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Abstract

Performance in the Knowledge Graph-to-Text
generation has improved over time, particularly
in English. However, models are still prone to
mistakes like Additions and Omissions. Fur-
thermore, few languages are taken into account
since both train and test data are not readily
available. In this paper, we hope to facilitate
the development and improvement of multilin-
gual KG-to-Text models by providing a multi-
lingual evaluation framework that is reference-
less and permits estimating how much a KG-
to-Text Model under- (omission) or over- (addi-
tion) generates. We focus on two high (English,
Russian) and five low (Breton, Irish, Maltese,
Welsh, Xhosa) resource languages and show
that our metric has fair to moderate correlation
with reference-based metrics, positioning it as
a consistent alternative when no references are
available. We also show that our metric outper-
forms prior reference-less metrics in correlation
with existing human judgments. Additional
human evaluation shows moderate to strong
correlation with human annotators in assessing
precision and recall at a higher granularity level
than shown in previous studies. Since our met-
ric provides scores for precision and recall, it
helps better assess the level of over- or under-
generation of multilingual KG-to-Text models.
We make our data, code and models available1.

1 Introduction

Figure 1 shows an example of a Knowledge Graph
and its verbalization. In a Knowledge Graph (KG),
each edge represents a fact as a (subject, predicate,
object) triple. To make these graphs more acces-
sible, KG-to-Text generation models have been
proposed whose function is to convert KGs into
natural language. A key constraint on this task
is that generation should be semantically faithful,

1https://gitlab.inria.fr/wsotomar/semantic-e
valuation-of-multilingual-data-to-text-generatio
n-via-nli-fine-tuning

Figure 1: Example of a Knowledge Graph from the DB-
pedia Knowledge Base together with a possible correct
verbalization.

meaning that the generated text should express all
and only the content represented by the input KG.

While KG-to-Text generation models have
steadily improved over the years both in terms of
performance and of range of target languages they
can handle (Gardent et al., 2017; Castro Ferreira
et al., 2020; Cripwell et al., 2023), recent results
indicate that semantic faithfulness is still an issue
since the generated texts can either contain infor-
mation not present in the input (Additions) or, con-
versely, fail to express all the information present in
the input (Omissions). These issues are particularly
prevalent when generating into under-resourced
languages (Cripwell et al., 2023) or out-of-domain
topics (Nikiforovskaya and Gardent, 2024).

In this paper, we provide a novel framework for
the evaluation of KG-to-Text Models which, we
hope, will help support the development of multi-
lingual, semantically faithful KG-to-Text models.
We make the following contributions:

1) A new reference-less multilingual metric that
quantifies how much a model under- (omissions) or
over- (additions) generates. This metric provides
three scores: precision, recall, and F1. Intuitively,
the graph acts as a reference. Hence, precision is
the ratio between correct information in the text
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Graph
Alan Bean | birthDate | 1932-03-15

Alan Bean | almaMater | UT Austin, B.S. 1955
Alan Bean | birthPlace | Wheeler, Texas
Texts Precision Recall Errors

Alan Bean was born on March 15, 1932. 1/1 1/3 2O
Alan Bean was born in Wheeler, Texas and was in the Apollo 12 mission. 1/2 1/3 1A, 2O
Alan Bean was born on March 15, 1932 in Wheeler, Texas.
He received a Bachelor of Science degree at the
University of Texas at Austin in 1955.

3/3 3/3 None

Table 1: Example KG graph and some possible lexicalizations of this graph. The lexicalizations have different
precision and recall scores as well as an explanation of the errors that cause the scores (O:Omission, A:Addition, A
triple that is not fully expressed by the text counts as omitted and vice versa for additions).

and total information in the text (how much of
the generated text is correct?) while recall is the
ratio between correct information in the text and
information in the input graph (how much of the
input graph does the text convey?). F1 is their
harmonic mean (See Table 1 for some illustrating
examples).

2) A methodology for creating the training data
necessary to train our metric.

3) Testing on both high (English, Russian) and
low (Breton, Irish, Maltese, Welsh, Xhosa) re-
source languages, we compute correlation with
both existing reference-based metrics and hu-
man judgments. We show that correlation with
reference-based metrics is fair to moderate, which
indicates that our metric, although reference-less,
can be used to a certain extent in place of reference-
based metrics; particularly when references are not
available. When comparing with human judgments,
we show that correlation with our metric outper-
forms the correlation obtained on the same data by
other existing reference-less metrics developed for
English KG-to-Text like Data-QuestEval (Rebuffel
et al., 2021) and FactSpotter (Zhang et al., 2023).

2 Related Work

Zero-shot NLI Classification for Semantic Ac-
curacy. Dušek and Kasner (2020) proposed to
evaluate the semantic accuracy of English KG-to-
Text generation by leveraging the zero-shot abil-
ities of the English-based RoBERTa-Large-NLI
model (Liu et al., 2019)2. In their work, they try
two approaches: one to search for Omissions and
one to search for Additions. In the first one, they
use the entire generated text as a premise and iter-
ate over every individual fact from the input graph

2https://huggingface.co/FacebookAI/roberta-lar
ge-mnli

as a hypothesis, marking facts not classified as en-
tailments as Omissions. In the second approach,
they use the entire input graph as a premise and the
generated text as a hypothesis, marking the pres-
ence of Additions when the text is not classified
as entailment. This approach is tested exclusively
in English and, while it provides high granularity
when measuring Omissions, it is less specific when
measuring Additions.

Fine-tuning on Synthetic Data for Factual Faith-
fulness. Zhang et al. (2023) went a step further
and fine-tuned an English model, first an Electra-
Base-Discriminator (Clark et al., 2020)3 then a
DeBERTa-V3-Base (He et al., 2021)4, on synthetic
data to detect whether a given fact is present in a
generated text (akin to Dušek and Kasner’s Omis-
sion check). Their training data consist of real pos-
itive (Text, Fact) pairs and synthetic negative (Text,
Fact) pairs made of 90% type I errors (where they
perturbed the fact by changing its subject, predi-
cate, and/or object) and 10% type II errors (where
they perturbed the text by removing one or both en-
tities from the fact and/or the n-grams most similar
to the predicate). Like FactSpotter, this approach
was tested exclusively in English and, while it has
a high granularity when measuring Omissions, it
does not directly address Additions.

Beyond KG-to-Text: Bidirectional entailment
has been tried as a way of evaluating summariza-
tion. Kane et al. (2020) and Zhang and Perez-
Beltrachini (2024) proposed reference-based ap-
proaches, while Chen and Eger (2023) proposed a
reference-less method.

3https://huggingface.co/google/electra-base-d
iscriminator

4https://huggingface.co/microsoft/deberta-v
3-base
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3 Method

To learn our metric, we fine-tune an existing multi-
lingual Natural Language Inference (NLI) model
by adjusting its classification head to perform re-
gression instead. We then train on data created
to capture different combinations of precision and
recall using Binary Cross Entropy (BCE) loss.

Given a premise and a hypothesis, NLI models
predict if the hypothesis is entailed, neutral, or
contradicted by the premise. For precision, we
check if the text is entailed by the graph (how much
of the text can be inferred from the graph). For
recall we check if the graph is entailed by the text
(how much of the graph content can be inferred
from the text).

We are not interested in the 3 classes from the
NLI head, only in the strength of the entailment
between premise and hypothesis. We fine-tune the
NLI classifier as a regression model by focusing
only on the entailment weights from the classifi-
cation head instead of the three existing output
classes. We train simultaneously for precision and
recall by swapping the graph and text order and
targeting the respective score.

The F1 score is computed as usual (Equation 1)
by taking the harmonic mean of Precision (p) and
Recall (r). This score functions as a high-level
proxy for semantic faithfulness: the higher the F1
score, the higher the semantic similarity between
the Graph and the Text.

F1 = 2
p · r
p+ r

(1)

3.1 Training Data Creation

We aim to generate a training dataset of (graph,
text, precision, recall) quadruples with a balanced
and diverse distribution of precision and recall.

First we collect the set G of WebNLG graph/text
pairs from the English WebNLG V3.0 dataset (Cas-
tro Ferreira et al., 2020)5. This dataset is seman-
tically aligned (graph and text match in content),
so we assign each (g, t) ∈ G precision and recall
scores of 1.

To increase precision and recall diversity we de-
rive non aligned (g′, t) pairs from (g, t) ∈ G by
pairing the text t with graphs g′ which i) are sub-
graphs or super graphs of g or ii) modify g either
by adding to it triples from non overlapping graphs
or by modifying a triple contained in g. We then
compute precision and recall for each new (g′, t)
pair based on the number of added, removed or
modified triples.

Once we have a balanced English dataset, we
extend it to other languages by machine translating
the English texts. We use NLLB-200-3.3B (Team
et al., 2022)6 to translate into five languages: Irish,
Maltese, Russian, Welsh, and Xhosa. To reduce
the noise introduced by machine translation, we
filter these translations following two criteria: Lan-
guage Identification score via GlotLID (Kargaran
et al., 2023)7 and LID218e (Team et al., 2022)8,
and Semantic Similarity score via LaBSE (Feng
et al., 2022)9.

Figure 2 shows the distribution of precision and
recall scores in 1.77 million (graph, text, precision,
recall) quadruples evenly distributed across six lan-
guages. Appendix A provides more details.

5https://gitlab.com/shimorina/webnlg-dataset
/-/tree/master/release_v3.0

6https://huggingface.co/facebook/nllb-200-3.3
B

7https://huggingface.co/cis-lmu/glotlid
8https://huggingface.co/facebook/fasttext-lan

guage-identification
9https://huggingface.co/sentence-transformers/

LaBSE

Figure 2: Number of samples by precision and recall scores in the training dataset.
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3.2 Models

We use the following three models as baselines.

Data-QuestEval(DQE). A reference-less model
by Rebuffel et al. (2021) which relies on question-
generation and question-answering to assess se-
mantic faithfulness. The main limitations of this
baseline are that it was only fine-tuned for English,
the long processing time of the text generation, and
the risk of generating questions and answers unre-
lated to the actual input.

FactSpotter(FS). The latest model by Zhang
et al. (2023)10. Compared to our approach, the
main limitations of this baseline are that it was
only fine-tuned for English and that it produces a
single, recall oriented score.

NLI Base (NB). This baseline follows the exact
same process as (Dušek and Kasner, 2020). We
only change the off-the-shelf NLI model they used
for a Multilingual one (Laurer et al., 2022)11 in-
stead of an English one. The main limitations of
this baseline are that it is not familiar with the KG
format and that it has not seen all the target lan-
guages we will test.

To learn our metric, we fine-tune mDeBERTa-
v3-base-xnli-multilingual-nli-2mil7 (NB) on the
dataset from Section 3.1. We fine-tune it as a re-
gression model by targeting the entailment weights
of the classification head and training simultane-
ously for precision and recall. For the precision
score, we use the graph as premise and the text
as hypothesis; for the recall score, we use the text
as premise and the graph as the hypothesis. We
fine-tune and compare three versions:

Multilingual Full Fine-Tuning (MultiFF): Full
fine-tuning of the NLI Base model on all languages
together.

10Inria-CEDAR/FactSpotter-DeBERTaV3-Base
11https://huggingface.co/MoritzLaurer/mDeBERTa

-v3-base-xnli-multilingual-nli-2mil7

Multilingual LoRA (MultiLR): LoRA on top
of the NLI-Base model on all languages together.

Monolingual LoRA (MonoLR): Lora on top of
the NLI-Base model for each language individu-
ally.

Appendix B provides details on the hyper param-
eters used to train our models.

4 Evaluation

We evaluate our metrics using correlation with hu-
man judgments (6 languages) and with automatic
metrics (7 languages). We also report results on
KG/text retrieval accuracy (7 languages). Table 2
summarises the test sets used.

4.1 Correlation with Automatic Metrics

Here, we use the 7L-Auto dataset, which consists
of all graphs from the WebNLG test data12 and
all the texts generated from these graphs by par-
ticipant systems of the WebNLG 2017, 2020, and
2023 Shared Tasks, as well as the different mod-
els trained by Meyer and Buys (2024). The mod-
els used to generate the texts include grammar-
based and template-based approaches, statistical
MT models, neural models trained from scratch,
and fine-tuned pretrained models, covering a broad
spectrum of errors and quality levels. Texts are gen-
erated in English, Russian, Breton, Irish, Maltese,
Welsh, and Xhosa.

We compute the Spearman’s Correlation (ρ) of
the baselines and of our models with 5 reference-
based metrics: BLEU (Papineni et al., 2002),
ChrF++ (Popović, 2017), TER (Olive, 2005),
BERTScore (Zhang* et al., 2020), and SBERT sim-
ilarity (Reimers and Gurevych, 2019). For TER we
report the inverse score (¬TER = 1 − TER) for
easier display.

12Specifically, we use the graphs from the WebNLG 2017
test set (1,862 graphs), from the WebNLG 2020 test set for
English (1,779), from the WebNLG 2020 test set for Russian
that are not present in the English test set (732) and from the
Xhosa data sets that are not in any of the other datasets (88).

Dataset # Graphs # Texts Languages Relevant Annotations
7L-Auto 4461 143 838 br, cy, en, ga, mt, ru, xh BLEU, ChrF++, TER, BERTScore, SBERT
4L-RP-Human 181 200 cy, en, mt, ru Precision(p) and Recall(r)
2017 223 2 230 en Semantics
2020 288 3 905 en, ru Relevance(p), Correctness(p), Data Coverage(r)
2023 200 1 700 cy, ga, ru, mt Omissions(r), Additions(r)

Table 2: Datasets used for Correlation Studies. When a relevant annotation is adjacent to Precision (p) or Recall (r)
that is indicated, otherwise the annotation is consider adjacent to the more general F1 score.
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A good correlation would indicate that in the
absence of ground truth, our metrics can be used as
a proxy for these reference based metrics.

4.2 Correlation with Human Judgments

We use human judgments collected by the
WebNLG campaigns and a subset we created to
have human annotations specifically targeting pre-
cision and recall.

WebNLG 2017. The human annotations for this
challenge (Shimorina et al., 2018) consist of 223
graphs lexicalized in English by 9 different NLG
systems, plus the human-written references. The
generations were scored on a 3-point Likert scale
across 3 criteria: Fluency, Grammar, and Seman-
tics. For this study, we focus on the Semantics
annotation:

• Semantics: Does the text correctly represent
the meaning in the data?

Since the Semantics annotation does not specify
the type of error (Additions, Omission, etc.) we
compute correlation between the WebNLG 2020
Semantics score and our F1 score.

WebNLG 2020. The human annotations for this
challenge (Castro Ferreira et al., 2020) consist of
178 graphs lexicalized in English by 16 different
NLG systems and 110 graphs lexicalized in Rus-
sian by seven different NLG systems; additionally,
both include their human written references. The
generations were scored on a 0 to 100 scale across
five criteria: Text Structure, Fluency, Relevance,
Correctness, and Data Coverage. For this study, we
focus on the last three:

• Relevance: Does the text describe only such
predicates (with related subjects and objects),
which are found in the data?

• Correctness: When describing predicates
which are found in the data, does the text
mention correct the objects and adequately
introduces the subject for this specific predi-
cate?

• Data Coverage: Does the text include descrip-
tions of all predicates presented in the data?

When computing correlation, we compare preci-
sion with the product of the Relevance and Correct-
ness, recall with Data Coverage, and F1 with the
harmonic means of both.

WebNLG 2023. The human annotations for this
challenge (Cripwell et al., 2023) consist of 100
graphs lexicalized in Irish by 4 NLG systems, Mal-
tese by 3 NLG systems, Welsh by 3 NLG systems,
and other 100 graphs lexicalized in Russian by 3
NLG systems. Additionally, all of them included
their human-written references. The generations
were scored across 4 criteria: Fluency, Absence
of Unnecessary Repetition, Absence of Additions,
and Absence of Omissions. The first is on a 5-point
Likert scale; the other 3 have binary Yes/No labels.
For this study, we focus on Absence of Additions
and Absence of Omissions:

• Absence of Additions: Looking at the Text, is
all of its content expressed in the Data expres-
sion? (Allow duplication of content.)

• Absence of Omissions: Looking at each ele-
ment of the Data expression in turn, does the
Text express all the information in all elements
in full (allow synonyms and aggregation)?

We compute correlation between precision and Ab-
sence of Additions, recall and Absence of Omis-
sions, and F1 with their harmonic mean.

4L-RP-Human. While WebNLG’s existing hu-
man judgments can, to a certain extent, be used
as proxies for Precision, Recall, and F1, none of
them were collected to measure these values specif-
ically. To address this, we created a new dataset
of human judgments called 4L-RPHuman, with
KG/text pairs extracted from the 7L-Auto dataset.
It contains 50 KG/text pairs per language for four
languages (English, Maltese, Russian, and Welsh)
with a balanced distribution of Precision and Re-
call scores by our best-performing model. We then
obtain human annotations for Precision and Re-
call of this subset to test how our model correlates
with human judgments that specifically target these
properties. The human annotators were provided
with a text and a graph in table format and were
asked to answer, using a scale of 1 to 5 (None, Few,
Half, Most, All), the following questions:

• Precision: How many Triples from the text can
you find in the Table?

• Recall: How many Triples from the table can
you find in the Text?

The annotators were native speakers of the target
language who were proficient in English hired via
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Prolific13 and paid 10£/h. Inter-annotator agree-
ment was measured via Fleiss’ Kappa (Fleiss,
1971). Appendix G provides more details.

4.3 Retrieval Accuracy

We also evaluate how well the scoring of various
models discerns between good and bad pairings
using a retrieval reformulation of the KG-to-text
task: Given the embedding of a graph, how well
can the model identify the most similar text in a
corpus and vice versa given a text how well can it
identify the corresponding graph?

Given a subset of 100 KG/text pairs randomly
selected from the WebNLG dataset for each target
language, we compute the F1 score with our model

13https://www.prolific.com/

and the score produced by each of the baselines for
each of the 10K possible graph/text combinations.
We then compute Retrieval at 1 (A@1) i.e., the pro-
portion of cases where the highest score is assigned
to the correct graph-text pair. We limit the size
of this subset given the computational demands of
scoring all possible combinations of graphs and
texts with our cross-encoder approach.

5 Results

5.1 Correlation with Automatic Metrics

Figure 3 shows the Spearman’s Correlation (ρ) be-
tween the various reference-less metric we evalu-
ate and reference-based automatic metrics on the
7L-Auto dataset (Breton, English, Irish, Maltese,
Russian, Welsh and Xhosa WebNLG generations).

Figure 3: Spearman’s Correlation (ρ ) between reference-less and reference-based metrics on the 7L-Auto dataset.
Only results with a p-value under 0.05 are reported. NB: Since there is no Breton training data, the MonoLR score
for Breton is computed with it’s closest language (Welsh). Xhosa results are provided in Appendix C.
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Fine-tuning matters. Models that have been
fine-tuned for the task (including the FS baseline)
show positive correlation across metrics and lan-
guages, while the NB baseline has either negative
or non significant correlations. These results high-
light the limitations of using off-the-shelf models as
proposed in (Dušek and Kasner, 2020) and under-
score the importance of task specific fine-tuning.

Strong performance in English. While trained
on multilingual data, our models almost match the
performance of metrics trained on English only
(DQE, FS, NB). Interestingly, the gap is smallest
for semantic based metrics (SBERT, BERTScore),
suggesting that our metrics are good at capturing
paraphrases.

Good performance in other languages. Our
fine-tuned models, especially the small Monolin-
gual LoRA version, outperform all three baselines
in all the other languages. These results demon-
strate the effectiveness of our approach despite fine-
tuning on synthetic, non-gold data.

5.2 Correlation with Human Judgments

5.2.1 Evaluation on Human Judgments for
Precision and Recall.

Table 3 reports correlation results when comparing
the precision, recall and F1 scores predicted by our
models with corresponding human judgments (4L-
RP-Human dataset) and the inter-annotator agree-
ment (Fleiss κ). They show a strong correlation for
all three metrics in English, Russian and Welsh and
a moderate one for Maltese showing the effective-
ness of our approach to capture omissions (recall),
addition (precision) and semantic faithfulness (F1).

We provide examples illustrating good, medium
and bad output from our best model (MonoLR)
for each target language in Table 13, Table 14, Ta-
ble 15, and Table 16 (Appendix F).

5.2.2 Evaluation on Human Judgments from
the WebNLG Shared Tasks.

Figure 4 shows the Root Mean Squared Error
(RMSE) and Spearman’s correlation (ρ) of the F1
score of different automatic metrics against the
WebNLG 2017, 2020 and 2023 human annotations.

Language Annotators Precision Recall F1
Fleiss κ ρ Fleiss κ ρ ρ

English 4 0.47 0.68 0.47 0.63 0.70
Maltese 3 0.29 0.38 0.49 0.30 0.47
Russian 2 0.32 0.63 0.39 0.52 0.67
Welsh 4 0.37 0.60 0.50 0.81 0.70

Table 3: Fleiss’ κ of Precision and Recall Human Judgments as well as the Spearman’s Correlation (ρ) of their
average compared to our MonoLR model on the 4L-RP-Human subset

Figure 4: Root Mean Squared Error (RMSE) and Spearman’s correlation (ρ ) of the F1 score from different
automatic metrics against the closest approximate human annotations from WebNLG 2017, 2020 and 2023 (Each
year has different annotations, see Table 2 for more details). For the Spearman’s correlation scores, only results with
a p-value under 0.05 are reported.
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A@1
Breton English Irish Maltese Russian Welsh Xhosa

DQE 0.53 0.95 0.32 0.48 0.05 0.39 0.38
FS 0.37 0.99 0.36 0.45 0.11 0.46 0.24
NB 0.56 0.79 0.49 0.60 0.70 0.60 0.68
MultiFF 0.92 1.00 0.84 0.96 0.96 0.95 0.99
MultiLR 0.93 0.99 0.85 0.94 0.93 0.97 0.98
MonoLR 0.94 1.00 0.91 0.96 0.99 1.00 0.99

Table 4: Retrieval at 1 (A@1) when using the F1 score to match graphs with their corresponding text on 100 selected
examples from the 7L-Auto dataset. NB: Since there is no Breton training data, the MonoLR score for Breton is
computed with it’s closest language (Welsh).

The exact numbers as well as a breakdown by Pre-
cision and Recall (when possible), can be found in
Table 7, Table 8, and Table 9 (Appendix D).

Correlation is highest for 2017 Data. Different
from our 4L-RP-Human dataset, the human judg-
ments collected during the WebNLG campaigns do
not directly target precision and recall: WebNLG
2017 targets semantic faithfulness, WebNLG 2020
targets three semantic criteria related to but not
identical to precision and recall, and WebNLG
2023 focuses on omissions and additions but only
return a binary score no matter how much omis-
sion/addition occurs in the generated text. As ex-
plained in Section 4.2, we use the available human
scores to approximate an F1 score and compute cor-
relation between these derived F1 scores and each
evaluated metric. We hypothesize that the higher
correlation obtained for the 2017 data results from
the fact that for this campaign, the single score
provided by the human evaluation is more directly
related to the unique score provided by the base-
line metrics and to our F1 score. Conversely the
lower correlation scores obtained by our models
on the WebNLG 2020 and 2023 datasets compared
to those obtained when evaluating on the 4L-RP-
Human dataset are likely caused by the need to "re-
construct" an F1 score from the human judgments
provided by these datasets (product of three criteria
for 2020 and Harmonic mean of binary scores for
lack of addition and omission for 2023).

An improvement over the state-of-the-art. In
English, our MonoLR model outperforms the three
baselines despite these being optimized for this lan-
guage. For the other 4 languages, the gap with these
monolingual metrics is particularly pronounced.
Surprisingly, for Russian the NB model is on par
with our MonoLR model. This highlights the im-
pact of using a multilingual model as base model
even when fine tuning on English only. However,
the low results of the NB model on the other lan-

guages shows that using NLI only, without fine
tuning on task specific data does not suffice.

5.3 Accuracy on Retrieval.

Table 4 shows the Retrieval at 1 (A@1) for
text/graph retrieval. In all languages, our fine-
tuned models outperform the baselines, with the
MonoLR model obtaining almost perfect scores
in most of them and even outperforming FS in
English. While the retrieval corpus is admittedly
limited in size (10K possible combinations), the
results demonstrate the effect of our approach on
multilingual graph/text representation learning: for
all languages, our models successfully identify the
matching text given a graph and vice versa.

6 Conclusion

Previous work on reference less evaluation of KG-
to-Text generation has mainly focused on English,
providing global metrics for semantic faithfulness.
We extend this work by presenting models which
support the reference less evaluation of multilin-
gual KG-to-Text generation while allowing for a
finer-grained evaluation in terms of precision, re-
call and F1. The proposed models show strong
correlation with human judgments of precision and
recall for several languages, moderate to strong cor-
relation with automatic metrics and high retrieval
accuracy. On a small data set of 10K (graph,text)
pairs retrieval accuracy is high indicating that the
representations learned by our model provide a
good basis for identifying matching KG/text pairs.
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8 Limitations

First and foremost we were limited by the availabil-
ity of high quality English KG-to-Text data. While
we could generate infinite synthetic errors our orig-
inal source of correct English lexicalizations was
short and could not be securely extended.

We were limited by available multilingual data.
While machine translation has advanced signifi-
cantly over time and we attempted to filter out bad
translations, there is still a risk of noise getting into
the training data; particularly on low-resource lan-
guages. Furthermore, the lack of adequate testing
data means that, while we believe it is possible to
apply this framework to many more languages, we
were unable to put it to the test.

Our trained models are limited to the languages
we trained them for and are still prone to mistake
in certain cases, particularly when dealing with
the grammatical and morphological nuances of lan-
guages.

9 Ethical Considerations

Expanding the toolbox of evaluation metrics to
languages other than English can help democratize
and expand access to new technologies to a larger
and more diverse group of people; however, it is
important to keep in mind the limitations of these
systems. Neural Models are, at the end of the day,
statistical models and as such they are prone to
error.

It is important to always consider the multiple
layers of bias and noise involved in the creation of
these models. Every step of the way is a possible
source of bias; from the selected pretrained model
to the fine-tuning dataset, going through all the in-
termediary processes like synthetic data generation
and machine translations.

In a time of quick changes it is more important
than ever to have multiple and diverse evaluation
metrics that provide different insights into the gen-
eration of our models and remember that each and
everyone of those metrics has its own pros and cons.
We can not blindly trust a single specific metric but

instead understand and use a multitude of them to
gain a complete perspective.

Supplementary Materials Availability: All the
code, data, and final models produced are made
publicly available in the following repository: ht
tps://gitlab.inria.fr/wsotomar/semanti
c-evaluation-of-multilingual-data-to-t
ext-generation-via-nli-fine-tuning.
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A Training Data Creation: Expanded

A.1 Quadruple Collection

As stated before, we begin our data creation pro-
cess with the English WebNLG V3.0 dataset (Cas-
tro Ferreira et al., 2020)14. This dataset contains
aligned (graph gi, text ti) pairs. We can also refer to
graph gi as gti , meaning it is the graph aligned with
ti. In the dataset, the graphs were extracted from
DBPedia,15 and the texts were either automatically
lexicalized or mined from Wikipedia16 before be-
ing aligned with each other by human annotators.
Since graph and text are aligned the pair has a pre-
cision and recall scores of 1, forming a quadruple
(graph gti , text ti, precision=1, recall=1).

We can create variations of these original quadru-
ples with diverse precision and recall scores by
finding pairs (graph gj , text ti) with different levels
of information overlap (o). To do so, we propose
to keep the text static and change the graph, since
it is much easier to work with and manipulate data
in graph representation. For example, measuring
o is much easier when both elements are in graph
representation, since we can just compute the inter-
section between both sets of triples (o = |gj ∩ gti |).
Because of that, for most of the creation process
we work with (graph gj , graph gti) pairs instead
of (graph gj , text ti) pairs. Only at the end of the
process we substitute gti back with the original text
ti.

Starting with our graph gti , if we wish to obtain
a variation quadruples with precision p and recall
r, we need to find a new gj such that the following
equations are true:

• o/|gti | = p

• o/|gj | = r

At first, we look for such a gj in the list of all
original graphs from WebNLGand all its subgraphs.
If finding a matching graph is impossible, we create
a synthetic one that satisfies the criteria.

A.2 Synthetic Graph Creation

Given a graph gti , we can create a synthetic graph
gj with precision p and recall r by first taking o
triples from gti and then adding external triples to
gj until o/|gj | = r.

14https://gitlab.com/shimorina/webnlg-dataset
/-/tree/master/release_v3.0

15https://www.dbpedia.org/
16https://www.wikipedia.org/

External triples can be procured by selecting a
triple from some graph gk that does no overlap
with gti or by corrupting real triples from gti so
that the information they represent does not match
the original graph.

When corrupting a real triple, we can swap the
order of the elements in the triple or substitute
some or all of its elements with incorrect values.
When doing so, we use logical substitutions. For
example, to corrupt the triple (Alan Bean | birth-
Place | Wheeler, Texas), we can substitute the ob-
ject Wheeler, Texas with a different value. In such
a case, we would select a value that can be paired
with the property birthPlace, like Miami, Florida,
instead of a random value like 1932-03-15.

A.3 Toy Example
If we start with the following dataset of aligned
(graph gi, text ti) pairs:

ID Graph Text

1 Alice | occupation | Writer Alice is a writer.

2 Alice | occupation | Writer Alice is an
American writer.Alice | country | USA

3 Alice | country | USA Alice and Bob are
Americans.Bob | country | USA

We can assign all of them precision and recall
values of 1 and turn them into quadruples.

ID Graph Text P R

1 Alice | occupation | Writer Alice is a writer. 1.00 1.00

2 Alice | occupation | Writer Alice is an
American writer. 1.00 1.00Alice | country | USA

3 Alice | country | USA Alice and Bob are
Americans. 1.00 1.00Bob | country | USA

To create new quadruples we can start by pairing
texts with subgraphs or supergraphs of their origi-
nal graph. For example, g1 is a subgraph of g2 (and
therefore g2 is a supergraph of g1). Pairing a text
with a supergraph will produce a quadruple where
the text is missing information (omission), leading
to a lower recall. Paring a text with a subgraph
will produce a quadruple where the text has extra
information (addition/hallucination), leading to a
lower precision:

ID Graph Text P R

1 Alice | occupation | Writer Alice is a writer. 1.00 1.00

2 Alice | occupation | Writer Alice is an
American writer. 1.00 1.00Alice | country | USA

3 Alice | country | USA Alice and Bob are
Americans. 1.00 1.00Bob | country | USA

4 Alice | occupation | Writer Alice is an
American writer. 0.50 1.00

5 Alice | occupation | Writer Alice is a writer. 1.00 0.50Alice | country | USA

We can also pair a text with partially overlap-
ping graphs. For example, g2 and g3 overlap in
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one triple, by matching their texts and graphs we
will have quadruples where both recall and preci-
sion can be affected (there are both omissions and
additions/hallucinations):

ID Graph Text P R

1 Alice | occupation | Writer Alice is a writer. 1.00 1.00

2 Alice | occupation | Writer Alice is an
American writer. 1.00 1.00Alice | country | USA

3 Alice | country | USA Alice and Bob are
Americans. 1.00 1.00Bob | country | USA

4 Alice | occupation | Writer Alice is an
American writer. 0.50 1.00

5 Alice | occupation | Writer Alice is a writer. 1.00 0.50Alice | country | USA

6 Alice | country | USA Alice is an
American writer. 0.50 0.50Bob | country | USA

7 Alice | occupation | Writer Alice and Bob are
Americans. 0.50 0.50Alice | country | USA

Finally, we can produce new quadruples by cre-
ating synthetic graphs, either by corrupting original
triples or by adding new ones:

ID Graph Text P R

1 Alice | occupation | Writer Alice is a writer. 1.00 1.00

2 Alice | occupation | Writer Alice is an
American writer. 1.00 1.00Alice | country | USA

3 Alice | country | USA Alice and Bob are
Americans. 1.00 1.00Bob | country | USA

4 Alice | occupation | Writer Alice is an
American writer. 0.50 1.00

5 Alice | occupation | Writer Alice is a writer. 1.00 0.50Alice | country | USA

6 Alice | country | USA Alice is an
American writer. 0.50 0.50Bob | country | USA

7 Alice | occupation | Writer Alice and Bob are
Americans. 0.50 0.50Alice | country | USA

8 Alice | occupation | Writer Alice is an
American writer. 0.50 0.50Alice | country | Mexico

9
Alice | occupation | Writer Alice is an

American writer. 1.00 0.66Alice | country | USA
Alice | birthDate | 2000-01-01
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B Training Hyper Parameters

Parameter MultiFF* MultiLR* MonoLR**
Training Hardware 1 32GB V100 1 32GB V100 1 32GB V100
Training Instances ∼ 3 544 994 ∼ 3 544 994 ∼ 590 832
Training Epochs 1 1 1
Training Time ∼ 7h ∼ 11h ∼ 2h
Warmup Steps 10% 10% 10%
Scheduler WarmupLinear WarmupLinear WarmupLinear
Optimizer AdamW AdamW AdamW
Learning Rate 2e-5 2e-5 2e-5
Loss Function BCELoss BCELoss BCELoss
Rank N/A N/A 32
Total parameters 278 811 651 283 507 299 283 507 299
Trained parameters 278 811 651 5 382 240 5 382 240

Table 5: Training hyperparameters of all our models. *The model is fine-tuned on 6 languages together. **The
model is fine-tuned in only 1 language.
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C 7L-Auto Results

Breton English
F1 F1

BLEU ↑ ChrF++ ↑ ¬TER ↑ BERTScore ↑ SBERT ↑ BLEU ↑ ChrF++ ↑ ¬TER ↑ BERTScore ↑ SBERT ↑
DQE 0.24 0.30 0.18 0.31 0.35 0.51 0.60 0.50 0.62 0.68
FS 0.25 0.28 — 0.29 0.32 0.51 0.60 0.46 0.61 0.67
NB — — — -0.09 — -0.27 -0.30 -0.39 -0.36 -0.30
MultiFF 0.37 0.41 0.12 0.39 0.34 0.36 0.47 0.41 0.48 0.54
MultiLR 0.43 0.52 0.18 0.47 0.41 0.40 0.53 0.47 0.54 0.60
MonoLR 0.45 0.50 0.16 0.49 0.39 0.44 0.58 0.53 0.61 0.67

Irish Maltese
F1 F1

BLEU ↑ ChrF++ ↑ ¬TER ↑ BERTScore ↑ SBERT ↑ BLEU ↑ ChrF++ ↑ ¬TER ↑ BERTScore ↑ SBERT ↑
DQE 0.23 0.21 0.12 0.17 0.23 0.54 0.60 0.37 0.55 0.60
FS 0.29 0.31 0.17 0.28 0.33 0.60 0.66 0.38 0.62 0.62
NB -0.12 -0.11 -0.18 -0.21 -0.07 0.08 0.10 — 0.02 0.14
MultiFF 0.28 0.29 0.14 0.29 0.21 0.70 0.78 0.46 0.72 0.74
MultiLR 0.38 0.40 0.20 0.39 0.27 0.72 0.80 0.49 0.74 0.78
MonoLR 0.40 0.41 0.22 0.41 0.29 0.76 0.84 0.49 0.77 0.78

Russian Welsh
F1 F1

BLEU ↑ ChrF++ ↑ ¬TER ↑ BERTScore ↑ SBERT ↑ BLEU ↑ ChrF++ ↑ ¬TER ↑ BERTScore ↑ SBERT ↑
DQE -0.05 -0.07 -0.03 -0.08 -0.08 0.34 0.37 0.29 0.37 0.47
FS -0.02 — 0.02 — 0.04 0.36 0.40 0.29 0.41 0.47
NB -0.07 -0.12 -0.22 -0.22 -0.07 -0.09 -0.09 -0.16 -0.19 -0.07
MultiFF 0.13 0.19 0.11 0.18 0.23 0.46 0.49 0.32 0.49 0.44
MultiLR 0.26 0.37 0.29 0.39 0.35 0.54 0.59 0.39 0.59 0.51
MonoLR 0.25 0.36 0.28 0.38 0.34 0.53 0.58 0.37 0.59 0.51

Xhosa
F1

BLEU ↑ ChrF++ ↑ ¬TER ↑ BERTScore ↑ SBERT ↑
DQE -0.10 -0.04 -0.14 -0.11 -0.12
FS 0.19 0.18 0.18 0.11 0.13
NB -0.25 -0.27 -0.30 -0.24 -0.26
MultiFF — -0.05 -0.11 — -0.05
MultiLR 0.19 0.32 0.15 0.22 0.21
MonoLR 0.22 0.34 0.19 0.26 0.25

Table 6: Spearman’s Correlation (ρ ) of the F1 score from different automatic metrics against classic reference-based
metrics on the 7L-Auto dataset. Only results with a p-value under 0.05 are reported. NB: Since there is no Breton
training data, the MonoLR score for Breton is computed with it’s closest language (Welsh).
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D WebNLG Human Judgment Results

English
F1

RMSE ↓ ρ ↑
DQE 0.29 0.65
FS 0.29 0.71
NB 0.30 0.69
MultiFF 0.33 0.64
MutiLR 0.26 0.70
MonoLR 0.26 0.73

Table 7: Root Mean Squared Error (RMSE) and Spearman’s correlation (ρ ) of the F1 score from different automatic
metrics against the English WebNLG 2017 human annotations. For the Spearman’s correlation scores, only results
with a p-value under 0.05 are reported.

English Russian
P R F1 P R F1

RMSE ↓ ρ ↑ RMSE ↓ ρ ↑ RMSE ↓ ρ ↑ RMSE ↓ ρ ↑ RMSE ↓ ρ ↑ RMSE ↓ ρ ↑
DQE 0.27 0.37 0.32 0.32 0.28 0.37 0.79 — 0.84 — 0.81 —
FS 0.21 0.35 0.18 0.45 0.19 0.48 0.67 — 0.79 — 0.70 —
NB 0.28 0.28 0.16 0.43 0.24 0.41 0.30 0.21 0.20 0.39 0.27 0.39
MultiFF 0.22 0.22 0.15 0.38 0.18 0.34 0.25 0.14 0.14 0.42 0.21 0.30
MultiLR 0.22 0.36 0.20 0.37 0.17 0.39 0.26 0.19 0.22 0.36 0.23 0.31
MonoLR 0.20 0.44 0.14 0.47 0.15 0.50 0.24 0.25 0.16 0.44 0.20 0.39

Table 8: Root Mean Squared Error (RMSE) and Spearman’s correlation (ρ ) of the Precision, Recall, and F1 score
from different automatic metrics against the English and Russian WebNLG 2020 human annotations. For the
Spearman’s correlation scores, only results with a p-value under 0.05 are reported.

Irish Maltese
P R F1 P R F1

RMSE ↓ ρ ↑ RMSE ↓ ρ ↑ RMSE ↓ ρ ↑ RMSE ↓ ρ ↑ RMSE ↓ ρ ↑ RMSE ↓ ρ ↑
DQE 0.65 0.11 0.64 0.09 0.62 0.12 0.60 0.14 0.59 0.10 0.58 0.12
FS 0.62 — 0.57 0.13 0.60 0.09 0.66 0.13 0.52 0.17 0.61 0.14
NB 0.52 0.14 0.46 0.22 0.54 0.16 0.48 0.20 0.47 0.37 0.49 0.29
MultiFF 0.48 0.14 0.49 0.29 0.52 0.20 0.46 0.14 0.52 0.32 0.53 0.26
MultiLR 0.47 0.18 0.45 0.35 0.49 0.31 0.44 0.26 0.46 0.37 0.49 0.38
MonoLR 0.46 0.21 0.45 0.37 0.50 0.33 0.43 0.30 0.45 0.43 0.49 0.41

Russian Welsh
P R F1 P R F1

RMSE ↓ ρ ↑ RMSE ↓ ρ ↑ RMSE ↓ ρ ↑ RMSE ↓ ρ ↑ RMSE ↓ ρ ↑ RMSE ↓ ρ ↑
DQE 0.85 — 0.87 — 0.82 — 0.61 — 0.58 0.11 0.56 —
FS 0.76 — 0.86 — 0.82 — 0.69 — 0.55 0.18 0.60 0.11
NB 0.45 0.17 0.34 0.28 0.45 0.25 0.54 0.13 0.53 0.24 0.58 0.13
MultiFF 0.42 — 0.36 0.22 0.45 0.13 0.51 — 0.58 0.26 0.61 0.18
MultiLR 0.39 0.24 0.35 0.28 0.42 0.28 0.49 0.18 0.54 0.29 0.58 0.26
MonoLR 0.38 0.25 0.32 0.33 0.41 0.31 0.49 0.21 0.54 0.34 0.58 0.29

Table 9: Root Mean Squared Error (RMSE) and Spearman’s correlation (ρ ) of the Precision, Recall, and F1 score
from different automatic metrics against the Irish, Maltese, Russian and Welsh WebNLG 2023 human annotations.
For the Spearman’s correlation scores, only results with a p-value under 0.05 are reported. NB: The original human
annotations are binary labels, which might explain the high RMSE
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E WebNLG Human Judgment Results: System-level Correlations

For comparison, we also report results obtained using the script from Zhang et al. (2023) for system level
correlations.

English
Semantic

r ↑ ρ ↑ τ ↑
OgFS* 0.97 0.93 0.85
FS 0.95 0.91 0.80
NB 0.96 0.91 0.80
MultiFF 0.90 0.82 0.66
MultiLR 0.93 0.84 0.70
MonoLR 0.96 0.92 0.81

Table 10: System-level correlation (Pearson’s r, Spearman’s ρ, and Kendall’s τ ) of the F1 score from different
automatic metrics against the English WebNLG 2017 human annotations. *OgFS are the results reported in the
original FactSpotter paper.

English
Correctness Relevance Data Coverage

r ↑ ρ ↑ τ ↑ r ↑ ρ ↑ τ ↑ r ↑ ρ ↑ τ ↑
OgFS* 0.94 0.80 0.64 0.96 0.79 0.64 0.91 0.87 0.71
FS 0.97 0.84 0.70 0.98 0.80 0.65 0.97 0.94 0.83
NB 0.94 0.75 0.60 0.91 0.69 0.53 0.95 0.90 0.77
MultiFF 0.93 0.75 0.60 0.95 0.77 0.62 0.93 0.92 0.79
MultiLR 0.92 0.76 0.60 0.92 0.78 0.62 0.92 0.89 0.74
MonoLR 0.93 0.75 0.60 0.94 0.78 0.64 0.94 0.94 0.83

Russian
Correctness Relevance Data Coverage

r ↑ ρ ↑ τ ↑ r ↑ ρ ↑ τ ↑ r ↑ ρ ↑ τ ↑
FS -0.82 0.79 — 0.62 0.63 0.81 — 0.83 0.75
NB 0.80 0.83 0.75 0.83 0.85 0.76 0.83 0.85 0.76
MultiFF — — — 0.79 0.82 0.74 0.95 0.88 0.78
MultiLR — — — 0.80 0.83 0.74 0.94 0.89 0.79
MonoLR — — — 0.80 0.83 0.76 0.92 0.89 0.80

Table 11: System-level correlation (Pearson’s r, Spearman’s ρ, and Kendall’s τ ) of the Precision and Recall score
from different automatic metrics against the English and Russian WebNLG 2020 human annotations. *OgFS are the
results reported in the original FactSpotter paper.

Irish Maltese
Additions Omissions Additions Omissions

r ↑ ρ ↑ τ ↑ r ↑ ρ ↑ τ ↑ r ↑ ρ ↑ τ ↑ r ↑ ρ ↑ τ ↑
FS 0.79 0.60 — 0.97 0.97 — 0.82 0.79 — 1.00 1.00 —
NB 0.97 1.00 — 0.97 1.00 — 1.00 0.99 — 0.97 0.99 —
MultiFF 0.97 1.00 — 0.97 1.00 — 1.00 1.00 — 1.00 1.00 —
MultiLR 0.97 1.00 — 0.96 1.00 — 1.00 1.00 — 1.00 1.00 —
MonoLR 0.98 1.00 — 0.98 1.00 — 1.00 1.00 — 1.00 1.00 —

Russian Welsh
Additions Omissions Additions Omissions

r ↑ ρ ↑ τ ↑ r ↑ ρ ↑ τ ↑ r ↑ ρ ↑ τ ↑ r ↑ ρ ↑ τ ↑
FS -0.48 -0.43 — 0.61 0.47 — 0.97 0.84 — 1.00 1.00 —
NB 0.25 0.15 — 0.90 0.71 — 0.97 0.84 — 1.00 0.96 —
MultiFF -0.66 -0.49 — 0.68 0.64 — 0.97 0.84 — 1.00 1.00 —
MultiLR -0.80 -0.60 — -0.41 -0.11 — 0.97 0.84 — 1.00 1.00 —
MonoLR -0.48 0.05 — 0.45 0.48 — 0.97 0.84 — 1.00 1.00 —

Table 12: System-level correlation (Pearson’s r, Spearman’s ρ, and Kendall’s τ ) of the Precision and Recall score
from different automatic metrics against the Irish, Maltese, Russian and Welsh WebNLG 2023 human annotations.
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F Annotation Examples

Sample Precision Recall Quintile
Human MonoLR Human MonoLR

Graph:

1.00 0.98 0.62 0.75 1st

Mermaid (Train song) | genre | Pop rock
Mermaid (Train song) | runtime | 3.16

Mermaid (Train song) | releaseDate | 2012-12-27
Mermaid (Train song) | precededBy | This’ll Be My Year

Mermaid (Train song) | writer | Espen Lind
Text:

Mermaid is a pop rock song written by Espen Lind.
It was released on 27 December 2012 and has a run time of 3.16.

Graph:

0.19 0.32 0.25 0.37 3rd

Turkey | longName | Republic of Turkey
Nurhan Atasoy | nationality | Turkish people

Nurhan Atasoy | citizenship | Turkey
Turkey | language | Turkish language

Text:
The Turkish language is spoken in Turkey where the leader is known as the Republic of
Turkey. The country is the location of the Ataturk Atasoy which is a citizenship of the

Turkish people.
Graph:

0.12 0.88 0.25 0.52 5th
Ciudad Ayala | populationMetro | 1777539

Text:
1777539 is the population metro in the country.

Table 13: English samples from 4L-RP-Human with their Human and MonoLR scores in a scale from 0 to 1. The
samples were selected from the 1st (good), 3rd (median) and 5th (bad) quintile based on the accuracy of MonoLR
compared to the Human judgment.

Sample Precision Recall Quintile
Human MonoLR Human MonoLR

Graph:

0.92 0.96 0.83 0.88 1st

McVeagh of the South Seas | director | Cyril Bruce
McVeagh of the South Seas | writer | Harry Carey (actor born 1878)

Text:
McVeagh tal-Baℏar tan-Nofsinhar kien miktub minn Harry Carey (attur imwieled 1878) u

dirett minn Cyril Bruce.
English MT:

McVeagh of the Southern Seaboard was written by Harry Carey (actor born 1878) and
directed by Cyril Bruce.

Graph:

0.75 0.99 0.42 0.67 3rd

United States | leaderTitle | Vice President
Darinka Dentcheva | residence | United States

Text:
Il-Viċi President huwa l-mexxej tal-Istati Uniti

English MT:
The Vice President is the leader of the United States.

Graph:

0.08 0.84 0.08 0.71 5th

Turkey | demonym | Turk
Text:

Id-demonimu tal-abitanti tal-belt ta’ Turkmen huwa ta
English MT:

The demonym of the inhabitants of the city of Turkmen is

Table 14: Maltese samples from 4L-RP-Human with their Human and MonoLR scores in a scale from 0 to 1. The
samples were selected from the 1st (good), 3rd (median) and 5th (bad) quintile based on the accuracy of MonoLR
compared to the Human judgment.

10424



Sample Precision Recall Quintile
Human MonoLR Human MonoLR

Graph:

0.88 0.93 0.88 0.79 1st

(66063) 1998 RO1 | meanTemperature | 265.0 (kelvins)
(66063) 1998 RO1 | apoapsis | 254989570.60815 (kilometres)

(66063) 1998 RO1 | epoch | 2013-11-04
(66063) 1998 RO1 | orbitalPeriod | 360.29 (days)

Text:
Небесное тело, известное как (66063) 1998 RO1, имеет среднюю
температуру 265 Кельвинов и орбитальный период 360,29 дней.

Его апоцентр - 254989570,60815 километров,
а его эпоха - 13 января 2016 года.

English MT:
The celestial body, known as (66063) 1998 RO1, has an average
temperature of 265 Kelvin and an orbital period of 360.29 days.

Its apocenter is 254989570.60815 kilometers,
and its epoch is January 13, 2016.

Graph:

0.88 0.56 1.00 0.90 3rd

School of Business and Social Sciences at the Aarhus University |
affiliation | European University Association

European University Association | headquarter | Brussels

School of Business and Social Sciences at the Aarhus University |
established | 1928

Text:
Школа бизнеса и социальных наук Орхусского университета была
создана в 1928 году и входит в Ассоциацию университетов Европы,

штаб-квартира которой находится в Брюссельском столичном регионе.
English MT:

The School of Business and Social Sciences at Aarhus University was
founded in 1928 and is a member of the Association of European Universities,

headquartered in the Brussels-Capital Region.
Graph:

0.12 1.00 0.12 1.00 5th

11 Diagonal Street | location | South Africa
Text:

Диагонал-стрит 11 находится в Южной Африке.
English MT:

Diagonal Street 11 is located in South Africa.

Table 15: Russian samples from 4L-RP-Human with their Human and MonoLR scores in a scale from 0 to 1. The
samples were selected from the 1st (good), 3rd (median) and 5th (bad) quintile based on the accuracy of MonoLR
compared to the Human judgment.

Sample Precision Recall Quintile
Human MonoLR Human MonoLR

Graph:

0.88 0.96 0.69 0.65 1st

McVeagh of the South Seas | imdbId | 0004319
McVeagh of the South Seas | director | Cyril Bruce

McVeagh of the South Seas | director | Harry Carey (actor born 1878)
McVeagh of the South Seas | starring | Harry Carey (actor born 1878)
McVeagh of the South Seas | writer | Harry Carey (actor born 1878)

Text:
Ysgrifennodd Harry Carey (a anwyd yn 1878) McVeagh of the South Seas a cyfarwyddodd

Cyril Bruce. Mae gan y ddata IMDb 0004319.
English MT:

Harry Carey (born 1878) wrote McVeagh of the South Seas and Cyril
Bruce directed. The IMDb data has 0004319.

Graph:

1.00 0.76 0.94 0.85 3rd

University of Burgundy | campus | Dijon
Dijon | country | France

Text:
Mae Prifysgol Burgundaidd yn cael ei leoli yn Dijon, Ffrainc.

English MT:
Burgundian University is located in Dijon, France.

Graph:

1.00 0.36 1.00 0.34 5th

Bionico | dishVariation | Honey
Bionico | country | Mexico

Text:
Mae Bionico yn amrywiad dysgl o Fecsico sy’n cynnwys mêl.

English MT:
Bionico is a variation of a Mexican dish that includes honey.

Table 16: Welsh samples from 4L-RP-Human with their Human and MonoLR scores in a scale from 0 to 1. The
samples were selected from the 1st (good), 3rd (median) and 5th (bad) quintile based on the accuracy of MonoLR
compared to the Human judgment.
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G Human Annotation Instructions

Figure 5: Part 1 of 2 from the human annotation instructions.

10426



Figure 6: Part 2 of 2 from the human annotation instructions.
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