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Abstract

Recent advancements in large audio language
models (LALMs) have demonstrated impres-
sive results and promising prospects in univer-
sal understanding and reasoning across speech,
music, and general sound. However, these mod-
els still lack the ability to recognize their knowl-
edge boundaries and refuse to answer questions
they don’t know proactively. While there have
been successful attempts to enhance the relia-
bility of LLMs, reliable LALMs remain largely
unexplored. In this paper, we systematically
investigate various approaches towards reliable
LALMs, including training-free methods such
as multi-modal chain-of-thought (MCoT), and
training-based methods such as supervised fine-
tuning (SFT). Besides, we identify the limita-
tions of previous evaluation metrics and pro-
pose a new metric, the Reliability Gain Index
(RGI), to assess the effectiveness of different
reliable methods. Our findings suggest that
both training-free and training-based methods
enhance the reliability of LALMs to different
extents. Moreover, we find that awareness of
reliability is a “meta ability”, which can be
transferred across different audio modalities,
although significant structural and content dif-
ferences exist among sound, music, and speech.

1 Introduction

Large audio language models (LALMs) have
emerged as a promising approach to address the
complex challenges of universal understanding and
reasoning across diverse audio modalities, includ-
ing speech (Wang et al., 2023a; Hu et al., 2024;
Deng et al., 2024a), music (Deng et al., 2024b; Liu
et al., 2024b), and general sound (Gong et al., 2024;
Kong et al., 2024). LALMs leverage the power
of large-scale pre-trained encoders and LLMs to
capture intricate acoustic features and semantic rep-
resentations across various scenarios (Gong et al.,
2023; Ghosh et al., 2024; Tang et al., 2024; Chu
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Figure 1: Illustration of Unreliable vs. Reliable LALMs.

et al., 2023, 2024), demonstrating potential to han-
dle a wide range of unsolved tasks. Despite their
impressive performance, LALMs still face a signif-
icant limitation: they lack the ability to recognize
when they do not know the answer to a question,
as shown in Figure 1. The left part depicts an
unreliable LALM, where the model provides ei-
ther correct or incorrect answers for audio inputs
(sound, music, or speech) without rejecting aware-
ness. The right part shows a reliable LALM, where
the model refuses to answer questions that exceed
its knowledge boundary. This reliability helps pre-
vent models from offering incorrect or overly con-
fident responses when faced with uncertainty.

While there have been successful efforts to en-
hance the reliability of language models in text-
based models (Yang et al., 2024d; Cheng et al.,
2024a; Yona et al., 2024; Zhang et al., 2024; Xu
et al., 2024a), reliable LALMs remain largely un-
explored. Building reliability in LALMs is crucial
for applications where the model’s confidence is
essential, especially in real-world scenarios such
as healthcare (Jia et al., 2024), autonomous driv-
ing (Xu et al., 2024c), and interactive agents (Ma
et al., 2025a). A reliable LALM should not only
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provide accurate answers but also have the ability
to refuse to answer when it is unsure, offering a
more responsible interaction model.

In this paper, we present a comprehensive in-
vestigation into methods for enhancing the relia-
bility of LALMs. We explore both training-free
and training-based approaches that can effectively
improve LALM’s ability to identify its knowledge
boundaries and reject incorrect answers. Specifi-
cally, we investigate how these methods influence
accuracy, truthfulness, and reliability in a variety
of audio modalities. Furthermore, we introduce a
novel quantitative metric, the Reliability Gain In-
dex (RGI), to assess the effectiveness of different
reliability-enhanced techniques. The goal is for
the model to avoid being overly conservative (from
what it knows), while promoting humility (from
what it doesn’t konw) by rejecting answering, as
shown in Figure 1. Our experiments demonstrate
that the ability to say “I don’t know” (IDK) is a
“meta ability” of LALMs, which means this ability
can be trained on one modality and transferred to
other audio modalities, even in the presence of sig-
nificant structural and content differences among
sound, music, and speech. Our contribution can be
summarized in the following points:

1. To the best of our knowledge, we are the first
to investigate the reliability of LALM. Both
training-free and training-based methods are
conducted to verify LALM’s reliability.

2. We identify the limitations of previous evalu-
ation metrics and propose a new metric, the
Reliability Gain Index (RGI), to measure the
effectiveness of different reliable methods.

3. With our new metric under the cross-modal
setting, we find that the awareness of reliabil-
ity is a “meta ability” and can be transferred to
other modalities in the context of large audio
language modeling.

2 Related Work

2.1 Large Audio Language Model
Large audio language models (LALMs), as a ris-
ing part of multimodal large language models
(MLLMs), aim to leverage the capabilities of LLMs
to achieve advanced audio understanding and rea-
soning abilities. However, the inherent differences
in acoustic structures and content across speech,
music, and general sound make universal audio pro-
cessing challenging, primarily due to the domain

conflict (Wang et al., 2023b) and the catastrophic
forgetting (Tang et al., 2024) problem. Balancing
the performance across these different modalities
remains difficult.

Some works focus on modeling individual
modalities with LLMs among speech, music,
and general sound. In speech language models
(SLMs), tasks such as LLM-based speech recogni-
tion (ASR) (Li et al., 2023b; Wu et al., 2023a; Ma
et al., 2024; Yu et al., 2024; Yang et al., 2024b,a;
Geng et al., 2024; Ma et al., 2025b), speaker di-
arization (SD) (Shi et al., 2024; Meng et al., 2024),
and speech emotion recognition (SER) (Xu et al.,
2024b; Lin et al., 2024; Cheng et al., 2024b; Kang
et al., 2024) are critical, which involve either acous-
tic features, semantic features, or both, specific to
speech. Furthermore, some works tackle various
tasks with all-in-one modeling within the speech
domain (Wang et al., 2023a; Hu et al., 2024; Deng
et al., 2024a). In the realm of LLM-based music
understanding, some approaches focus on solving
problems related to signal-based music process-
ing (Deng et al., 2024b; Liu et al., 2024b), while
others target symbolic music understanding (Yuan
et al., 2024; Qu et al., 2024). Within general sound
understanding, LLM-based automated audio cap-
tioning (AAC) (Wu et al., 2023b; Chen et al., 2025;
Li et al., 2025; Liu et al., 2024a) and subsequent
audio question answering (AQA) task (Gong et al.,
2024; Kong et al., 2024) have received signifi-
cant attention due to their potential to advance the
field. Further research has explored methods that
can handle two (Gong et al., 2023; Ghosh et al.,
2024) or three (Tang et al., 2024; Chu et al., 2023,
2024) modalities simultaneously by scaling data
and model parameters, as well as innovating in the
design of data pipelines (Lu et al., 2024a,b) and
model architectures (Bhati et al., 2024).

The recently developed open-source model,
Qwen2-Audio (Chu et al., 2024), demonstrates
strong general-purpose audio understanding and
reasoning capabilities across various bench-
marks (Yang et al., 2024c; Li et al., 2024; Sak-
shi et al., 2024) through a combination of pre-
training, supervised fine-tuning (SFT), and rein-
forcement learning with human feedback (RLHF).
Despite these advances, even Qwen2-Audio still
lacks awareness of reliability in our experiments.
This highlights the need for further exploration into
the reliable LALM, an area that remains an open
challenge in the field.
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2.2 Evaluation of Reliable Generation
Evaluating the reliability of LLMs is a new topic
that lacks a unified standard. In general, the goal
is for LLMs to be able to refuse answering when
they are unable to derive an answer. Several ap-
proaches have been proposed to assess the reliabil-
ity of LLMs. Yang et al. (2024d) introduced the use
of Prudence Score, Over-Conservativeness Score,
and Honesty Score to evaluate model performance.
Cheng et al. (2024a) were the first to introduce the
concept of the IDK dataset and employed Knowl-
edge Quadrants to visualize a model’s knowledge
coverage and then defined the Truthfulness score.
Yona et al. (2024) defined the Mean Faithful Gener-
ation (MFG) metric, which quantifies the expected
faithfulness of a single model output by compar-
ing it against a ground truth. Additionally, Zhang
et al. (2024) proposed the Average Precision (AP)
score measuring the model’s precision in identify-
ing and ranking relevant predictions based on its
knowledge. A more recent and popular method for
evaluating reliability involves weighting accuracy
and truthfulness to obtain a final reliability score
introduced by Xu et al. (2024a). This method pro-
vides a more holistic measure of a model’s overall
reliability by balancing both the model’s correct re-
sponses and its ability to reject uncertain answers.

3 Reliable LALM

The core purpose of reliable LALM is to refuse to
answer when the model doesn’t know the answer
given the input audio and instruction. We explored
two distinct approaches to enhance the model’s re-
liability: training-free and training-based methods.
The training-free method aims to activate the in-
herent capabilities of the model through prompting
or agent, thereby achieving reliability without re-
quiring additional training. In contrast, the training-
based method seeks to enhance the model’s reliabil-
ity by post-training, thereby explicitly advertising
reliability through the training process.

3.1 Training-free Method
Three training-free methods for enhancing model
reliability are employed: IDK Prompting, MCoT
Prompting, and Task Agent. These methods lever-
age the model’s inherent instruction-following ca-
pabilities to improve its reliability without addi-
tional training.

IDK Prompting. I Don’t Know (IDK) Prompt-
ing is a method designed to enhance model relia-

bility by adding a supplementary prompt after the
input question. This prompt encourages the model
to acknowledge uncertainty in cases where it lacks
sufficient information to provide a confident an-
swer. By incorporating this strategy, the model is
prompted to explicitly state “I don’t know” when
necessary. The specific prompt used in this method
is outlined in Appendix C.1.

MCoT Prompting. Multi-modal Chain-of-
Thought (MCoT) Prompting (Lu et al., 2022;
Zhang et al., 2023) encourages the LALM to
reason step by step, with the intention of refining
its analysis of the given problem and producing
more reliable results. This approach leads the
model to break down complex tasks into smaller,
manageable components, which are processed
sequentially. By prompting the model to articulate
its thought process, MCoT Prompting improves
its ability to reason logically and arrive at reliable
conclusions. The specific prompt for MCoT is
provided in Appendix C.1.

Task Agent. Audio data differs from textual data
significantly, presenting substantial differences in
the content and structure among speech, sound, and
music, despite all being categorized as “audio”. We
propose to use a task agent, which is designed to
support multi-step reasoning with tool-using abil-
ity during the inference process. This approach
incorporates a sequence of steps for reasoning that
includes identifying the type of audio, analyzing
its content, and producing a final prediction. The
steps are as follows:

1. Identify the type of audio. The model is
first required to categorize the audio input.
The possible types include sound, music, and
speech.

2. Generate content based on audio type. De-
pending on the identified audio type, the
model generates the corresponding content.
For speech, the model outputs the automatic
speech recognition (ASR) result. For sound
or music, the model generates an automatic
audio caption (AAC) or music caption (MC).

3. Output generation. After completing the
previous steps, the model combines the audio,
question, and generated content, and then in-
puts them into the LALM to obtain the final
answer.
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This multi-step reasoning process ensures that the
model can make context-aware decisions, further
enhancing its reliability. We provide the detailed
prompt processing in Appendix C.1.

3.2 Training-based Method
Following previous works (Yang et al., 2024d;
Cheng et al., 2024a; Zhang et al., 2024), we adopt
a similar approach but apply it to the multi-modal
setting. The training-based method involves two
key steps: construction of a model-specific IDK
dataset and post-training of the model.

Construction of the IDK Dataset. Given that
different models possess varying knowledge quad-
rants, it is essential to construct a model-specific
IDK dataset for each model. For each data point,
N possible answers are sampled. If the model pro-
vides the correct answer at least K times (where
K ≤ N ), we assume the model’s knowledge ade-
quately covers the question, and the original answer
is retained as the ground truth. Conversely, if the
model fails to answer correctly enough times, the
answer is labeled as IDK. The threshold parameter,
denoted as K@N , plays a critical role in defining
the IDK dataset. 0@N means no IDK data is gener-
ated, where all answers retain their original labels.
While N@N means the model must answer all N
times correctly to retain the original label. By ad-
justing this threshold, different knowledge levels of
the model-specific IDK dataset can be generated.

Post-training with the IDK Dataset. Once the
IDK dataset is constructed, we perform supervised
fine-tuning (SFT) to align the model’s reliability.
Specifically, we utilize the IDK dataset to fine-tune
the model, guiding it to better handle uncertainty
and enhance its reliability. During this process, the
model learns to recognize when it should confi-
dently provide an answer and when it should ap-
propriately output IDK.

4 Evaluation

We first introduce a basic evaluation metric for
truthfulness proposed by Cheng et al. (2024a) and
further, reliability proposed by Xu et al. (2024a).
We then propose our new metric, Reliability Gain
Index (RGI), to measure the effectiveness of differ-
ent reliable methods.

4.1 Reliability Evaluation
To evaluate the reliability of the given LALM, we
consider using the weighted overall reliability that

balances the model’s helpfulness and truthfulness.
Let N denote the total number of queries tested,
which can be expressed as:

N = Nc +Nr +Nw, (1)

where Nc, Nr, Nw donate the numbers of correct,
rejected, and wrong answers. Accuracy (Acc) mea-
sures the proportion of correct answers relative to
the total number of queries. It is calculated as:

Acc =
Nc

N
. (2)

Truthfulness (Tru) quantifies how truthful the
model’s answers are when it does not reject a query.
It is defined as the proportion of not wrong among
queries, which is given by:

Tru = 1− Nw

N
. (3)

Rejection Rate (Rej) measures the fraction of
queries for which the model chooses to refuse to
answer. It is calculated as:

Rej =
Nr

N
(4)

The Rejection Rate reflects the model’s willingness
to reject uncertain or out-of-scope queries, thereby
avoiding providing potentially unreliable answers.
Reliability (Rel) combines the model’s accuracy
and truthfulness into a single measure. It accounts
for both the model’s performance on correct an-
swers and its ability to reject uncertain responses.
The Reliability score is given by:

Rel = Rej ·Acc+ (1−Rej) · Tru, (5)

where the Reliability is weighted by the rejection
rate. The Rejection Rate represents the degrees of
sensitivity towards errors.

4.2 Reliability Gain

While the previously defined metrics such as Accu-
racy, Truthfulness, Rejection Rate, and Reliability
are useful for evaluating the absolute capability of
a model to express IDK, they are less effective in
measuring the relative effectiveness of different re-
liable methods. Specifically, these metrics fail to
reveal how well a method balances two crucial as-
pects of reliability: conservativeness (the tendency
to reject correct answers) and humbleness (the ten-
dency to reject incorrect answers).
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“Dmaj7. ”
(Correct)

“ Which chord 
progression is used 
in the audio? ”

“I don’t know. ”
(Rejection)

Reliability Awareness Transfer to Music Modality

Figure 2: Illustration of Reliability Awareness Transferability in LALM.

To capture the effectiveness of reliable meth-
ods more precisely, we introduce the Reliability
Gain Index (RGI). Specifically, the RGI evaluates
the relative gains in the model’s rejection capabil-
ities, distinguishing between increases in relative
conservativeness and relative humbleness. Let Nc

and Nw denote the numbers of correct and incor-
rect answers, respectively, in the original unreliable
model:

N = Nc +Nw. (6)

After applying a reliable method (e.g., prompting or
supervised fine-tuning), the numbers of correct and
wrong answers may be redistributed into different
categories:

Nc = Ncc +Ncr +Ncw,

Nw = Nwc +Nwr +Nww,
(7)

where Ncc refers to correct answers that remain
correct, Ncr refers to correct answers that are re-
jected, and Ncw refers to correct answers that are
reclassified as wrong. The same marks are also
applied to Nw.

To quantify how much the model has become
more conservative, we define the relative conserva-
tiveness increase as:

∆Con =
Nc −Ncc

Nc
. (8)

This metric captures the proportion of correct an-
swers that were rejected after applying the reliable
method. A higher value of ∆Con indicates that
the model has become more conservative in its re-
sponse, rejecting more previously correct answers.
To measure the increase in the model’s humbleness,
we define the relative humbleness increase as:

∆Hum =
Nw −Nww

Nw
(9)

This metric reflects the proportion of wrong an-
swers that were correctly rejected (i.e., converted
into IDK). A higher value of ∆Hum indicates that

the model has become more humble by rejecting
answers beyond its knowledge or capacity. Finally,
we introduce the Reliability Gain Index (RGI) to
combine the changes in conservativeness and hum-
bleness. The RGI is defined as:

RGI = log(
∆Hum

∆Con
) (10)

This metric provides a measure of the model’s
improvement in reliability. A higher RGI value
reflects that the model has become more humble
while avoiding excessive conservatism, as it demon-
strates a favorable index between increasing the
rejection of wrong answers and minimizing the
rejection of correct ones. For a concrete example il-
lustrating why traditional metrics may inadequately
capture the effectiveness of reliability methods, and
a formal derivation of the conditions under which
these metrics may be invalid, refer to Appendix E.

4.3 Cross-modal Reliability Awareness

An intriguing question is whether the awareness of
reliability can transfer across different audio modal-
ities, as shown in Figure 2. Using the proposed
RGI metric, we can easily answer this question.
Specifically, if we train the model on one modality
and test it on another, an RGI > 0 indicates that
the model has successfully learned to reject more
questions it does not know, even when tested on
a different audio modality. Such transferability is
crucial for building robust models that can operate
reliably across various domains and even various
modalities.

5 Experiments

5.1 Setup

We use Qwen2-Audio-7B-Instruct (Chu et al.,
2024) as the baseline model in our experi-
ments. This model has demonstrated strong per-
formance across various benchmarks, including
AIR-Bench (Yang et al., 2024c), OmniBench (Li
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Table 1: Accuracy (Acc%↑), Truthfulness (Tru%↑), and Reliability (Rel%↑) performance comparison of Qwen2-
Audio-7B-Instruct baselines, training-free methods, and training-based methods on the MMAU benchmark across
sound, speech, and music modalities. The result for LoRA Fine-tuning is computed by cross-validation across
three modalities. The best-performing items are highlighted in bold, and the second-best items are underlined. We
also show random guess, most frequent choice, and human evaluation results from the original MMAU paper for
reference.

Methods Post
Training

Sound Music Speech Total

Acc% Tru% Rel% Acc% Tru% Rel% Acc% Tru% Rel% Acc% Tru% Rel%

Baseline

MMAU (Unnormalized) - 54.95 54.95 54.95 50.98 50.98 50.98 42.04 42.04 42.04 49.20 49.20 49.20
Ours (Normalized) - 60.96 60.96 60.96 55.09 55.09 55.09 50.75 50.75 50.75 55.60 55.60 55.60

Reliable LALM

IDK Prompting ✗ 58.26 76.28 73.03 54.19 66.77 65.19 43.84 58.26 56.18 52.10 67.10 64.85
MCoT Prompting ✗ 57.96 68.17 67.13 51.50 71.56 67.53 44.74 60.06 57.71 51.40 66.60 64.29
Task Agent ✗ 58.56 72.67 70.68 53.29 71.56 68.22 46.25 59.76 57.93 52.70 68.00 65.66
LoRA Fine-tuning ✓ 61.71 71.77 70.71 51.35 70.66 66.43 47.90 61.86 59.91 53.65 68.10 65.68

Reference

Random Guess - 26.72 26.72 26.72 24.55 24.55 24.55 26.72 26.72 26.72 26.00 26.00 26.00
Most Frequent Choice - 27.02 27.02 27.02 20.35 20.35 20.35 29.12 29.12 29.12 25.50 25.50 25.50
Human - 86.31 86.31 86.31 78.22 78.22 78.22 82.17 82.17 82.17 82.23 82.23 82.23

et al., 2024), and MMAU (Sakshi et al., 2024), posi-
tioning it as one of the most powerful open-source
LALMs available. We also test the performance
of other LALMs, whose detailed introduction can
be found in Appendix B.1, and respective perfor-
mance are shown in Appendix B.2.

Our experiments are conducted on the MMAU
dataset, which consists of human-annotated natural
language questions and answers covering three do-
mains: speech, environmental sounds, and music.
Details of the dataset can be found in Appendix A.

For the construction of the IDK dataset, we
employ a 5@5 threshold, following Cheng et al.
(2024a)’s setting. Specifically, for each given ques-
tion, we perform 5 rounds of inference with the
LALM model. If the model answers correctly in all
5 rounds, we consider the model to have sufficient
knowledge of the question, and the original answer
is retained as the ground truth. However, if the
model answers incorrectly in any of the 5 rounds,
the answer is labeled as IDK.

For the training-free methods, we employ both
single-step and multi-step reasoning introduced in
Section 3.1. The specific prompts used in these
approaches are provided in Appendix C.1. For
the training-based methods, since the Qwen-Audio
series does not provide fine-tuning code, we im-
plement our fine-tuning process based on Deep-
Speed 1, using Low-Rank Adaptation (LoRA) (Hu

1https://github.com/microsoft/DeepSpeed

et al., 2021) with Parameter Efficient Fine-Tuning
(PEFT) library 2. For all three modalities, we per-
form SFT on the model-specific IDK dataset for 1
epoch. Detailed training hyper-parameters for each
modality are provided in Appendix D.

5.2 Reliable Methods Analysis

Table 1 presents the Accuracy, Truthfulness, and
Reliability metrics for different reliable methods.
For the baseline on the MMAU dataset, the answers
are extracted with rule-based methods, which re-
sults in inaccurate judgments of the model’s output.
To address this, we further utilized the GPT-4o-
mini API to regularize the answers. The prompt
template for answer normalization is shown in Ap-
pendix C.2. From the table, it is evident that for the
different reliable methods, the model’s Accuracy
generally decreases compared to the baseline. How-
ever, Truthfulness improves consistently, and the
Reliability metric, a weighted balance between Ac-
curacy and Truthfulness, also shows an increase, in-
dicating an overall improvement in the model’s reli-
ability. Notably, the training-free methods achieve
high Truthfulness, but their impact on Accuracy is
relatively large. This suggests that the training-free
methods tend to make the model more conservative
or humble, resulting in a higher rejection rate, neg-
atively affecting the helpfulness. In contrast, the
training-based methods demonstrate a better trade-

2https://github.com/huggingface/peft
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Table 2: Relative Conservativeness Increase (∆Con% ↓), Relative Humbleness Increase (∆Hum% ↑) and Reliability
Gain Index (RGI↑) performance of Qwen2-Audio-7B-Instruct with different reliable methods on the MMAU
benchmark across sound, speech, and music modalities. The result for LoRA Fine-tuning is computed by cross-
validation across three modalities. The best-performing items are highlighted in bold, and the second-best items are
underlined.

Methods Post
Training

Sound Music Speech Total

∆Con% ∆Hum% RGI ∆Con% ∆Hum% RGI ∆Con% ∆Hum% RGI ∆Con% ∆Hum% RGI

IDK Prompting ✗ 10.81 20.12 0.27 12.87 20.36 0.20 15.61 16.52 0.02 13.10 19.00 0.16
MCoT Prompting ✗ 11.71 14.41 0.09 11.68 20.96 0.25 13.21 16.22 0.09 12.20 17.20 0.15
Task Agent ✗ 9.61 16.52 0.24 11.38 20.96 0.27 9.61 14.11 0.17 10.20 17.20 0.23
LoRA Fine-tuning ✓ 6.91 15.62 0.36 12.73 21.11 0.23 11.56 18.17 0.19 10.40 18.30 0.26

off between Accuracy and Truthfulness, as they
manage to improve Truthfulness while minimizing
the negative impact on Accuracy. Consequently,
the Reliability of the model is improved in a more
balanced manner.

Table 2 presents the Relative Conservativeness
Increase, Relative Humbleness Increase, and Re-
liability Gain Index for different reliable methods.
From Table 1, increasing both conservativeness and
humbleness will result in an improvement in model
reliability. However, a greater increase in humble-
ness than in conservativeness is key to achieving an
effective reliable method. From Table 2 we observe
that, regardless of training-free or training-based
methods, the RGI is greater than 0 across all modal-
ities, indicating that different reliable methods are
generally effective. When analyzing the results by
modality, we find that the RGI is higher for the
sound and music, while it is relatively lower for the
speech. This suggests that the model is more confi-
dent about what it knows and does not know in the
sound and music. The use of Task Agent (i.e., ASR
results) or SFT helps mitigate this issue in speech,
improving the model’s reliability. From all these
results, it is evident that training-based methods
strike a better trade-off between conservativeness
and humbleness, thereby achieving a superior RGI
compared to the training-free methods.

5.3 Cross-modal Analysis
Figure 3 presents the results of cross-model SFT.
Despite the significant structural and content differ-
ences among the sound, music, and speech modali-
ties in audio processing, the heatmap reveals that
all RGI values are greater than 0. This indicates
that the LALM’s ability to express “I don’t know”
is a “meta ability”, which can be learned in one
modality and transferred to others. Notably, train-
ing on one modality and testing on another often
results in a high RGI when tested on the sound
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Figure 3: Heatmap for cross-modal SFT results. The
figure shows the RGI performance of reliable models
trained on one modality and tested on another.

modality, suggesting that the model’s knowledge is
more distinctly separable on sound compared to the
other modalities. This implies that sound tasks pro-
vide clearer boundaries for what the model knows
and does not know. Detailed cross-modal testing
results can be found in Appendix F.1.

5.4 Ability Study
Figure 5 illustrates the percentage for constructing
IDK dataset using different K@N thresholds. In
our experiments, N is set to 5. As the K@5 thresh-
old increases, the requirement for model’s certainty
becomes stricter, resulting in a higher percentage of
IDK data. However, the change in IDK percentage
from 1@5 = 50.2% to 5@5 = 63.5% is relatively
small, compared to the text modality (Cheng et al.,
2024a). This suggests that although the capability
of LALMs still requires improvement compared
to the text modality, their response stability is rel-
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Figure 4: Rejection Rate(%), Reliability(%), and Reliability Gain Index (RGI) performance for different LoRA
alpha weights trained on speech modality.

atively high, indicating a strong foundation to de-
velop reliable methods.
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Figure 5: IDK percentage for constructing IDK dataset
with different K@5 threshold.

The selection of LoRA weights is crucial for bal-
ancing between helpfulness and truthfulness. Fig-
ure 4 illustrates the impact of various LoRA alpha
weights on Rejection Rate (%), Reliability (%), and
Reliability Gain Index (RGI). The Rejection Rate
for the main results is provided in Appendix F.2.
The model undergoes SFT for reliability on the
speech modality and is tested on the sound and
music modalities. As shown in Figure 4(a), the Re-
jection Rate increases with the LoRA alpha weight
grows, indicating that a smaller LoRA alpha weight
prevents the model from learning to reject unknown
answers, while a larger LoRA alpha weight leads
to over-conservatism. In Figure 4(b), the Reliabil-
ity metric initially increases with the LoRA alpha
weight but eventually decreases, demonstrating a
non-monotonic relationship. Figure 4(c) shows
that the RGI value decreases as the LoRA alpha
weight grows, reaching a point when the training
becomes ineffective (when RGI < 0). Interestingly,
very small LoRA alpha weights can also achieve
high RGI values, suggesting that the awareness of

reliability is relatively easy to acquire and transfer
across modalities.

6 Conclusion & Future Work

In this work, we have systematically investi-
gated the reliability of large audio language mod-
els (LALMs), introducing both training-free and
training-based methods to reject questions the
LALM cannot answer. We propose the novel Reli-
ability Gain Index (RGI) metric, which quantifies
the effectiveness of different reliable methods in
improving model reliability. We have demonstrated
that awareness of reliability is a “meta ability” of
the model, and this awareness can be transferred
across various audio modalities, including speech,
sound, and music, even when these modalities dif-
fer significantly in structure and content. Our find-
ings contribute to the ongoing efforts to build more
reliable LALMs and provide a foundation for fu-
ture work in this direction. While our study has
investigated the transferability of reliability aware-
ness across different audio modalities, future work
will explore the possibility of transferring this ca-
pability between even more disparate modalities,
such as the speech and video modalities, within the
context of an Omni Language Model (OLM).
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Limitation

While this work has made significant strides in in-
vestigating the reliability of LALMs by focusing on
their ability to reject questions with “I don’t know”,
it primarily addresses the basic aspect of model reli-
ability. Specifically, our study does not explore the
potential for the model to provide more detailed jus-
tifications for its refusal. A promising direction for
future research is to enable models to actively ask
for additional information in an interactive manner
when they are unsure, and to provide more reli-
able answers based on a deeper understanding of
the user’s query. This would not only enhance the
model’s reliability awareness but also make it more
context-aware and capable of engaging in dynamic
interactions with users, ultimately leading to more
intelligent and trustworthy responses.
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A Dataset Details

MMAU (Sakshi et al., 2024) is a novel bench-
mark designed to evaluate the capabilities of large-
scale multimodal audio understanding models.
MMAU consists of 10, 000 carefully curated audio-
question-answer pairs, covering three major au-
dio domains: speech, sound, and music. These
questions involve both information extraction and
reasoning tasks, spanning 27 distinct skills that
challenge models to demonstrate advanced audio
perception and domain-specific reasoning abilities.
The dataset is divided into two parts: the Test-mini
set, containing 1, 000 questions, and the main Test
set, which includes 9, 000 questions. As the Test
set is not open-sourced, we used the Test-mini set
for our experiments. The Test-mini set reflects the
same task distribution as the main Test set, and
thus serves as a reliable evaluation set for reliable
methods.

B Model Details

B.1 Introduction for different LALMs
SALMONN3 (Tang et al., 2024) is one of the
first universal LALMs capable of understanding
and reasoning about speech, music, and general
sounds. It employs a dual-encoder architecture,
with the Whisper-Large-V2 (Radford et al., 2023)
as the speech encoder and the BEATs (Chen et al.,
2023) as the audio encoder. The outputs from
both encoders are concatenated and processed by a
window-level Q-Former (Li et al., 2023a) to align
with the LLM Vicuna-13B (Chiang et al., 2023).
The entire model was trained in three stages: the
pre-training stage aimed at bridging the gap be-
tween audio encoders and the LLM, followed by
instruction-tuning and activation-tuning stages to
enhance the model’s ability to follow human in-
structions and activate zero-shot emergent capabili-
ties.

Qwen-Audio-Chat4 (Chu et al., 2023) is a pow-
erful LALM specifically designed to achieve uni-
versal audio understanding and facilitate flexible
interaction based on human instructions. Based
on Whisper-Large-V2 (Radford et al., 2023) and
Qwen-7B (Bai et al., 2023), the model underwent
a two-stage training process. In the first stage, a
multi-task learning framework incorporating over
30 audio-related tasks was employed to endow the

3https://huggingface.co/tsinghua-ee/SALMONN/
blob/main/salmonn_v1.pth

4https://huggingface.co/Qwen/Qwen-Audio-Chat

model with a comprehensive understanding of au-
dio data. In the second stage, instruction-based
fine-tuning was applied to enhance the model’s
ability to align with human intent, resulting in a
strong interactive chat model.

Qwen2-Audio-Instruct5 (Chu et al., 2024) rep-
resents the latest advancement in the Qwen-Audio
series, capable of processing diverse audio inputs
and providing either audio analysis or direct textual
responses based on speech instructions. The model
employs Whisper-Large-V3 (Radford et al., 2023)
as its audio encoder and has undergone both su-
pervised fine-tuning (SFT) and direct performance
optimization (DPO) after pre-training, which has
significantly enhanced its ability to follow complex
instructions. Demonstrating strong performance
across multiple benchmarks (Yang et al., 2024c; Li
et al., 2024; Sakshi et al., 2024), Qwen2-Audio-
Instruct is one of the most powerful open-source
LALMs currently available.

B.2 Performance of different LALMs

We evaluated the performance of these powerful
LALMs on the Test-mini set of MMAU. The base-
line prompt in Table 4 and the IDK prompt in Ta-
ble 5 are used to examine the effectiveness of the
training-free method. As shown in Table 3, Qwen-
Audio-Chat exhibits weak instruction-following ca-
pabilities, and adding the IDK prompt had little
to no impact on accuracy, truthfulness, or reliabil-
ity, potentially because the data used in the sec-
ond stage was much smaller than the data used
in the pre-training stage. In contrast, SALMONN
demonstrated strong instruction-following abilities
but was overly conservative. After adding the IDK
prompt, the model’s accuracy across all three audio
modalities significantly decreased, while its truth-
fulness notably increased, indicating a strong incli-
nation to refuse to answer questions. We hypothe-
size that this over-strong instruction-following abil-
ity is related to the activation tuning in the third
stage of SALMONN’s training. Qwen2-Audio-
Instruct outperforms other models on most of the
evaluation metrics, for which it is chosen as the
baseline for our main experiments.

5https://huggingface.co/Qwen/
Qwen2-Audio-7B-Instruct
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Table 3: Accuracy (Acc%↑), Truthfulness (Tru%↑), and Reliability (Rel%↑) performance comparison of Qwen-
Audio-Chat, SALMONN, and Qwen2-Audio-Instruct on the MMAU benchmark across sound, speech, and music
modalities. Both the baseline and the IDK Prompting approaches were evaluated, with GPT answer normalization
applied. The best-performing items are highlighted in bold, and the second-best items are underlined.

Models IDK
Prompting

Sound Music Speech Total

Acc% Tru% Rel% Acc% Tru% Rel% Acc% Tru% Rel% Acc% Tru% Rel%

Qwen-Audio-Chat ✗ 57.66 58.86 58.84 53.29 53.59 53.59 35.44 35.74 35.73 48.80 49.40 49.40
Qwen-Audio-Chat ✓ 53.75 55.26 55.23 53.29 53.59 53.59 37.24 37.54 37.54 48.10 48.80 48.80
SALMONN ✗ 50.46 52.25 52.22 49.70 50.00 50.00 30.63 37.54 37.06 43.60 46.60 46.51
SALMONN ✓ 28.53 87.69 52.69 17.96 85.03 40.05 8.41 92.79 21.59 18.30 88.50 39.22
Qwen2-Audio-Instruct ✗ 60.96 60.96 60.96 55.09 55.09 55.09 50.75 50.75 50.75 55.60 55.60 55.60
Qwen2-Audio-Instruct ✓ 58.26 76.28 73.03 54.19 66.77 65.19 43.84 58.26 56.18 52.10 67.10 64.85

C Prompting Details

C.1 Prompt Template for LALM

Given {Audio} and {Question}, we use some tem-
plates to generate unnormalized answers (which
means that they cannot be used directly for evalua-
tion processing). For the Baseline and LoRA Fine-
tuning (Table 4), IDK Prompting (Table 5), and
MCoT Prompting (Table 6), LALM only needs to
be inferred once, while for Task Agent, the model
needs to be inferred multiple times. The specific
templates are shown in the tables bellow.

Baseline

Input:
{Audio} {Question} Select one option from
the provided choices:
{Content_of_A}
{Content_of_B}
{Content_of_C}
{Content_of_D}
Output:
{Answer}

Table 4: The Prompt Template for the baseline on
MMAU.

C.2 Prompt Template for Answer
Normalization

Although LALM is required to output a unique
option, the output is likely diverse due to limited
instruction-following capability of LALM. There-
fore, we use the gpt-4o-mini API to further nor-
malize the answer. The corresponding prompt is
shown in Table 8.

IDK Prompting

Input:
{Audio} {Question} Select one option from
the provided choices:
{Content_of_A}
{Content_of_B}
{Content_of_C}
{Content_of_D}
Output ‘IDK’ if you don’t know the answer.
Output:
{Answer}

Table 5: The Prompt Template for IDK Prompting on
MMAU.

MCoT Prompting

Input:
{Few-shot Examples}
{Audio} {Question} Select one option from
the provided choices:
{Content_of_A}
{Content_of_B}
{Content_of_C}
{Content_of_D}
Let’s think step by step.
You can first analyze the sound, music, or
speech and then answer the question.
Output ‘IDK’ if you don’t know the answer.
Output:
{Answer}

Table 6: The Prompt Template for MCoT Prompting on
MMAU.
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Task Agent

Input:
{Audio} Identify the type of audio. Select
one option from the provided choices:
Sound
Music
Speech
Output:
{Type}

Input:
{Audio} What is the {Type} content?
Output:
{Content}

Input:
{Audio} The {Type} content is: {Content}
{Question} Select one option from the
provided choices:
{Content_of_A}
{Content_of_B}
{Content_of_C}
{Content_of_D}
Output ‘IDK’ if you don’t know the answer.
Output:
{Answer}

Table 7: The Prompt Template for Task Agent on
MMAU.

Answer Normalization

Input:
According to the answer, select one option
from the provided choices.
The answer is: {Answer}
The choices are:
{Content_of_A}
{Content_of_B}
{Content_of_C}
{Content_of_D}
IDK
Don’t output any other information.
Output:
{Answer (Normalized)}

Table 8: The Prompt Template for answer normalization
on With OpenAI API.

D Training Details

Table 9 shows the hyper-parameters of SFT in dif-
ferent audio modalities, including learning rate,
LoRA alpha, LoRA rank, and LoRA target mod-
ules.

Table 9: Hyper-parameters with LoRA Fine-tuning for
each modality on the MMAU dataset.

Sound Music Speech

learning rate 3× 10−5

LoRA alpha 32 16
LoRA rank 8

target modules {k_proj, q_proj, v_proj}

E Metric Details

Here we analyze the condition for an invalid Re-
liability metric. In the case of a vanilla LALM,
suppose that the model simply answers questions
based on its existing knowledge with an accuracy
of α, where 0 ≤ α ≤ 1. As Equation 5,the original
reliability Relorg of the model can be computed as:

Relorg = 0 · α+ 1 · α
= α

(11)

Now, consider the case where a reliable method
is applied. Let ∆Con and ∆Hum represent the in-
crease in conservativeness and humbleness, respec-
tively, as per Equations 8 and 9. The lower bound
of a valid reliable method occurs when ∆Con and
∆Hum are at the same ratio ρ. The resulting Accu-
racy, Rejection Rate, Truthfulness, and Reliability
can be computed as follows:

Accnew = (1− ρ)α

= α− ρα
(12)

Rejnew = ρα+ ρ(1− α)

= ρ
(13)

Trunew = Acc+Rej

= α+ ρ− ρα
(14)

Relnew = Rej ·Acc+ (1−Rej) · Tru
= ρ(α− ρα) + (1− ρ)(α+ ρ− ρα)

= α− ρα+ ρ− ρ2

(15)
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Table 10: Accuracy (Acc%↑), Truthfulness (Tru%↑), and Reliability (Rel%↑) performance of Qwen2-Audio-Instruct
with LoRA Fine-tuning on different modalities.

Training Modality
Sound Music Speech

Acc% Tru% Rel% Acc% Tru% Rel% Acc% Tru% Rel%

Sound - - - 46.71 73.05 66.11 48.95 63.66 61.50
Music 62.76 70.57 69.96 - - - 46.85 60.06 58.31
Speech 60.66 72.97 71.46 55.99 68.26 66.76 - - -

Table 11: Relative Conservativeness Increase (∆Con% ↓), Relative Humbleness Increase (∆Hum% ↑) and
Reliability Gain Index (RGI↑) performance of Qwen2-Audio-Instruct with LoRA Fine-tuning on different modalities.

Training Modality
Sound Music Speech

∆Con% ∆Hum% RGI ∆Con% ∆Hum% RGI ∆Con% ∆Hum% RGI

Sound - - - 15.57 23.95 0.19 12.31 21.02 0.23
Music 6.31 14.41 0.36 - - - 10.81 15.32 0.15
Speech 7.51 16.82 0.35 9.88 18.26 0.27 - - -

We now analyze when the reliability after ap-
plying the method exceeds the original reliability,
which leads to the following inequality:

Relnew > Relorg

⇒α− ρα+ ρ− ρ2 > α

⇒ρ < 1− α

(16)

where the Reliability metric does not accurately
describe the nature of what it expresses, because
ineffective reliable methods increase the Reliability
metric if the value of ρ less than 1− α is satisfied.

For an illustrative example, consider a model
initially producing 50% correct and 50% incorrect
answers. By applying Equation 5, we can calculate
the Reliability of the original unreliable model as:

Rel = 0× 50% + 1× 50% = 50%. (17)

After applying a reliable method, if 10% of both
the correct and incorrect answers are converted into
rejections, the new Accuracy/Rejection/Error rate
would be 40%/20%/40%, respectively. In this case,
the reliable method would appear ineffective be-
cause, after applying the method, the distribution
of correct and incorrect answers turning into rejec-
tions is similar to what would occur with random
sampling. However, the reliability increases to:

Rel = 20%× 40% + 80%× 60% = 56%, (18)

indicating an ineffective measurement of the
model’s reliability. Here, the increase in reliabil-
ity is deceptive, as it results from indiscriminate

rejection rather than true improvement. The RGI,
introduced in the main text, addresses this issue by
comparing the relative increase in humbleness and
conservativeness.

F More results

F.1 LoRA Fine-tuning Results on Different
Modalities

Table 10 shows the LoRA fine-tuning performance
on the Accuracy, Truthfulness, and Reliability of
Qwen2-Audio-Instruct trained on one modality and
tested on other modalities, while Table 11 shows
the LoRA fine-tuning performance on the Relative
Conservativeness Increase, Relative Humbleness
Increase, and RGI.

F.2 Rejection Rate on Different Modalities
Table 12 shows the proportion of IDK items in
the IDK training dataset and the Rejection Rate
tested on different audio modalities. The hyper-
parameters come from Table 9.

Table 12: Rejection Rate on different modalities

Training
Modality

Rejection Rate (%)

IDK Dataset Sound Music Speech

Sound 63.06 37.24 26.35 14.71
Music 61.98 7.81 34.73 13.21
Speech 65.47 12.31 12.28 56.76
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