 (9)

Theorem 3. Let πpilot = πθ and z = Y1
Y2

, for
each pairwise preference instance (x, yw, yl) ∈ D
, the ratio of the increase in the probability of a
human-preferred response to the decrease in the

probability of a human-dispreferred response is
given by:

∣∣∣∣
∂lpilot

∂X1
/
∂lpilot

∂X2
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X2

X1
· f(z), (10)

where
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1

pβ2

zβ + pβ2
pβ1 z

β + 1
(11)

is a monotonic function of z. When p1p2 < 1
, the function f(z) is increasing. Conversely,
if p1p2 > 1 , the function f(z) is decreasing.
Furthermore, f(z) > 1 if p1p2 < 1 .

Proof.
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Let X2 = p2Y2,X1 = p1Y1, and z = Y1
Y2

, we then
have

f(z) =
Yβ
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X β
2

Yβ
1 + X β
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The derivative of f(z) with respect to z is

∂f(z)

∂z
∝ βzβ−1(pβ1 z

β + 1)− (zβ + pβ2 )p
β
1βz

β−1

= βzβ−1 − β(p1p2)
βzβ−1

= β
(
1− (p1p2)

β
)
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Since z = Y1
Y2

> 0, whether ∂f(z)
∂z > 0 or

∂f(z)
∂z < 0 is contingent on the value of p1p2.

Therefore, if p1p2 < 1, the function f(z) is in-
creasing. Conversely, if p1p2 > 1, the function
f(z) is decreasing.

A.2 Experimental Setup
To ensure a fair comparison among different meth-
ods, we employ the same general settings for all
baselines, which are detailed in Table 6. Addition-
ally, we set β = 0.1 for all baselines. For the
proposed SGDPO method, we set r1 = r2 by de-
fault and performed a grid search over the range
{0.6, 0.7, · · · , 1.0}. Table 5 shows the parame-
ters we select. We carry out our experiments on 4
A800-80G GPUs.

As a large-scale, finely detailed, and diverse
dataset, UltraFeedback dataset (Cui et al., 2023)
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Model r1, r2

Llama-3.1 instruct 8B r1 = 1.0, r2 = 1.0
Llama-3.1 Base 8B r1 = 0.9, r2 = 0.9
Qwen-2 instruct 7B r1 = 0.9, r2 = 0.9

Qwen-2 base 7B r1 = 0.6, r2 = 0.6

Table 5: The hyper-parameters we used for SGDPO in
the experiments reported in Table 1

Phase LR BS Epoch LS WP

SFT 2e-5 128 3 cosine 0.1
PO 5e-7 128 1 cosine 0.1

Table 6: The general training settings for the Supervised
Fine - Tuning (SFT) phase and Preference Optimization
(PO) phase include Learning Rate (LR), Batch Size
(BS), Epoch, Learning Rate Schedule (LS), and Warmup
Phase (WP).

comprises approximately 64,000 prompts sourced
from a wide array of origins. MT-Bench consists
of a multi-turn question set with 80 questions de-
signed to evaluate the capabilities of a model in
multi-turn conversation and instruction-following.
In our experimentation, we utilize a single-answer
grading mode, where GPT-4 (OpenAI, 2023) as-
signs a score out of 10 for each turn. We report the
average score per turn across our experiments.

B Complexity

SGDPO entails a novel technique where we re-
sample subsequences from the probability distribu-
tions (logits) generated by the output layer. This
process introduces supplementary computational
stages into the workflow. Despite this added com-
plexity, as detailed in Table 8, the resultant increase
in computational overhead remains modest (up to
0.4%) additional computational time.

C More Experiments

We also employ the AlpacaEval-2 (Li et al., 2023;
Dubois et al., 2024) benchmark for evaluation.
AlpacaEval-2 operates on a fixed set of 805 in-
structions, for which both the base model and the
evaluated model generate responses. A GPT-based
model then compares these responses to determine
the win rate. In our experiments, we report both
the length-controlled win rate and the raw win rate.
We utilize the weighted_alpaca_eval_gpt4_turbo
configuration recommended by the AlpacaEval-2

Turn1 Turn2 Average

7.5

8

8.5

S
co
re

MT-Bench

Run1
Run2

LC Raw

28

29

W
in

R
at
e

AlpacaEval 2

Run1
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Figure 6: Performance Metrics of Various Runs on MT-
Bench and AlpacaEval-2.

library (Dubois et al., 2024) for this evaluation. We
report the results in Table 7.

From the experimental results, we can observe
that SGDPO significantly outperforms the base-
lines in the LC win rate metric (up to 5.14%) with
Llama-3.1 instruct 8B. However, unlike the experi-
ments on MT-Bench, SGDPO does not surpass the
baselines on Qwen-2 instruct 7B model. This indi-
cates the effectiveness of alignment optimization
might be benchmark-dependent. Conducting a rig-
orous evaluation of large language models remains
a research direction of significant importance.

D Training Reward Curves

As discussed in Section 3.4, adjusting the values
of r1 and r2 can affect the optimization process, re-
sulting in different reward curve shapes. In Figure
8, we present the full training curves for SGDPO
and DPO. The results show that setting r1 and r2
to smaller values can lead to an increase in the
magnitude of the reward values at the end of the
fine-tuning stage. We also present the training re-
ward curves of the baselines in Figure 7.

E Variance

In this paper, we carry out extensive experiments
using both the MT-Bench and AlpacaEval-2 frame-
works. Both MT-Bench and AlpacaEval-2 uti-
lize GPT for evaluating responses, we investigate
whether there are significant discrepancies in the
assessments of GPT with identical content across
different calls. To explore this, we conducted a test
by querying GPT twice with the same response con-
tent and present our findings in Figure 6. The exper-
imental results indicate that while MT-Bench yields
relatively consistent outcomes with lower variance,
AlpacaEval-2 demonstrates a notably higher vari-
ance under similar conditions.
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Figure 7: Training reward curves for the Llama-3.1 instruct 8B model using various alignment methods.

Methods Llama-3.1 instruct 8B Qwen-2 instruct 7B

LC win rate Raw win rate Tokenlen LC win rate Raw win rate Tokenlen

SFT 26.84 27.77 459 20.98 22.20 418
DPO (Rafailov et al., 2023) 27.53 28.35 438 24.26 24.50 414

NCA (Chen et al., 2024) 26.33 27.77 441 21.94 21.75 409
BCO (Jung et al., 2024b) 28.03 29.32 435 23.76 23.95 411

IPO (Gheshlaghi Azar et al., 2024) 27.07 25.82 459 29.03 25.68 411
SamPO (Lu et al., 2024) 27.45 27.69 443 24.57 26.60 426

SGDPO 28.22 28.96 444 23.89 24.86 419

Table 7: AlpacaEval-2 Results across different model configurations. Tokenlen indicates the average length of output
tokens for each method.

Method Training Time

DPO 6h22m22s
SGDPO 6h24m07s

Table 8: Training time cost of DPO and SGDPO.

F Future Work

As discussed in the Limitations section, SGDPO
introduces additional computational steps. To ad-
dress this, we aim to design a novel architecture for
SGDPO that reduces the associated computational
overhead. We also plan to evaluate our method in
long-context scenarios (Liu et al., 2025; Zhu et al.,
2024) and recommendation systems (Zhu et al.,
2025), as recommendations are inherently driven
by user preferences.

Additionally, we intend to explore the appli-

cability of SGDPO in broader settings, such as
learning with non-Independent and Identically Dis-
tributed (non-IID) data under federated learning
frameworks. We also plan to investigate the use
of diverse models or enhanced architectures within
the policy framework—specifically, the pilot model
in SGDPO—to further improve alignment per-
formance. Finally, we aim to develop new self-
guidance mechanisms for preference optimization
and explore how SGDPO can be leveraged to en-
hance the reasoning capabilities of large language
models (LLMs).
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Figure 8: Training reward curves for the Llama-3.1 base 8B model using the DPO and SGDPO methods: (a) DPO.
(b) SGDPO with r1 = 0.6 and r2 = 0.6. (c) SGDPO with r1 = 0.7 and r2 = 0.7. (d) SGDPO with r1 = 0.8 and
r2 = 0.8. (e) SGDPO with r1 = 0.9 and r2 = 0.9. (f) SGDPO with r1 = 1.0 and r2 = 1.0.
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Figure 9: Visual representation of the function f(z) landscape.
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