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Abstract

This paper empirically investigates the re-
lationship between subword vocabulary size
and the performance of large language mod-
els (LLMs) to provide insights on how to de-
fine the vocabulary size. Experimental results
show that larger vocabulary sizes lead to bet-
ter performance in LLMs. Moreover, we con-
sider a continual training scenario where a pre-
trained language model is trained on a differ-
ent target language. We introduce a simple
method to use a new vocabulary instead of the
pre-defined one. We show that using the new
vocabulary outperforms the model with the vo-
cabulary used in pre-training.

1 Introduction

Since the GPT series demonstrated that Large
Language Models (LLMs) excel in complex rea-
soning tasks (Radford et al., 2018a,b; Brown
et al., 2020), they have rapidly become indispens-
able tools for various natural language processing
tasks. To construct better LLMs, previous stud-
ies have addressed theoretical analyses of internal
layers (Xiong et al., 2020; Takase et al., 2024) and
conducted extensive experiments to provide em-
pirical findings (Kaplan et al., 2020; Hoffmann
et al., 2022; Wortsman et al., 2024). For exam-
ple, Hoffmann et al. (2022) reported the compute-
optimal training configuration, which determines
suitable parameter and training data sizes for a
given computational resource.

In contrast, although previous studies have ex-
plored the properties of internal layers in LLMs,
parameters related to the vocabulary, the em-
bedding and output layers, are under-explored.
Specifically, there are no well-established findings
on how to determine the subword vocabulary size,
which defines the parameter size of the embed-
ding and output layers. As a standard strategy, a
vocabulary size in the 30k-60k range is used for
monolingual LLMs (Radford et al., 2018b; Brown

et al., 2020; Black et al., 2022; Zhang et al., 2022;
Touvron et al., 2023), while around 250k is used
for multilingual LLMs (Chowdhery et al., 2022;
Le Scao et al., 2022). For monolingual LLMs,
a larger vocabulary size has been discussed in
terms of efficiency during the inference phase (Al-
mazrouei et al., 2023). However, the question re-
mains: does a larger vocabulary size offer any ad-
vantages for the quality of monolingual LLMs? To
address this question, we empirically investigate
the relationship between vocabulary size and per-
formance on downstream tasks.

We conduct experiments on two languages: En-
glish, which is widely used, and Japanese, which
is character-rich. We show that a larger vocabulary
size improves the performance of LLMs in both
languages. In addition to training from scratch,
we consider the continual training scenario. When
adapting a pre-trained LLM to another language,
it may be beneficial to reconstruct an appropriate
vocabulary instead of reusing the original vocabu-
lary. For this purpose, we propose a strategy to
swap parameters related to the vocabulary. We
demonstrate that using the reconstructed vocabu-
lary can improve performance.

2 Vocabulary Construction

To construct subword vocabularies, there are
two widely used algorithms: Byte-Pair Encoding
(BPE) (Sennrich et al., 2016) and unigram lan-
guage model (Kudo, 2018). In this study, we
use the unigram language model implemented in
SentencePiece (Kudo and Richardson, 2018). For
each language, we use the following vocabulary
sizes: 5k, 10k, 50k, 100k and 500k.

We conduct experiments on two languages: En-
glish and Japanese. For the English training
data, we extract English corpora from SlimPa-
jama (Soboleva et al., 2023), excluding the book
corpus, which was reported to have copyright in-
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fringement issues. For the Japanese training data,
we extract the Japanese portion of CommonCrawl
corpus with the language identification and doc-
ument deduplication applied using CCNet (Wen-
zek et al., 2020). For the vocabulary construction,
we sample a small portion (50GB) from each lan-
guage training data.

3 Experiments on Vocabulary Size

3.1 Settings

To investigate the relationship between vocabulary
size and performance, we train Transformer-based
language models on the training data described in
Section 2. Table 1 shows the number of tokens
in the training data calculated from each vocabu-
lary set. As shown in this table, the number of
tokens varies drastically based on the vocabulary
size. Therefore, we must take care not to give any
unfair advantages to any setting.

For example, with a fixed number of training to-
kens, the 500k vocabulary model trains for around
1.5 epochs in English and 2 epochs in Japanese,
while the 5k vocabulary model trains for only 1
epoch. The larger vocabulary size has an advan-
tage of seeing more data in this configuration. In
contrast, with a fixed number of training epochs,
the 5k vocabulary model consumes much more
computational resources than the larger vocabu-
lary models. Especially in Japanese, where the 5k
vocabulary model contains about twice as much
tokens as the 500k vocabulary model in 1 epoch.
Because the performance of LLMs is correlated
with the computational costs during training (Ka-
plan et al., 2020), this configuration might favor
smaller vocabulary sizes. Thus, we prepare two
training configurations: 1T tokens and 1 epoch1.

For hyper-parameters of the language model,
we use the GPT-3 Large setting described in
Brown et al. (2020). We set the number of lay-
ers 24 and the hidden dimension size 1536. In
this setting, the number of parameters for internal
layers is 680M. We use Megatron-LM (Shoeybi
et al., 2020)2 as our codebase to train large lan-

1In addition to the training data size, we have to discuss
the number of parameters for a fair comparison because the
model with the small vocabulary size contains less parame-
ters for the embedding and output layers. However, as de-
scribed in Appendix D, the model with the small vocabulary
size does not improve the performance when we increase the
number of parameters related to the vocabulary. Thus, we
focus only on varying the training data size in our main ex-
periments.

2https://github.com/NVIDIA/Megatron-LM

#Vocab English Japanese
5k 830B 950B
10k 750B 750B
50k 670B 590B
100k 650B 550B
500k 640B 490B

Table 1: The number of tokens in training data tok-
enized by each vocabulary.

guage models. To stabilize the training, we use
the scaled embed technique (Takase et al., 2024).

We evaluate each model on the commonsense
reasoning tasks. For English, we use PIQA (Bisk
et al., 2020), OpenBookQA (OBQA) (Mi-
haylov et al., 2018), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2021)
and ARC easy and challenge (Clark et al.,
2018). For Japanese, we use JSQuAD and
JCommonsenseQA (JCQA) from JGLUE (Kuri-
hara et al., 2022), the Japanese portion of
XWinograd (Tikhonov and Ryabinin, 2021), and
JAQKET3. Following the previous study (Touvron
et al., 2023), we use the normalized likelihood in
evaluation (Brown et al., 2020; Gao et al., 2023).

3.2 Results

Tables 2 and 3 present the performance of the
models trained with 1T tokens and 1 epoch. For
each configuration, we show the average score of
each task, and the improvement of the average
score from the 5k vocabulary model.

As shown by the average scores, for both En-
glish and Japanese, larger vocabulary sizes lead
to better performance. The improvement is par-
ticularly notable in Japanese, largely due to the
gains in JAQKET. Unlike the other tasks where the
model selects answers from provided candidates,
JAQKET is a factoid QA task where the model
generates answers without any candidates. This
suggests that a larger vocabulary size particularly
benefits generation tasks.

In addition, the larger vocabulary size achieves
better performance in either situation where we fix
the number of training tokens or training epochs.
With a fixed number of epochs, the larger vocab-
ulary size settings, e.g., 100k and 500k, use a
much smaller number of training tokens (Table 1).
This means that the larger vocabulary size also im-
proves the training efficiency because we can ob-
tain a better model with a smaller computational

3https://sites.google.com/view/project-aio/competition1

1016



#Vocab PIQA OBQA HellaSwag WinoGrande ARC-e ARC-c Avg.
1T tokens

5k 69.9 33.2 51.0 55.2 49.6 27.7 47.8 (±0.0)
10k 71.2 33.4 51.5 55.2 50.6 27.1 48.2 (+0.4)
50k 71.7 32.8 53.9 54.5 50.8 27.7 48.6 (+0.8)
100k 70.9 33.4 53.9 54.8 54.3 27.7 49.2 (+1.4)
500k 71.4 34.0 55.3 57.5 55.1 28.3 50.3 (+2.5)

1 Epoch
5k 70.1 32.4 50.9 55.2 50.2 28.5 47.9 (±0.0)
10k 71.1 33.6 50.6 55.7 49.0 27.1 47.9 (±0.0)
50k 70.6 33.6 52.1 53.8 52.3 27.3 48.3 (+0.4)
100k 71.7 33.8 53.4 54.7 52.7 27.6 49.0 (+1.1)
500k 70.4 34.2 54.3 55.1 54.0 28.2 49.4 (+1.5)

Table 2: The performance on English commonsense reasoning tasks in training 1T tokens and 1 epoch.

#Vocab JSQuAD JCQA XWinograd JAQKET Avg.
1T tokens

5k 58.1 68.1 58.9 12.5 49.4 (±0.0)
10k 61.2 67.2 59.0 23.3 52.7 (+3.3)
50k 61.8 71.6 59.0 29.2 55.4 (+6.0)
100k 62.1 71.9 59.6 34.9 57.1 (+7.7)
500k 64.5 71.6 59.3 38.9 58.6 (+9.2)

1 Epoch
5k 57.7 68.1 58.8 14.4 49.8 (±0.0)
10k 57.7 63.4 60.0 22.0 50.8 (+1.0)
50k 60.9 69.1 58.5 28.7 54.3 (+4.5)
100k 61.3 70.1 58.7 31.0 55.3 (+5.5)
500k 63.2 69.8 57.7 34.1 56.2 (+6.4)

Table 3: The performance on Japanese commonsense reasoning tasks in training 1T tokens and 1 epoch.

cost. In fact, the GPU hours4 in the 100k setting
are 0.7 times shorter than in the 5k when we fix
the number of training epochs in Japanese5.

4 Experiments on Continual Training

4.1 Increasing Vocabulary Size

Section 3 shows that the larger vocabulary size
is useful in constructing LLMs from scratch. In
contrast, nowadays, we often start from a high-
quality pre-trained model such as the Llama se-
ries (Touvron et al., 2023) and continue training
on the target language data (Müller and Laurent,
2022; Yong et al., 2023; Yamada and Ri, 2024).

Here, we check if we can readily increase the
vocabulary size from the pre-trained model. Simi-
lar techniques have been explored as vocabulary
expansion (Fujii et al., 2024; Kim et al., 2024)
or sophisticated embedding initialization using
cross-lingual word embeddings (Minixhofer et al.,
2022), but our focus here is to check if we could
increase the vocabulary size in a rather simplistic

4We used A100 80GB for all experiments.
5Since the larger vocabulary size slows the computation

of the output distribution, we should use an efficient way such
as the adaptive softmax (Grave et al., 2017) in practice.

way. We consider a situation where we construct
an entirely new vocabulary independently of the
original vocabulary.

Let Vorig and Vnew be the vocabulary set of the
pre-trained model and a newly constructed vocab-
ulary set respectively, and let d be the dimension
size of each layer. To exploit knowledge learned
in the pre-trained embedding matrix, we construct
a new embedding matrix Enew ∈ R|Vnew|×d from
the original embedding matrix Eorig ∈ R|Vorig |×d

with the way inspired by the randomized algo-
rithm (Halko et al., 2011):

Enew =
WEorig√
|Vorig|

, (1)

where W ∈ R|Vnew|×|Vorig | is the random ma-
trix whose elements are sampled from the stan-
dard normal distribution independently. To main-
tain the standard deviation of Eorig in Enew, we
scale the matrix multiplication by 1√

|Vorig |
6.

6We assume that Eorig contains independent random
variables with mean 0 and variance var(Eorig). Then, the
variance of the matrix multiplication WEorig has mean 0 and
variance var(Eorig)× |Vorig|.
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Setting #Vocab JSQuAD JCQA XWinograd JAQKET Avg.
From scratch 100k 71.8 76.0 63.6 54.2 66.4
Llama2 (w/o train) 32k 71.2 60.8 62.4 15.3 52.4 (±0.0)
Llama2 vocab 32k 80.7 79.4 72.6 47.7 70.1 (+17.7)
Swap 100k 79.2 80.2 67.5 56.3 70.8 (+18.4)
Swap&Insert 100k 81.9 80.2 69.2 61.2 73.1 (+20.7)
Fujii et al. (2024) 100k 81.6 77.6 69.1 61.1 72.4 (+20.0)

Table 4: The performance on Japanese commonsense reasoning tasks in the continual training from Llama2.

In the naive way, we swap Enew with Eorig.
However, Equation 1 randomizes embeddings
even if Vnew contains the corresponding subwords
which may possess useful knowledge transferable
to the new model. Therefore, we insert the pre-
trained embedding in Eorig into Enew if the cor-
responding subword is included in both Vorig and
Vnew

7. For the output layer, we construct a new
weight matrix with the same manner.

4.2 Results

We train the Llama2 7B parameter model (Tou-
vron et al., 2023) with 100B tokens on our
Japanese training data. We use the Japanese vo-
cabulary whose size is 100k. Table 4 shows results
on Japanese commonsense reasoning tasks. In
this table, ‘Swap’ uses new parameters related to
the vocabulary without inserting the correspond-
ing pre-trained parameters. We train a language
model from scratch to compare the effectiveness
of the continual training. Moreover, we compare
the embedding initialization method by Fujii et al.
(2024) because their study is the same situation:
continual training of Llama2 on Japanese data.

Table 4 shows that ‘Swap’ and ‘Swap&Insert’
outperform the model using the original Llama2
vocabulary even though these settings randomize
parameters related to the vocabulary. This result
indicates that it is better to prepare an appropri-
ate vocabulary even in the continual training sit-
uation. Moreover, the insertion strategy achieves
further improvement. The ‘Swap&Insert’ outper-
forms the method of Fujii et al. (2024), which ini-
tializes an embedding of the new subword with the
average of the pre-trained embeddings8, and thus,
the ‘Swap&Insert’ is simple but effective.

5 Related Work

Before the paradigm of subword units and LLMs,
researchers sometimes needed to handle the large

7See Appendix B for more details.
8For the existing subwords, their method uses the pre-

trained embeddings. Thus, their method is regarded as using
the ‘Insert’ strategy.

vocabulary size such as more than 100k to de-
crease the number of unknown words. For ex-
ample, the vocabulary sizes of One Billion Word
Benchmark and WikiText-103 are about 800k and
300k respectively (Chelba et al., 2013; Merity
et al., 2017). Some previous studies reported that
character-level information was useful for neu-
ral language models with the large vocabulary
size (Jozefowicz et al., 2016; Takase et al., 2019).
In this paradigm, Chen et al. (2019) explored the
impact of the vocabulary size.

Since the use of subword units is proposed (Sen-
nrich et al., 2016; Kudo, 2018), the vocabulary
sizes 30k-60k are widely used as the magic num-
bers (Libovický et al., 2022). As examples, the
BERT and GPT papers use 30k and 40k for their
vocabulary sizes respectively without any justifi-
cation (Vaswani et al., 2017; Devlin et al., 2019;
Radford et al., 2018a). Kiyono et al. (2020) inves-
tigated the relation between the performance and
the vocabulary size but the maximum vocabulary
size of their investigation is too small, i.e., 32k.

For large language models, the vocabulary sizes
30k-60k are also frequently used (Radford et al.,
2018b; Touvron et al., 2023). In using the large
vocabulary size, the authors claim to support mul-
tilinguality (Le Scao et al., 2022; Xue et al., 2021)
or improve the efficiency (Lieber et al., 2021;
AI@Meta, 2024). In contrast, we investigate the
relation between the vocabulary size and the per-
formance of monolingual LLMs on each task.

6 Conclusion

In this paper, we empirically investigate the per-
formance of monolingual LLMs when we vary the
vocabulary size. We conduct experiments on two
languages: English and Japanese. Experimental
results show that the larger vocabulary size is, the
better performance the language model achieves in
both languages. Moreover, we introduce a method
to use the entirely new vocabulary in the continual
training situation. We show that using the appro-
priate vocabulary also improves the performance
in the continual training.
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Limitations

In this study, we conducted experiments on two
languages: English and Japanese. We believe that
our findings can be applied to other languages be-
cause we do not depend on linguistic features in
the subword vocabulary construction. However,
we also agree that it is better to conduct exhaus-
tive experiments on various languages to confirm
the generality of our findings.

In this study, we used 500k as the maximum
vocabulary size. Because it is impractical to
construct a much larger vocabulary than 500k,
we could not investigate the improvement by the
tremendously large vocabulary size such as one
million and the upper bound of the performance.
The computational time of the vocabulary con-
struction depends on the corpus size and the de-
sired vocabulary size. We roughly estimate that
the vocabulary whose size is larger than one mil-
lion requires at least over a month in its construc-
tion in our environment.

Furthermore, the parameter sizes of internal lay-
ers are 680M in training from scratch, and 7B in
the continual training. We consider that the dis-
cussions on subword vocabulary size are orthogo-
nal to the parameter size of internal layers, but we
would conduct additional experiments with more
than 10B parameters if we had a large amount of
computational resources.
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Hyper-parameter Value
Number of layers 24
Hidden dimension size 1536
Number of attention heads 16
Sequence length 2048
Batch size 2048
Learning rate 3e-4
Learning rate scheduler Cosine
Warmup ratio 0.01
Adam β1 0.9
Adam β2 0.95
Weight decay 0.01
Gradient clipping 1.0

Table 5: Hyper-parameters used in experiments described in Section 3.

Initialization Vocab type JSQuAD JCQA XWinograd JAQKET Avg.
Fujii et al. (2024) Expansion 78.8 63.5 63.6 50.1 64.0
Swap&Insert Expansion 80.7 60.6 67.4 55.9 66.2
Fujii et al. (2024) Appropriate 81.6 77.6 69.1 61.1 72.4
Swap&Insert Appropriate 81.9 80.2 69.2 61.2 73.1

Table 6: The performance on Japanese commonsense reasoning tasks in the continual training from Llama2 when
we construct the 100k vocabulary with the vocabulary expansion approach and construct the appropriate 100k
vocabulary to the Japanese training data.

Type Number
UTF-8 byte pieces 256
Alphabet & number (e.g., a, the, 1) 5349
Symbol (e.g., +, =, ##) 209
Others such as Japanese characters 1083
Total 6897

Table 7: The type and number of shared subword units between the original Llama2 vocabulary and appropriate
vocabulary, whose size is 100k, to the Japanese data in the continual training.

A Hyper-parameters

Table 5 shows hyper-parameters used in our main experiments described in Section 3.

B Formula of ‘Insert’ in Section 4.1

We formulate the procedure of ‘Insert’ in Section 4.1. Let eorigi and enewi be the i-th row vectors of
Eorig and Enew, and let worig

i and wnew
i be the corresponding subwords to eorigi and enewi . The ‘Insert’

function, Insert(·), replaces enewi with eorigi when the corresponding subword is included in the original
vocabulary Vorig as follows:

Insert(enewi ) =

{
eorigj if wnew

i ∈ Vorig ∧ worig
j = wnew

i

enewi otherwise
(2)

Therefore, the matrix contains both the randomized embeddings and the original pre-trained embeddings
after the ‘Insert’ procedure. As shown in Section 4.2, this procedure leads to further improvement.

C Comparison on Vocabulary Expansion in Continual Training

In Section 4, we conduct the continual training experiment on the scenario where we construct an appro-
priate vocabulary to the target language. In this scenario, most subword units in the original vocabulary
might be removed. In contrast, the vocabulary expansion approach maintains the whole original vocabu-
lary because it only adds new subword units to the original vocabulary (Fujii et al., 2024). We investigate
which approach is empirically better in this section.
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#Vocab Vocab #Params. Total #Params. JSQuAD JCQA XWinograd JAQKET Avg.
5k 8M 690M 58.1 68.1 58.9 12.5 49.4 (±0.0)
5k w/ Expansion 200M 880M 61.0 60.3 59.5 15.8 49.2 (−0.2)
100k 150M 840M 62.1 71.9 59.6 34.9 57.1 (+7.7)

Table 8: The performance on Japanese commonsense reasoning tasks when we use 1T tokens for training. For a
fair comparison between 5k and 100k, we increase the parameter sizes of the embedding and output layers (Vocab
#Params. in this Table) for 5k with the matrix factorization technique (Lan et al., 2020).

We construct 100k vocabulary with the vocabulary expansion approach, and compare it with the ap-
propriate vocabulary used in Section 4. We apply two strategies to initialize the embedding matrix:
Fujii et al. (2024) and our ‘Swap&Insert’. Table 6 shows results of the continual training from Llama2.
This table indicates that using appropriate vocabulary outperforms the vocabulary expansion approach.
The appropriate vocabulary contains more subword units of the target language. We consider that this
property improves the performance.

Table 7 shows the shared subword units between the original Llama2 vocabulary and the appropriate
vocabulary. This table indicates that the number of shared subword units is only about 7000, which
is about one-fifth of the original vocabulary. Moreover, this table suggests that the original vocabulary
contains few Japanese subword units because the number of the shared Japanese characters is about 1000.
Therefore, it is better to construct an entirely new vocabulary that is appropriate to the target language.

For the embedding initialization methods, Table 6 shows that our ‘Swap&Insert’ achieves better av-
eraged score than the method of Fujii et al. (2024) in the same as the results in Section 4. Thus, our
approach is also more suitable in the vocabulary expansion situation.

D Comparison on Parameter Size

The smaller vocabulary size lessens the parameter sizes related to the vocabulary in comparison with the
larger vocabulary size. Thus, the smaller vocabulary size might have the disadvantage in the number
of parameters. To confirm this point, we increase the parameters related to the vocabulary for the 5k
setting. Concretely, we expand the dimension of the embedding and output layers, and then modify the
dimension size by the linear transformation such as the matrix factorization technique (Lan et al., 2020)9.
Let |V | be the vocabulary size, de be the dimension size of the embedding and output layers, and d be
the hidden dimension size. We prepare the expanded embedding layer E ∈ R|V |×de and the trainable
weight matrix W ∈ Rde×d. We convert the dimension size of E with the matrix multiplication EW .
For the output layer, we convert the dimension with the same manner. We adjust de = 30720 for a fair
comparison with the 100k setting in terms of the number of parameters. For other hyper-parameters, we
use the values shown in Table 5.

Table 8 shows the performance on Japanese commonsense reasoning tasks. This table indicates that the
5k with the expansion does not improve the average score although it increases the number of parameters.
This result suggests that the increase of the parameter size related to the vocabulary has no positive
influence on the performance. In contrast, the 100k achieves much better average score in the similar
parameter size. Therefore, the improvement by the increase of the vocabulary size is orthogonal to the
increase of the parameter size.

E Experiments on Each Training Data Size

In addition to the 1T tokens in Section 3, we investigate the performance in other training data sizes:
10B, 50B, 100B, 200B, and 500B tokens. Tables 9 and 10 show the results of English and Japanese
models when we use each training data size. These tables show that larger vocabulary sizes lead to better
performance for both English and Japanese in all training data sizes in the same as the results in Section
3. These tables indicate that our findings are independent from the amount of training data.

9In contrast, we can reduce the number of parameters for the larger vocabulary size with the matrix factorization technique
or more sophisticated way (Takase and Kobayashi, 2020), but we regard the 5k as the baseline in this experiment.
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#Vocab PIQA OBQA HellaSwag WinoGrande ARC-e ARC-c Avg.
10B tokens

5k 58.4 25.4 29.3 51.9 34.3 22.3 36.9 (±0.0)
10k 59.1 27.8 29.6 53.2 35.0 21.6 37.7 (+0.8)
50k 62.1 26.2 29.5 49.9 38.7 21.9 38.0 (+1.1)
100k 62.2 27.8 29.7 49.6 39.0 22.7 38.5 (+1.6)
500k 62.1 27.6 30.1 51.3 38.7 22.9 38.8 (+1.9)

50B tokens
5k 66.7 28.0 39.0 52.3 41.9 23.8 41.9 (±0.0)
10k 66.3 30.4 39.5 51.0 42.6 25.3 42.5 (+0.6)
50k 68.1 29.4 40.9 50.9 46.9 25.5 43.6 (+1.7)
100k 68.1 31.6 42.0 51.3 46.9 25.5 44.2 (+2.3)
500k 68.8 32.2 43.1 52.0 47.9 25.7 44.9 (+3.0)

100B tokens
5k 67.2 30.8 42.7 52.2 44.1 26.7 44.0 (±0.0)
10k 68.9 31.6 42.7 51.6 45.1 25.7 44.3 (+0.3)
50k 68.9 30.8 45.1 52.6 49.1 26.2 45.5 (+1.5)
100k 70.2 31.6 46.1 52.9 49.1 25.8 45.9 (+1.9)
500k 70.4 31.6 47.0 53.0 50.0 28.2 46.7 (+2.7)

200B tokens
5k 68.8 32.8 45.3 53.4 46.0 25.3 45.2 (±0.0)
10k 69.0 31.6 46.2 53.3 45.7 26.5 45.4 (+0.2)
50k 70.5 31.0 47.9 53.8 50.0 26.1 46.6 (+1.4)
100k 70.5 33.6 49.2 54.6 50.6 26.2 47.4 (+2.2)
500k 70.7 33.4 50.2 54.3 51.8 29.6 48.3 (+3.1)

500B tokens
5k 69.7 32.6 49.6 52.9 47.7 26.4 46.5 (±0.0)
10k 70.8 34.2 49.7 54.5 49.0 26.2 47.4 (+0.9)
50k 70.2 32.2 52.0 54.4 51.6 27.2 47.9 (+1.4)
100k 70.1 33.4 52.7 55.3 52.8 27.8 48.7 (+2.2)
500k 71.1 31.8 53.6 56.5 53.9 28.8 49.3 (+2.8)

Table 9: The performance on English commonsense reasoning tasks when we use 100B, 200B, and 500B tokens
for training.

The difference of the performance among vocabulary sizes is smaller in the 10B tokens than ones
in other training data sizes. Thus, the small training data size decreases the advantage of the large
vocabulary sizes. These results explain the relation between our findings and the previous study (Ali
et al., 2024). Ali et al. (2024) concluded that the small vocabulary size such as 30k is sufficient for
English monolingual LLMs. We consider that they led the contrary conclusion to our findings because
their training data, which is about 50B tokens, is much smaller than ours.
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#Vocab JSQuAD JCQA XWinograd JAQKET Avg.
10B tokens

5k 1.6 37.1 51.0 0.9 22.7 (±0.0)
10k 1.4 44.2 53.6 0.5 24.9 (+2.2)
50k 2.7 47.9 51.0 1.6 25.8 (+3.1)
100k 5.3 48.9 51.7 3.3 27.3 (+4.6)
500k 10.1 50.8 52.5 4.1 29.4 (+6.7)

50B tokens
5k 36.3 49.4 53.7 3.3 35.7 (±0.0)
10k 42.6 59.1 56.0 7.7 41.4 (+5.7)
50k 42.8 56.8 55.7 12.2 41.9 (+6.2)
100k 40.9 56.8 56.9 17.5 43.0 (+7.3)
500k 48.9 57.2 54.8 17.9 44.7 (+9.0)

100B tokens
5k 45.0 55.0 56.9 5.2 40.5 (±0.0)
10k 49.8 60.9 56.7 12.3 44.9 (+4.4)
50k 51.4 56.0 56.8 18.4 45.7 (+5.2)
100k 49.1 58.7 58.9 20.7 46.9 (+6.4)
500k 56.3 60.1 55.7 26.3 49.6 (+9.1)

200B tokens
5k 50.5 58.5 56.7 7.5 43.3 (±0.0)
10k 53.8 61.1 57.7 16.9 47.4 (+4.1)
50k 55.8 54.0 58.7 21.4 47.5 (+4.2)
100k 54.7 64.2 58.0 27.2 51.0 (+7.7)
500k 60.6 61.4 56.4 32.1 52.6 (+9.3)

500B tokens
5k 56.4 62.2 58.4 10.4 46.9 (±0.0)
10k 59.6 62.8 58.8 20.2 50.4 (+3.5)
50k 59.3 64.7 59.0 26.5 52.4 (+5.5)
100k 60.1 64.7 59.3 31.8 54.0 (+7.1)
500k 62.6 62.9 58.8 36.4 55.2 (+8.3)

Table 10: The performance on Japanese commonsense reasoning tasks when we use 100B, 200B, and 500B tokens
for training.
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