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Abstract

Detecting the translation direction of paral-
lel text is useful not only for machine trans-
lation training and evaluation but also has
forensic applications, such as resolving pla-
giarism or forgery allegations. In this work,
we explore an unsupervised approach to trans-
lation direction detection based on the sim-
ple hypothesis that p(translation|original) >
p(original|translation), motivated by the well-
known simplification effect in translationese or
machine-translationese. In experiments with
multilingual machine translation models across
20 translation directions, we confirm the ef-
fectiveness of the approach for high-resource
language pairs, achieving document-level ac-
curacies of 82–96% for NMT-produced trans-
lations, and 60–81% for human translations,
depending on the model used.1

1 Introduction

While the original translation direction of parallel
text is often ignored or unknown in the machine
translation community, research has shown that
it can be relevant for training (Kurokawa et al.,
2009; Ni et al., 2022) and evaluation (Graham et al.,
2020).2 Beyond machine translation, translation
direction detection has practical applications in ar-
eas such as forensic linguistics, where determining
the original of a document pair may help resolve
plagiarism or forgery accusations.

Previous work has addressed translation (direc-
tion) detection with feature-based approaches, us-
ing features such as n-gram frequency statistics
and POS tags for classification (Kurokawa et al.,

1Code and demo are available at https://github.com/
ZurichNLP/translation-direction-detection

2As of today, training data is not typically filtered by trans-
lation direction, but we find evidence of a need for better
detection in recent work. For example, Post and Junczys-
Dowmunt (2023) show that back-translated data is more suited
than crawled parallel data for document-level training, pre-
sumably because of translations in the crawled data that lack
document-level consistency.

I hope you 
have an 
excellent 
evening.”

p = 0.51

p = 0.28

Ich wünsche 
Ihnen einen
schönen 
Abend.”

“ “
ENGLISH GERMAN

Figure 1: NMT models can be used for inferring the
likely original translation direction of parallel text. In
this example, the NMT model assigns a much higher
probability to the German sentence given the English
sentence than to the English sentence given the German
sentence, indicating that the more likely original trans-
lation direction is English→German.

2009; Volansky et al., 2013; Sominsky and Wint-
ner, 2019) or unsupervised clustering (Nisioi, 2015;
Rabinovich and Wintner, 2015). However, these
methods require a substantial amount of text data,
and cross-domain differences in the statistics used
can overshadow differences between original and
translationese text.

In this work, we explore the unsupervised de-
tection of translation directions purely on the
basis of a multilingual neural machine trans-
lation (NMT) system’s translation probabilities.
As illustrated in Figure 1, we hypothesize that
p(translation|original) > p(original|translation),
which, if it generally holds, would allow us to infer
the original translation direction.

If the translation has been automatically gener-
ated, this hypothesis can be motivated by the fact
that machine translation systems typically generate
text with mode-seeking search algorithms, and con-
sequently tend to over-produce high-frequency out-
puts and reduce lexical diversity (Vanmassenhove
et al., 2019). However, even human translations
are known for so-called translationese properties
such as interference, normalization, and simplifica-
tion, and a (relative) lack of lexical diversity (Teich,
2003; Volansky et al., 2013; Toral, 2019).
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Figure 2: A recent forensic case in Germany underscores the relevance of translation direction detection (Ebbinghaus,
2022; Zenthöfer, 2022; Wikipedia, 2023). In 2022, two experts raised concerns about the originality of a German
PhD thesis and suspected it to be plagiarized from a proceedings volume in English (plagiarism hypothesis). Further
investigation showed, however, that the alleged English source could not be found in any library or database. This
raised the possibility of a deliberate attempt to discredit the thesis author by fabricating the English book (forgery
hypothesis). Initially, the debate focused on the dating of the typefaces and paper used to print the book, in addition
to textual inconsistencies. A computational analysis of translation direction could provide additional evidence in
this or similar cases. The illustration depicts one of the parallel passages identified by Weber (2022).

We test the approach on 20 translation direc-
tions, experimenting with 3 massively multilingual
NMT models to predict the translation probabili-
ties of human translations, NMT-produced transla-
tions, LLM-generated translations, and pre-neural
machine translations. We find that the approach
detects the translation direction of human trans-
lations with an average accuracy of 66% at the
sentence level, and 80% for documents with ≥ 10
sentences. For the output of NMT systems, detec-
tion accuracy is even higher, but our hypothesis that
p(translation|original) > p(original|translation)
does not hold for the output of pre-neural systems.

To compare our unsupervised approach to a su-
pervised baseline, we implement a modernized ver-
sion of the approach proposed by Sominsky and
Wintner (2019). A controlled comparison shows
that a supervised approach can outperform our
unsupervised one under ideal conditions (with in-
domain labelled training data) for human transla-
tions, but performance drops in a cross-domain set-
ting. Notably, for NMT-produced translations, the
unsupervised approach remains competitive even
when tested within the same domain.

Finally, we apply our method to a recent forensic
case (Figure 2), where the translation direction of
a German PhD thesis and an English book has
been under dispute, finding additional evidence for
the hypothesis that the English book is a forgery
created to make the thesis appear plagiarized.

Our main contributions are the following:

• We propose a simple, unsupervised approach

to translation direction detection based on the
translation probabilities of NMT models.

• We demonstrate that the approach is effective
for detecting the original translation direction
of neural machine translations, and to a lesser
extent, human translations in a variety of high-
resource language pairs.

• We provide a qualitative analysis of detection
performance and apply the method to a real-
world forensic case.

2 Related Work

2.1 Translation (Direction) Detection

In an ideal scenario where large-scale annotated
in-domain data is available, high accuracy can be
achieved in translation direction detection at phrase
and sentence level by training supervised systems
based on various features such as word frequency
statistics, POS n-grams or text embeddings (Somin-
sky and Wintner, 2019).

To reduce reliance on in-domain supervision, un-
supervised methods that rely on clustering and con-
sequent cluster labelling have also been explored
for the related task of translationese detection (Ra-
binovich and Wintner, 2015; Nisioi, 2015). One
could conceivably perform translation direction de-
tection using similar methods, but this has the prac-
tical problem of requiring an expert for cluster la-
belling and poor open-domain performance. In a
multi-domain scenario, Rabinovich and Wintner
(2015) observe that clustering based on features
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proposed by Volansky et al. (2013) results in clus-
ters separated by domain rather than translation
status. They address this by producing 2k clusters,
k being the number of domains in their dataset, and
labelling each. Clearly, labelling becomes more
costly as the number of domains increases, which
limits applicability to an open-domain scenario.

In contrast, we hypothesize that comparing trans-
lation probabilities remains a valid strategy across
domains, and requires no resources other than
NMT models that are competent for the respective
language pair.

2.2 Translation Probabilities

Previous work has leveraged translation probabil-
ities for tasks such as noisy parallel corpus filter-
ing (Junczys-Dowmunt, 2018), machine transla-
tion evaluation (Thompson and Post, 2020), and
paraphrase identification (Mallinson et al., 2017;
Vamvas and Sennrich, 2022). Those approaches
analyze translation probabilities symmetrically in
two directions, which is also the case in this work.

3 Methods

Given a parallel sentence pair (x, y), the main task
in this work is to identify the translation direc-
tion between a language X and a language Y, and,
consequently, establish which side is the original
and which is the translation. This is achieved by
comparing the conditional translation probability
P (y|x) by an NMT model MX→Y with the con-
ditional translation probability P (x|y) by a model
MY→X operating in the inverse direction. Our
core assumption is that segment pairs in the orig-
inal translation direction are assigned higher con-
ditional probabilities by NMT models than in the
inverse direction, so if P (y|x) > P (x|y), we pre-
dict that y is the translation, and x the original, and
the original translation direction is X → Y .

3.1 Detection on the Sentence Level

With a probabilistic autoregressive NMT model, we
can obtain P (y|x) as a product of the individual
token probabilities:

P (y|x) =
|y|∏

j=1

p(yj |y<j , x) (1)

We follow earlier work by Junczys-Dowmunt
(2018); Thompson and Post (2020), and average

token-level (log-)probabilities.3

Ptok(y|x) = P (y|x)
1
|y| (2)

To detect the original translation direction (OTD),
Ptok(y|x) and Ptok(x|y) are compared:

OTD =

{
X → Y, if Ptok(y|x) > Ptok(x|y)
Y → X, otherwise

3.2 Detection on the Document Level

We also study translation direction detection at the
level of documents, as opposed to individual sen-
tences. We assume that the sentences in the docu-
ment are aligned 1:1, so that we can apply an NMT
model trained at the sentence level to all n sentence
pairs (xi, yi) in the document, and then aggregate
the result.

Our approach is equivalent to the sentence-level
approach in that we calculate the average token-
level probability across the document, conditioned
on the respective sentence in the other language:

Ptok(y|x) = [

n∏

i=1

|yi|∏

j=1

p(yi,j |yi,<j , xi)]
1

|y1|+···+|yn|

(3)
The criterion for the original translation direction
is then again whether Ptok(y|x) > Ptok(x|y).

3.3 On Directional Bias

A multilingual translation model (or a pair of bilin-
gual models) may consistently assign higher proba-
bilities in one translation direction than the other,
thus biasing our prediction. This could be the result
of training data imbalance, tokenization choices, or
typological differences between the languages (Cot-
terell et al., 2018; Bugliarello et al., 2020).4

To allow for a cross-lingual comparison of bias
despite varying data balance, we measure bias via
the difference in accuracy between the two gold
directions. An unbiased model should have similar
accuracy in both. An extremely biased model that
always predicts OTD = X → Y will achieve
perfect accuracy on the gold direction X → Y ,

3The models we use have been trained with label smooth-
ing (Szegedy et al., 2016), which has a cumulative effect on
sequence-level probabilities (Yan et al., 2024). Averaging
token-level probabilities can help mitigate this shortcoming.

4We note that Bugliarello et al. (2020) do not control for
the original translation direction of their data. Re-examining
their findings in view of our core hypothesis could be fruitful
future work.
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and zero accuracy on the reverse gold direction
Y → X . We will report the bias B as follows:

B = |acc(X → Y )− acc(Y → X)| (4)

This yields a score that ranges from 0 (unbiased)
to 1 (fully biased).

4 Experiments: Models and Data

4.1 Unsupervised Setting

We experiment with three multilingual machine
translation models: M2M-100-418M (Fan et al.,
2021), SMaLL-100 (Mohammadshahi et al., 2022),
and NLLB-200-1.3B (NLLB Team et al., 2024).

The models are architecturally similar, all being
based on the Transformer architecture (Vaswani
et al., 2017), but they differ in the training data used,
number of languages covered, model size, and, con-
sequently, in translation quality. The comparison
allows conclusions about how sensitive our method
is to translation quality – NLLB-200-1.3B yields
the highest translation quality of the three (Tiede-
mann and de Gibert, 2023), but we also highlight
differences in data balance. English has tradition-
ally been dominant in the amount of training data,
and all three models aim to reduce this dominance
in different ways, for example via large-scale back-
translation (Sennrich et al., 2016) in M2M-100-
418M and NLLB-200-1.3B. SMaLL-100 is a dis-
tilled version of the M2M-100-12B model, and
samples training data uniformly across language
pairs.

We test the approach on datasets from the WMT
news/general translation tasks from WMT16 (Bo-
jar et al., 2016), WMT22 (Kocmi et al., 2022), and

Source Target Sentences
Direction Sents Docs (≥10) HT NMT Pre-NMT

cs→en 1448 129 2896 15928 16489
cs→uk 3947 112 3947 49381 -
de→en 1984 121 3968 17856 13491
de→fr 1984 73 1984 11904 -
en→cs 4111 204 6148 51480 27000
en→de 2037 125 4074 18333 18000
en→ru 4111 174 4111 47295 15000
en→uk 4111 174 4111 41147 -
en→zh 4111 204 6148 57591 -
fr→de 2006 71 2006 14042 -
ru→en 3739 136 3739 40836 13482
uk→cs 2812 43 2812 33744 -
uk→en 3844 88 3844 40266 -
zh→en 3851 162 5726 52140 -

Total 44096 1816 55514 491943 103462

Table 1: Statistics of the WMT data used in our main
experiments. More granular statistics are provided in
Appendix G.

WMT23 (Kocmi et al., 2023), which come anno-
tated with document boundaries and the original
language of each document. We include different
years of WMT data not only to test the approach for
different translation directions and translation types
but also to rule out test set contamination for exper-
iments with models, for which the test set predates
the model release. The results for the individual
WMT datasets are reported in Appendix F.

We also experiment with a subset of the
FLORES-101 dataset (Goyal et al., 2022) to test
the approach on indirect translations, where En-
glish was the original language of both sides of the
parallel text. We divide the data into subsets based
on several categorizations:

• Translation direction: the WMT data span
14 translation directions and 3 scripts (Latin,
Cyrillic, Chinese).

• Type of translation: we distinguish between
human translations (HT), which consist of
(possibly multiple) reference translations, neu-
ral translation systems (NMT) (WMT 2016;
2022–2023; (incl. translations from machine
translation systems specifically and, to a lesser
extent, translations produced by large lan-
guage models (LLMs)), and phrase-based or
rule-based pre-neural systems from WMT
2016 (pre-NMT) as a third category.

• Directness: Given that the WMT data are
direct translations from one side of the par-
allel text to the other, we perform additional
experiments on translations for 6 FLORES
language pairs (Bengali↔Hindi, Czech↔
Ukrainian, German↔French, German↔
Hindi, Chinese↔French, and Xhosa↔Zulu).
This allows us to analyze the behavior of our
approach on indirect sentence pairs where
both sequences are translations from a third
language (in this case, English).

We use HT and NMT translations from WMT16
as a validation set and the remaining translations
for testing our approach. Table 1 shows test set
statistics for our main experiments.

To demonstrate our approach on “real-world”
data, we use text pertaining to a publicly doc-
umented plagiarism allegation case, in which
translation-based plagiarism was the main fo-
cus (Ebbinghaus, 2022; Zenthöfer, 2022). We use
86 parallel segments in German and English from
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HT NMT

LP → ← Avg. → ← Avg.

en↔cs
supervised 64.70 71.36 68.03 65.43 71.98 68.71
unsupervised 68.85 65.19 67.02 71.87 78.30 75.09

en↔ru
supervised 56.65 81.74 69.19 61.72 82.97 72.35
unsupervised 71.81 54.05 62.93 76.91 71.98 74.44

en↔de
supervised 87.05 55.29 71.17 89.52 61.08 75.30
unsupervised 56.38 67.44 61.91 62.69 85.27 73.98

Macro Avg.
supervised 69.46 69.47 69.46 72.22 72.01 72.12
unsupervised 65.68 62.23 63.95 70.49 78.51 74.50

Table 2: Accuracy of the proposed unsupervised approach, using the M2M100 MT system, compared to the
performance of XLM-R fine-tuned on the translation direction detection task with WMT data.

aligned excerpts of both the PhD thesis and the
alleged source that were presented in a plagiarism
analysis report (Weber, 2022). We extracted the
segments with OCR and manually checked for
OCR errors. An example translation from this
dataset is given in Appendix I.

4.2 Supervised Baseline

In addition to the unsupervised approach, we fine-
tune XLM-R (base) (Conneau et al., 2020) on the
translation direction detection task to provide a
supervised baseline for our experiments.

We extract the final hidden state for the first
token by XLM-R for each segment of a translation,
which serves as the feature representation for that
segment. Inspired by the COMET architecture for
MT evaluation (Rei et al., 2020), we then combine
the resulting representations for each translation by
concatenating the addition of the representations
of the segments of a pair, their absolute difference,
and their product.5,6 The resulting concatenation is
used as input to train the classification head.

For the training set, we take a sample of
1398–1400 source segments and their correspond-
ing HT and NMT-based translations per direction
from WMT16. Additionally, we sample another
100 source segments per direction and their corre-
sponding HT, NMT and pre-NMT-based transla-
tions from WMT16 as a validation set. We then

5We deviate slightly from COMET by using the addition
of the two segment representations instead of concatenating
them sequentially, to avoid introducing input order bias.

6Furthermore, we experiment with encoding the source
segment jointly with the translation. This yields similar results,
but introduces input order bias. The test set results for this
alternative architecture are listed in Appendix D.

train bilingual classifiers for each en↔cs, en↔ru
and en↔de. We validate settings with different
learning rates and epochs (Appendix C) and report
the results for the test set in Table 2 with the setting
that achieves the highest accuracies for the corre-
sponding language pair7 on the validation set. The
test set consists of HT and NMT sentence pairs
from WMT21, WMT22 and WMT23, which is
equivalent to the unsupervised experiments apart
from the WMT16.

Since training the supervised systems on larger
datasets could improve their performance, we ex-
periment with training them on subsets of the Eu-
roparl corpus (Koehn, 2005; Ustaszewski, 2019).
Although higher accuracies are reached when the
systems are tested on in-domain data, their perfor-
mance drops below the WMT-based system when
tested on out-of-domain data (WMT). Hence, we
choose to describe the WMT-based model, which
performs best on WMT data in the main part of
this paper (Subsection 5.1) and give a detailed de-
scription and results of the Europarl-based system
in Appendix E.

5 Results

5.1 Sentence-level Classification

The sentence-level results are shown in Ta-
bles 3 (HT), 4 (NMT), and 5 (pre-NMT).

Table 3 compares the results for HT across all
models. As a general result, we find that it is not
NLLB, but M2M-100 that on average yields the
best results for HT on the sentence level, with

7en↔cs/ru: learning rate 1e-05, epoch 2; en↔de: learning
rate 1e-05, epoch 4.
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M2M-100-418M SMaLL-100 NLLB-200-1.3B

Language Pair → ← Avg. → ← Avg. → ← Avg.

HT en↔cs 68.85 65.19 67.02 63.08 69.37 66.22 54.05 68.78 61.42
HT en↔de 56.38 67.44 61.91 58.62 63.10 60.86 59.70 47.76 53.73
HT en↔ru 71.81 54.05 62.93 68.38 57.56 62.97 67.40 49.08 58.24
HT en↔uk 71.95 69.56 70.76 70.49 68.83 69.66 47.21 64.00 55.61
HT en↔zh 54.25 84.30 69.27 56.41 80.54 68.48 17.81 82.52 50.16
HT cs↔uk 52.44 74.40 63.42 59.26 70.52 64.89 47.68 76.67 62.18
HT de↔fr 89.72 50.50 70.11 85.48 57.68 71.58 86.29 62.16 74.23

Macro-Avg. 66.49 66.49 66.49 65.96 66.80 66.38 54.31 64.42 59.37

Table 3: Accuracy of three different models when detecting the direction for human translation. The first column
per model reports accuracy for sentence pairs with left-to-right gold direction (e.g., en→cs), the second column for
sentence pairs with the reverse gold direction (e.g., en←cs). The last column reports the macro-average across both
directions. The best average result for each language pair is printed in bold.

Language Pair → ← Avg.

NMT en↔cs 71.87 78.30 75.09
NMT en↔de 62.69 85.27 73.98
NMT en↔ru 76.91 71.98 74.44
NMT en↔uk 75.01 79.31 77.16
NMT en↔zh 64.29 90.29 77.29
NMT cs↔uk 72.83 79.15 75.99
NMT de↔fr 90.65 51.60 71.13

Macro-Avg. 73.46 76.56 75.01

Table 4: Accuracy of M2M-100 when detecting the
translation direction of NMT-produced translations.

Language Pair → ← Avg.

Pre-NMT en↔cs 41.97 42.59 42.28
Pre-NMT en↔de 33.33 54.30 43.81
Pre-NMT en↔ru 37.98 39.01 38.49

Macro-Avg. 37.76 45.30 41.53

Table 5: Accuracy of M2M-100 when detecting
the translation direction of sentences translated with
pre-NMT systems.

Language Pair → ← Avg.

en↔ru 75.75 68.08 71.91
en↔uk 72.76 72.56 72.66
en↔zh 58.82 90.54 74.68

Macro-Avg. 69.11 77.06 73.08

Table 6: Accuracy on translations generated by LLMs
with M2M-100.

SMaLL-100 a close second. Hence, we report
results for experiments with M2M-100 in the fol-
lowing, while performance of the other models is
reported in Appendix A and B.

A second result is that the translation detec-
tion works best for NMT-based translations (75.0%
macro-average), second-best for HT (66.5% macro-
average), and worst for pre-NMT (41.5% macro-
average). The fact that performance for pre-neural
systems is below chance level indicates that the
NMT systems we use tend to assign low probabil-
ities to the (often ungrammatical) outputs of pre-
neural systems.

A third result is that accuracy varies by language
pair. Among the language pairs tested, accuracy of
M2M-100 ranges from 61.9% (en↔de) to 70.8%
(en↔uk) for HT, and from 71.1% (de↔fr) to 77.3%
(en↔zh) for NMT.

In comparison to the results of the supervised
system, we show in Table 2 that while our unsu-
pervised approach is outperformed on HT, it is
competitive for NMT-based translation. Taking
into consideration the (cross-domain) results of the
Europarl-based models shown in Table 17 as well,
the main benefits of the unsupervised approach are
highlighted: independence from training data and
flexibility across languages and domains.

5.2 LLM-generated Translations

The main focus of this paper lies on three different
translation types: HT, NMT, and pre-NMT. How-
ever, LLMs have also shown strong translation ca-
pabilities (Kocmi et al., 2023). Hence, GPT-4 was
considered as one of the translation systems in the
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Language Pair Ratio of→ Ratio of←
HT bn↔hi 66.80 % 33.20 %
HT de↔hi 48.72 % 51.28 %
HT cs↔uk 42.69 % 57.31 %
HT de↔fr 84.78 % 15.22 %
HT zh↔fr 91.70 % 8.30 %
HT xh↔zu 45.06 % 54.94 %

Table 7: Percentage of predictions by M2M-100 for
each translation direction when neither is the true trans-
lation direction (English-original FLORES).

WMT23 shared task and its outputs are therefore
part of the NMT test set in this work. Table 6
shows the results of our translation direction detec-
tion approach on the GPT-4-generated test subset in
isolation to document its performance on this addi-
tional translation type. For all three language pairs,
our approach reaches accuracies that are compara-
ble to the ones reached for the same pairs’ NMT
translations.

5.3 Indirect Translations

With an experiment on the English-original FLO-
RES data, we evaluate our approach on the special
case that neither side is the original. As shown in
Table 7, our approach yields relatively balanced
predictions on human translations for cs↔uk and
xh↔zu, predicting each direction a roughly equal
number of times. For de↔fr, we again find that
the model predicts de→fr more frequently than the
reverse direction. The result for fr↔zh display an
even larger degree of disparity.

5.4 Directional Bias

When analyzing Table 3 for directional bias, we
observe that M2M-100 is especially biased in the
directions de→fr (B = 0.39) and zh→en (B =
0.30). While we expected a general bias towards
x→en due to the dominance of English in training
data, we find that the direction and strength of the
bias vary across language pairs and models. An
extreme result is NLLB for en↔zh, with B = 0.64
towards zh→en.

There appears to be an inclination for bias to-
wards languages closely related to English for some
language pairs, such as de↔fr and zh↔fr (Table 7)
in contrast to language pairs, with both languages
being closely related to (and including) English,
such as en↔fr. The discrepancy in balance be-
tween de↔hi and zh↔fr indicates, however, that

relatedness to English might not have a strong gen-
eral influence on our approach, but rather that there
is a bias for→French and Chinese→ when apply-
ing it with M2M-100 or SMaLL-100.

Furthermore, the supervised systems exhibit
higher bias (Table 2) than the unsupervised ap-
proach for all language pairs and translation types,
indicating that directional bias is an issue for both
supervised and unsupervised approaches.

We leave it to future work to explore whether
bias can be reduced via different normalization
strategies, a language pair specific bias correction
term, or different model training. At present, our
recommendation is to be mindful in the choice
of NMT model and to perform validation before
trusting the results of a previously untested NMT
model for translation direction detection.

5.5 Qualitative Analysis
A qualitative comparison of sources and transla-
tions, as illustrated in Table 8, reveals that fac-
tors such as normalization, simplification, word
order interference, and sentence length influence
the detection of translation direction. In Example 1,
an English HT translates the German source fully,
while the NMT omits half of the content, showing
a high degree of simplification. Our method recog-
nizes the simplified NMT version as a translation,
but not the more complete HT. Example 2 demon-
strates normalization to a high degree. This shows
that NMT-models assign extremely low probabil-
ities when the target is more ungrammatical than
the source. The third example indicates that transla-
tions exhibiting normalization, simplification, and
interference to a higher degree are more likely to be
identified. In Example 4, source language interfer-
ence in terms of word order and choice significantly
impacts the detection; the more literal translation
mirroring the source’s word order is recognized,
while the more liberal translation is not. Finally, Ex-
ample 5 highlights challenges with short sentences:
The German phrase Mit freundlichen Grüßen is
fairly standardized, while its French equivalents
can vary in use and context, adding to the ambi-
guity and affecting the probability distribution in
NMT. Hence, our approach fails to identify any of
the French translations without additional context.

Furthermore, Table 8 shows that our approach
more easily identifies translations that are simpler
in terms of verbosity and sentence complexity, e.g.:
Examples 2, 3, 4. While previous research indi-
cates that verbosity is not the most reliable feature
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Sentences → ← Rel. Difference

1 DE: Mit dem Programm "Guten Tag, liebes Glück" ist er seit 2020 auf Tour.
EN: He has been on tour with the programme "Guten Tag, liebes Glück" since 2020.
(HT)

0.145 0.558 0.26

EN: He has been on tour since 2020. (NMT) 0.272 0.092 2.95

2 EN: please try to perfprm thsi procedures"
DE: bitte versuchen Sie es mit diesen Verfahren (HT) 0.246 0.010 24.29
DE: Bitte versuchen Sie, diese Prozeduren durchzuführen" (NMT) 0.586 0.025 23.59

3 EN: If costs for your country are not listed, please contact us for a quote.
DE: Wenn die Kosten für Ihr Land nicht aufgeführt sind, wenden Sie sich für einen
Kostenvoranschlag an uns. (HT)

0.405 0.525 0.77

DE: Wenn die Kosten für Ihr Land nicht aufgeführt sind, kontaktieren Sie uns bitte
für ein Angebot. (NMT)

0.697 0.585 1.19

4 EN: Needless to say, it was chaos.
DE: Es war natürlich ein Chaos. (HT) 0.119 0.372 0.32
DE: Unnötig zu sagen, es war Chaos. (NMT) 0.755 0.591 1.28

5 DE: Mit freundlichen Grüßen
FR: Cordialement (HT) 0.026 0.107 0.24
FR: Sincèrement (NMT) 0.015 0.083 0.18
FR: Sincères amitiés (NMT) 0.062 0.160 0.39
FR: Avec mes meilleures salutations (NMT) 0.215 0.353 0.61

Table 8: Qualitative comparison of sentence pairs. Source sentences are marked in italics, and gold direction is
always→. Relative probability difference > 1 indicates that translation direction was successfully identified, and is
highlighted in bold. The probabilities are generated by M2M-100.

Language Pair → ← Avg.

HT en↔cs 88.24 80.62 84.43
HT en↔de 70.40 88.43 79.41
HT en↔ru 96.55 54.41 75.48
HT en↔zh 67.65 97.53 82.59

Macro-Avg. 80.71 80.25 80.48

Table 9: Document-level classification: Accuracy of
M2M-100 when detecting the translation direction of
human translations at the document level (documents
with ≥ 10 sentences).

Language Pair → ← Avg.

NMT en↔cs 96.78 99.27 98.03
NMT en↔de 91.06 99.18 95.12
NMT en↔ru 98.39 94.60 96.50
NMT en↔zh 86.33 98.62 92.47

Macro-Avg. 93.14 97.92 95.53

Table 10: Document-level classification: Accuracy of
M2M-100 when detecting the translation direction of
NMT translations at the document level (documents
with ≥ 10 sentences).

for supervised approaches (Sominsky and Wintner,
2019), it is likely a helpful feature for the unsuper-
vised approach.

Misclassified short examples as in Example 5
are not a rarity in our experiments. Our findings
show that an average accuracy comparable to that
reported in Table 3 is attained starting at a sentence
length between 60 and 70 characters.8 Addition-
ally, we observed a trend where the accuracy of
direction detection increases as the length of the
sentences/documents grows. This aligns with pre-
vious unsupervised approaches, which also docu-
mented higher accuracy the larger the text chunks
that were used, although there, reliable results were
reported on a more extreme scale starting from text
chunks with a length of 250 tokens (Rabinovich
and Wintner, 2015).

5.6 Document-Level Classification

Accuracy scores for document-level results by
M2M-100 (best-performing system at sentence
level) are presented in Tables 9 (HT) and 10 (NMT).
We consider documents with at least 10 sentences,
and language pairs with at least 100 such docu-
ments in both directions.

The table shows that the sentence-level results
8We used SMaLL-100 for this analysis. See Appendix H.
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are amplified at the document level. Translation
direction detection accuracy for human transla-
tions reaches a macro-average of 80.5%, while the
document-level accuracy for translations generated
by NMT systems reaches 95.5% on average.

5.7 Application to Real-World Forensic Case

Finally, we apply our approach to the 86 segment
pairs of the plagiarism allegation case. We treat the
segments as a single document and classify them
with M2M-100 using the document-level approach
defined in Section 3.2. We find that, according
to the model, it is more probable that the English
segments are translations of the German segments
than vice versa.

We validate our analysis using a permutation test.
The null hypothesis is that the model probabilities
for both potential translation directions are drawn
from the same distribution. In order to perform the
permutation test, we swap the segment-level prob-
abilities P (yi|xi) and P (xi|yi) for randomly se-
lected segments i before calculating the difference
between the document-level probabilities P (y|x)
and P (x|y). We repeat this process 10,000 times
and calculate the p-value as twice the proportion
of permutations that yield a difference at least as
extreme as the observed difference. Obtaining a p-
value of 0.0002, we reject the null hypothesis and
conclude that our approach makes a statistically
significant prediction that the English segments are
translated from the German segments.

Overall, our analysis supports the hypothesis that
German is indeed the language of origin in this real-
world dataset (forgery hypothesis; Figure 2). Nev-
ertheless, we recommend that additional evidence
of different approaches (automated, manual, and
qualitative) should be considered before drawing a
final conclusion, given the error rate of 5–21% that
we observed in experiments on WMT (en↔de).

6 Conclusion

We proposed a novel approach to detecting the
translation direction of parallel texts, using only
an off-the-shelf multilingual NMT system. Exper-
iments on WMT data showed that our approach,
without any task-specific supervision, is able to
detect the translation direction of NMT-produced
translations with relatively high accuracy, proving
competitive to supervised baselines. Accuracy in-
creases to 96% if the classifier is provided with at
least 10 sentences per document. We also found

a robust accuracy for translations by human trans-
lators. Finally, we applied our approach to a real-
world forensic case and found that it supports the
hypothesis that the English book is a forgery. Fu-
ture work should explore whether our approach
can be improved by mitigating directional bias
of the NMT model used. Another open question
is to what degree our approach will generalize to
document-level translation.

Limitations

While the proposed approach is simple and effec-
tive, there are some limitations that might make its
application more difficult in practice:

Sentence alignment: We performed our exper-
iments on sentence-aligned parallel data, where
each sentence in one language has a corresponding
sentence in the other language. In practice, parallel
documents might have one-to-many or many-to-
many alignments, which would require custom pre-
processing or the use of models that can directly
estimate document-level probabilities.

Translation production workflow: Our main ex-
periments used academic data from the WMT trans-
lation task, where care is taken to ensure that differ-
ent translation methods are clearly separated: NMT
translations did not undergo human post-editing,
and human translators were instructed to work from
scratch. In practice, parallel documents might
have undergone a mixture of translation strategies,
which makes it more difficult to predict the accu-
racy of our approach. Specifically, we found that
our approach has less-than-chance accuracy on pre-
NMT translations. Applying our approach to web-
scale parallel corpus filtering (Kreutzer et al., 2022;
Ranathunga et al., 2024) might therefore require
additional filtering steps to exclude translations of
lower quality.

Low-resource languages: Our experiments re-
quired test data for both translation directions,
which limited the set of languages we could test.
While the community has created reference transla-
tions for many low-resource languages, the trans-
lation directions are usually not covered symmetri-
cally. For example, the test set of FLORES (Goyal
et al., 2022) has been translated from English into
many languages, but not vice versa. Thus, apart
from Table 7, we have not tested our approach
on low-resource languages, and it is possible that
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the accuracy of our approach is lower for such lan-
guages, in parallel with the lower translation quality
of NMT models for low-resource languages.

Ethical Considerations

Translation direction detection has a potential appli-
cation in forensic linguistics, where reliable accu-
racy is crucial. Our experiments show that accuracy
can vary depending on the language pair, the NMT
model used for detection, as well as the translation
strategy and the length of the input text. Before
our approach is applied in a forensic setting, we
recommend that its accuracy be validated in the
context of the specific use case.

In Section 5.7, we tested our approach on a real-
world instance of such a case, where one party
has been accused of plagiarism, but the purported
original is now suspected to be a forgery. This
case is publicly documented and has been widely
discussed in German-speaking media (e.g., Ebbing-
haus 2022; Zenthöfer 2022; Wikipedia 2023). For
this experiment, we used 86 sentence pairs from
the two (publicly available) books that are the sub-
ject of this case. However, the case has not been
definitively resolved, as legal proceedings are still
ongoing. No author of this paper is involved in
the legal proceedings. We therefore refrain from
publicly releasing the dataset of sentence pairs we
used for this experiment.
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A Comparison of Models (Sentence Level)

M2M-100-418M SMaLL-100 NLLB-200-1.3B

Language Pair → ← Avg. → ← Avg. → ← Avg.

NMT en↔cs 71.87 78.30 75.09 67.96 79.11 73.53 62.42 77.89 70.16
NMT en↔de 62.69 85.27 73.98 67.05 80.96 74.00 73.51 74.36 73.93
NMT en↔ru 76.91 71.98 74.44 74.34 72.30 73.32 78.87 57.15 68.01
NMT en↔uk 75.01 79.31 77.16 73.74 78.27 76.01 58.48 79.56 69.02
NMT en↔zh 64.29 90.29 77.29 66.54 87.62 77.08 25.42 90.54 57.98
NMT cs↔uk 72.83 79.15 75.99 77.33 76.04 76.68 70.55 76.59 73.57
NMT de↔fr 90.65 51.60 71.13 86.83 59.19 73.01 79.44 57.58 68.51

Macro-Avg. 73.46 76.56 75.01 73.40 76.21 74.81 64.10 73.38 68.74

Table 11: Accuracy of three different models when detecting the translation direction of NMT-produced translations.
The first column reports accuracy for sentence pairs with left-to-right gold direction (e.g., en→cs), the second
column for sentence pairs with the reverse gold direction (e.g., en←cs). The last column reports the macro-average
across both directions. The best result for each language pair is printed in bold.

M2M-100-418M SMaLL-100 NLLB-200-1.3B

Language Pair → ← Avg. → ← Avg. → ← Avg.

Pre-NMT en↔cs 41.97 42.59 42.28 37.88 45.42 41.65 16.36 35.34 25.85
Pre-NMT en↔de 33.33 54.30 43.81 36.18 48.57 42.37 18.73 26.20 22.47
Pre-NMT en↔ru 37.98 39.01 38.49 35.71 39.19 37.45 19.71 16.04 17.88

Macro-Avg. 37.76 45.30 41.53 36.59 44.39 40.49 18.27 25.86 22.07

Table 12: Accuracy of three different models when detecting the translation direction of sentences translated with
pre-NMT systems. The best result for each language pair is printed in bold.
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B Comparison of Models (Document Level)

M2M-100-418M SMaLL-100 NLLB-200-1.3B

Language Pair → ← Avg. → ← Avg. → ← Avg.

HT en↔cs 88.24 80.62 84.43 78.92 89.15 84.03 55.88 86.05 70.96
HT en↔de 70.40 88.43 79.41 73.60 82.64 78.12 68.00 45.45 56.73
HT en↔ru 96.55 54.41 75.48 95.40 61.03 78.22 82.18 39.71 60.94
HT en↔zh 67.65 97.53 82.59 71.57 96.30 83.93 3.92 96.91 50.42

Macro-Avg. 80.71 80.25 80.48 79.87 82.28 81.08 52.50 67.03 59.76

Table 13: Accuracy of three different models when detecting the translation direction of human-translated documents.
The best result for each language pair is printed in bold.

M2M-100-418M SMaLL-100 NLLB-200-1.3B

Language Pair → ← Avg. → ← Avg. → ← Avg.

NMT en↔cs 96.78 99.27 98.03 94.64 97.81 96.22 86.06 95.62 90.84
NMT en↔de 91.06 99.18 95.12 93.85 97.12 95.49 96.65 95.06 95.85
NMT en↔ru 98.39 94.60 96.50 97.05 95.12 96.08 99.20 72.75 85.97
NMT en↔zh 86.33 98.62 92.47 90.62 98.16 94.39 13.14 98.39 55.76

Macro-Avg. 93.14 97.92 95.53 94.04 97.05 95.55 73.76 90.46 82.11

Table 14: Accuracy of three different models when detecting the translation direction of documents translated with
NMT systems. The best result for each language pair is printed in bold.
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C Supervised Baseline (WMT) Result Validation Set

HT NMT Pre-NMT

Language Pair → ← Avg. → ← Avg. → ← Avg. Overall Avg.

Learning Rate: 1e-05, Epoch 2
en↔cs 83.00 89.00 86.00 87.00 89.00 88.00 89.00 89.00 89.00 87.67
en↔de 84.00 78.00 81.00 85.00 78.00 81.50 77.00 82.00 79.50 80.67
en↔ru 80.00 96.00 88.00 90.00 96.00 93.00 94.00 84.00 89.00 90.00

Macro-Avg. 82.33 87.67 85.00 87.33 87.67 87.50 86.67 85.00 85.83 86.11

Learning Rate: 1e-05, Epoch 4
en↔cs 84.00 88.00 86.00 90.00 86.00 88.00 85.00 92.00 88.50 87.50
en↔de 92.00 73.00 82.50 93.00 74.00 83.50 71.00 93.00 82.00 82.67
en↔ru 87.00 87.00 87.00 94.00 84.00 89.00 87.00 92.00 89.50 88.50

Macro-Avg. 87.67 82.67 85.17 92.33 81.33 86.83 81.00 92.33 86.67 86.22

Learning Rate: 1e-05, Epoch 5
en↔cs 85.00 87.00 86.00 90.00 85.00 87.50 84.00 92.00 88.00 87.17
en↔de 85.00 79.00 82.00 89.00 77.00 83.00 77.00 86.00 81.50 82.17
en↔ru 75.00 97.00 86.00 86.00 95.00 90.50 94.00 79.00 86.50 87.67

Macro-Avg. 81.67 87.67 84.67 88.33 85.67 87.00 85.00 85.67 85.33 85.67

Learning Rate: 2e-05, Epoch 2
en↔cs 81.00 88.00 84.50 82.00 87.00 84.50 87.00 84.00 85.50 84.83
en↔de 67.00 88.00 77.50 68.00 90.00 79.00 89.00 67.00 78.00 78.17
en↔ru 66.00 96.00 81.00 74.00 97.00 85.50 96.00 71.00 83.50 83.33

Macro-Avg. 71.33 90.67 81.00 74.67 91.33 83.00 90.67 74.00 82.33 82.11

Learning Rate: 2e-05, Epoch 4
en↔cs 82.00 85.00 83.50 84.00 87.00 85.50 83.00 85.00 84.00 84.33
en↔de 86.00 71.00 78.50 89.00 74.00 81.50 72.00 85.00 78.50 79.50
en↔ru 85.00 84.00 84.50 87.00 84.00 85.50 85.00 83.00 84.00 84.67

Macro-Avg. 84.33 80.00 82.17 86.67 81.67 84.17 80.00 84.33 82.17 82.83

Learning Rate: 2e-05, Epoch 5
en↔cs 91.00 84.00 87.50 89.00 80.00 84.50 82.00 91.00 86.50 86.17
en↔de 83.00 76.00 79.50 87.00 78.00 82.50 78.00 84.00 81.00 81.00
en↔ru 83.00 85.00 84.00 85.00 88.00 86.50 86.00 85.00 85.50 85.33

Macro-Avg. 85.67 81.67 83.67 87.00 82.00 84.50 82.00 86.67 84.33 84.17

Learning Rate: 3e-05, Epoch 2
en↔cs 81.00 91.00 86.00 81.00 89.00 85.00 89.00 82.00 85.50 85.50
en↔de 0.00 100.00 50.00 0.00 100.00 50.00 100.00 0.00 50.00 50.00
en↔ru 59.00 98.00 78.50 61.00 99.00 80.00 98.00 55.00 76.50 78.33

Macro-Avg. 46.67 96.33 71.50 47.33 96.00 71.67 95.67 45.67 70.67 66.83

Learning Rate: 3e-05, Epoch 4
en↔cs 77.00 92.00 84.50 80.00 91.00 85.50 88.00 80.00 84.00 84.67
en↔de 100.00 0.00 50.00 100.00 0.00 50.00 0.00 100.00 50.00 50.00
en↔ru 63.00 98.00 80.50 72.00 98.00 85.00 98.00 65.00 81.50 82.33

Macro-Avg. 80.00 63.33 71.67 84.00 63.00 73.50 62.00 81.67 71.83 72.33

Learning Rate: 3e-05, Epoch 5
en↔cs 75.00 91.00 83.00 76.00 88.00 82.00 90.00 75.00 82.50 82.50
en↔de 100.00 0.00 50.00 100.00 0.00 50.00 0.00 100.00 50.00 38.89
en↔ru 69.00 98.00 83.50 75.00 96.00 85.50 95.00 71.00 83.00 84.00

Macro-Avg. 81.33 63.00 72.17 83.67 61.33 72.50 61.67 82.00 71.83 72.17

Learning Rate: Dynamic, Epoch 2
en↔cs 83.00 88.00 85.50 80.00 85.00 82.50 88.00 82.00 85.00 84.33
en↔de 81.00 83.00 82.00 79.00 83.00 81.00 85.00 79.00 82.00 81.67
en↔ru 83.00 90.00 86.50 89.00 90.00 89.50 90.00 82.00 86.00 87.33

Macro-Avg. 82.33 87.00 84.67 82.67 86.00 84.33 87.67 81.00 84.33 84.44

Learning Rate: Dynamic, Epoch 4
en↔cs 83.00 89.00 86.00 85.00 90.00 87.50 88.00 83.00 85.50 86.33
en↔de 88.00 75.00 81.50 93.00 78.00 85.50 78.00 83.00 80.50 82.50
en↔ru 79.00 88.00 83.50 87.00 88.00 87.50 90.00 81.00 85.50 85.50

Macro-Avg. 83.33 84.00 83.67 88.33 85.33 86.83 85.33 82.33 83.83 84.78

Learning Rate: Dynamic, Epoch 5
en↔cs 75.00 92.00 83.50 77.00 90.00 83.50 90.00 80.00 85.00 84.00
en↔de 88.00 77.00 82.50 88.00 78.00 83.00 77.00 82.00 79.50 81.67
en↔ru 79.00 91.00 85.00 87.00 88.00 87.50 89.00 79.00 84.00 85.50

Macro-Avg. 80.67 86.67 83.67 84.00 85.33 84.67 85.33 80.33 82.83 83.72

Table 15: Accuracy of the supervised baseline when detecting the translation direction of HT, NMT, and Pre-NMT-
produced translations across various checkpoints and learning rates on the WMT validation set.
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D Supervised Baseline (WMT) Result Validation Set with Joint Encoding

LP Input Order HT NMT

→ ← Avg. → ← Avg.

en↔de
source + translation 79.51 65.45 72.48 83.13 69.23 76.18
translation + source 78.59 60.86 69.72 83.91 65.57 74.74

en↔ru
source + translation 66.13 80.73 73.43 70.31 81.88 76.1
translation + source 67.64 83.24 75.44 69.57 84.05 76.81

en↔cs
source + translation 61.26 69.3 65.28 62.24 69.65 65.94
translation + source 61.7 66.89 64.3 63.15 67.51 65.33

Table 16: WMT test set results of the joint encoding approach, where the translated segment is appended to the
source and vice versa.

Model and Data
In addition to the siamese architecture outlined in Section 4.2, which encodes each text segment inde-
pendently before concatenating their respective embeddings, we also investigate an alternative approach
that involves joint encoding of the source and translation texts. Specifically, the two text segments are
concatenated with a special delimiter token (“</s>”) inserted between them and then passed together
through the encoder (Ranasinghe et al., 2020; Rei et al., 2022). The joint encoding system is trained using
the same hyperparameters as outlined in Section 4.2, ensuring a consistent comparison.

To mitigate potential input order bias, we reversed the input order for half of the training data. However,
a comparison of the results for the WMT test set with differing input order of the source and the target
(Table 16) shows that this strategy did not eliminate the bias.

Ultimately, we observed that the siamese architecture demonstrated greater stability with respect to
input order, without incurring a significant performance trade-off. Based on these findings, we focus on
the siamese architecture as the main baseline presented in this paper.
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E Supervised Baseline (Europarl) and Cross-Domain Application

LP Approach HT (Europarl) HT (WMT) NMT (WMT)

→ ← Avg. → ← Avg. → ← Avg.

en↔cs
sup (WMT) — — — 64.70 71.36 68.03 65.43 71.98 68.71
sup (Europarl) 71.51 83.14 77.32 82.03 48.39 65.21 82.72 50.18 66.45
unsup — — — 68.85 65.19 67.02 71.87 78.30 75.09

en↔de
sup (WMT) — — — 87.05 55.29 71.17 89.52 61.08 75.30
sup (Europarl) 82.12 70.80 76.46 80.97 45.36 63.17 84.15 39.70 61.93
unsup — — — 56.38 67.44 61.91 62.69 85.27 73.98

en↔ru
sup (WMT) — — — 56.65 81.74 69.19 61.72 82.97 72.35
sup (Europarl) — — — — — — — — —
unsup — — — 71.81 54.05 62.93 76.91 71.98 74.44

de↔fr
sup (WMT) — — — — — — — — —
sup (Europarl) 59.80 56.67 58.24 58.28 52.78 55.53 58.85 53.38 56.11
unsup — — — — — — — — —

Table 17: Comparison of supervised and unsupervised approaches on the translation direction detection task for HT
and NMT datasets from WMT and Europarl. The supervised approach involves fine-tuning XLM-R on Europarl as
well as on WMT and testing on WMT.

Language Pair HT (Europarl) HT (WMT) NMT (WMT)

de↔fr 0.031 0.055 0.055
cs↔en 0.116 0.336 0.325
de↔en 0.113 0.356 0.444

Macro-Avg. 0.087 0.249 0.273

Table 18: Bias values across Europarl and WMT test sets.

Model and Data
In addition to the supervised system trained on WMT16 data, we train a supervised system on a subset of
Europarl (Koehn, 2005; Ustaszewski, 2019), a corpus consisting of parallel text from the proceedings of
the European Parliament. We train a system for each language pair de↔fr, cs↔en, de↔en as described in
Subsection 4.2. We train on 10,249 samples per direction, use a validation and test set of 1,281 further
samples each per direction. Additionally, we apply the systems to the corresponding WMT test data
subset as in Subsection 4.2, but with WMT22 de↔fr instead of WMT22/23 en↔ru, to test the systems’
cross-domain capabilities. We experiment in the same manner with several learning rates and epochs as in
Appendix C and select the best performing system for each language pair based on the validation accuracy
(de↔fr: lr = dynamic, epoch = 5; cs↔en: lr = dynamic, epoch = 5; de↔en: lr = 1e-05, epoch = 5).

Results
Table 17 shows the results for the unsupervised approach, as well as both the WMT- and Europarl-based
supervised systems. While the systems reach higher in-domain accuracies for en↔cs and en↔de than
the WMT-based system, for de↔fr the scores are substantially lower. The results decrease further when
the system is tested on out-of-domain data, namely the WMT newstest data. On average, a decrease
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of 9.37% for WMT human translations and 9.18% NMT-based WMT translations is observable. These
results on cross-domain applicability for supervised translation direction detection align with previous
work (Sominsky and Wintner, 2019). A further notable observation, when comparing the in-domain to
out-of-domain results, is the increased directional bias, which triples when the systems are applied to
out-of-domain data (Table 18).
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F Comparison of Results for Individual WMT Datasets

M2M-100-418M SMaLL-100 NLLB-200-1.3B

Language Pair WMT16 WMT22 WMT23 WMT16 WMT22 WMT22 WMT16 WMT22 WMT23

en↔cs 66.43 73.44 71.77 64.44 71.76 67.57 50.72 67.09 62.77
en↔de 61.88 71.65 - 63.34 71.53 - 46.53 70.27 -
en↔ru 63.91 73.34 74.05 62.29 72.28 72.83 44.30 65.20 70.60
en↔uk - 78.98 74.38 - 77.34 73.68 - 67.53 67.85
en↔zh - 76.18 75.60 - 75.97 75.52 - 51.97 58.87
cs↔uk - 75.39 72.09 - 75.47 76.63 - 72.89 70.08
de↔fr - 69.58 - - 71.82 - - 68.48 -

Macro-Avg. 64.08 74.08 73.58 63.36 73.74 73.25 47.19 66.20 66.03

Table 19: Average accuracy for language pairs for the individual WMT datasets and tested models.

Results by WMT year and model
The WMT16 test data predates the release of all models in our experiments. Additionally, the WMT22
data was released before the NLLB model. This circumstance raises the possibility of data contamination,
as the models may have been exposed to test data during training. To address this concern, we compare
results across different WMT datasets and add test samples from WMT23, which was released after all
three models. If the accuracies for a dataset predating the release of a model are noticeably higher than for
a more recent dataset, it would suggest data contamination. However, as shown in 19, this is not observed,
indicating that our results are likely unaffected by data contamination.
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G Data Statistics

Source Reference
Test Set Direction Sents Docs ≥ 10 HT NMT Pre-NMT

WMT16 cs→en 1499 40 1499 1499 16489
WMT16 de→en 1499 55 1499 1499 13491
WMT16 en→cs 1500 54 1500 3000 27000
WMT16 en→de 1500 54 1500 4500 18000
WMT16 en→ru 1500 54 1500 3000 15000
WMT16 ru→en 1498 52 1498 1498 13482

WMT22 cs→en 1448 129 2896 15928 -
WMT22 cs→uk 1930 13 1930 23160 -
WMT22 de→en 1984 121 3968 17856 -
WMT22 de→fr 1984 73 1984 11904 -
WMT22 en→cs 2037 125 4074 20370 -
WMT22 en→de 2037 125 4074 18333 -
WMT22 en→ru 2037 95 2037 22407 -
WMT22 en→uk 2037 95 2037 18333 -
WMT22 en→zh 2037 125 4074 26481 -
WMT22 fr→de 2006 71 2006 14042 -
WMT22 ru→en 2016 73 2016 20160 -
WMT22 uk→cs 2812 43 2812 33744 -
WMT22 uk→en 2018 22 2018 20180 -
WMT22 zh→en 1875 102 3750 22500 -

WMT23 cs→uk 2017 99 2017 26221 -
WMT23 en→cs 2074 79 2074 31110 -
WMT23 en→ru 2074 79 2074 24888 -
WMT23 en→uk 2074 79 2074 22814 -
WMT23 en→zh 2074 79 2074 31110 -
WMT23 ru→en 1723 63 1723 20676 -
WMT23 uk→en 1826 66 1826 20086 -
WMT23 zh→en 1976 60 1976 29640 -

Table 20: Detailed data statistics for the main experiments. Cursive: data used for validation.

Direction Sentence Pairs

bn↔hi 1012
de↔hi 1012
cs↔uk 1012
de↔fr 1012
zh↔fr 1012
xh↔zu 1012

Table 21: Statistics for the FLORES-101 (devtest) datasets, where both sides are human translations from English.
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H Sentence Length

Language Pair 0–19 20–39 40–59 60–79 80–99 100–119 120–139 140–159 160–179 180–199

NMT en-cs 59.41 62.46 65.88 69.62 74.42 75.28 74.93 78.92 79.08 81.45
NMT en-de 63.97 67.20 66.24 71.99 76.38 76.21 79.26 79.34 80.50 84.60
NMT en-ru 64.82 62.99 68.73 71.80 75.44 76.50 79.42 79.12 81.16 81.33
NMT en-uk 64.59 67.58 72.44 75.31 78.63 79.67 81.06 78.85 84.22 79.90
NMT en-zh 74.32 73.82 77.00 81.31 82.84 83.75 84.33 83.49 86.23 87.12
NMT cs-uk 61.93 69.72 76.24 76.39 80.21 80.69 83.42 81.46 83.07 84.11
NMT de-fr 57.44 65.25 70.20 74.27 76.20 73.70 79.93 72.60 76.90 78.63

Macro Avg. 63.78 67.00 70.96 74.38 77.73 77.97 80.34 79.11 81.59 82.45

Table 22: Translation direction detection accuracy by number of characters in the source sentence for different
language pairs using SMaLL-100.

I Example for Forensic Dataset

DE→EN EN→DE

DE: Nach 30 sec. wurde das trypsinhaltige PBS abgegossen, und die Zellen
kamen für eine weitere Minute in den Brutschrank.

EN: After 30 sec, the trypsin-containing PBS was poured off, and the cells were
placed in the incubator for another minute.

0.442 0.285

Table 23: Example of two segments from the forensic case (Section 5.7). M2M-100 assigns a higher probability to
the English sentence conditioned on the German sentence than vice versa, suggesting that the English sentence is
more likely to be a translation of the German sentence.
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