
Findings of the Association for Computational Linguistics: ACL 2025, pages 10113–10133
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

LoRMA: Low-Rank Multiplicative Adaptation for LLMs

Harsh Bihany* Shubham Patel* Ashutosh Modi
Indian Institute of Technology Kanpur (IIT Kanpur)
{harshbi, devang, ashutoshm}@cse.iitk.ac.in,

Abstract

Large Language Models have shown remark-
able capabilities in the NLP domain. Their
effectiveness can mainly be attributed to their
ability to adapt to an array of downstream tasks.
However, generally, full fine-tuning is a compu-
tationally expensive job. To mitigate this, many
techniques have been developed that prime effi-
ciency, a prominent one being Low-Rank Adap-
tation (LoRA). However, LoRA and its vari-
ants employ re-parametrized additive updates.
In this paper, we propose Low-Rank Multi-
plicative Adaptation (LoRMA), which shifts
the paradigm of additive updates to a richer
space of matrix multiplicative transformations.
We tackle challenges such as computational
complexity and rank bottleneck of matrix mul-
tiplication by effectively re-ordering operations
and introducing rank inflation strategies. We
conduct extensive experiments to demonstrate
the effectiveness of our approach in terms of
various evaluation metrics.

1 Introduction

Large Language Models (LLMs) have demon-
strated strong performance across various NLP
benchmarks (Fourrier et al., 2024). Though LLMs
have shown impressive generalization capabilities
(for example, via In-context learning (Dong et al.,
2024)), sometimes these tend to have lower perfor-
mance on some niche or low-resource tasks, thus
requiring task-specific fine-tuning. LLMs usage
follows a pre-train and fine-tune paradigm (Zhao
et al., 2023), where the model is trained on a mas-
sive amount of text in an unsupervised fashion, and
subsequently, the model is fine-tuned for some spe-
cific tasks/domains in a supervised setting. Given
the size of these models (order of billions of param-
eters), it may not always be feasible to fine-tune
the entire model due to high computational costs.
In recent years, a new class of techniques (referred
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Figure 1: Transformation of a vector W by two meth-
ods: one is via rotation and scaling, the other is via the
addition of a vector v.

to as PEFT (Parameter Efficient Fine Tuning)) has
been proposed to address large computational costs
associated with fine-tuning.
Various PEFT techniques previously have been de-
vised (Han et al., 2024); however, they often in-
troduce trade-offs such as lack of parallelism, in-
creased inference latency (e.g., Adaptors (Houlsby
et al., 2019)), or restricted sequence lengths (Petrov
et al., 2024). Consequently, re-parametrization-
based techniques such as Low-Rank Adaptation
(LoRA) (Hu et al., 2022) based fine-tuning meth-
ods have gained popularity. Typically, during fine-
tuning, the weights (in the form of the weight ma-
trix, e.g., query/key/value matrix) of LLMs are up-
dated using additive update rule, i.e., W0 +∆W,
where ∆W is the update in the weights obtained
due to fine-tuning. The main idea behind LoRA is
to approximate the update matrix ∆W ∈ Rd×k

by a low-rank approximation α
r · BA, where

B ∈ Rd×r and A ∈ Rr×k are low-rank matri-
ces (r ≪ d, k), α

r is a scaling factor, leading to
W = W0 + α

r · BA. It is based on the study
that the additional information required for task-
specific updates has a smaller intrinsic rank and
lies on a much smaller manifold compared to the
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Figure 2: Comparing LoRA (a) and LoRMA (b). @ denotes matrix multiplication. I+ and Iπ represent additive
and permutation based rank inflation respectively (§3). In case of LoRMA, initialization of A and B depends on the
type of inflation (§3).

entire space of d× k matrices (Aghajanyan et al.,
2021; Hu et al., 2022). The current LoRA-based
approaches (Yang et al., 2024) have employed ad-
ditive transformations, where the low-rank update
matrix can be added to the original weight matrix
during inference. However, a similar transforma-
tion could also be achieved via multiplicative up-
dates. For example, consider a weight vector W
(Fig. 1) and we would like to transform it to vector
Ŵ, this could be accomplished via the addition
of a vector v, or it could also be done by rotating
W by angle θ (done via Rotation Matrix Rθ) and
subsequently by scaling it by scalar α.

Inspired by this, we propose Low-Rank Multi-
plicative Adaptation (LoRMA) for efficiently fine-
tuning LLMs on new tasks. LoRMA applies low-
rank multiplicative update to a weight matrix, i.e.,
W = α

r · (BA)W0, where α
r is a scalar and

A ∈ Rd×r and B ∈ Rr×d are low-rank matrices
(r ≪ d, k). However, this simple multiplicative
update faces two new challenges: an increase in
computational complexity due to additional ma-
trix multiplication operations and a restriction on
the maximum rank of W due to the property:
R(AB) ≤ min(R(A),R(B)), where R(·) de-
notes the rank of a matrix. We employ appropri-
ate ordering of matrix multiplication to address
the issue of computational complexity (§3). Addi-
tionally, to counteract the issue of rank inhibition
caused by matrix multiplication, we introduce rank
inflation strategies and demonstrate their effective-
ness (Fig. 2). On average, the proposed techniques
have better performance than LoRA (§4). More-
over, it has a much faster convergence rate (hence
lower training time) as compared to LoRA (§5).

In a nutshell, we make the following contributions:
• We propose a new PEFT technique for adapt-

ing LLMs for downstream tasks: Low-Rank
Multiplicative Adaptation (LoRMA). We em-
ploy multiplicative updates as an alternative to
additive updates used in LoRA. To make the
proposed method computationally efficient and
overcome rank inhibition brought in by matrix
multiplication of low-rank matrices, we pro-
pose two variants: Low-Rank Multiplicative
Adaptation with additive inflation (LoRMA+)
and Low-Rank Multiplicative Adaptation with
permutation-based inflation (LoRMAπ). We
propose a generic framework that can adapted
into existing variants of LoRA such as Q-LoRA
(Dettmers et al., 2023), AutoLoRA (Zhang et al.,
2024), DyLoRA (Valipour et al., 2023), and
DoRA (Liu et al., 2024)).

• We perform an extensive set of experiments
on transformer-based LLMs (RoBERTa, GPT-2,
Gemma-2B, and LLaMA-3-8B) on various NLU
and NLG tasks and compare them with existing
baselines. On average, the proposed techniques
perform better. We show that LoRMA shows
faster convergence. Via various ablation studies,
we demonstrate the benefits of the approach and
analyze the effect of rank, weight matrix choice,
and correlation between weight updates of LoRA
and LoRMA. We release our code at https:
//github.com/Exploration-Lab/LoRMA.

2 Related Work

LLMs are generally fine-tuned using Parameter
Efficient Fine Tuning (PEFT) methods. Existing
PEFT techniques typically fall into three categories
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(Han et al., 2024): (1) Additive methods (these in-
volve the inclusion of a small set of additional train-
able parameters/modules, e.g., Adaptors (Houlsby
et al., 2019), Prefix-tuning (Li and Liang, 2021));
(2) Selective methods (these involve selecting a
smaller subset of parameters/modules (e.g., bias
in the case of BitFit (Ben Zaken et al., 2022))
and fine-tuning only those (via application of bi-
nary masks), e.g., Diff pruning (Guo et al., 2021));
(3) Re-parametrization techniques (these involve
re-parameterization of existing weight update ma-
trix via low-rank approximation, e.g., LoRA (Hu
et al., 2022)). In this paper, we focus on re-
parameterization-based approaches.
Several variants of LoRA have been proposed
(Hayou et al., 2024; Tian et al., 2024), each focus-
ing on different aspects of the method (Mao et al.,
2025). Here, we describe some of the prominent
ones; for more details, please refer to the survey by
Yang et al. (2024). DyLoRA (Valipour et al., 2023)
dynamically searches for optimal ranks for differ-
ent weight matrices of the model rather than using
a fixed rank across all layers. Methods like Au-
toLoRA (Zhang et al., 2024) and AdaLoRA (Zhang
et al., 2023) adaptively allocate the parameter bud-
get across the model matrices by determining an
importance score. ReLoRA (Lialin et al., 2024)
introduces aggregated low-rank updates to large
neural networks during the training phase with
a jagged learning rate scheduler, which depends
on the interval in which updates are made to the
weight matrix. DoRA (Liu et al., 2024) improves
convergence by splitting magnitude and directional
updates, enabling weight updates close to tradi-
tional fine-tuning. VeRA (Kopiczko et al., 2024)
further reduces storage requirements by using fixed
matrices A and B across layers and introducing
trainable diagonal matrices. SVFT (Lingam et al.,
2024) performs a singular value decomposition
of the weight matrix and modifies the singular-
value matrix using a trainable diagonal (SVFTP

- Plain SVFT) or by selecting trainable elements
randomly (SVFTR

d ). PRoLoRA (Wang et al., 2024)
introduces re-using parameters within the LoRA
adapter matrix by replicating chunks across rows
and columns. The paper introduces a rotation
enhancement operation involving chunks in the
adapter matrices to recover the expressivity in BA
lost due to replicating parameters and add a set
of trainable parameters to further enhance expres-
sivity. Our work is different from PRoLoRA; we
introduce operations at the row level to inflate the

rank of the matrix.
Most of these methods discussed are additive in na-
ture, with the exception of SVFT. We explore the ef-
fect of replacing additive modules with multiplica-
tive transformations. By investigating multiplica-
tive updates, we aim to address some of the limita-
tions of additive approaches while maintaining the
efficiency and effectiveness of PEFT. Multiplica-
tive updates offer a more expressive mechanism for
modifying weight matrices. By leveraging matrix
multiplication, we can encode richer transforma-
tions, which may better capture several complex
relationships. We propose a generic multiplicative
variant of the additive LoRA. Our proposed vari-
ant is orthogonal to many of these variants, thus
enabling one to further improve the strategy’s ef-
fectiveness by combining our variant with existing
variants in the literature. For example, analogous to
efficient rank-allocation strategies like AutoLoRA
for additive LoRA, an equivalent multiplicative
variant like AutoLoRMA can be devised by trans-
forming the weight update to be multiplicative and
using the rank-allocation strategy of AutoLoRA.
Similarly, approaches can be devised for QLoRMA,
AdaLoRMA, etc. Given this motivation, we primar-
ily benchmark our proposed approach of LoRMA
against LoRA to show that it has a competitive
performance.

3 Methodology

3.1 Background

Rank of a matrix (R(·)) is defined as the number
of linearly independent rows/columns of a matrix
and is equivalent to the dimensionality of the space
spanned by the rows/columns of the matrix. The
rank of a matrix is a fundamental quantity that
captures various important characteristics. Some
of the key properties (Strang, 2009) are:

R(M) ≤ min(n,m), for M ∈ Rn×m (1)
R(M1 +M2) ≥ |R(M1)−R(M2)| (2)
R (M1 ×M2) ≤ min(R(M1),R(M2)) (3)

R(M) = n, M ∈ Rn×n if M is invertible (4)

Property 1 indicates that the rank of a matrix is
bounded by its dimensions. Property 2 specifies a
lower bound for the rank when matrices undergo
addition. Property 3 constrains the rank of the prod-
uct of two matrices to be bounded by the smaller of
both. Property 4 states that square matrices that are
invertible (for example, identity matrix In) have a
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rank equal to the number of rows/columns (n).
LoRA (Hu et al., 2022) updates a pre-trained
weight matrix W0 ∈ Rd×k by additive update,
i.e., h = W0x+∆Wx, where x is the input and
W0 is frozen during fine-tuning. The updates ∆W
are constrained to a low-rank decomposition BA
where B ∈ Rd×r,A ∈ Rr×k and r ≪ min(d, k),
i.e.,

h = (W0 +
α

r
·BA)

︸ ︷︷ ︸
∆W

x (5)

where α is a scalar. To ensure that the initial train-
ing pass resembles the pre-trained model and train-
ing stability, B is initialized to 0.
Existence: In LoRA, weights are updated via addi-
tive updates; however, we are proposing a different
paradigm where weights are updated via a mul-
tiplicative process. One could argue if it is even
feasible to attain the same updates via a multiplica-
tive process. In this regard, we first provide proof
that it is indeed possible to transform a matrix into
another matrix via multiplicative mapping.
Theorem 1. Given M0 ∈ Rn×m where n >
m and let R(M0) = m. For all M ∈
Rn×m, ∃MA ∈ Rn×n, such that M = MAM0.

Proof. Given M0 ∈ Rn×m where n > m and
R(M0) = m, implies that M0 is a full column
matrix, i.e., all its columns are independent. This
implies that there exists a left inverse of the matrix
M0, say M+

0 , such that M+
0 M0 = Im. We need

to show the existence of a matrix MA for any given
M ∈ Rn×m, such that pre-multiplication of MA

with M0 gives M, i.e., M = MAM0. Construct
the matrix MA = MM+

0 . This proves the claim
as MAM0 = (MM+

0 )M0 = MIm = M.

Corollary 1.1. Given M0 ∈ Rn×m where n > m
and R(M0) = m. There exists M ∈ Rn×m such
that ∀MA ∈ Rm×m,M ̸= M0MA.

Proof. Suppose that ∀ M ∈ Rn×m, ∃ MA, such
that post-multiplication, i.e., M0MA = M. In
other words Rn×m = {M0MA |MA ∈ Rm×m}.
This does not hold as the degrees of freedom on
the right-hand side for a given full column matrix
M0 is m2 (number of elements in MA), while the
potential degrees of freedom required is nm-many
in Rn×m. Formally, consider a counter-example.

Assume the given M0 =

(
Im

0n−m

)
. Let the re-

quired transformation be to M =

(
0n−m

Im

)
, where

0n−m denotes a zero matrix ∈ R(n−m)×m. It is
easy to verify that ∄ MA ∈ Rm×m which satisfies
the desired transformation.

Corollary 1.2. Given the square matrix M ∈
Rn×n and non-singular matrix M0 ∈ Rn×n,
there exist matrices MAℓ

,MAr ∈ Rn×n that can
transform M0 into M via pre-multiplication/post-
multiplication respectively, i.e., M = MAℓ

M0

and M = MMAr .

Remark. We present the above results to moti-
vate the existence of a multiplicative transforma-
tion that maps frozen pre-trained weight matrices
M0 to potentially any other set of weights with
the same dimensionality. A key requirement under-
lying this hypothesis is that the weight matrices—
such as attention.self.query in RoBERTa or
the spliced c_attn in GPT-2 (the models used in
§4)—are invertible. To ensure this, we verify that
these matrices are either full rank or close to full
rank, typically within 99% of the maximum possi-
ble rank.

3.2 LoRMA
Theorem 1 guarantees the existence of a matrix
MA for a desired transformation. Hence, we pro-
pose a multiplicative update rule, i.e., MA ×W0.
The update is approximated using low-rank approx-
imation, i.e.,

h = ((BA)×W0)x (6)

where, B ∈ Rd×r, A ∈ Rr×d with r ≪ min(d, k)
are low-rank matrices such that the product BA
captures the desired transformation of matrix W0.
However, this naive approach has a few shortcom-
ings. In accordance with property 3, the resul-
tant matrix product is limited to be of rank r since
R(BAW0) ≤ R(B) ≤ r. This significantly un-
dermines the potential desirable independence of
rows/columns in the final representation of the up-
dated weights. Further, during the onset of the
fine-tuning, in the case of LoRA, it is preferable
to have ∆W = 0, so that h = Wx, this ensures
stability during fine-tuning (Hu et al., 2022). This
is achieved by initializing B with zeros, ensuring
that the additive update starts at zero. In our case,
this would require the matrix BA to be equal to the
identity matrix Id. However, the property 3 dictates
that this cannot be the case as R(Id) = d. This
forces the tuning to have a significant deviation
from the beginning. We propose two strategies to
mitigate the rank limitation imposed by low-rank
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Figure 3: Permutation-Based Inflation Iπ operation. Re-
arrange matrix entries to inflate the rank.

matrices to capture the multiplicative transforma-
tion.

3.2.1 Permutation-Based Inflation (Iπ)
Permutation-based rank inflation utilizes the idea
of strategic re-arrangement of elements of the ma-
trices to increase the rank of a matrix. The rows
of the matrix are rotated cyclically in incremental
steps. The i th row is rotated by i, i.e. (row 0 by
0, row 1 by 1 ...). As can be seen in Fig. 3, this
effective rearranging of a matrix’s elements has en-
hanced the matrix’s rank from 1 to a full rank of
3. We introduce this operation on the product of
the matrices BA, which equips the model with the
ability to learn a higher-rank representation. Since
the operation is simply a re-arrangement of the pa-
rameters, it does not make the gradient in-tractable.

h = (Iπ(BA)×W0)x (7)

This inflation strategy also provides a better ini-
tialization scheme. This is achieved by warranting
Iπ(BA) = Id. The first column of B is set to
ones, while the rest of the elements are randomly
initialized. A[0, 0] is set to one, while the rest of
the elements in A are set to zero. We refer to this
variant as LoRMAπ.

3.2.2 Additive Rank Inflation (I+)
Motivated by the need for an identity initializa-
tion of the transformation matrix, we introduce
another technique to address the rank limitation
inherent in low-rank approximations. Drawing in-
spiration from ridge regression, where the solu-
tion is stabilized by adding a regularization term(
θ̂ = (XTX+ λ · I)−1XTY

)
, we incorporate an

identity matrix into our formulation through ad-
dition. Specifically, the resulting transformation
takes the form:

h = I+(BA)W0x =
(α
r
·BA+ Id

)
W0x

(8)
The rank of the sum

(
α
r ·BA+ Id

)
(here α is the

scaling factor) is guaranteed to be at least d− r, as
dictated by property 2. Since r ≪ d, d − r ≈ d,
this preserves sufficient rank flexibility, enabling

Method Computation Complexity

LoRA (W0 +BA)x O(dkb)
LoRMA BAW0x O(dkb)
LoRMAπ Iπ(BA)W0x O(d2(r + b))
LoRMA+ W0x+BAW0x O(dkb)

Table 1: Time Complexity for computations incurred by
different methods during training time.

richer transformations during training. This ap-
proach ensures that the transformation begins with
identity initialization at the start of the fine-tuning
process by setting B = 0 and randomly initializing
A. We refer to this variant as LoRMA+.
To summarize, formally, the update rule for
LoRMA is given by:

h = (I(BA)×W0)x (9)

where, W0 ∈ Rd×k, B ∈ Rd×r, A ∈ Rr×d and
r ≪ min(d, k) and I denotes rank inflation tech-
niques employed (Iπ/I+). A and B are initialized
such that I(BA) = Id. In our case, the application
of the LoRMA over RoBERTa, GPT-2, Gemma-2B,
and LLaMA-3-8B (§4) is over square matrices and
Corollary 1.2 ensures the existence of a multipli-
cand which is being adapted.

3.2.3 Time Complexity and Advantages
An obvious consideration to take is the computa-
tional cost incurred by the multiplicative transfor-
mations that are being introduced. Table 1 (also see
App. §A) provides a comparative analysis of the
computational costs of LoRA for x ∈ Rk×b where
b denotes the batch size. Utilizing associativity of
matrix multiplications and first performing multipli-
cation with x helps make the cost of LoRMA com-
parable to LoRA. The cost of LoRMAπ is slightly
higher since there is the requirement to first com-
pute BA since the Iπ operation is being applied on
the product. The advantages of LoRMA, similar to

X

X

+ =

=X

Additive

Multiplicative

- Change

Figure 4: Impact on the resultant matrix on updating a
single element in Additive vs Multiplicative updates.
LoRA, include avoiding inference-time latency by
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permitting the merging of updates into the frozen
weights, i.e., Wfine-tuned = I(BA) ×W0. In the
multiplicative representation, on updating a single
parameter, the resultant weight matrix has many
more updates as compared to additive transforma-
tions, as can be seen in Fig. 4. This can lead to
the requirement of fewer updates to modify the
weight matrix to another matrix, leading to faster
convergence. We observe this empirically in our ex-
periments (§5). Also, as compared to the restricted
low-rank weight-updates for LoRA, LoRMAπ has
nearly full-rank (§5.6) and hence richer update.

4 Experimentation

We conduct a comprehensive set of experiments
across a diverse set of tasks within the domain
of Natural Language Understanding and Genera-
tion, involving widely used language models with a
range of sizes from RoBERTa (base: 125M params,
large: 355M params) (Liu et al., 2019) and GPT-2
(medium: 355M params) (Radford et al., 2019) to
Gemma-2B (2.5B params) (Team et al., 2024) and
Llama3-8B (8B params) (Grattafiori et al., 2024).
LoRMA has been evaluated against various base-
lines, including LoRA and its variants like DoRA
and SVFT and other PEFT strategies like BitFit
and Adapters (§2). We also report the full fine-
tuning results for comparison. Overall, LoRMA
demonstrates competitive performance to existing
approaches.

4.1 Natural Language Understanding Tasks

For RoBERTa, we assess the performance of our
approach on the GLUE benchmark (Wang et al.,
2018) on the base and large variants. To maintain
consistency with the results and comparison with
LoRA, only the query and the value matrices were
adapted using our multiplicative techniques. The
GLUE benchmark (details in App. B) provides a
varied set of tasks ranging from single-sentence
tasks (CoLA and SST-2) to similarity and para-
phrasing tasks (MRPC, STS-B, QQP) to natural
language inference tasks (MNLI, QNLI, RTE). The
trends observed in Table 2 are similar across both
variants. On average, LoRMAπ performs compet-
itively to LoRA, and LoRMA+ surpasses other
PEFT approaches.

4.2 Natural Language Generation Tasks

For GPT-2 (medium), we present results on the E2E
dataset (Novikova et al., 2017), commonly used

for evaluating NLG capabilities in Table 3. Addi-
tional GPT-2 experiments, including DART (Nan
et al., 2021) and WebNLG (Gardent et al., 2017),
to evaluate our approach have been discussed in
App. §C. Like RoBERTa, the modified weights in-
cluded the query and value weights in the spliced
c_attn matrices of GPT-2. As shown in Table
3, both LoRMAπand LoRMA+outperform other
baselines and are at par with LoRA.
We further evaluate LoRMA+ on tasks re-
lated to mathematical question answering, using
larger models like Gemma-2B and LLaMA-3-8B.
The pre-trained models were fine-tuned on the
MetaMathQA-40K dataset (Yu et al., 2024), and
then evaluation was done on the GSM-8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021)
datasets. We adhere to the setup in Lingam et al.
(2024) for all methods for a fair comparison. The
query, key, value, up, down, output, and gate projec-
tions (Q, K, V, U, D, O, G) are the weights adapted
for Gemma, and the matrices adapted for LLaMA
are the up, down, output, and gate projections (U,
D, O, G). The results have been presented in Table
4, demonstrating the competitive performance of
LoRMA+.
From the outset, our goal was to introduce an al-
ternative efficient fine-tuning technique, and the
overall trends and comparisons across a range of ex-
periments demonstrate that our multiplicative adap-
tation approach achieves competitive performance
relative to several other PEFT methods. However,
the main advantage of our approach comes from
faster convergence and richer parameter space ex-
plored by our approach.

5 Ablation Studies

5.1 Faster convergence of LoRMA

Convergence time reflects how quickly a model
reaches a stable or desirable level of performance
during training. To complement the evaluation met-
rics presented in Table 2, we demonstrate in this
section that our proposed techniques achieve faster
convergence compared to LoRA. We quantify con-
vergence speed using the Area Under the Curve
(AUC) metric for the training loss curve, where
a lower AUC indicates faster convergence. Fig.
6 illustrates the training loss curves for LoRMA
(both I+ and Iπ variants) compared to LoRA on
the CoLA task while using RoBERTabase model.
The results show a steeper decline in training loss.
The percentage reduction in AUC for various tasks

10118



Method # Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

RoBERTabase (FT)* 125.0M 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 86.4

RoBERTabase (BitFit)* 0.1M 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2
RoBERTabase (LoRA) 0.3M 87.5 94.6 91.0 63.6 92.7 90.8 78.0 89.5 85.9
RoBERTabase (LoRMAπ) 0.3M 87.4 94.2 91.1 63.5 92.1 90.5 75.4 90.6 85.6
RoBERTabase (LoRMA+) 0.3M 87.5 94.7 91.3 64.2 92.6 90.6 76.5 90.9 86.0

RoBERTalarge (FT)* 355.0M 90.2 96.4 90.9 68.0 94.7 92.2 86.6 92.4 88.9

RoBERTalarge (AdapterH)* 0.8M 90.3 96.3 87.7 66.3 94.7 91.5 72.9 91.5 86.4
RoBERTalarge (LoRA) 0.8M 90.7 96.2 93.0 68.1 94.6 91.6 85.2 92.0 88.9
RoBERTalarge (SVFTP ) 1.1M 96.4 94.4 91.1 56.2 91.3 87.7 73.6 88.9 83.7
RoBERTalarge (LoRMAπ) 0.8M 89.3 95.2 92.3 66.8 93.5 90.0 84.5 91.9 88.0
RoBERTalarge (LoRMA+) 0.8M 90.7 95.9 93.0 67.8 94.9 91.3 86.6 92.2 89.0

Table 2: Performance on GLUE tasks. The metrics are Matthews correlation for CoLA, Pearson coefficient for
STS-B, F1 for MRPC, and accuracy for other tasks. ∗ denotes metrics published in prior works. The values present
are averaged over 3 runs on different seeds. Full tuning (FT) statistics are also reported for comparison purposes.

Method # Params E2E
BLEU NIST MET ROUGE-L CIDEr

GPT-2medium (FT)* 354.92M 68.2 8.62 46.2 71.0 2.47

GPT-2medium (AdapterH)* 11.09M 67.3 8.50 46.0 70.7 2.44
GPT-2medium (LoRA) 0.3M 69.1 8.73 46.5 71.4 2.51
GPT-2medium (LoRMAπ) 0.3M 69.0 8.72 46.4 70.8 2.42
GPT-2medium (LoRMA+) 0.3M 69.3 8.75 46.3 70.8 2.51

Table 3: Performance on NLG with beam size as 10. ∗ denotes metrics published in prior works. Full tuning (FT)
statistics are also reported for comparison purposes.

relative to LoRA is summarized in Table 5. Similar
trends were observed for other tasks as well.

5.2 Presence v/s absence of rank-inflation

As explained earlier (§3.1), a naive low-rank mul-
tiplicative adaptation of W0 has limitations. We
present here the empirical verification of the same,
and the results are shown in Table 6. The experi-
ments were done on RoBERTalarge on a subset of
GLUE tasks, and all the hyperparameters and train-
ing conditions were kept exactly the same, apart
from the presence and absence of the rank inflation
strategies. The results for the I+ have been repro-
duced for comparison. Further, we evaluate the
effectiveness of the proposed rank inflation strate-
gies by monitoring the rank of matrices throughout
the training procedure. We observe that these oper-
ations successfully help break the rank bottleneck,
and the matrices are almost full rank throughout
(refer to App. §E.2).

5.3 Pre-multiplication v/s Post multiplication

The Corollary 1.2 allows for an equivalent repre-
sentation of the multiplicative transformation for
square matrices, i.e., post and pre-multiplication.
We test post-multiplicative LoRMA+ (Table 7) and
observe almost comparable performance with the
strategy mentioned above.

5.4 Choice of Weight Matrix

With a fixed parameter budget, it becomes crucial
to strategically allocate adaptive weights to achieve
optimal performance. To investigate this, we set a
parameter budget of approximately 150K parame-
ters, corresponding to r = 8 for single-weight-type
adaptation across the GLUE tasks MRPC and STS-
B. The adapted model is RoBERTabase, with a scal-
ing factor α = r (for varying ranks r) used in the
additive variant of our method (LoRMA+). The
trends observed in Table 10 suggest that, given a
fixed budget, diversifying the adaptive tuning—i.e.,
distributing the adaptation across multiple weight
matrices—leads to better performance.

5.5 Rank v/s Performance

To see the effect of rank r over performance, we
adapt Wq, {Wq,Wk} and {Wq,Wk,Wv,Wo}
weight matrices with LoRMA+and the results are
compiled in Table 8. This observation aligns
with similar experiments conducted on LoRMA+,
LoRMAπ, and LoRA (Fig. 5). The overarching
trend shows that performance improves with higher
ranks across all techniques. However, this trend is
neither strict nor monotonic, as performance dips at
higher ranks are also observed. This could possibly
be due to a low intrinsic rank of ∆W being suffi-
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Method Gemma-2B LLaMA-3-8B

#Params GSM-8K MATH #Params GSM-8K MATH

FT 2.5B 52.69 17.94 8.0B 64.13 16.24

LoRA 4.9M 47.23 16.66 16.2M 74.90 25.38
DoRA 5.6M 51.02 16.60 17.4M 76.70 25.10
SVFTP ∗

0.19M 40.34 14.38 0.48M 69.22 20.44
SVFTR

d
∗

6.35M 50.03 15.56 13.1M 75.90 24.22
LoRMA+ 5.67M 47.38 16.38 18.8M 73.99 24.04

Table 4: Accuracy on Mathematical Reasoning (GSM-8K and MATH). ∗ denotes metrics published in prior works.
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Figure 5: Comparing performance across ranks for the GLUE tasks RTE, STSB, CoLA, MRPC for RoBERTabase.

Task % AUC ↓ (I+) % AUC ↓ (Iπ)

SST-2 (RoBERTabase) 10.84 30.21
CoLA (RoBERTabase) 23.20 51.97

Table 5: % AUC decrease in comparison with LoRA
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Figure 6: Train loss curves for CoLA: RoBERTabase for
various techniques.

Method MRPC STS-B RTE QQP

LoRMA 81.2 15.6 52.7 83.0
LoRMA+ 92.9 92.2 86.6 91.3

Table 6: The absence of rank inflation severely limits
the model’s capabilities.

Method CoLA MRPC STS-B RTE

LoRMA+(Post) 68.9 92.5 91.8 86.3
LoRMA+(Pre) 67.8 92.9 92.2 86.6

Table 7: Pre-multiplication vs Post-multiplication.

cient to capture the transformation and higher ranks
leading to over-parametrization rather than learning
additional information. Notably, LoRMA scales
effectively across different ranks and demonstrates
comparable or even superior performance to LoRA,
particularly in highly parameter-constrained sce-
narios. This underscores the scalability and effec-
tiveness of LoRMA, along with its rank-inflation
variants, in resource-constrained settings.

5.6 Comparison with ∆WLoRA

For any technique, denote ∆W to be the dif-
ference between the final adapted weight matrix
and the initial weight matrix (the frozen weights).
We investigate the relationship of ∆WLoRA with
∆WLoRMA+ and ∆WLoRMAπ as compared to a
random matrix. To assess the correlation, we em-
ploy a variety of metrics, the results of which are
summarized in Table 9. We utilize the Frobenius
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Weight Matrix r = 1 r = 2 r = 4 r = 8 r = 64

MRPC
Wq 89.6 90.5 90.2 90.2 91.2

Wq,Wk 90.6 91.4 91.3 91.4 91.8
Wq,Wk,Wv,Wo 90.7 91.6 91.7 91.7 93.2

STS-B
Wq 88.4 88.6 88.6 89.0 89.3

Wq,Wk 89.1 89.5 89.2 89.3 89.2
Wq,Wk,Wv,Wo 91.0 91.2 90.9 90.9 91.1

Table 8: RoBERTabase with LoRMA+. Validation accuracy across different weights being adapted with varying
ranks r for the GLUE tasks MRPC and STS-B.

Layer 3 Layer 23

Metric ∆WLoRMA+ ∆WLoRMAπ Random ∆WLoRMA+ ∆WLoRMAπ Random

(↓) ∥W −∆WLoRA∥F 3.54 31.93 1024.27 10.02 38.31 1022.40
(↑) cos(W,∆WLoRA) 74.2× 10−3 4.1× 10−3 0.1× 10−3 68.1× 10−3 0.3× 10−3 −1.2× 10−3

(↓) (W,∆WLoRA)
r
S 0.99 8.93 176.18 3.75 13.40 175.67

(↓) (W,∆WLoRA)
r
E 0.06 2.67 89.07 0.49 3.31 89.70

(↓) Θ1(W,∆WLoRA) 2.28× 10−6 2.27× 10−6 1.56 2.34× 10−6 2.32× 10−6 1.57

Table 9: Correlation between ∆WLoRA and ∆WLoRMA for RoBERTalarge. ↑ / ↓ indicates higher / lower is more similar.

# Trainable Parameters ≈ 150K

Weight Matrix Wq Wk Wv Wq,Wv Wq,Wk Wq,Wk,Wv,Wo

r 8 8 8 4 4 2

MRPC 90.2 91.0 91.4 90.2 91.3 91.6
STS-B 89.0 89.3 90.9 90.5 89.2 91.2

Table 10: RoBERTabase with LoRMA+on a fixed budget for the GLUE tasks MRPC and STS-B, with scaling factor
α = r for respective r’s depending upon the application.

norm (∥·∥F ) to measure the deviation between the
matrices. The cosine similarity of the flattened
matrices (cos(·, ·)) and principal subspace angle
Θ1(·, ·) between their column spaces has been used
to measure their alignment. We compute the sum
of squared differences between the top-r singular
values (·, ·)rS and eigenvalues (·, ·)rE of the two ma-
trices to assess their similarity. As can be seen in
Table 9, the main trend points towards a high cor-
relation between ∆WLoRA and ∆WLoRMA+ and
∆WLoRMAπ , which shows that our multiplicative
techniques can capture updates learned by additive
LoRA. To assess the expressibility of the transfor-
mations, we compare the rank of ∆W. For LoRA,
∆W = BA; hence, it is restricted to be a low-rank
update (property 3). While for LoRMAπ, there are
no such limitations. We empirically observe them
to be almost full-rank matrices (refer to App. §E.3).

5.7 LoRMA+ vs LoRMAπ

The usage of different rank inflation strate-
gies makes the parameter exploration space of
LoRMAπ different compared to LoRMA+, which
leads to differences in impact. While the con-
vergence rate of both multiplicative methods is

higher than that of additive LoRA, as shown in
Fig. 6, convergence is faster for LoRMAπ than
LoRMA+. Overall, the performance of LoRMAπ,
though comparable, is seen to be slightly lower than
LoRMA+. We analyze this in App. §E.1. We find
LoRMAπ to demonstrate better, similar, or slightly
lower capability to learn compared to LoRMA+,
based on the train-eval loss curves. Choosing the
better of the two approaches is task-specific.

6 Conclusion

In this work, we proposed LoRMA, a novel ap-
proach for updating the weights of a language
model via multiplicative updates. We mathemati-
cally proved the existence of multiplicative updates.
Further, to overcome the limitations of the naive
approach of multiplicative updates, we propose two
methods to inflate the rank of the update matrix via
permutation and additive identity. Extensive exper-
iments demonstrate the competitive performance
and training efficacy of the proposed approach. In
the future, we plan to experiment with combining
LoRMA with existing LoRA-based enhancements
like AutoLoRA, DyLoRA, etc.
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Limitations

The ability to plug out the parameters. In a pro-
duction setting, LoRA converts a base model to
the model tuned to a task by adding BA to the
weight matrix of the model, and one can recover
the original model by subtracting out the original
weight matrix. In the case of LoRMA, by updating
the original weight matrix by multiplication with
I(BA), the tuned model can be deployed. The
recovery of original model weights from the up-
dated form would require I(BA) to be invertible,
which might not be the case, as discussed above.
To mitigate this, a copy of the original parameters
would have to be maintained.
Time complexity of Iπ during training. As dis-
cussed in Section 3, while other variants of LoRMA
have a similar order of time complexity as LoRA
during the training process, LoRMAπ has a slightly
higher time complexity at training time. How-
ever, by merging weights during inference time,
all of them would have no inference latency, which
makes the method still a viable option.

Ethical Considerations

We abide by the ACL Code of Ethics code during
our research. This work introduces a new vari-
ant of parameter-efficient fine-tuning approaches
for LLMs that do not directly have possible harms
associated with them. The use of LLMs has eth-
ical considerations that should be kept in mind.
We have used public models (RoBERTa, GPT2,
Gemma, and LLaMA) and public datasets (GLUE,
E2E, WebNLG, DART, MetaMath40K, GSM-8K,
MATH) to evaluate the effectiveness of our pro-
posed approach.
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A Time complexity calculations

Here, we describe the strategic re-ordering of opera-
tions to mitigate the large time complexity incurred
due to matrix multiplications. These have been
summarized in Table 11.

LoRA
Multiply W0 with x (O(dkb)). Multiply A with
x (O(krb)). Multiply B with Ax (O(drb)). Add
W0x with BAx (O(db)).

LoRMA
Multiply W0 with x (O(dkb)). Multiply A
with W0x (O(drb)). Multiply B with AW0x
(O(drb)).

LoRMAπ

Multiply W0 with x (O(dkb)). Multiply B with A
(O(dkr)). Inflation Iπ of BA (O(d2r)). Multiply
Iπ(BA)) with W0x (O(d2b)).

LoRMA+

Multiply W0 with x (O(dkb)) for first term. Multi-
ply W0 with x (O(dkb)) for second term. Multiply
A with W0x (O(drb)). Multiply B with AW0x
(O(drb)). Add W0x with BAW0x (O(db)).

Method Computation Complexity Calculation

LoRA (W0 +BA)x
dkb+ krb+ drb+ db

O(dkb)

LoRMA BAW0x
dkb+ 2drb
O(dkb)

LoRMAπ Iπ(BA)W0x
dkb+ dkr + d2r + d2b

O(d2(r + b))

LoRMA+ W0x+BAW0x
2dkb+ 2drb+ db

O(dkb)

Table 11: Time Complexity for computations incurred
by different methods during training time.

B Dataset description

• GLUE Benchmark: The benchmark com-
prises wide-ranging natural language under-
standing tasks mostly restricted to English.
It consists of tasks like CoLA ((Warstadt
et al., 2019), grammatical acceptability), SST-
2 ((Socher et al., 2013), sentiment analysis),
MRPC ((Dolan and Brockett, 2005), semantic
textual similarity), STS-B ((Cer et al., 2017),
semantic textual similarity), QQP ((Sharma
et al., 2019), question answers), and inference

tasks like MNLI (Williams et al., 2018), QNLI
(Rajpurkar et al., 2018) as well as RTE (Po-
liak, 2020).

The datasets are available under public license
and were used using the datasets API pro-
vided by HuggingFace. The dataset statistics
are presented in Table 12.

• E2E NLG Challenge: The E2E dataset was
released in Novikova et al. (2017) and is a
popular dataset for testing efficacy in natural
language generation tasks. The dataset con-
sists of 42061 training samples, 4672 dev, and
4693 test samples. Success on this task is
typically measured by achieving high BLEU,
NIST, METEOR, Rouge-L, and CIDEr scores,
as presented in the paper.

• DART: This is a large dataset for open-
domain record-to-text generation published
in (Nan et al., 2021). It has a total of close to
82K samples. The underlying task is rdf-to-
text (mapping entity relations to text).

• WebNLG Challenge: WebNLG challenge
(Gardent et al., 2017) is yet another dataset
that consists of mapping data to text. Data is
a set of triples, and text is the verbalization
of this data. It has close to 22K total samples.
It involves examples from 9 distinct DBPedia
categories during training, with the complete
dataset having 15 categories.

• GSM-8K: GSM-8K (Cobbe et al., 2021) is a
dataset of 8.5K grade school math word prob-
lems created by human problem writers. The
dataset has 7.5K training and 1K test prob-
lems, and solutions primarily involve basic
arithmetic [reference].

• MATH: MATH (Hendrycks et al., 2021) is
a dataset of 12,500 challenging competition
mathematics problems. Each problem in
MATH has a full step-by-step solution that
can be used to teach models to generate an-
swer derivations and explanations [reference].

C Additional Experiments

We conduct more experiments to test and bench-
mark the capabilities of our multiplicative adapters.
In this series, we repeat our NLG experiments for
DART (Nan et al., 2021) and WebNLG challenge
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CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE

Train 8551 67349 3668 5749 363871 392702 104743 2490
Validation 1043 872 408 1500 40432 9815 5463 277

Table 12: GLUE Benchmark statistics

(Gardent et al., 2017). The trends are similar to
that observed in Table 3. Our adapters perform
comparably in evaluation with LoRA. The results
are presented in Table 13.

D Hyperparameters and Training Setup

We adhere to the standard experimental setup
used in LoRA to ensure consistency with prior
work. Specifically, our multiplicative transforma-
tion technique is applied to the query (Wq) and
value (Wv) matrices within the attention mecha-
nism of the models. This means that for a 12-layer
RoBERTabase or GPT-2 M model, our multiplica-
tive adapters are applied a total of 24 times—once
for each query and value matrix across all layers.
Similarly, for the 24-layer RoBERTalarge model, the
multiplicative adapter is applied 48 times. We use
the pre-trained versions of RoBERTabase (125M
parameters) and RoBERTalarge (355M parameters)
available in the HuggingFace Transformers library
(Wolf et al., 2020). We employed the PEFT (Man-
grulkar et al., 2022) support on the HuggingFace
where available for running experiments. For NLG
experiments based on GPT-2, we draw inspiration
from LoRA’s published code. The pre-trained GPT-
2 models have been made available by Hugging-
Face.

D.1 RoBERTa

We utilize AdamW optimizer (Loshchilov and Hut-
ter, 2019) along with a linear learning rate decay
schedule. The results reported are the mean of runs
for three random seeds, with the result for a single
run taken to be from the best epoch. The pre-trained
RoBERTa model is taken and fine-tuned for each
task separately. The hyperparameters have been
presented in Table 14. For the results of previous
works, refer to Ben Zaken et al. (2022); Houlsby
et al. (2019); Zhang et al. (2024). To maintain con-
sistency RoBERTa (both base and large variants)
were adapted on only the query and value matrices
within the model.

D.2 GPT-2

The GPT-2 models have been trained via the
AdamW optimizer using a linear learning rate
schedule for 5 epochs. Table 16 presents the hyper-
parameters used for the experiments. For the results
of previous works, refer to Zhang et al. (2024); Hu
et al. (2022). For all GPT-2 experiments, much
like RoBERTa, the model was adapted only for the
query and value matrices (the spliced c_attn).

D.3 Gemma

Gemma-2B was trained using the AdamW opti-
mizer and a cosine scheduler. The matrices adapted
for Gemma are the query, key, value, up, down, out-
put, and gate projections (Q, K, V, U, D, O, G). The
remaining hyperparameters are presented in Table
17. For SVFTR

d , d = 16 for Gemma family. For
LoRMA, r is set to 4 to maintain a comparable
number of training parameters.

D.4 Llama

LLaMA-3-8B was trained using the AdamW opti-
mizer and a cosine scheduler. The matrices adapted
for LLaMA are the up, down, output, and gate
projections (U, D, O, G). The remaining hyperpa-
rameters are presented in Table 17. For SVFTR

d ,
d = 12 for LLaMA family. or LoRMA, r is set
to 8 to maintain a comparable number of training
parameters.

D.5 Parameter count in LoRMA+ in LLaMA
and Gemma Models

In LoRMA where W = BAW0, to maintain con-
sistency of matrix dimensions, B ∈ Rd×r,A ∈
Rr×d. While in LoRA B ∈ Rd×r,A ∈ Rr×k,
since W = W0 +BA. For models in which the
adapted matrices are square, like RoBERTa, GPT-2,
and their larger variants, with d = k, the number
of parameters in LoRMA is the same as those in
LoRA. If it is the case that d > k, then the number
of parameters in LoRMA is slightly higher than
LoRA, as can be seen for Gemma and Llama.
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Method # Params E2E DART WebNLG
(M) BLEU NIST MET ROUGE-L CIDEr BLEU MET TER BLEU MET TER

Beam size 15 Beam size 10 Beam size 10

LoRA 0.3M 67.5 8.53 46.2 70.8 2.49 45.35 0.38 0.53 52.27 0.40 0.45
LoRMA+ 0.3M 68.4 8.63 46.1 70.6 2.50 43.64 0.38 0.53 49.98 0.38 0.47

Table 13: Extra results for GPT-2medium for NLG. For all the metrics, higher is better except TER.

E Ablation

E.1 Performance of LoRMAπ vs LoRMA+

Overall, the performance of LoRMAπ, though
comparable, is seen to be slightly lower than
LoRMA+. We analyze this for various tasks, as
shown in App. Fig. 8, and find the performance of
LoRMAπ to require more task-specific tuning. For
some tasks (a), LoRMAπ demonstrates a much bet-
ter capacity to learn via train accuracy but requires
task-specific regularization to translate this into
test performance. For a few tasks (b), it performs
similarly to LoRMA+. Finally, for a few runs (c),
it seems susceptible to local minima. Therefore,
deciding which of the two approaches to go with
would depend on the task and hyper-parameter ex-
ploration budget.

E.2 Rank Progression with training
As discussed in §3, the proposed initialization
schemes, along with rank inflation, help to begin
the training process with I(BA) = Id which is a
full rank matrix. To empirically verify whether
the rank inflation techniques, beginning with a
high rank during initialization, also retain it across
the training process, we monitor the rank I(BA)
where d = 1024,B ∈ R1024×8,A ∈ R8×1024. As
depicted in Figure 7 for both I+ and Iπ, through-
out the fine-tuning process, it is observed that the
inflated matrix product is always almost full rank
(1024). Thus helping preserve the representational
capacity of the matrix product.

E.3 Ranks of the weight updates
To measure the richness of the weight updates re-
ceived by the end of the fine-tuning process, we
compare the ranks of ∆W. Table 15 shows the
substantial difference in their ranks. In the case
of LoRA, the weight update (∆W = BA) is con-
strained to be of rank r = 8. A similar bound
exists in the case of LoRMA+(∆W = BAW0).
For LoRMAπ, no such restriction exists, and the
weight update is an almost full rank matrix.
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Figure 7: Variation of rank of resultant multiplicative
adapters, i.e., R(Iπ(BA)) and R(I+(BA)) across
epochs.

10130



Model and method Task MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear

RoBERTabase
LoRMA+

Batch Size 64 64 32 64 64 16 32 16
Epochs 30 60 30 100 25 25 80 40
Learning Rate 4E-4 5E-4 4E-4 4E-4 4E-4 5E-4 5E-4 4E-4
Matrices and r rq = rv = 8
Scaling α 4 8 8 4 4 8 8 8
Max Seq. Len. 512
Weight decay 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1

RoBERTabase
LoRMAπ

Batch Size 64 64 32 64 64 16 32 16
Epochs 30 60 30 100 25 25 80 40
Learning Rate 4E-4 5E-4 4E-4 4E-4 4E-4 5E-4 5E-4 4E-4
Matrices and r rq = rv = 8
Scaling α 8
Max Seq. Len. 512
Weight decay 0.1

RoBERTabase
LoRA

Batch Size 64 64 32 64 64 16 32 16
Epochs 30 60 30 100 25 25 80 40
Learning Rate 4E-4 5E-4 4E-4 4E-4 4E-4 5E-4 5E-4 4E-4
Matrices and r rq = rv = 8
Scaling α 8
Max Seq. Len. 512
Weight decay 0.1

RoBERTalarge
LoRMA+

Batch Size 8 8 4 8 4 4 8 4
Epochs 10 10 20 20 20 20 20 10
Learning Rate 3E-4 4E-4 3E-4 3E-4 2E-4 3E-4 4E-4 3E-4
Matrices and r rq = rv = 8
Scaling α 8 8 4 4 4 8 4 4
Max Seq. Len. 128 512 512 128 512 512 512 128
Weight decay 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1

RoBERTalarge
LoRMAπ

Batch Size 8 8 4 8 4 4 8 4
Epochs 10 10 20 20 20 20 20 10
Learning Rate 3E-4 4E-4 3E-4 3E-4 2E-4 3E-4 4E-4 3E-4
Matrices and r rq = rv = 8
Scaling α 8
Max Seq. Len. 128 512 512 128 512 512 512 128
Weight decay 0.1

RoBERTalarge
LoRA

Batch Size 8 8 4 8 4 4 8 4
Epochs 10 10 20 20 20 20 20 10
Learning Rate 3E-4 4E-4 3E-4 3E-4 2E-4 3E-4 4E-4 3E-4
Matrices and r rq = rv = 8
Scaling α 8
Max Seq. Len. 128 512 512 128 512 512 512 128
Weight decay 0.1

Table 14: The hyperparameters used for RoBERTa on the GLUE benchmark.
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(b) LoRMAπ similar trend as others.
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Figure 8: Training and Evaluation Accuracy variation for LoRA, LoRMAπ and LoRMA+.
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Fine-Tuning Method Rank of Weight Update

LoRA 8
LoRMA+ 8
LoRMAπ 1021

Table 15: Rank of the ∆W for Layer 13 of
RoBERTalarge being fine-tuned for CoLA for r = 8.

Task E2E WebNLG DART

Training

Optimizer AdamW
Weight Decay 0.01 0.01 0.0
Dropout Prob 0.1 0.1 0.0
Batch Size 8
# Epoch 5
Warmup Steps 500
Learning Rate Schedule Linear
Label Smooth 0.1 0.1 0.0
Learning Rate (I+) 0.0002
Learning Rate (Iπ) 0.0001
Matrices and r rq = rv = 4
Scaling α (I+) 32
Scaling α (Iπ) 8

Inference

Beam Size 10/15 10 10
Length Penalty 0.9 0.8 0.8
no repeat ngram size 4

Table 16: The hyperparameters for GPT-2 M LoRMA
on E2E, WebNLG and DART.

Hyperparams Gemma-2B LLaMA-3-8B

Optimizer AdamW
Warmup Ratio 0.1
LR Schedule Cosine
Learning Rate 5E-4 5E4
Max Seq. Len. 512
# Epochs 2
Batch Size 64
Order pre-multiplication
Rank (r) 4 8

Table 17: Hyperparameters for LoRMA+ training for
MetaMath-40K fine tuning.
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