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Abstract

Associative memory engages in the integra-
tion of relevant information for comprehen-
sion in the human cognition system. In this
work, we seek to improve alignment between
language models and human brain while pro-
cessing speech information by integrating asso-
ciative memory. After verifying the alignment
between language model and brain by mapping
language model activations to brain activity, the
original text stimuli expanded with simulated
associative memory are regarded as input to
computational language models. We find the
alignment between language model and brain
is improved in brain regions closely related
to associative memory processing. We also
demonstrate large language models after spe-
cific supervised fine-tuning better align with
brain response, by building the Association1

dataset containing 1000 samples of stories, with
instructions encouraging associative memory
as input and associated content as output.

1 Introduction

Human language comprehension is a complicated
process widely involving multiple brain functions
(GESCHWIND, 1965; Aboitiz and Garcıéa V.,
1997). Previous studies (Dronkers et al., 2007;
Binder, 2015) have confirmed that Wernicke’s area
and Broca’s area are essential in speech compre-
hension and language production. More relevant
regions are found and subdivided to match corre-
sponding functions through functional Magnetic
Resonance Imaging (fMRI) scans in later work
(Poremba et al., 2004; Gourévitch et al., 2008;
Chang et al., 2011). Among all the functions re-
lated to language comprehension, associative mem-
ory (Anderson and Bower, 2014) plays an indis-
pensable role, serving as the key to linking together
related concepts and pieces of information.

*Corresponding author.
1https://github.com/lemonsis/Association
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… She would often grab my hand, pull 
me to my feet, and beg me to chase 
her, always looking back to see that 
Daddy was not too far behind…

Maurice K. Temerlin, he is the psycho
therapist. And he‘s also the dad in 
this story and his wife Jane, who’s a 
social worker, she‘s the mom…
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content the
subject is
hearing

content the subject is
associating

Lucy is a baby chimp adopted
by Maurice K. Temerlin and
Jane, who serve as her daddy
and mummy. Chimp are highly 
intelligent primates. I have 
seen chimps in the zoo before.

long-termshort-term

Contextual Information
Lucy, a chimpanzee daughter in a
psychotherapist family…Maurice 
K. Temerlin, he is the psycho
therapist. And his wife Jane, 
she‘s the mom…

Current Speech Stimuli
… She would often grab my 

hand, pull me to my feet, and 
beg me to chase her, always 
looking back to see that Daddy 
was not too far behind…

Associative Memory
Lucy is a baby chimp adopted by
Maurice K. Temerlin and Jane.
Lucy is very close to them in daily
life. Chimpanzees have high 
intelligence.

Figure 1: An example of how associative memory works
when subject listens to speech.

The human associative memory system (Mayes
et al., 2007; Eichenbaum, 2017) is responsible for
encoding, monitoring, and retrieving diverse com-
ponents of information, including basic perceptions
(i.e. semantic memory (Binder and Desai, 2011)),
personal experiences (i.e. episodic memory (Tulv-
ing et al., 1972)), and contextual details (i.e. work-
ing memory (Baddeley, 2003)). While associative
memory integrates multiple outside stimuli (visual,
auditory, sensory, etc.), we primarily focus on as-
sociative memory during human language compre-
hension in this study, particularly in a task involv-
ing passively listening to continuous speech. The
core effect of associative memory in language com-
prehension is to help build connections between di-
verse concepts. Human is capable of retrieving rela-
tive concepts that facilitate language understanding
instinctively (Schank, 1972). Although associative
memory involves complex formation and interac-
tion within the biological brain, at a high level it
can be considered as the integration of associated
concepts (McNamara and Magliano, 2009). For
example, as shown in Figure 1, the orange box is
what associative memory involves. The content
in the purple box indicates the speech stimuli that
the subject is receiving. The blue box represents
previous phonetic stimuli that the subject heard a
few moments ago.
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Large language models like GPT-4 (Achiam
et al., 2023) have shown remarkable natural lan-
guage understanding and generation ability. They
follow a next word prediction pattern, which is
similar to human’s manner of processing text in-
formation (Caucheteux et al., 2023; Antonello and
Huth, 2024). Previous research (Jain and Huth,
2018; Toneva and Wehbe, 2019; Caucheteux and
King, 2020; Goldstein et al., 2022) has confirmed
the activations of language models can be linearly
mapped to the activity of human brain when receiv-
ing the same text stimuli. This finding provides a
powerful tool for investigating the alignment be-
tween biological brain and language models. For
example, Caucheteux et al. (2023) showed such
alignment can be improved by introducing future
words prediction. Moussa et al. (2024) fine-tuned
speech model with brain-relevant semantics to im-
prove its alignment to brain activity. However, as
far as we know, few studies explore the associative
memory in human language processing.

In this paper, we investigate two research ques-
tions: (1) Will simulating associative memory in
brain language processing improve the alignment
between language models and the human brain? (2)
Can we improve the alignment between language
model and brain by instructing language models
to generate associative content? We design the fol-
lowing experiment steps to answer these questions.
First, the alignment between language model acti-
vation and human brain activity (i.e. brain score) is
evaluated when they receive the same text stimuli
as input. Following previous studies (Caucheteux
and King, 2020), traditional language model GPT-2
(Radford et al., 2019) is selected. We also try large
language model LLaMA-2 (Touvron et al., 2023)
for comparison. For the first research question,
associative memory is considered as the integra-
tion of context and associated knowledge, as the
example shown in Figure 1. Data augmentation
with simulated associative memory is performed
to the original text stimuli. The activation of lan-
guage model with augmented sentences as input
is mapped to the original brain activity. The brain
score of regions related to associative memory (e.g.
medial temporal lobe (MTL)) is recorded in com-
parison to the original brain score. For the second
research question, we build an instruction tuning
dataset Association containing 1000 samples with
story paragraphs and instructions encouraging as-
sociative memory as input, associated content as

output. Association is applied in the supervised
fine-tuning (SFT) of base large language model.
The brain score of language model after SFT is
re-evaluated to see whether the score of relevant re-
gions is improved. Such improvement will become
strong evidence suggesting the alignment between
large language models and human brain can be im-
proved by instructing language models to generate
associative content.

Our contributions can be summarized as follows:
• We find associative memory simulation via

data augmentation is capable of improving
language model and brain alignment.

• We release Association, an instruction tuning
dataset containing 1000 samples for investi-
gating associative memory by supervised fine-
tuning large language models.

• We demonstrate that fine-tuning a large lan-
guage model with instructions that promote
associative memory can enhance its alignment
with brain activity.

2 Related work

Language Models and Brain Alignment Previ-
ous studies have mapped word-level embeddings
to fMRI or MEG signals (Mitchell et al., 2008;
Huth et al., 2012, 2016). Jain and Huth (2018);
Toneva and Wehbe (2019); Goldstein et al. (2022);
Caucheteux et al. (2022) indicated that human brain
combines information of previous words to pre-
dict next words and such prediction is increasingly
contextual along the hierarchy by extracting acti-
vations from different layers in language models.
Such prediction has also been proven to span mul-
tiple timescales(Goldstein et al., 2020; Caucheteux
et al., 2023). Antonello et al. (2024) further an-
alyzed the mapping of large language models to
the human brain. Some studies seek to find the
reasons behind the alignment between language
models and human brain. Caucheteux et al. (2021)
factorized language model activations into lexical,
compositional, syntactic and semantic representa-
tions. Wehbe et al. (2014); OOTA et al. (2024)
investigated the specific linguistic properties and
brain regions that contribute to such alignment.

Associative Memory It’s a fundamental cogni-
tive process enabling the linking of related informa-
tion (Anderson and Bower, 2014). Early research
(Marr et al., 1991) laid the groundwork by propos-
ing theoretical models that describe how the hip-
pocampus could facilitate the storage and retrieval
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Figure 2: General framework of calculating brain score, associative memory score, and instruction tuning score.

of associative memories. Subsequent empirical
studies (McClelland et al., 1995) demonstrated the
importance of synaptic plasticity and the role of
long-term potentiation (LTP) in associative learn-
ing and memory consolidation. With neuroimaging
techniques, some studies have identified key brain
regions involved in associative memory, including
the medial temporal lobe, the prefrontal cortex, and
their interactions (Sperling et al., 2001). More-
over, computational models (Bogacz and Brown,
2003) have been developed to simulate associative
memory, providing a deeper understanding of how
neurons could support complex associative tasks.

3 Methods

3.1 Overview

We first introduce the method of evaluating lan-
guage model and brain alignment by mapping lan-
guage model activations to fMRI signals. The ex-
tent of alignment is referred as brain score. Then
we expand the original dataset with simulated asso-
ciative memory, and recalculate the brain score to
identify newly activated brain regions. Finally, an
instruction tuning dataset Association is proposed
and applied in the supervised fine-tuning (SFT) of
large language model (LLM). LLM after SFT is re-
evaluated on the original dataset to explore whether
brain score is improved by instructing large lan-

guage models to generate associative content.

3.2 Brain Score Calculation

We aim to investigate the alignment between lan-
guage models and human brain when they process
text information. To better map language mod-
els to brain, auto-regressive models with left-to-
right attention are selected, as brain can’t get ac-
cess to future information like bidirectional Trans-
formers. The activations of language models are
mapped to the fMRI recordings with the same
text stimuli as input. More precisely, given a
sequence S = (s1, . . . , si, . . . , sM ) of M words
from dataset D, the output embedding xi of si in
the l-th layer of language model can be written as

x
(l)
i = WlWl−1 · · ·W0(si−c, . . . , si−1, si), (1)

where Wl indicates the transformation weight
matrix of l-th Transformer layer, c is a hyper-
parameter deciding the length of history in-
formation fused into current word embed-
ding. The representation of word sequence S
through language model is denoted as X(l) =
concat(x1, . . . , xM ) ∈ RM×d.

Let Y = Ψ(S) ∈ RN×v be the brain activity
elicited by the same word sequence S, which is col-
lected through N continuous fMRI frames. v is the
number of voxels in brain. Analysis is conducted
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for one particular voxel Yi ∈ RN because it can be
easily extended to whole brain. Since fMRI signals
are inherently noisy, the average blood-oxygen-
level-dependent (BOLD) signal Yi across total T
subjects for each voxel is considered.

Yi =
1

T

T∑

j=1

Yij (2)

As fMRI is sampled discretely with fixed time
intervals (a.k.a. TR) and the sampling frequency is
usually much lower than word rate, we take the
mean pooling of language model activations to
match N fMRI frames, as shown in Figure 2. To
mitigate the gap of delayed BOLD responses, we
follow previous work (Huth et al., 2016; Affolter
et al., 2020) and apply a finite impulse response
(FIR) model. For fMRI frame i ∈ [1 . . . N ], the
temporal transformation fi is formally defined as

fi : RN×d → Rk×d

x 7→ concat(x̃i, x̃i−1, . . . , x̃i−k+1)
(3)

where
x̃i =

1

m

∑

m∈J1...MK
T (m)=i

x(l)m ,
(4)

T : J1 . . .MK → J1 . . . NK
m 7→ min

k∈J1...NK
|tyk − txm | , (5)

with x̃ taking the mean pooling of word embed-
dings between successive fMRI TRs, k a hyper-
parameter controlling the delay of FIR feature x,
(tx1 , . . . , txM ) the timings of words onsets and
(ty1 , . . . , tyN ) the timings of N fMRI frames.

After achieving temporal alignment between
X(l) and Yi through f , we seek to find a linear
model g ∈ Rd to map language model activa-
tions to brain activity. Ridge regression with ℓ2-
regularization is learned to predict brain activity:

argmin
g

∑

i∈Itrain

(
Yi − gT f(X(l))

)2
+ λ∥g∥2. (6)

Finally, similar to previous work (Yamins and Di-
Carlo, 2016), brain score R(X(l)) is defined as
correlation between predicted brain activity and
original brain activity. Pearson correlation score
corr(·, ·) is applied to measure such connection
and brain score of each voxel can be written as

R(X(l)) = corr(g ◦ f(X(l)), Yi). (7)

Moreover, we design a novel brain score ceiling
test to explore the limitation of explainable and
predictable brain signals. In each iteration, all the
subjects hearing the same word sequence are ran-
domly separated into two parts, part A and part
B. Instead of using language model activations to
predict brain activity, one part of subjects’ brain
activity YA are used to predict the other part of sub-
jects’ brain activity YB through linear model g. All
the brain activity is averaged across corresponding
subjects to reduce noise. The brain score ceiling
for i-th voxel of brain is calculated as

Rceiling = corr(g(YAi), YBi). (8)

3.3 Data Augmentation with Simulated
Associative Memory

The concrete mechanism of associative memory
in the biological brain is complex, involving the
interaction of neurons from multiple brain regions.
To investigate whether the alignment between lan-
guage model and human brain can be improved by
associative memory, we don’t directly simulate its
process in the brain. Instead, we concretize the con-
tent of associative memory, namely what people
may associate during a passively story hearing test,
as natural language input to language models.

The original dataset D is expanded with simu-
lated associative memory. The dataset after data
augmentation is denoted as Dmem. Specifically,
sentence-level and word-level associative memory
simulation is tried respectively. Sentence-level
data augmentation involves grammatically com-
plete sentences, typically focusing on a single as-
pect of association. In contrast, word-level data
augmentation includes words or phrases that cap-
ture multiple aspects of associative memory. Both
human and GPT-4 annotations are applied. Hu-
man annotators are asked to write down what they
associate when receiving certain text stimuli that
trigger associative memory. GPT-4 is not able to
decide when and where to add associative memory
content like human, so we give clear instructions
and let GPT-4 return associated words or sentences
based on the context and its knowledge every four
sentences of the original text stimuli. Examples
of different data augmentation methods are shown
in Appendix B. Considering the latency of fMRI
signals, all the expanded content is put at the end of
the sentences that trigger associative memory. On-
sets are all set to the same as the last word’s offset,
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Brain score of GPT-2

Brain score of LLaMA-2

Brain score ceiling

Figure 3: Brain score of different layers with visualization. The colorbar refers to value of brain score.

as if the associative memory forms simultaneously
when subject receives specific text stimuli.

Word sequence Smem ∈ Dmem is used to com-
pute the activation of language model X(l)

mem. Brain
activity maintains Yi as the subjects listen to orig-
inal dataset D. Following the same process as
mentioned before, brain score with simulated asso-
ciative memory is computed through

R(X
(l)
mem) = corr(g ◦ f(X(l)

mem), Yi). (9)

The associative memory score F of one specific
voxel is defined as the difference between brain
score with associative memory and original brain
score

F(X(l)) = R(X
(l)
mem)−R(X(l)). (10)

3.4 Instruct LLM to Generate Associative
Content

Different from language models with limited pa-
rameters like GPT-2, recent large language models
with huge number of parameters can be trained to
follow instructions through supervised fine-tuning.
We build an instruction tuning dataset Association
containing paragraphs of stories with instructions
encouraging associative memory as input, word-
level associated content as answers. More details
about the dataset are introduced in Appendix A.3
and examples are shown in Appendix B. We build
the Association dataset to investigate whether the

alignment between language models and human
brain can be improved by instructing large lan-
guage model to generate associative content. The
improvement is reflected by observing the incre-
ment of brain score on certain brain regions.

Two supervised fine-tuning methods are tried:
low-rank adaptation (LoRA) (Hu et al., 2021) and
frozen layers finetuning. LoRA applies two train-
able low-rank matrices B ∈ Rd×r and A ∈ Rr×k

during fine-tuning and the original weight W ∈
Rd×k of LLM is frozen. When the training fin-
ishes, the original weight is replaced as W +BA.
For frozen layers fine-tuning, layers before the l-
th layer are frozen during supervised finetuning.
All the parameters in layer l and layers after l-th
layer are trainable. The weight matrix of l-th Trans-
former layer after supervised finetuning is denoted
as W (l)

sft and its output is denoted as X(l)
sft . Follow-

ing previous methods, brain score of supervised
fine-tuned model is R(X

(l)
sft ). We define instruction

tuning score M as the growth percentage of super-
vised finetuned model compared to base model:

M(X(l)) = (R(X
(l)
sft )−R(X(l)))/R(X(l)).

(11)

4 Experimental Setups

4.1 Datasets

We use the publicly accessible “Narratives” dataset
(Nastase et al., 2021) which contains fMRI record-
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Figure 4: Associative memory score of sentence-level and word-level data augmentation.

ings of 345 individuals listening to 27 spoken En-
glish stories. After filtering short articles, 15 stories
with corresponding fMRI images are selected for
experiments. More details are in Appendix A.3.

4.2 Cortical Parcellation

Nine brain regions are selected to analyze brain
score changes in different regions of interests
(ROIs). Besides inferior temporal gyrus, inferior
temporal sulcus and middle temporal gyrus that
are known to contribute to associative memory, we
also explore regions related to speech processing
and working memory, as associative memory in-
volves interaction with working memory in a story-
ing hearing task. These regions include middle and
superior frontal gyrus, inferior and superior frontal
sulcus, superior parietal lobule, angular gyrus. De-
tails are presented in Appendix A.1.

5 Results and Analysis

First, we analyze the brain score of different layers
for GPT-2 and LLaMA-2 models. Second, dataset
with associative memory augmentation is applied
to explore activated brain regions. Finally, LLaMA-
2 fine-tuned in an instruction dataset Association
is evaluated to verify the improved alignment be-
tween language models and human brain.

5.1 Brain Score Comparison

The brain score is calculated by averaging all the
fMRI voxel of all the test subjects. Two kinds
of language model embeddings are considered:
non-contextual word embedding and contextual

embedding of each Transformer layer. Results
are shown in Figure 3. Overall, LLaMA-2 gets
a higher brain score than GPT-2 due to larger num-
ber of parameters, more training corpus, and better
representation ability. Brain score of left hemi-
sphere is higher than that of right hemisphere for
different layers of both models. It’s consistent
with previous researches (Halpern et al., 2005; Riès
et al., 2016) on lateralization of brain function that
Broca’s and Wernicke’s areas related to the produc-
tion and comprehension of speech are found exclu-
sively on the left hemisphere. Scores calculated
through word embedding are significantly lower
than other layers for lack of contextual informa-
tion. Brain scores of both hemispheres peak at the
ninth layer for GPT-2 model, achieving an average
score of 0.126, which satisfies previous conclusion
(Caucheteux and King, 2022) that the activations of
l = nlayers × 2/3 layer best fit brain activity. How-
ever, we find layer best predicting brain activation
becoming shallow for LLaMA-2. The fourteenth
out of thirty-two layers reaches the highest brain
score of 0.146 and 0.135 for left and right hemi-
spheres, respectively. Relative studies (Durrani
et al., 2021; Sajjad et al., 2022; Zhang et al., 2023)
on investigating representation inside Transformer-
based language models reveal that lower layers are
dominated by lexical concepts, whereas middle and
higher layers better represent core-linguistic con-
cepts. But why middle front layers best aligned
with the brain still remains unexplored. Based on
the above findings, we apply the ninth layer and
fourteenth layer of GPT-2 and LLaMA-2 separately
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(a) word augmentation by GPT-4(L)

(e) word augmentation by GPT-4(R)

(b) sentence augmentation by GPT-4(L) 

(f) sentence augmentation by GPT-4(R) 

(c) word augmentation by human(L)

(g) word augmentation by human(R)

(d) sentence augmentation by human(L)

(h) sentence augmentation by human(R)

Figure 5: Associative memory score of specific regions of interests (ROIs). (L) and (R) refer to left hemisphere and
right hemisphere, respectively. The color of dot corresponds to the color of specific ROI.

for all the following experiments.
We map each voxel’s brain score of GPT-2 and

LLaMA-2 to brain surface and plot figures for bet-
ter visualization. Figure 3 also shows the brain
maps of the highest possible brain score (i.e. brain
score ceiling) under current dataset and linear re-
gression model. Brain scores are witnessed over a
distributed and bilateral cortical network, peaking
in middle and superior temporal gyrus, middle and
superior temporal sulcus, as well as in the supra-
marginal and the infero-frontal cortex.

5.2 Associative Memory Score

Associative memory score measures the difference
between original brain score and brain score with
simulated associative memory. We investigate the
associative memory score under various settings.
Results are shown in Figure 4. Sub-figures (a) to
(d) show associative memory score with human
annotated associative memory augmentation, while
sub-figures (e) to (h) are with GPT-4 augmented
associative memory. Besides, we apply random
word-level and sentence-level data augmentation
as a control group to demonstrate that the improve-
ment of brain score benefits from associative mem-
ory. Results are shown in Sub-figures (i) to (l). The
random augmentation is conducted in the following

manner. For word-level augmentation, we apply
GPT-4 to generate 100 unrepeated verbs, nouns,
adjectives, and randomly select words among the
set of a total of 300 words. For sentence-level aug-
mentation, we directly apply GPT-4 to randomly
generate sentences. Sub-figures (a), (b), (e), (f), (i),
(j) show sentence-level associative memory aug-
mentation, and sub-figures (c), (d), (g), (h), (k), (l)
show word-level augmentation.

Generally speaking, large and continuous re-
gions of the brain, including some areas of frontal
gyrus, frontal sulcus and parietal lobule gain in-
crease in brain score ranging from 0.0014 to 0.02.
Since these regions get a relatively low brain score
without simulated associative memory stimulation,
such a gain in brain score is considerable. More-
over, we find random data augmentation leads
to none and even negative growth of brain score,
which supports the improvement of alignment is
caused by introducing associative memory. From
Figure 4, it’s noticed that word-level augmentation
leads to better performance compared to sentence-
level augmentation on both models. We think com-
pared to sentence-level augmentation, word-level
augmentation probably benefits from multi-aspect
association with less introduced noise like proposi-
tion and conjunction. Nouns, adjectives, and verbs

992



SFT with LoRA SFT with Frozen Layers

Figure 6: Instruction tuning score after supervised fine-
tuning with two different methods.

contain more intensive information. This finding
is also consistent with previous neuroscience study
(Schwering and MacDonald, 2020), which indi-
cates that associative memory is conceptualized
by the unit of the word. Human annotation earns
higher associative memory score than GPT-4, be-
cause GPT-4 can’t decide where to generate asso-
ciative content like human annotators. LLaMA-
2 performs better than GPT-2 model under most
cases with wider activated brain regions and higher
score. Overall, the alignment between two tested
language models and human brain gets significantly
improved with word-level human-annotated asso-
ciative memory.

We also compute associative memory score on
brain regions of interests (ROIs) and the results are
shown in Figure 5. Sub-figure (a) to (d) shows the
cases of left hemisphere and sub-figure (e) to (h)
shows right hemisphere. Since areas related to asso-
ciative memory in language comprehension mainly
distribute in the left hemisphere (Smith et al., 1998),
results on figure (a) to (d) are more confident. Im-
provements in brain scores were observed across
nine regions of interest (ROIs) associated with as-
sociative memory, as well as in areas related to
speech processing and working memory, ranging
from 0 to 0.05. Such trend of improvement is gener-
ally consistent with each of the nine ROIs for both
models. LLaMA-2 model gets a higher associative
memory score than GPT-2 model for most ROIs in
the left hemisphere. Superior and middle frontal
gyrus, superior parietal lobule related to working
memory, inferior and superior frontal sulcus re-
lated to speech processing, medial temporal lobe
(MTL) area related to associative memory all get
improved on both word-level and sentence-level
augmentation dataset.

5.3 Instruction Tuning Score

Common instruction tuning will not lead to im-
provement of brain score (Gao et al., 2023). We

Figure 7: Subject-level instruction tuning score of spe-
cific regions of interests (ROIs).

explore whether brain score can be improved by
instructing language model to simulate associative
memory. The Association dataset is built, which
contains 1000 training samples with story para-
graphs and prompts encouraging associative mem-
ory as input, associated content as output. We
try two different supervised fine-tuning methods,
LoRA and frozen layers finetuning, for LLaMA-2
and the results are shown in Figure 6 and 7.

As shown in Figure 6, LLaMA-2 after super-
vised fine-tuning with both methods shows 2% to
7% gain in regions related to associative memory
(i.e. medial temporal lobe (MTL)), which indi-
cates the alignment between language model and
brain is improved by associative memory instructed
tuning. We also calculate instruction tuning score
in specific ROIs and results are shown in Figure
7. Different from Figure 6 where instruction tun-
ing score M is computed by averaging all the
subjects’ voxel, which is equivalent to viewing
all the subjects’ brain activity as one, in Figure
7 we first calculate instruction tuning score for
each subject and then average these scores. Re-
sults correspond to 95% confidence intervals (CIs)
across all test subjects are shown in the figure.
Superior parietal lobule related to working mem-
ory gets the highest score of 50% to 60%. As
to associative memory, instruction tuning score
in medial temporal lobe (i.e. G_temporal_inf,
S_temporal_inf, G_temporal_middle) also get sig-
nificantly improved across hundreds of subjects.

6 Conclusion

In this paper, we explore whether the alignment
between language model and human brain could
be improved by introducing associative memory
in a passive story hearing task. By defining brain
score, associative memory score, and instruction
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tuning score in experiments, we answer two re-
search questions: The alignment between language
model and human brain can be improved (1) with
simulated associative memory (2) by instructing
language models to generate associative content.

Limitations

The “Narratives” dataset contains fMRI recordings
when subjects listen to English spoken stories. Lan-
guage and cultural background of the participants
and the story should be considered. Therefore, the
results could not fully cover all types of languages
and cultures. Moreover, annotators involved in as-
sociative memory data augmentation may possess
different language and cultural backgrounds com-
pared to the subjects in “Narratives” dataset. Even
with the same language and cultural background,
the fMRI recordings do not perfectly match the
associative memory content. This discrepancy will
inevitably introduce noise. We hope dataset record-
ing associative memory of subjects is made to bet-
ter investigate associative memory in the human
brain using language models.
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A Implemention Details

A.1 Cortical Parcellation

The latest version of Destrieux atlas (Destrieux
et al., 2010) is applied for cortical parcel-
lation, which leads to 74 regions per hemi-
sphere. To reveal the associative memory
in the human brain listening to speech, nine
related regions are selected for experiments,
including inferior frontal sulcus (S_front_inf),
superior frontal sulcus (S_front_sup), middle
frontal gyrus (G_front_middle), superior frontal
gyrus (G_front_sup), angular gyrus (G_pariet_inf-
Angular), superior parietal lobule (G_parietal_sup),
inferior temporal gyrus (G_temporal_inf), inferior
temporal sulcus (S_temporal_inf), middle temporal
gyrus (G_temporal_middle).

A.2 Models and Hyper-parameters

For fMRI data, we apply the AFNI-nosmooth pre-
processing step for the Narratives dataset. Analyses
are conducted on cortical voxels projected onto the
surface and morphed onto an “fsaverage6” tem-
plate brain. We use ‘RidgeClassifierCV’ regressor
from scikit-learn (Pedregosa et al., 2011) to pre-
dict the continuous features and align language
models to brain, with 10 possible penalization val-
ues log-spaced between 10−1 and 108. The linear
model is evaluated on held out data, using 20 cross-
validation for averaged score across all subjects and
5 cross-validation for brain score of each subject.
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For language models, we choose the small ver-
sion of GPT-2 and LLaMA-2 with 7B parameters
from Huggingface2. The supervised finetuning of
LLaMA-2 with LoRA or frozen layers is trained for
2 epochs with 10−4 learning rate. All experiments
are conducted on NVIDIA A100-80G GPUs.

A.3 Associative Memory Data Augmentation
and The Association Dataset

In the data augmentation process of simulated as-
sociative memory, ten annotators are hired to make
both word-level and sentence-level annotation. An-
notators are asked to write down what they asso-
ciate when receiving certain text stimuli that trig-
ger associative memory. The hired annotators are
Asian undergraduate students with English as their
second language. Seven of them are male and three
are female. Each annotator is assigned with two
or three articles for labeling and is paid about 40
dollars. The annotators are informed that the data
will be used for non-profit research.

We also make GPT-4 version of data augmenta-
tion with the assistance of gpt-4-1106-preview
API. The instruction tuning dataset Association
contains 1000 training samples with encourag-
ing associative memory prompts and word-level
association responses. It’s composed of sen-
tences from filtered stories of “Narratives” and sen-
tences randomly picked from ROCStories dataset
(Mostafazadeh et al., 2016). The Association
dataset is annotated with the help of GPT-4 through
gpt-4-1106-preview API, more examples are
shown in Appendix B.

B Case Study

In this part, we will take a deeper look into how
data augmentation with associative memory is per-
formed, and how the instruction tuning dataset As-
sociation is made. More examples and cases are
given and analyzed.

B.1 Data Augmentation

Table 1 shows four examples of data augmentation.
Four different augmentation methods are applied,
including word-level augmentation by GPT-4 and
human annotators, sentence-level augmentation by
GPT-4 and human annotators. Since GPT-4 gen-
erates association content every three or four sen-
tences, while human annotators add association
stuff according to their ideas, the places of data

2https://huggingface.co

augmentation are different in most cases. To facil-
itate a more effective comparison, we present the
sentences that have been flagged by both GPT-4
and human annotators below.

B.2 Instruction Tuning Dataset
The Association dataset consists of input and out-
put pairs as training samples. As shown in Table
2, input content is made up of instruction and story
paragraph. The instruction is prompts encourag-
ing models to generate associative content, and
the story paragraph contains sentences extracted
from stories in “Narratives” dataset and ROCSto-
ries dataset. The output is word-level associated
content. Table 2 displays some samples randomly
selected from Association dataset.
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Original Sentences Method Data Augmentation

This is Los Angeles. And it’s the
height of summer. In a small
bungalow off of La Cienega, Clara
serves homemade chili and chips
in red plastic bowls – wine in blue
plastic.

word-level, GPT-4
heat, bustling, cozy, spicy, casual,
colorful

word-level, human hot, comfortable

sentence-level, GPT-4
The sun blazes down on a cozy home
in LA where a casual summer
gathering unfolds.

sentence-level, human
Clara uses plastic bowls of different
colors to make thing in a bungalow.

Louis when I first started here.
People told him, "Oh no, no she
is white man, she’s white, she
sounds white she’s white," and he,
convinced, having never met me,
that I was black. Well as it turns
out, he was right.

word-level, GPT-4

debate, racial identity, assumptions,
voice, community perceptions,
prejudice, correctness, self-awareness,
revelation

word-level, human
debate, truth, revelation, surprise,
race

sentence-level, GPT-4

In a St. Louis debate about my ethnicity,
a stranger’s conviction about my race
challenged the assumptions tied to my
voice,and he was correct.

sentence-level, human

Debates about the author being black
and white were going on long before
he came to St Louis Missouri
community.

Jane named her Lucy and brought
her home on a commercial airline,
carried in a bassinet, her face
covered with a lacy blanket. We
were blissfully unaware of the
complexities we were creatin on
the day Lucy came home. So
the baby was a day or two old.

word-level, GPT-4
Lucy, adoption, chimpanzee, travel,
naivety, complexities, infancy,
integration, new beginnings

word-level, human Lucy, home, expectation, experiments

sentence-level, GPT-4

Lucy’s journey veiled in the innocence of
infancy and a lacy blanket, commenced
with a flight to an uncharted life, while
the Temerlins remained oblivious to the
intricate future unfolding from their
decision.

sentence-level, human
Lucy would increase the complexity
of the experiments but I think she will
make it.

Um, there’s a lot of guys in army
gear, um, shooting. It’s very
chaotic, can’t really make out any
faces, or, really people. Um, and
then, so, that, uh, cuts out really
quickly and you see this man
kind of like start out of the bed.

word-level, GPT-4
battle, soldiers, military, chaos, abrupt
anonymous, awakening

word-level, human soldier, war, army, grass field, chaotic

sentence-level, GPT-4
The man wakes up abruptly, haunted
by the chaos of battle.

sentence-level, human
This seems to be the case with the
wars in the middle east.

Table 1: Examples of word-level and sentence-level data augmentation with associative memory.
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Input Output
Instruction Story Paragraph

I’ll give you some sentences, you
have to perform related association
with words.

Sheldon slowly walked into the
restaurant, eying the decor suspiciously.
His roommate Leonard pushed past him
and asked the hostess for a table for
two. As they were led to their chairs,
Sheldon began to protest yet again.

quirky, cautious,
skeptical,
friends, dining,
impatient

Given some sentences, you are
supposed to make related
associations and output words.

You know, I think I may have
misjudged this restaurant. I won’t
go out on a limb, but I think we may
be looking at my new Tuesday
hamburger.

surprise,
reconsideration,
hamburger,
potential favorite

Given a batch of sentences,
you need to execute the process
of interlinking them based on
their relevance with words.

He zipped up Barney’s bag and handed
it back to him. Quinn followed Barney
down the concourse in total confusion.
Magic trick? Why wouldn’t he tell
her what was in the box? She tried to
interrogate him as they sat in front of
the gate, but he refused to spill the beans.

mystery, secrecy,
curiosity, travel,
frustration,
companionship

You need to engage in divergent
thinking based on the sentences
I provide, and give me whatever
words comes to your mind.

That’s fair, that’s what we charge in
our country. After waiting for their
turn to board, they marched down the
jetway and onto the plane. George
struggled to get into his window seat
and fit his bag down by his feet.

equality, travel,
patience, boarding,
cramped, luggage,
discomfort

You will get a set of sentences,
and you need to associate some
related content with words.

Vinny poked at it with his fork. What’s
this over here? The cook looked at him
in disbelief. You’ve never heard of grits?
Sure, sure, I’ve heard of grits, I’ve just
never actually. . . seen a grit before.
Go ahead honey, aren’t you going to
try it? You first, she said with a smile.

curiosity,
skepticism,
southern cuisine,
breakfast, humor

Given some sentences, you are
supposed to make related
associations and output words.

Anna was filling her bird feeders. But
a chunk of suet fell onto the ground.
Her dog rushed over and lapped it up!
Anna was astonished. She had no idea
dogs loved bird food!

surprise, dogs,
birds, feeding,
accidental,
curiosity

Human tend to think relative
stuff when receiving text
information. Imagine you’re
human and expand the following
sentences with words.

Sam’s dog Rex escaped from their yard.
Sam was distraught. He went out calling
for Rex. Then he saw Rex come running
up the street! Sam was so relieved,
he almost cried!

worry, search,
reunion, joy,
pet, relief

Table 2: Training samples randomly picked from the Association dataset.
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