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Abstract
Large language models (LLMs) are increas-
ingly used in decision-making contexts, yet
their ability to reason over event structure—an
important component in the situational aware-
ness needed to make complex decisions—is
not well understood. By operationalizing proto-
role theory, which characterizes agents via
properties such as instigation and volition and
patients via properties such as change of state,
we examine the ability of LLMs to answer ques-
tions that require complex, multi-step event
reasoning. Specifically, we investigate the ex-
tent to which LLMs capture semantic roles
such as “agent” and “patient” through zero-shot
prompts, and whether incorporating semantic
proto-role labeling (SPRL) context improves
semantic role labeling (SRL) performance in
a zero-shot setting. We find that, while SPRL
context sometimes degrades SRL accuracy in
high-performing models (e.g., GPT-4o), it also
uncovers an internal consistency between SPRL
and SRL predictions that mirrors linguistic the-
ory, and provides evidence that LLMs implic-
itly encode consistent multi-dimensional event
role knowledge. Furthermore, our experiments
support prior work showing that LLMs under-
perform human annotators in complex semantic
analysis.

1 Introduction

Philosophies of ethics as far back as Aristotle (Free-
land, 1985; Shaver, 1985; Weiner, 1995) define
moral agents as entities which can be held respon-
sible for their acts, and moral patients as entities
which experience the effects of those acts, and are
thus objects of concern. In linguistics, psychology,
and neuroscience, agency and patiency are stud-
ied to understand how individuals perceive, rep-
resent, and communicate about actions and their
consequences. With LLMs increasingly used for
decision-making, further investigation into their ca-
pacities for moral reasoning and judgment has been
called for (Jiang et al., 2025).

verb-invariant, graded

[The girlAGENT] ate fruit. [The girlEATER] ate fruit.

[The girlSENTIENT] ate fruit. 
[The girlINSTIGATION] ate fruit. 
[The girlVOLITION] ate fruit.

Roleset ID eat.01

ARG0 eater

ARG1 meal

verb-specific, categorical

infer from properties

🍎

Semantic proto-role labeling Semantic role labeling

Figure 1: Semantic proto-role labeling captures broad
properties across verbs, while semantic role labeling
captures verb-specific role information. Evidence from
neuroscience suggests that both systems are employed
complementarily in human language processing.

In response, we examine LLMs through the re-
lationship between semantic proto-role labeling
(SPRL) and semantic role labeling (SRL), two
sentence-level semantic tasks. Traditional SRL sys-
tems rely on fixed sets of categorical roles such as
“agent”, “patient,” and “instrument.” Proto-role the-
ory (Dowty, 1991) challenges this view by propos-
ing that the participants of an event are best char-
acterized by a set of graded properties. Dowty’s
prototypical agent (“proto-agent”) exhibits prop-
erties such as volition, sentience, causality, and
movement, whereas proto-patients are more likely
to undergo a change of state or be affected by the
action.

Additionally, while SRL requires the entities
in a sentence to be labeled with verb-specific se-
mantic roles (agent of hitting/hitter, patient of hit-
ting/hittee), SPRL properties are invariant across
verbs. Neuroscience research has shown evidence
that both verb-specific and verb-invariant event
roles are encoded in the brain, and could play
complementary roles in processing (Frankland and
Greene, 2020).

SPRL and SRL, then, can provide a benchmark
for an LLM’s semantic reasoning capabilities as
compared to a human’s, a proxy for an LLM’s situ-
ational awareness, and scaffolding for fine-grained
interpretability of moral judgments. We ground our
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experiments in the following research questions:
(1) does providing LLMs with semantic proto-role
labels as context for semantic role labeling result in
accuracy gains compared to no SPRL context?, (2)
do errors in semantic role labeling correlate with
errors in semantic proto-role labeling?, and (3) how
does an LLM perform as the SRL and SPRL tasks
increase in complexity? Our results enable us to
make the following contributions:

• SPRL context often degrades SRL perfor-
mance, especially in the highest-performing
language model we prompted (GPT-4o), but
sometimes provides a non-negligible boost to
performance in smaller models.

• SRL errors do not overwhelmingly co-occur
with SPRL errors, but SRL errors do over-
whelmingly co-occur with SPRL properties
that were deemed not applicable to the argu-
ment at annotation time.

• GPT-4o performs badly on the prompt variant
with the most steps per test instance: an end-
to-end SRL and SPRL pipeline. This suggests
that the findings that GPT cannot perform
complex and detailed semantic analysis of
event roles (Ettinger et al., 2023; Bonn et al.,
2024) generalize to larger datasets. Addition-
ally, smaller LMs almost always performed
better on less complex tasks (e.g. prompts that
required only a single token for a response)
versus more complex tasks (e.g. prompts that
required multiple responses be produced in
JSON format). However, GPT-4o performed
better in a prompt variant that elicited roles
for all arguments for a single predicate, versus
only one argument and predicate, suggesting
that some added complexity helps to further
contextualize a task and boosts performance.

Additionally, while our findings did not produce
evidence for positive prompt-level interactions be-
tween SRL and SPRL, we found robust evidence
that GPT-4o classifies PropBank-style semantic
roles consistently with Dowty’s proto-role theory,
suggesting that it encodes a hierarchy of event role
structure similar to what has been proposed by lin-
guistic theory. There is also faint evidence of such
structures emerging in a much smaller LM, the
3b-parameter version of Llama 3.2.

2 Background and Related Work

PropBank and SRL PropBank (Kingsbury and
Palmer, 2002; Gildea and Palmer, 2002; Palmer

et al., 2005) is a lexical resource that separates
verbs into coarse senses, each with a set of semantic
roles (the “roleset,” e.g. “eat.01” in Fig. 1). While
the 6 core roles are verb-specific, ARG0 usually
corresponds to a prototypical agent (the argument
which makes the action happen) and ARG1 cor-
responds to patient (the argument which receives
the action). Thus, these arguments can be general-
ized to an extent across verbs and verb senses. Se-
mantic role labeling (SRL) is a classification task
that can use PropBank as its vocabulary, so that
a system learns to label sentences for their pred-
icates, arguments, and semantic role labels. Im-
portantly, a proficient PropBank-style SRL system
can consistently label the role of verb participants
across different syntactic alternations of the same
verb (e.g., “I broke [the computer]ARG1” and “[The
computer]ARG1 broke”). Various neural methods,
including graph-based (Zhou et al., 2022; Liu et al.,
2023) and syntax-aware (Fei et al., 2021; Zhang
et al., 2022) approaches, have achieved impressive
performance, and SRL has been leveraged for its
promise in multimodal understanding (Sadhu et al.,
2021; Bhattacharyya et al., 2023) and situation and
narrative modeling (Ash et al., 2024; Balashankar
et al., 2023).
SPRL Proto-role theory (Dowty, 1991) offers an
alternative to categorical role inventories by focus-
ing on the finer-grained properties of a prototypical
agent (e.g., volition, sentience) and properties of a
prototypical patient (e.g., change of state, change of
possession). For example, in the sentence “The boy
threw a rock,” categorical role inventories assign ar-
gument “boy” the role Agent, and argument “rock”
the role Patient. Work on decompositional seman-
tics1 has formulated the task of semantic proto-role
labeling (SPRL) as the assignment of 14 different
binary properties to arguments (Reisinger et al.,
2015). Semantic proto-role labeling assigns voli-
tion, sentience, and instigation to “boy” and change
of state, change of location, and was used to “rock.”
(All SPR labels, as well as their definitions, can be
found in Table 7.) Previous work in SPRL has ex-
plored fine-tuned language models, attention-based
ensembling, and other neural approaches for label
classification (Teichert et al., 2017; Rudinger et al.,
2018; Opitz and Frank, 2019; Tenney et al., 2019;
Stengel-Eskin et al., 2020, 2021; Spaulding et al.,
2023). Sadeddine et al. (2024) offer a comprehen-
sive survey of datasets, parsers, and applications of

1http://decomp.io/
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(a) Proto-agent properties
instigated volition aware sentience chg-loc

Predictions T F N/A T F N/A T F N/A T F N/A T F N/A
ARG0 90.5 21.2 4.9 77.5 10.7 3.3 64.8 9.1 4.1 62.7 10.8 3.5 29.6 32.1 26.5
ARG1 6.0 58.1 50.7 15.2 66.3 51.7 23.5 69.2 52.9 25.6 65.7 49.8 53.2 47.8 42.8
ARG2 2.0 14.6 29.6 4.6 16.5 29.8 7.8 15.5 28.8 7.8 16.6 31.1 10.5 14.0 20.5

ARG3-5 0.1 1.1 2.0 0.2 1.3 2.1 0.3 1.4 2.0 0.3 1.4 2.3 0.9 1.0 1.5

(b) Proto-patient properties
chg-poss chg-state created destroyed

Predictions T F N/A T F N/A T F N/A T F N
ARG0 7.1 33.3 27.7 8.3 36.0 32.6 0.9 35.0 11.1 5.7 34.7 11.1
ARG1 79.2 47.2 42.6 70.8 43.8 37.8 57.6 47.0 42.2 78.7 46.3 42.2
ARG2 10.9 13.7 19.6 16.2 13.7 19.3 33.6 11.8 33.3 10.1 12.7 33.3

ARG3-5 2.1 0.9 1.4 0.8 1.1 1.4 0.7 0.9 2.2 1.9 0.9 2.2

Table 1: % of predicted properties that co-occur with GPT-4o’s predicted ARGn on the Ontonotes dataset, for the
All-args prompt variant with “n/a” SPRL responses allowed. Denominator for percentages is the total number of
arguments that property and value were assigned by the model. Columns do not add up to 100 because the model
occasionally outputs an SRL prediction that is not any of the numbered ARGs.

tasks such as SRL and SPRL.
LLMs The largest and most successful LLMs have
shown mastery in what Mahowald et al. (2024) call
formal linguistic competence—the knowledge of
rules and statistical regularities of language—but
often fail in functional linguistic competence, or
the ability to successfully apply language to real-
world situations. Relevantly, functional linguis-
tic competence includes robust situation modeling:
the ability to keep track of entities, the relations
between them, and their participation in various
events across time. In the domain of event roles and
relations, Bonn et al. (2024) assess the capabilities
of GPT-3 and GPT-4 to do PropBank annotation
and find that both perform far below reported hu-
man IAA (Bonial et al., 2017). Ettinger et al. (2023)
find that GPT-3 and GPT-4 cannot produce AMR
(Abstract Meaning Representation; Banarescu et al.
2013) annotations more complex than a core event
structure in subject-verb-object form. Both studies,
because of the time-intensive manual analysis re-
quired, reported results on very small sample sizes.
Our study addresses similar questions at a larger
sample size and provides evidence that the find-
ings of Ettinger et al. (2023) and Bonn et al. (2024)
generalize to larger data.

Previous work has found that pre-trained lan-
guage models like BERT implicitly learn semantic
properties, including SPRL (Tenney et al., 2019;
Kuznetsov and Gurevych, 2020). Stengel-Eskin
and Van Durme (2022) investigate the effect of
providing SPRL context in prompts eliciting inter-
pretations of sentences involving subject control

clauses. They find that large language models con-
tain SPR property knowledge but do not directly
apply it to all situations. To date, however, there
has been no fine-grained study of the capabilities
of the most recent LLMs on both SPRL and SRL,
and the relation between them.

3 Data

We evaluate SRL on two datasets using the stan-
dard test splits: the first one (SPR1 (Reisinger
et al., 2015), n = 1054 predicate-argument pairs)
is small, but contains SPRL annotations, which al-
lows a fine-grained analysis of the effects of each
proto-role property. The second dataset (an SRL
test split from Ontonotes2, n = 44609 predicate-
argument pairs) is larger but lacks gold-standard
SPRL annotations. We use Ontonotes to ascertain
whether our analysis from SPR1 might generalize
to a larger dataset with a more diverse set of topics
and semantic and syntactic constructions.

SPRL results are typically reported on two
English-language datasets: SPR1 and SPR2 (White
et al., 2016). SPR1 contains 4,912 Wall Street
Journal sentences from PropBank annotated by a
single annotator based on a set of 16 proto-role
properties. 9,738 arguments were annotated for the
likelihood (on a Likert scale from 1 to 5) that a
property holds for that argument. SPR2 contains
2,758 English Web Treebank (Bies et al., 2012) sen-
tences annotated for a smaller set of 14 properties
using a revised, streamlined protocol with two-way

2https://github.com/propbank/propbank-release
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redundancy in annotation. The sets of properties
in SPR1 and SPR2 are slightly different from one
another, and neither maps one-to-one to Dowty’s
original 10 proto-role entailments. Table 7 shows
the properties that were annotated for SPRL. In
SPR2, reported inter-annotator agreement is gen-
erally acceptable for each property, with White
et al. (2016) reporting a Spearman’s rank correla-
tion coefficient of 0.617 and Spaulding et al. (2023)
reporting Cohen’s κ ≥ 0.64 for all properties when
computed over the binarized labels, with an average
κ = 0.75.

Previous work (Opitz and Frank, 2019; Rudinger
et al., 2018; Teichert et al., 2017; Tenney et al.,
2019), formulates SPRL as a 16 (SPR1) or 14
(SPR2) way multi-label binary classification prob-
lem and map Likert labels {1, 2, 3} to 0, and {4, 5}
to 1. Previous work additionally maps judgments
labeled “inapplicable” to 0. In our work, we use
standard train/dev/test splits provided in the data
where applicable: wherever we report results, those
are based off of test sentences.

4 Experimental Setup

We experiment on a variety of open-weight mod-
els ranging from 3 billion to 8 billion parameters:
Llama 2 and 3 (Touvron et al., 2023; Grattafiori et
al., 2024), Qwen2.5 (Qwen et al., 2025), and Tülu
3 (post-trained using Llama 3.1 as a foundation;
Lambert et al. 2025). We also experiment on open-
weight, open-data models OLMo 1 and 2 (Groen-
eveld et al., 2024; OLMo et al., 2025) and Pythia
(Biderman et al., 2023). Because the OLMo and
Pythia authors release their data to the public, we
could confirm that those models were not trained on
data contaminated with the data we test on (Elazar
et al., 2024). Finally, we perform a broad range
of experiments that require a longer context win-
dow and a more complex array of tasks on GPT-4o
(OpenAI, 2024).

We evaluate on a variety of prompt templates
with and without certain context. Our main focus
is the model’s ability to reason over the seman-
tics of a sentence in a zero-shot setting, and we use
PropBank and proto-role theory to validate whether
its reasoning is consistent. We utilize three differ-
ent zero-shot prompt templates for SRL, and one
prompt for SPRL alone:

• Pipeline: The model is sequentially prompted
through six SRL components: predicate span
identification, predicate sense disambiguation,

argument span identification, (optionally) se-
mantic proto-role labeling, and semantic role
labeling. Previous output is provided as con-
text in later prompts.

• All-args-per-prompt: The model receives
oracle-provided predicate spans, sense, argu-
ment spans, and roleset details, and must out-
put a JSON with both SPRL and SRL labels
for all constituents of a single predicate.

• One-arg-per-prompt: The task is simplified
by requiring the model to output only a single
semantic role label for one argument using
optional gold SPRL context.

• SPRL-annotate: The model is given a
true/false prompt for each argument-predicate-
property triplet, similar to the human annota-
tion protocol used in SPR1/2 (Table 7).

We evaluate all prompt variants exhaustively on
GPT-4o as it is a large-scale, powerful language
model capable of advanced reasoning. We also
evaluate smaller LMs on SPR1 using the One-arg
prompt variant.3 We additionally vary the context
and instructions provided to the model in the fol-
lowing ways:

• SPRL context: Depending on the prompt,
the model can receive SPRL context either
through its previous predictions (Pipeline),
gold labels (One-arg), or explicit instructions
to generate SPRL output alongside SRL out-
put (All-args). We additionally vary the spe-
cific SPRL properties included in each prompt:
instigation and change-of-location, volition
and change-of-state, all SPRL properties in
both SPR1 and SPR2 (i.e., the intersection of
the two property sets; SPR1∩SPR2), and all
SPRL properties in SPR1.

• Oracle predicate spans, predicate senses,
and argument spans: All prompt variants
(except Pipeline) provide the model with or-
acle predicate spans, senses, and argument
spans. In Pipeline, the model must use its
own predictions.

• Allowing “N/A” as a SPRL response: In
some All-args experiments, the model is ex-
plicitly instructed to label inapplicable prop-
erties as “n/a” rather than restricting the re-
sponse to True/False.

3For All-arg and Pipeline prompts, due to length and com-
plexity, early experiments on smaller LMs were computation-
ally expensive and yielded poor results. Thus, GPT-4o is the
main focus of those prompt experiments. Additionally, the
token limit for the One-arg and SPRL-annotate prompts was
very short for the smaller LMs for computational efficiency.
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(a) F1 on SPR1 and SPR2 for SPRL-annotate.
SPR1 SPR2

Model Micro Macro Micro Macro
Qwen2.5 (7b) (I) 4.9 4.6 4.9 4.7
Pythia (6.9b) 5.6 5.5 16.0 15.2
Llama 2 (7b) 37.7 32.2 43.8 37.8
OLMo 2 (7b) (I) 49.1 40.1 46.1 39.6
Llama 3.1 (8b) (I) 47.2 41.8 54.0 48.2
Tulu 3 (8b) 47.4 39.8 54.9 47.6
Llama 3.2 (3b) (I) 48.2 42.1 55.6 49.3
OLMo 2 (7b) 50.8 45.9 60.7 55.1
GPT-4o 61.3 51.9 68.0 57.2
n/a skipped in eval ↓
Qwen2.5 (7b) (I) 9.6 7.2 7.3 7.1
Pythia (6.9b) 11.1 10.5 23.4 22.2
Llama 2 (7b) 51.5 46.1 53.8 46.8
OLMo 2 (7b) (I) 70.2 58.5 58.9 51.2
Llama 3.1 (8b) (I) 71.6 65.2 68.5 62.1
Tulu 3 (8b) 67.1 59.6 68.0 60.4
Llama 3.2 (3b) (I) 72.2 64.9 70.9 63.4
OLMo 2 (7b) 81.9 74.8 79.6 72.6
GPT-4o 81.1 69.9 79.2 69.2

(b) GPT-4o F1 on SPR1. (These prompts also elicited SRL.)
Micro-F1 Macro-F1

Prompt template SPR1, n/a = False
All-args 70.68 60.65

All-args, w/ PB GL 68.8 57.23
Micro-F1 Macro-F1

SPR1, n/a skipped
All-args 78.73 64.21

All-args, w/ PB GL 79.01 64.43
All-args, n/a allowed 75.9 60.56

Table 2: SPRL results evaluated in two modes: first, col-
lapsing “n/a” annotations to False, and second, disclud-
ing “n/a” annotations from the evaluation set entirely.

• With PropBank annotation guidelines:
Since a human annotator would typically have
access to detailed, PropBank-specific instruc-
tions, a variant of the All-args template in-
cludes an excerpt from the PropBank annota-
tion guidelines as a system prompt.

Further experiment details can be found in §A.

4.1 Metrics

SRL: For All-args and One-arg variants, we use
accuracy and limit our evaluation to core (num-
bered) roles only (ARGs 0-5). To calculate accu-
racy, we count a “hit” every time a model produces
the correctly numbered role and divide hits by all
numbered roles in the evaluation set. For Pipeline,
we use exact match accuracy: predicate span, pred-
icate sense, argument span, and role label must all
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Figure 2: Effect of SPRL context on SRL accuracy, GPT-
4o on SPR1. The y-axis shows the change in accuracy
when providing the model with SPRL context (with
SRL-alone prompts as the 0% baseline).

be exactly correct for a hit.
SPRL: We use the micro- and macro-F1 strategies
in previous work: In macro-F1, F1 is computed first
per property and then averaged, and in micro-F1,
F1 is computed and averaged over all properties at
once. We provide F1 values by (a) treating “n/a” as
False and (b) skipping “n/a” completely (and thus,
evaluating over a different set of arguments than
previous work). In variants in which the model
is allowed to produce “n/a” as SPRL output, the
“n/a”-annotated arguments are still skipped: that is,
we do not give it credit for getting the “n/a” value
“correct.” If the model outputs “n/a” on an annota-
tion that is True or False, we penalize the model as
if it had given the opposite value for output.

5 Results and discussion

One-arg prompt variant results on SPR1 are aggre-
gated in Table 3. See Table 4 for GPT-4o results
across all prompt variants on Ontonotes. For GPT-
4o, the most effective prompt variants are All-args
and Pipeline (oracle), with the One-arg prompting
method consistently performing the worst out of all
oracle variants. The pure Pipeline variant, in which
the model is fed its own predictions for each step
of the pipeline, achieved less than 25% accuracy
on both datasets. The poor Pipeline performance is
due to errors earlier in the pipeline—see Appendix
§B. This seems to further the evidence (Ettinger
et al., 2023; Bonn et al., 2024) that LLMs under-
perform human annotators in complex, multi-step
semantic analysis.

Why did the All-args and Pipeline (oracle)
prompts yield better results than One-arg? One
possible explanation is that all of the arguments
being in the prompt context for the former two vari-
ants, as opposed to only one in the latter, forces the
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Figure 3: Effect of SPRL context on SRL accuracy, smaller LMs on SPR1.
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Figure 4: Effect of SPRL context on SRL accuracy,
GPT-4o on Ontonotes.

model to consider all arguments at once and prevent
it from assigning, for example, agent-of-action to
two different arguments, but more experimentation
would be necessary to isolate this effect.

The SPRL results (Table 2) contextualize the
SRL results: first, when n/a is not evaluated, GPT-
4o performs better on the simpler SPRL-annotate
prompts than any of the All-args prompts, in which
it is concurrently predicting SRL. However, in the
n/a = False evaluation paradigm, the more complex
multi-task All-args yields much better results.

LMs that perform well on SPRL tend to per-
form well on SRL, with two notable exceptions:
Qwen2.5 performed the worst on SPRL while hav-
ing the highest SRL accuracy out of all the other
small LMs. On the other hand, Llama 3.2 (3b)
exhibited competitive SPRL performance while
lagging behind in SRL.

Interestingly, models tend to perform better on
SPR2, opposite the trend in previous work, which
has been explained by the SPR2 training set con-
taining (1) less data than SPR1 or (2) more complex

predicates and arguments. That zero-shot prompt-
ing methods yield better results on SPR2 than SPR1
seem to confirm that (1) was the case. In general,
all zero-shot prompts we tested underperformed
previous work, suggesting that fine-tuning or few-
shot prompting would be a more fruitful method
for utilizing LLMs for this task.

5.1 The effects of SPRL context on SRL

We plot the differences in SRL accuracy with 95%
confidence intervals in Figures 2 (SPR1) and 4
(Ontonotes) for GPT-4o. These results correspond
to the more detailed GPT-4o results in Tables 3 and
4. For the GPT-4o experiments on Ontonotes, a Mc-
Nemar’s test (p < 0.05) indicated a significant dif-
ference between the SRL-alone vs. SPRL-context
prompt variants for all ARG0, ARG1, and ARG2
responses. The figures show that SPRL context
mostly has a negative effect of SRL accuracy for
GPT-4o, regardless of whether the SPRL context is
in the form of gold labels (in the case of One-arg)
or explicit instructions to generate SPRL output
synchronously with SRL output (All-args). We ad-
ditionally plot the differences in SRL accuracy with
95% confidence intervals for the smaller LMs that
surpass the random baseline in Figure 3. We ob-
serve that the smaller LMs can benefit from SPRL
context, but not consistently across models. In fact,
among those that surpass the random baseline for
SRL accuracy, only the Llama 3.1-based models
(Llama 3.1 and Tulu 3) saw an unequivocal benefit
from SPRL context. For those two models, we do
see that eliciting the fuller sets of properties (SPR1
or SPR1∩SPR2) tends to result in a bigger boost.
Evaluating only well-formatted responses. A
possible explanation for a drop in performance
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Model SPRL Context Acc. (%)
Random Baseline none 36.91

Llama 3.2 (3b) (I) none 39.18
instigate,chg-loc 41.18 (+2.0)

volition-chg-state 37.76 (−1.42)

SPR1∩ SPR2 41.84 (+2.66)

SPR1 41.37 (+2.19)

Pythia (6.9b) none 15.56
instigate,chg-loc 16.7 (+1.14)

volition-chg-state 11.67 (−3.89)

SPR1∩ SPR2 12.71 (−2.85)

SPR1 14.71 (−0.85)

OLMo (7b) (I) none 45.07
instigate,chg-loc 42.69 (−2.38)

volition-chg-state 45.83 (+0.76)

SPR1∩ SPR2 51.04 (+5.97)

SPR1 47.91 (+2.84)

Llama 2 (7b) none 25.33
instigate,chg-loc 33.87 (+8.54)

volition-chg-state 36.53 (+11.2)

SPR1∩ SPR2 39.56 (+14.23)

SPR1 37.57 (+12.24)

OLMo 2 (7b) none 54.08
instigate,chg-loc 54.55 (+0.47)

volition-chg-state 51.23 (−2.85)

SPR1∩ SPR2 50.57 (−3.51)

SPR1 48.67 (−5.41)

OLMo 2 (7b) (I) none 53.23
instigate,chg-loc 47.91 (−5.32)

volition-chg-state 47.63 (−5.6)

SPR1∩ SPR2 48.39 (−4.84)

SPR1 46.49 (−6.74)

Qwen2.5 (7b) (I) none 61.01
instigate,chg-loc 58.06 (−2.95)

volition-chg-state 57.5 (−3.51)

SPR1∩ SPR2 54.93 (−6.08)

SPR1 54.46 (−6.55)

Llama 3.1 (8b) (I) none 51.23
instigate,chg-loc 53.42 (+2.19)

volition-chg-state 57.21 (+5.98)

SPR1∩ SPR2 57.31 (+6.08)

SPR1 55.5 (+4.27)

Tulu 3 (8b) none 59.3
instigate,chg-loc 61.57 (+2.27)

volition-chg-state 62.9 (+3.6)

SPR1∩ SPR2 63.09 (+3.79)

SPR1 63.66 (+4.36)

GPT-4o none 87.0
instigate,chg-loc 87.67 (+0.67)

volition,chg-state 85.2 (−1.8)

SPR1∩ SPR2 86.05 (−0.95)

Table 3: Effect of SPRL context on SRL accuracy across
several different models on SPR1 (n = 1054 predicate-
argument pairs) on the One-arg prompt variant. (I)
indicates instruct-tuned.

when eliciting SPRL is the higher likelihood for
the model to output a badly-formatted JSON string,

due to an increased number of JSON key-value
pairs the model must produce. Automatic evalua-
tion would not capture the knowledge in a badly-
formatted string. In qualitative analysis, we saw
some instances of the model exhibiting correct
judgment, but making a formatting error, and thus,
incurring a penalty. We take a subset of responses
that are well-formatted and evaluate only on those
(Table 11a). However, even when evaluating on
only well-formatted responses, GPT-4o mostly per-
forms worse when asked to elicit SPRL. Interest-
ingly, that is mostly true for Llama-3.2 (3b), except
for ARG0, in which the SPRL-included prompts
always perform better.
Within-model SRL-SPRL agreement. Does an
LM’s SRL output align with its SPRL output? That
is, if an LM outputs a proto-agent SPR label, what
is the probability that it concurrently outputs a
proto-agent SRL label? Our findings suggest that a
model’s semantic role labeling decisions are prin-
cipled on Dowty’s proto-roles. See Table 1, which
shows the likelihood of an SPRL prediction to co-
occur with an SRL prediction. For example, the
leftmost cell of the top table indicates that 90.5%
of all arguments labeled True for instigation were
also labeled ARG0, while only 6% of arguments la-
beled True for instigation were labeled as an ARG1.
We observe the tendency of a positive response for
a proto-agent property to co-occur with an ARG0
response, for a negative response for a proto-agent
property to co-occur with an ARG1 response, and
vice-versa for proto-patient properties (albeit with
a weaker effect), suggesting the model encodes
an event hierarchy similar to what is theorized in
linguistics.4

We also observe what seems to be a very faint but
similar effect even in the smallest LM prompted,
Llama 3.2 (3b) (Table 9). Among the arguments it
assigned numbered roles, Llama 3.2 (3b) shows a
small preference for matching proto-agent proper-
ties with ARG0. (The effect all but disappears for
proto-patient properties, which are classified at a
much lower F1 across models.)
Explaining SRL errors with SPRL errors? We
hypothesized that eliciting SPRL with SRL would
help us to understand why a model gets an SRL
example wrong. Could a concurrent error in SPRL
help us pinpoint the precise dimension of the se-
mantics that led a model to produce an SRL error?

4We also observe, like Reisinger et al. (2015), that Dowty’s
movement (here, change of location) property does not tend to
correlate with ARG0.
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GPT-4o Accuracy (% correct)
ARG0 ARG1 ARG2 ARG3 ARG4 ARG5 All core roles

Prompt template n = 13754 n = 22036 n = 7959 n = 451 n = 398 n = 11 n = 44609

One arg per prompt 78.94 93.14 89.33 74.72 95.98 100.0 87.93
+instigate,chg-loc 77.88 (−1.06) 93.41 (+0.27) 85.09 (−4.24) 74.5 (−0.22) 95.98 (+0.0) 100.0 (+0.0) 86.97 (−0.96)

+volition,chg-state 76.39 (−2.55) 93.61 (+0.47) 81.4 (−7.93) 74.28 (−0.44) 95.48 (−0.5) 90.91 (−9.09) 85.94 (−1.99)

+SPR1∩ SPR2 76.57 (−2.37) 94.73 (+1.59) 79.23 (−10.1) 74.28 (−0.44) 95.23 (−0.75) 90.91 (−9.09) 86.16 (−1.77)

All args per prompt 95.04 94.4 89.67 74.28 94.97 90.91 93.55
+instigate,chg-loc 95.32 (+0.28) 91.01 (−3.39) 82.17 (−7.5) 77.16 (+2.88) 94.22 (−0.75) 90.91 (+0.0) 90.65 (−2.9)

+volition,chg-state 94.69 (−0.35) 89.48 (−4.92) 78.18 (−11.49) 78.49 (+4.21) 94.22 (−0.75) 90.91 (+0.0) 89.0 (−4.55)

+SPR1∩ SPR2 94.73 (−0.31) 92.14 (−2.26) 84.62 (−5.05) 78.94 (+4.66) 94.72 (−0.25) 81.82 (−9.09) 91.48 (−2.07)

+SPR1∩ SPR2, allowing N/A 95.0 (−0.04) 90.83 (−3.57) 81.28 (−8.29) 75.61 (−1.55) 93.72 (−1.25) 90.91 (+0.0) 90.28 (−3.27)

Pipeline (oracle) 94.44 95.97 89.57 77.16 95.73 72.73 94.16
+instigate,chg-loc 93.78 (−0.66) 96.13 (+0.16) 86.74 (−2.83) 78.71 (+1.55) 93.47 (−2.26) 90.91 (+18.18) 93.53 (−0.63)

+volition,chg-state 93.31 (−1.13) 96.28 (+0.31) 86.77 (−2.8) 76.5 (−0.66) 95.48 (−0.25) 72.73 (+0.0) 93.45 (−0.71)

+SPR1∩ SPR2 93.31 (−1.13) 96.28 (+0.31) 84.02 (−5.55) 78.27 (+1.11) 91.96 (−3.77) 81.82 (+9.09) 92.95 (−1.21)

Table 4: Effect of eliciting SPRL along with SRL across prompt variants on the Ontonotes dataset. Columns are
subsets of the dataset, stratified by the gold argument label. Results are reported as accuracy, i.e., the number of
times the model correctly labels an ARG0 as ARG0, divided by the total number of ARG0s in the dataset.

We observe a surprising lack of error agreement:
only 56% of all SRL errors co-occur with any SPRL
error at all (Table 5a). The majority of SRL errors
cannot be explained by an error in a majority of the
SPRL properties. Notably, the property with the
highest percentage of co-occurring error, manipu-
lated by another, can potentially be explained by
idiosyncratic annotation of that property in SPR1.5

While SPRL errors do not overwhelmingly co-
occur with SRL errors, SPRL annotations that are
marked as not applicable to the sentence do over-
whelmingly co-occur: (Table 5b). For args 3-5,
this correlation is understandable: 12 out of 12
of those arguments are prepositional phrases (e.g.
“The difference in yield ... widened [to more than
5.5 percentage points]ARG4”) for which none of
the definitions in Table 7 make sense. Similarly,
the ARG2 errors are also often prepositions, ad-
verbs, and numerical values or proportions (“ ...
retail sales grew [0.5%]ARG2”). Among all errors,
37% of the arguments were prepositional or ad-
verbial phrases. Of all the arguments with a gold
patient/ARG1 role that GPT-4o missed, 50% were
the subject of the sentence (normally where an
agent would be).

5.2 Qualitative error analysis

While SPRL context does not overwhelmingly help
the model in SRL classification, it allows a finer-
grained qualitative error analysis on the model’s
semantic reasoning. We identify cases in which,
even though the model’s SRL output is in error, its

5See White et al. (2016) for a discussion of the idiosyn-
crasy of the SPR1 annotator’s manipulated by another re-
sponses.

SPRL output is consistent with its SRL decision,
and can help explain the SRL decision with greater
clarity.

(1) [They]ARG1 would break, the wine would
spill out, and the wineskins would be ru-
ined.

(1-GPT) [They]ARG0′ would break, ...

Sentence 1 contains an intransitive (unac-
cusative) alternation of the verb break: in this in-
stance of the verb, there is no agent. In all prompt
variants without SPRL context, GPT missed the
syntactic cues indicating the lack of an agent, and it
mistakenly classified the patient as an agent. Only
prompts with SPRL context correctly classified
“They” as the patient of the break verb.

(2) At Jefferies’ trading room on Finsbury
Circus, a stately circle at the edge
of the financial district, [desktop com-
puter screens]ARG2 displayed the London
market’s major barometer–the Financial
Times-Stock Exchange 100 Share Index.

(2-GPT) ... [desktop computer screens]ARG0′ dis-
played the London market’s major barom-
eter...

In Sentence 2, ARG2 was wrongly classified in
every single prompt variant, regardless of the con-
text. Mostly, the model misclassified it as ARG0,
the agent of the display action, even in variants
where the model responds False for several proto-
agent properties (instigation, volition, awareness,
sentience) and True for several proto-patient prop-
erties (stationary, manipulated by another). One
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SRL errors
SPRL errors n = 100

instigation 7.0% (7)
volition 3.0% (3)
awareness 5.0% (5)
sentient 3.0% (3)
change of location 4.0% (4)
exists as physical 4.0% (4)
existed before 18.0% (18)
existed during 2.0% (2)
existed after 11.0% (11)
changes poss 2.0% (2)
change of state 17.0% (17)
stationary 13.0% (13)
location of event 7.0% (7)
makes phys contact 6.0% (6)
manip by another 31.0% (31)
pred changed arg 13.0% (13)
Any of the above 56.0% (56)

(a) % of SRL errors that co-occur
with SPRL errors.

A
nn

ot
at

io
n

=
N

/A
:

GPT-4o Error on:
ARG0 ARG1 ARG2 ARG3-5 All core roles

SPRL Property n = 24 n = 40 n = 24 n = 12 n = 100

instigation 25.0% (6) 67.5% (27) 75.0% (18) 100.0% (12) 63.0% (63)
volition 20.83% (5) 70.0% (28) 95.83% (23) 100.0% (12) 68.0% (68)
awareness 20.83% (5) 62.5% (25) 95.83% (23) 100.0% (12) 65.0% (65)
sentient 58.33% (14) 77.5% (31) 100.0% (24) 100.0% (12) 81.0% (81)
change of location 54.17% (13) 67.5% (27) 91.67% (22) 100.0% (12) 74.0% (74)
exists as physical 45.83% (11) 62.5% (25) 87.5% (21) 100.0% (12) 69.0% (69)
existed before 0.0% (0) 7.5% (3) 37.5% (9) 66.67% (8) 20.0% (20)
existed during 0.0% (0) 7.5% (3) 33.33% (8) 66.67% (8) 19.0% (19)
existed after 0.0% (0) 15.0% (6) 54.17% (13) 66.67% (8) 27.0% (27)
changes possession 58.33% (14) 82.5% (33) 91.67% (22) 91.67% (11) 80.0% (80)
change of state 0.0% (0) 12.5% (5) 50.0% (12) 100.0% (12) 29.0% (29)
stationary 54.17% (13) 67.5% (27) 95.83% (23) 100.0% (12) 75.0% (75)
location of event 79.17% (19) 80.0% (32) 100.0% (24) 100.0% (12) 87.0% (87)
makes phys contact 50.0% (12) 65.0% (26) 95.83% (23) 100.0% (12) 73.0% (73)
manip by another 70.83% (17) 42.5% (17) 20.83% (5) 25.0% (3) 42.0% (42)
pred changed arg 8.33% (2) 27.5% (11) 75.0% (18) 91.67% (11) 42.0% (42)
Any of the above 100.0% (24) 100.0% (40) 100.0% (24) 100.0% (12) 100.0% (100)

(b) % of errors that co-occur with a not applicable property.

Table 5: Co-occurrence of GPT-4o’s SRL errors with (5a) SPRL errors elicited in the same prompt, and with (5b)
arguments that have been annotated as not applicable for that SPRL property. From the All-args prompt variant on
SPR1, with SPRL not evaluated when the annotation is “n/a.”.

possible explanation can still be provided by proto-
role properties: several models responded False
for the location of event proto-role property, and
the PropBank description for ARG2 shown to the
model is simply “location.”

(3) [Richard Chamberlain]ARG0 dresses as a
“Mainland haole,” tucking in a Hawaiian
shirt and rolling up its long sleeves.

(3-GPT) [Richard Chamberlain]ARG1′ dresses as a
“Mainland haole,” ...

Sentence 3 gives us another example in which
proto-role properties seem to have helped GPT
make an SRL decision: in the prompt variants with-
out SPRL, the model misclassified ARG0 as ARG1
(proto-patient, the one wearing clothes) in the re-
flexive “dresses”. However, in the variants in which
SPRL were elicited, the model correctly classified
ARG0 as well as assigning True to strongly proto-
agent properties instigation, volition, awareness,
and sentience, suggesting that the SPRL context
encouraged the model to reason more deeply over
the event roles.

6 Conclusion and future work

Our study investigated how LLMs reason about
agency and patiency by examining the interplay
between semantic proto-role labeling (SPRL) and
semantic role labeling (SRL). We found that includ-
ing SPRL context in prompts does not improve SRL

accuracy, and in some cases even degrades perfor-
mance. However, our experiments revealed a con-
sistency between SPRL and SRL LLM output that
mirrors Dowty’s proto-role theory. In particular, we
tested two models, GPT-4o and Llama 3 (3b), on
synchronous SRL and SPRL judgments, and found
that they both tend to assign proto-agent properties
(e.g., instigation, volition) alongside ARG0 labels,
suggesting that the latent event role encodings of
these models align with linguistic theory.

Additionally, our experiments prompting GPT-
4o through a full SRL-SPRL pipeline provide fur-
ther evidence that LLMs are not yet capable of
complex, multi-step semantic reasoning needed to
annotate sentences for rich event structure (Ettinger
et al., 2023; Bonn et al., 2024), suggesting that
LLMs deployed in real-world settings may lack the
advanced situation-modeling capabilities necessary
to make complex decisions.

However, our results show that LLMs do encode
something like a latent event role hierarchy, and we
suspect that there are better ways to coax the mod-
els to employ it. Future research should explore,
for example, few-shot learning or fine-tuning strate-
gies to better harness LLMs’ event role knowledge.
Such improvements could not only improve se-
mantic role labeling accuracy, but also deepen our
understanding of how LLMs model event structure:
a necessary component in developing robust AI
systems with transparent situation-modeling and
decision-making capabilities.
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Limitations

Our study was limited in its focus on English.
The models and data evaluated are both either all-
English, or highly English-centric, and as such,
our claims cannot extend across languages. The
annotation schemes of the datasets also may not
generalize well to other domains, limiting the gen-
eralizability of our findings. Fruitful future work
could focus its efforts on evaluating multi-lingual
LLMs on verb lexica in different languages.

Because small changes in wording or formatting
could lead to different performance outcomes, our
results are also influenced by the specific prompt
formulations we used. While we attempted to cap-
ture a broad swath of prompts, much more exper-
imentation needs to be done to understand what
prompt-based methods truly can reveal regarding
event role knowledge in LLMs.

We also recognize the possibility of data contam-
ination (i.e. that the test sets we evaluated on were
included as training data for an LLM), potentially
inflating performance due to memorization rather
than genuine semantic reasoning. We attempted to
mitigate this risk by including open-data models
in our analysis, but we cannot entirely rule out the
possibility of contamination in models like GPT-
4o. Nevertheless, we included GPT-4o and other
closed-data models because of their ubiquity in
real-world applications. Future work should con-
sider evaluating on entirely novel data to remove
this risk.

Ethical Considerations

Finally, we want to emphasize the risk of overesti-
mation of LLM capabilities. If those interested in
deploying LLMs interpret our results as evidence
that LLMs truly “understand” agency or moral re-
sponsibility, they may use these models to support
or automate decisions that have significant ethical
implications. Such misuse could exacerbate issues
like bias in real-world settings. We reiterate that
our results (especially in the Pipeline setting) sup-
port the finding that language models are not yet
capable of complex semantic analysis.
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A Experiment details

This section provides precise details for each
prompting experiment, exact model names, and
specific parameters used when prompts were run.
Exact model configurations, prompts, and output
provided upon request, and samples can be found
in the released code used for the experiments.

A.1 Prompt variants
See Table 6 for examples of each prompt variant.

Pipeline: The model is prompted to provide out-
put for every single component in a six-component
SRL pipeline: predicate span identification, pred-
icate sense disambiguation, argument span identi-
fication, (optionally) semantic proto-role labeling,
and semantic role labeling. Each component is
separately processed via a prompt which includes,
as context, the prompt and output for the previous
component. At the end of the pipeline, the model
has access to the full pipeline starting from the raw
sentence, including all of the previous predicate
span, argument span, and SPRL output, but only
has to label one argument per prompt. See fur-
ther details on this prompt variant in A.2 and an
example in Figure 7.

All-args-per-prompt: The model is prompted to
provide a JSON with the SPRL and SRL output for
all constituents of a single predicate. The predicate
spans, predicate sense, argument spans, and roleset
information are all provided to the model by an
oracle: its only task is to select the correct semantic
role label (and/or semantic proto-role label). A
sample prompt for this variant can be found in
Figure 6. This prompt will allow us to study the
effect of eliciting SPRL context from the model
itself, without providing gold SPR labels.

One-arg-per-prompt: To evaluate the model on
a prompt that requires a simpler output format than
a JSON-formatted string, this prompt only elicits
the semantic role label for a single argument. SPRL

is elicited in a separate prompt from SRL, and, in
settings where SPRL is included, it is presented as
optional but helpful context. See Figure 5 for an
example.

We additionally provide a random baseline for
the One-arg variant, in which the semantic role
label is randomly chosen from the set of all num-
bered argument labels in the training set, weighted
by the proportion each is found in the training set
(so that the random choices are proportional with
the labels in the training set).

SPRL-annotate: We evaluate all models on a
simple true/false prompt, designed to be simi-
lar in format to the questions posed to the SPR1
and SPR2 annotators (Table 7). The models are
only prompted on one argument-predicate-property
triplet at a time, as in the human annotation proto-
col. Figure 8 shows an example of this prompt.

Prompt name Prompt example
One-arg-per-prompt Figure 5
All-args-per-prompt Figure 6
Pipeline Figure 7
SPRL-annotate Figure 8

Table 6: Prompt index

A.2 Components of SRL pipeline
The pipeline prompts are separated into six separate
queries to the model, listed below. Each query’s
output is then chained to the beginning of the next
prompt as additional context for the model. In the
Pipeline (oracle) setting, items 1-4 are not pro-
cessed through the model. Instead, we process
items 1-4 with gold data as an oracle, and chain the
prompts as in the non-oracle setting.

1. Predicate span retrieval
Input: The dog barked.

Output: The dog <PRED>barked</PRED>.

2. Roleset identification given predicate span
from predicate output
Input: The dog <PRED>barked</PRED>. +
a list of rolesets for lemma “bark” and their
descriptions
Output: bark.01

3. Argument span retrieval given predicate span
from predicate output
Input: The dog <PRED>barked</PRED>.

Output: <ARG>The dog</ARG> <PRED>
barked</PRED>.
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4. Semantic proto-role labeling given argument
and predicate span from argument output

Input: <ARG>The dog</ARG> <PRED>
barked</PRED>. + a list of semantic proto-
role properties and their descriptions

Output: A JSON string with the listed se-
mantic proto-role properties as keys and
booleans as values

5. Semantic role labeling given a roleset, argu-
ment span, and predicate span from argu-
ment output

Input: <ARG>The dog</ARG> <PRED>
barked</PRED>. + a list of roles and role
descriptions for bark.01

Output: ARG0

6. Semantic role labeling given SPRL, roleset,
argument span, and predicate span from
SPRL output

Input: <ARG>The dog</ARG> <PRED>
barked</PRED>. + a list of roles and role
descriptions for bark.01 + a JSON string
with semantic proto-role properties as keys
and booleans as values

Output: ARG0

A.3 Prompt context

SPRL context: SPRL context is provided to the
model in various ways, depending on the prompt
template: in Pipeline, the model has access to
its previous predictions; in One-arg, the model
is given SPRL context from gold labels; and in
All-args, the model is given instructions to produce
SPRL output concurrently with SRL output. In
every prompt variant, we ablate SPRL context to
ascertain the effect of the context on the model’s
decision-making.

Oracle predicate spans, predicate senses, and ar-
gument spans: All prompt template variants pro-
vide the model with oracle predicate spans, pred-
icate senses, and argument spans except Pipeline.
And even in Pipeline, the model has access to all of
its previous predicate span, predicate sense, and ar-
gument span predictions at the end of the pipeline,
when the model is finally prompted to make its
SRL prediction. None of our experiments prompt
the model to make concurrent predicate span, pred-
icate sense, and argument span predictions along
with SPRL and SRL predictions.

Allowing “N/A” as a SPRL response: A poten-
tial weakness of SPRL modeling is the handling of
not applicable annotations. In most previous work,
properties annotated not applicable are converted
to False in the data, and systems are evaluated on
their abilities to classify those instances as False.
For some experiments in the All-args prompt vari-
ant, we introduce an additional variant in which the
model is explicitly instructed to mark properties as
“n/a” if that property doesn’t apply to the argument.
And, while SPRL performance is not our main con-
cern, when we evaluate, we skip over properties
that are marked “n/a” in the annotations.

With PropBank annotation guidelines: An ad-
ditional concern in evaluating the model on its abil-
ity to produce PropBank-style SRL is the lack of
detailed, PropBank-specific instruction that a hu-
man annotator would have access to, especially
because the information found in the PropBank
rolesets presented to the model can appear cryptic
to a non-expert. While we think it is likely that
GPT-4o’s training data included public resources
such as the PropBank annotation guidelines, we
include in our experiments a variant on the All-
args template that includes a relevant excerpt of
the PropBank annotation guidelines6 as a system
prompt. Specifically, we include Section 1.1, up
to and including Table 1.1, and Section 1.3.1, on
choosing ARG0 vs. ARG1.

A.4 Parameters and model details

We use gpt-4o-2024-05-13 for all GPT experi-
ments. For the rest of the experiments, we access
models through HuggingFace, using the following
model codes:

• meta-llama/Llama-2-7b-hf-Instruct

• meta-llama/Llama-2-7b-hf

• meta-llama/Llama-3.1-8B-Instruct

• meta-llama/Llama-3.2-3B-Instruct

• allenai/OLMo-2-1124-7B-Instruct

• allenai/OLMo-2-1124-7B

• allenai/OLMo-7b-Instruct-hf

• EleutherAI/pythia-6.9b

• Qwen/Qwen2.5-7B-Instruct

• allenai/Llama-3.1-Tulu-3-8B
6https://github.com/propbank/propbank-documentation
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We instantiate each model according to their
default configurations—the only parameter we
change is the max_length on generation, which
we set to model_max_position_embeddings + 4.
Runtimes varied between experiments (number of
parameters, prompt length, and number of samples
in the datasets all affecting the runtime), but the
experiments on the models with the most parame-
ters and the largest datasets took ∼20 GPU hours
to run on a single NVIDIA TITAN XP or NVIDIA
TITAN RTX and the experiments on the models
with the fewest parameters took as little as ∼20
minutes to run. Exact runtimes per experiment can
be provided on request.

B Pipeline performance

The Pipeline prompt variant exhibited perhaps
shockingly low accuracy because of the strict na-
ture of the evaluation metrics for the span retrieval
components within the SRL pipeline. A seman-
tic role label is only counted correct if the model
is able to achieve an exact match on every single
component: retrieval of the exact predicate span,
classification of the predicate sense, and retrieval of
the exact argument span, as well as the correct role
label. Below is the gold span annotation (for the ar-
gument span retrieval step, before being prompted
for the role label) for a test sentence:

(4) To express its determination, [the Chinese
securities regulatory department]ARG

compares [this stock reform]ARG [to a
die that has been cast]ARG.

Compare the gold annotation to the output from
GPT-4o:

(4-GPT) [To express its determination, the Chinese
securities regulatory department]ARG′

compares [this stock reform]ARG to [a
die that has been cast]ARG′ .

Out of the three arguments in the gold annota-
tion, GPT only successfully produced the exact
span for one of them—a 33% accuracy. Table 8
provides a fine-grained breakdown of the accuracy
of the GPT-4o output on the Pipeline prompt vari-
ant, contextualizing the very low accuracy shown
in Table 4.

Because the model was only able to correctly re-
trieve 26% of the argument spans in the Ontonotes
dataset, it did not even see the other 74% and was
automatically penalized for them, which is why

the accuracy was so low. Although these exper-
iments show a very low performance overall in
the span retrieval tasks, we suspect that GPT-4o is
capable of better performance. For instance, try-
ing few-shot approaches, changing the potentially-
confusing HTML-style <PRED> and <ARG> tags,
or trying a different style of prompt completely
could yield better results.

C Full results

We provide results on all model runs, broken down
per argument, in Table 10 for GPT-4o and Llama-
3.2 (3b).

C.1 Non-compliance with formatting
requirements

We perform some evaluations in order to disen-
tangle the effects of non-compliance with the for-
matting requirements specified by the prompt (i.e.,
a model failing to correctly format its response).
For the All-args prompt template, see Table 11
shows accuracy on only parsable output. For the 3b-
parameter Llama-3.2 output, we additionally per-
form “fuzzy role matching,” which allows “agent”
and “patient” as correct responses for ARG0 and
ARG1, respectively, because of the large number
of responses that used those words instead of the
required ARG0 and/or ARG1. As such, we are
able to evaluate the actual knowledge within Llama
without giving it undue penalty for minor format-
ting mistakes. We see that the model performs
far better under the fuzzy role matching evaluation
method.

D Licenses

All data used for prompting and evaluation is under
a CC BY-SA 4.0 license. All work was consistent
with the intended use of data and models, which
have the following licenses and terms: Apache 2.0
for Qwen2.5, OLMo 1 and 2, and Pythia. Llama
Community License for Llama 2 and 3 (details
here). OpenAI terms of use (here) for GPT-4o.
Tulu 3 is subject to the licenses of the models used
to train it: Llama Community License, Gemma
Terms of Use, and Qwen License Agreement (de-
tails here).
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Prompt

Identify the Semantic Role for the predicate <PRED>put</PRED> and arg 
<ARG>We</ARG>. 

Below are the Semantic Roles for <PRED>put</PRED>: 
ARG0: putter. 
ARG1: thing put. 
ARG2: attribute of arg1. 
Respond with only the role label, and nothing else, like so: 
Example: <ARG>The dog</ARG> <PRED>barked</PRED>. 
Response: ARG0 

Text for labeling: 

<ARG>We</ARG> <PRED>put</PRED> some orders together . 

Response:

Response ARG0

(a) SRL only, one-arg prompt variant.

Prompt

Identify the Semantic Role for the predicate <PRED>put</PRED> and arg <ARG>We</ARG>. 

Consider the fact that <ARG>We</ARG> has the following properties in making your 
decision: 

instigation: ARG caused PRED to happen. 
change_of_location: ARG changed location during PRED. 

Below are the Semantic Roles for <PRED>put</PRED>: 
ARG0: putter. 
ARG1: thing put. 
ARG2: attribute of arg1. 
Respond with only the role label, and nothing else, like so: 
Example: <ARG>The dog</ARG> <PRED>barked</PRED>. 
Response: ARG0 

Text for labeling: 

<ARG>We</ARG> <PRED>put</PRED> some orders together .

Response ARG0

(b) SRL with SPRL context, one-arg prompt variant.

Figure 5: One-arg-per-prompt template variant. This prompt asks only for the model to pick a semantic role out of
a list of semantic roles and provides the SPRL context from the model’s silver predictions, but not in a pipeline
context. It only asks for one argument at a time.
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Prompt

Identify the Semantic Roles for the arg(s) <ARG>We</ARG>, <ARG>some orders</ARG>, <ARG>together</ARG> with respect to the predicate 
<PRED>put</PRED> in the following sentence:  

<ARG>We</ARG> <PRED>put</PRED> <ARG>some orders</ARG> <ARG>together</ARG> . 

1. Analyze each Argument for Semantic Proto-Role Properties. Below are the properties: 
volition: ARG chose to be involved in PRED. true/false 
change_of_location: ARG changed location during PRED. true/false 

2. Label each Argument for its Semantic Role. Below are the Semantic Roles for <PRED>put</PRED>: 
ARG0: putter. 
ARG1: thing put. 
ARG2: attribute of arg1. 

JSON Format: 
{ 
    "text": "We put some orders together .", 
    "predicates": { 
        "put": { 
            "start_char": 3, 
            "arguments": { 
                "We": { 
                    "start_char": 0, 
                    "volition": true/false, 
                    "change_of_location": true/false, 
                    "role": "Identified Semantic Role Label for <ARG>We</ARG>" 
                     
                },"some orders": { 
                    "start_char": 7, 
                    "volition": true/false, 
                    "change_of_location": true/false, 
                    "role": "Identified Semantic Role Label for <ARG>some orders</ARG>" 
                     
                },"together": { 
                    "start_char": 19, 
                    "volition": true/false, 
                    "change_of_location": true/false, 
                    "role": "Identified Semantic Role Label for <ARG>together</ARG>" 
                     
                } 
            } 
        } 

    } 
} 

Original text for labeling: 

We put some orders together . 

Output only the JSON.

Response

```json{"text": “...”, “predicates”: {“put”: {“start_char”: 3, “arguments”: { 
  “volition”: true, 
  “change_of_location": false, 
  “role”: “ARG0” ...  
}}```

(a) All-args prompt variant, eliciting both SRL and SPRL at the same time.

Prompt

Identify the Semantic Roles for the arg(s) <ARG>We</ARG>, <ARG>some orders</ARG>, <ARG>together</ARG> with respect to 
the predicate <PRED>put</PRED> in the following sentence:  

<ARG>We</ARG> <PRED>put</PRED> <ARG>some orders</ARG> <ARG>together</ARG> . 

Below are the possible Semantic Roles for <PRED>put</PRED>: 
ARG0: putter. 
ARG1: thing put. 
ARG2: attribute of arg1. 

JSON Format: 
{ 
    "text": "We put some orders together .", 
    "predicates": { 
        "put": { 
            "start_char": 3, 
            "arguments": { 
                "We": { 
                    "start_char": 0, 
                    "role": "Identified Semantic Role Label for <ARG>We</ARG>" 
                },"some orders": { 
                    "start_char": 7, 
                    "role": "Identified Semantic Role Label for <ARG>some orders</ARG>" 
                },"together": { 
                    "start_char": 19, 
                    "role": "Identified Semantic Role Label for <ARG>together</ARG>" 
                } 
            } 
        } 
    } 
} 

Original text for labeling: 

We put some orders together . 

Output only the JSON.

Response

```json{“text": “We put some orders together .”, 
        “predicates”: { 
           “start_char”: 3, ...}

(b) All-args prompt variant, eliciting only SRL.

Figure 6: All-args-per-prompt template variants. This prompt asks the model to pick a semantic role concurrently
with semantic proto-role labeling properties, and output them all in JSON format.
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Prompt

Identify predicates with <PRED></PRED> tags on the original sentence. 

Format the response inline with the original sentence, and only respond with the labeled sentence, like so: 
Example: The dog barked. 
Response: The dog <PRED>barked</PRED>. 

Text for labeling: 

MANY AFFLUENT people place personal success and money above family . 

Response:

Response MANY AFFLUENT people <PRED>place</PRED> personal success and money above family.

Prompt

Identify predicates with <PRED></PRED> tags on the original sentence. 

Format the response inline with the original sentence, and only respond with the labeled sentence, like so: 
Example: The dog barked. 
Response: The dog <PRED>barked</PRED>. 

Text for labeling: 

MANY AFFLUENT people place personal success and money above family . 

Response: 
MANY AFFLUENT people <PRED>place</PRED> personal success and money above family. 
Identify arguments for the predicate <PRED>place</PRED> with <ARG></ARG> tags on the original sentence. 

Format the response inline with the original sentence, and only respond with the labeled sentence, like so: 
Example: The dog <PRED>barked</PRED>. 
Response: <ARG>The dog</ARG> <PRED>barked</PRED>. 

Text for labeling: 

MANY AFFLUENT people <PRED>place</PRED> personal success and money above family. 

Response:

Response <ARG>MANY AFFLUENT people</ARG> <PRED>place</PRED> <ARG>personal success and money</ARG> above family.

Previous prompt + response + new prompt

(a) Predicate and argument prompts.

Prompt

(previous text omitted)...</PRED> personal success and money above family. 

Response: 
<ARG>MANY AFFLUENT people</ARG> <PRED>place</PRED> <ARG>personal success and money</ARG> above family. 

Identify SPRL properties for the predicate <PRED>place</PRED> and arg <ARG>MANY AFFLUENT people</ARG>. 

Give judgements for each SPRL property below: 
volition: ARG chose to be involved in PRED. 
change_of_state: ARG was altered or somehow changed during or by the end of PRED. 

JSON Format: 
{ 
     
    "MANY AFFLUENT people": { 
        "volition": true/false, 
        "change_of_state": true/false 
             
    } 
} 

Text for labeling: 

<ARG>MANY AFFLUENT people</ARG> <PRED>place</PRED> personal success and money above family. 

Output only the JSON. 

Response:

Response

```json{"MANY AFFLUENT people": { 
  "volition": true, 
  "change_of_state": false 
}}```

Prompt

(previous text omitted)...Response: 
```json{ 
    "MANY AFFLUENT people": { 
        "volition": true, 
        "change_of_state": false 
    }}``` 

Identify the Semantic Role for the predicate <PRED>place</PRED> and arg <ARG>MANY 
AFFLUENT people</ARG>. 

Below are the Semantic Roles for <PRED>place</PRED>: 
ARG0: putter. 
ARG1: thing put. 
ARG2: where put. 
Respond with only the role label, and nothing else, like so: 
Example: <ARG>The dog</ARG> <PRED>barked</PRED>. 
Response: ARG0 

Text for labeling: 

<ARG>MANY AFFLUENT people</ARG> <PRED>place</PRED> personal success and money above 
family. 

Response:

Response ARG0

Previous 
prompt + 

response + 
new prompt

(b) SPRL and SRL prompts.

Figure 7: Pipeline prompts. The above represents a single SRL instance from start (predicate ID) to end (SRL). In
the SRL-only setting, the SPRL step is skipped completely so that the prompt gives no SPRL-related context. In the
Pipeline (oracle) setting, the predicate, roleset, and argument output is taken from the gold data as an oracle, but the
prompt format is the exact same.
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Prompt

TRUE or FALSE: “MANY AFFLUENT people” was altered or somehow changed during 
or by the end of “place” in the following sentence: 

[MANY AFFLUENT people] [place] personal success and money above family . 

Response:

Response FALSE

Figure 8: SPRL-annotate prompt example, designed to be similar to questions posed to annotators in White et al.
(2016).

Role Property Proto-role Definition Dataset
instigation agent Arg caused Pred to happen 1&2

volition agent Arg chose to be involved in Pred 1&2

awareness agent Arg was aware of being involved in Pred 1&2

sentient agent Arg was sentient 1&2

change of location agent Arg changed location during Pred 1&2

exists as physical agent Arg existed as a physical object 1

existed before [depends] Arg existed before Pred began 1&2

existed during [depends] Arg existed during Pred 1&2

existed after [depends] Arg existed after Pred stopped 1&2

created* patient Infer from (–existed before and +existed after) 1&2

destroyed* patient Infer from (+existed before and –existed after) 1&2

change of possession patient Arg changed possession during Pred 1&2

change of state patient Arg was altered or somehow changed during
or by the end of Pred

1&2

stationary patient Arg was stationary during Pred 1

location of event peripheral Arg described the location of Pred 1

makes physical contact agent Arg made physical contact with someone or
something else involved in Pred

1

was used patient Arg was used in carrying out Pred 2

manipulated by another patient Arg was used in carrying out Pred 1

predicate changed argument patient Pred caused a change in Arg 1

was for benefit patient Pred happened for the benefit of Arg 2

partitive patient Only a part of portion of Arg was involved in
Pred

2

change of state continuous patient The change in Arg happened throughout Pred 2

Table 7: Definitions of the proto-role properties used in the original annotations in both Reisinger et al. (2015) and
White et al. (2016). These were included in zero-shot prompts. *Created and destroyed were not labeled directly by
annotators; instead, those labels are inferred from different combinations of the existed [before/during/after] labels.
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GPT-4o Accuracy (% correct)
ARG0 ARG1 ARG2 ARG3 ARG4 ARG5 All core roles

Prompt template n = 13754 n = 22036 n = 7959 n = 451 n = 398 n = 11 n = 44609

Pipeline 31.39 22.41 12.92 8.87 6.78 0.0 23.2
+instigate,chg-loc 33.6 (+2.21) 24.34 (+1.93) 12.94 (+0.02) 9.53 (+0.66) 12.81 (+6.03) 0.0 (+0.0) 24.9 (+1.7)

+volition,chg-state 33.34 (+1.95) 24.4 (+1.99) 13.38 (+0.46) 10.2 (+1.33) 12.56 (+5.78) 0.0 (+0.0) 24.93 (+1.73)

+SPR1∩ SPR2 33.43 (+2.04) 24.46 (+2.05) 12.9 (−0.02) 9.53 (+0.66) 12.56 (+5.78) 0.0 (+0.0) 24.9 (+1.7)

(a) Effect of SPRL on SRL accuracy for GPT-4o on the full SRL-SPRL pipeline, in which the model must predict everything and
is penalized on errors earlier in the pipeline.

# preds or args evaluated Accuracy
Task N ∈ Onto M ∈ GPT-retrieved # correct Full-pipeline (out of N ) Single task (out of M )
Pred. span retrieval 24,167 n/a 14,022 55.72% n/a
Pred. sense disambiguation 24,167 14,022 12,472 49.56% 88.95%
Arg. span retrieval 44,609 26,497 (=1.9 args per pred) 11,809 26.47% 44.60%
SRL 44,609 11,809 10,351 23.20% 96.96%

(b) Fine-grained SRL pipeline results on GPT-4o. The full-pipeline accuracy (what was used in Table 4) shows the score for a
task, penalizing for misses in previous tasks. The single-task accuracy shows the score without penalizing the model for previous
misses; i.e., the model is only scored on the subset of data that it got correct in the previous component of the pipeline.

Table 8: Performance of GPT-4o on the full SRL-SPRL pipeline.

(a) Proto-agent properties
instigated volition aware sentience chg-loc

T F T F T F T F T F
ARG0 32.9 24.4 39.4 21.5 31.9 23.9 50.0 23.7 46.7 25.0
ARG1 2.6 14.9 0.8 16.9 6.9 14.9 0.0 14.2 6.7 13.4
ARG2 0.0 3.3 0.0 3.7 1.7 3.2 0.0 3.1 0.0 2.9

ARG3-5 0.0 1.0 0.0 1.2 0.0 1.1 0.0 1.0 0.0 0.9
other 61.8 52.3 57.5 52.4 51.7 54.1 47.5 54.0 40.0 53.9

(b) Proto-patient properties
chg-poss chg-state created destroyed

T F T F T F T F
ARG0 0.0 25.6 34.1 23.9 33.3 24.5 7.7 26.0
ARG1 0.0 13.1 10.2 13.8 7.6 14.0 23.1 13.0
ARG2 0.0 2.9 1.1 3.2 3.0 2.8 0.0 2.9

ARG3-5 0.0 0.9 0.0 1.1 0.0 1.0 0.0 0.9
other 0.0 53.6 51.1 54.0 47.0 54.5 53.8 53.6

Table 9: % of predicted properties that co-occur with Llama-3.2-3B’s predicted ARGn on SPR1, for the All-args
prompt variant with “n/a” SPRL responses not allowed. Denominator for percentages is the total number of
arguments that property and value were assigned by the model. Columns do not add up to 100 because the model
often outputs an SRL prediction that is not any of the numbered ARGs.
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GPT-4o Accuracy (% correct)
ARG0 ARG1 ARG2 ARG3-5 All core roles

Prompt template n = 411 n = 476 n = 122 n = 45 n = 1054

Model must predict everything and is penalized on errors earlier in the pipeline
Pipeline 29.44 23.95 4.92 2.22 22.96
+instigate,chg-loc 29.2 (−0.24) 24.16 (+0.21) 4.1 (−0.82) 2.22 (+0.0) 22.87 (−0.09)

+instigate,chg-state 29.44 (+0.0) 23.95 (+0.0) 4.1 (−0.82) 2.22 (+0.0) 22.87 (−0.09)

+volition,chg-state 29.44 (+0.0) 24.16 (+0.21) 4.1 (−0.82) 2.22 (+0.0) 22.96 (+0.0)

+volition,chg-loc 29.2 (−0.24) 24.58 (+0.63) 4.92 (+0.0) 2.22 (+0.0) 23.15 (+0.19)

+inst,chg-loc,chg-state 29.2 (−0.24) 24.37 (+0.42) 4.1 (−0.82) 2.22 (+0.0) 22.96 (+0.0)

+SPR1∩ SPR2 29.44 (+0.0) 24.37 (+0.42) 4.92 (+0.0) 2.22 (+0.0) 23.15 (+0.19)

Predicate spans, predicate senses, and argument spans provided
One arg per prompt 79.56 92.44 86.89 97.78 87.0
+instigate,chg-loc * 82.48 (+2.92) 91.18 (−1.26) 87.7 (+0.81) 97.78 (+0.0) 87.67 (+0.67)

+volition,chg-state * 75.67 (−3.89) 93.28 (+0.84) 81.97 (−4.92) 95.56 (−2.22) 85.2 (−1.8)

+SPR1∩ SPR2 * 78.1 (−1.46) 93.07 (+0.63) 81.15 (−5.74) 97.78 (+0.0) 86.05 (−0.95)

+instigate,chg-loc * 84.43 (+4.87) 89.92 (−2.52) 84.43 (−2.46) 95.56 (−2.22) 87.38 (+0.38)

+volition,chg-state * 73.97 (−5.59) 92.86 (+0.42) 81.97 (−4.92) 97.78 (+0.0) 84.44 (−2.56)

+SPR1∩ SPR2 * 76.16 (−3.4) 93.28 (+0.84) 82.79 (−4.1) 95.56 (−2.22) 85.48 (−1.52)

All args per prompt 97.08 94.75 87.7 86.67 94.5
+instigate,chg-loc 97.81 (+0.73) 92.65 (−2.1) 85.25 (−2.45) 82.22 (−4.45) 93.36 (−1.14)

+instigate,chg-state 96.35 (−0.73) 92.02 (−2.73) 83.61 (−4.09) 86.67 (+0.0) 92.5 (−2.0)

+volition,chg-state 97.81 (+0.73) 94.12 (−0.63) 85.25 (−2.45) 84.44 (−2.23) 94.12 (−0.38)

+volition,chg-loc 96.35 (−0.73) 93.07 (−1.68) 89.34 (+1.64) 82.22 (−4.45) 93.45 (−1.05)

+SPR1 94.16 (−2.92) 91.6 (−3.15) 80.33 (−7.37) 73.33 (−13.34) 90.51 (−3.99)

+SPR1, allowing N/A 95.62 (−1.46) 92.44 (−2.31) 84.43 (−3.27) 77.78 (−8.89) 92.13 (−2.37)

All args per prompt w/ PB guidelines 96.84 93.91 81.15 86.67 93.26
+SPR1 95.62 (−1.22) 92.44 (−1.47) 79.51 (−1.64) 73.33 (−13.34) 91.37 (−1.89)

Table 10: Effect of eliciting SPRL along with SRL across prompt variants on SPR1. For the one-arg-per-prompt
template, a gold star (*) indicates the use of gold annotated SPR properties, and a silver star (*) indicates the use of
the model’s own predicted SPR properties. All other settings elicit the model’s own predictions.
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(a) GPT-4o accuracy, evaluated on well-formatted responses only, SPR1

ARG0 ARG1 ARG2 ARG3-5 All core roles
Prompt template n = 389 n = 450 n = 102 n = 35 n = 976

All args per prompt 97.17 96.0 90.2 94.29 95.8
+instigate,chg-loc 97.69 (+0.52) 93.78 (−2.22) 87.25 (−2.95) 91.43 (−2.86) 94.57 (−1.23)

+instigate,chg-state 96.4 (−0.77) 92.67 (−3.33) 85.29 (−4.91) 94.29 (+0.0) 93.44 (−2.36)

+volition,chg-state 98.2 (+1.03) 94.67 (−1.33) 86.27 (−3.93) 91.43 (−2.86) 95.08 (−0.72)

+volition,chg-loc 96.92 (−0.25) 94.22 (−1.78) 90.2 (+0.0) 91.43 (−2.86) 94.77 (−1.03)

+SPR1 97.69 (+0.52) 95.56 (−0.44) 87.25 (−2.95) 94.29 (+0.0) 95.49 (−0.31)

+SPR1, allowing N/A 97.43 (+0.26) 94.89 (−1.11) 90.2 (+0.0) 97.14 (+2.85) 95.49 (−0.31)

All args per prompt w/ PB guidelines 97.69 95.11 89.22 94.29 95.49
+SPR1 97.94 (+0.25) 95.56 (+0.45) 88.24 (−0.98) 88.57 (−5.72) 95.49 (+0.0)

(b) Llama-3.2-3B accuracy, evaluated on well-formatted responses only and allowing fuzzy role matching, SPR1

ARG0 ARG1 ARG2 ARG3-5 All core roles
Prompt template n = 332 n = 368 n = 87 n = 36 n = 823

All args per prompt 90.36 67.12 51.72 8.33 72.3
+instigate,chg-loc 92.77 (+2.41) 57.61 (−9.51) 24.14 (−27.58) 8.33 (+0.0) 66.1 (−6.2)

+volition-chg-state 94.58 (+4.22) 56.79 (−10.33) 13.79 (−37.93) 2.78 (−5.55) 65.13 (−7.17)

+SPR1∩ SPR2 93.67 (+3.31) 57.34 (−9.78) 17.24 (−34.48) 13.89 (+5.56) 65.86 (−6.44)

+SPR1 95.18 (+4.82) 57.61 (−9.51) 18.39 (−33.33) 2.78 (−5.55) 66.22 (−6.08)

(c) GPT-4o accuracy, evaluated on well-formatted responses only, Ontonotes

ARG0 ARG1 ARG2 ARG3-5 All core roles
Prompt template n = 13595 n = 21742 n = 7654 n = 849 n = 43840

All args per prompt 95.55 94.98 91.1 84.92 94.28
+instigate,chg-loc 95.67 (+0.12) 91.65 (−3.33) 83.76 (−7.34) 85.98 (+1.06) 91.41 (−2.87)

+volition,chg-state 95.22 (−0.33) 90.41 (−4.57) 80.61 (−10.49) 86.45 (+1.53) 90.11 (−4.17)

+SPR1∩ SPR2 95.28 (−0.27) 92.94 (−2.04) 86.4 (−4.7) 86.93 (+2.01) 92.41 (−1.87)

+SPR1∩ SPR2, allowing N/A 95.3 (−0.25) 91.49 (−3.49) 82.74 (−8.36) 84.81 (−0.11) 91.02 (−3.26)

Table 11: SRL accuracy on subsets of data in which all responses are well-formatted, ensuring penalties are due to
errors in meta-linguistic reasoning, rather than failures to correctly format output. All scores are for the All-args
prompt variant.
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