@inproceedings{cao-etal-2025-infiniteicl,
title = "{I}nfinite{ICL}: Breaking the Limit of Context Window Size via Long Short-term Memory Transformation",
author = "Cao, Bowen and
Cai, Deng and
Lam, Wai",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/landing_page/2025.findings-acl.595/",
pages = "11402--11415",
ISBN = "979-8-89176-256-5",
abstract = "In-context learning (ICL) is critical for large language models (LLMs), but its effectiveness is constrained by finite context windows, particularly in ultra-long contexts. To overcome this, we introduce **InfiniteICL**, a framework that parallels context and parameters in LLMs with short- and long-term memory in human cognitive systems, focusing on transforming temporary context knowledge into permanent parameter updates. This approach significantly reduces memory usage, maintains robust performance across varying input lengths, and theoretically enables infinite context integration through the principles of context knowledge elicitation, selection, and consolidation. Evaluations demonstrate that our method reduces context length by 90{\%} while achieving 103{\%} average performance of full-context prompting across fact recall, grounded reasoning, and skill acquisition tasks. When conducting sequential multi-turn transformations on complex, real-world contexts (with length up to 2M tokens), our approach surpasses full-context prompting while using only 0.4{\%} of the original contexts. These findings highlight InfiniteICL{'}s potential to enhance the scalability and efficiency of LLMs by breaking the limitations of conventional context window sizes."
}
Markdown (Informal)
[InfiniteICL: Breaking the Limit of Context Window Size via Long Short-term Memory Transformation](https://preview.aclanthology.org/landing_page/2025.findings-acl.595/) (Cao et al., Findings 2025)
ACL