REKG-MCTS: Reinforcing LLM Reasoning on Knowledge Graphs
via Training-Free Monte Carlo Tree Search

Xiaozhuang Song
SDS
CUHK-Shenzhen
Shenzhen, China
shawnsxz97@gmail. com

Abstract

Recent advancements in combining knowl-
edge graphs (KGs) with large language mod-
els (LLMs) have demonstrated promising po-
tential in complex KG reasoning tasks, yet
existing approaches face limitations in path
exploration strategies or excessive computa-
tional overhead. We propose REKG-MCTS, a
novel training-free framework that synergizes
Monte Carlo Tree Search (MCTS) with LLM
capabilities to enable dynamic reasoning over
KGs. The framework conceptualizes KG rea-
soning as a decision-making process, where
MCTS strategically explores paths over KG
while LLMs provide semantic guidance for
reasoning paths. The framework consists of
four phases: (1) UCB-based node selection
that balances exploration-exploitation on KG,
(2) path expansion with KG structural con-
straints, (3) LLM-guided MC rollouts for simu-
lation, and (4) value backpropagation. Experi-
mental results on WebQSP and CWQ demon-
strate that REKG-MCTS outperforms existing
training-free methods and achieves competi-
tive performance compared to fine-tuned base-
lines. These findings suggest a new paradigm
for leveraging language models in KG reason-
ing tasks. The code is available at https:
//github.com/ShawnKS/rekgmcts.

1 Introduction

Large Language Models (LLMs) have brought
transformative advancements to various natural
language processing (NLP) tasks, exhibiting re-
markable capabilities in semantic understanding
and inference generation (Chowdhery et al., 2023;
Achiam et al., 2023; Jiang et al., 2023a; Yang et al.,
2024; DeepSeek-Al et al., 2024). Despite these
successes, LLMs still suffer from hallucination
and knowledge inconsistency issues (Huang et al.,
2024a; Xu et al., 2024b; Li et al., 2024a; Huang
et al., 2024b), highlighting the need for grounding

T Corresponding authors

Shufei Zhang'
Shanghai Al Laboratory
Shanghai, China
zhangshufei@pjlab.org.cn

Tianshu Yu'
SDS
CUHK-Shenzhen
Shenzhen, China
yutianshu@cuhk.edu.cn

their responses in factual knowledge. Knowledge
Graphs (KGs) emerge as a promising solution to
this challenge, as they provide structured and re-
liable factual information (Martino et al., 2023;
Guan et al., 2024; Zhang et al., 2024b; Agrawal
et al., 2024). However, leveraging KGs for rea-
soning remains challenging, as it requires precise
multi-hop traversal and pathfinding capabilities —
tasks where LLMs, designed primarily for unstruc-
tured text processing, face inherent limitations.

Recently, significant efforts have been made
to augment LLMs with KG reasoning mech-
anisms (Sun et al., 2024; Xu et al.,, 2024a;
Markowitz et al., 2024). To search for relevant
paths in knowledge graphs, these methods typi-
cally rely on pre-defined heuristics (e.g., beam
search (Luo et al., 2024b) or LLM-based rela-
tion pruning (Sun et al., 2024)), or delegate the
path evaluation process to an LLM (Markowitz
et al., 2024). While yielding promising initial re-
sults, these approaches often face limitations in
effectively utilizing path quality feedback during
search (Lambert et al., 2024; Setlur et al., 2025;
Xue and Zou, 2022). Specifically, greedy or ran-
dom strategies cannot adaptively adjust their search
priorities based on the “goodness” of intermediate
states, leading to either local optima or inefficient
exploration of the solution space, particularly in
complex multi-hop inference scenarios (Megiddo
et al., 1988; Ramalingam and Reps, 1996; Zhao
and Han, 2010).

Monte Carlo Tree Search (MCTS) presents a
compelling solution to these limitations by natu-
rally incorporating path quality feedback into the
search process (Browne et al., 2012; Silver et al.,
2016; Swiechowski et al., 2023). Unlike static
heuristics or one-shot sampling approaches, MCTS
dynamically evaluates and adjusts search priorities
through its four fundamental steps: selection, ex-
pansion, simulation, and backpropagation. This it-
erative process enables the algorithm to learn from

9288

Findings of the Association for Computational Linguistics: ACL 2025, pages 9288-9306
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/ShawnKS/rekgmcts
https://github.com/ShawnKS/rekgmcts

previous search attempts and adaptively balance
between exploring new promising paths and ex-
ploiting known successful routes (Vinyals et al.,
2019; Zhao et al., 2024; Zhang et al., 2024a).
Building upon these intuitions, we propose
REKG-MCTS, a training-free framework that uni-
fies MCTS with LLM-guided heuristics for effi-
cient and interpretable KG reasoning. By viewing
reasoning as a sequential decision-making process,
our method adaptively refines search paths while
balancing exploration and exploitation via MCTS.
In this paradigm, the LLM simultaneously acts as a
policy model, suggesting plausible entities and rela-
tions exploration, and as a value method, assessing
the correctness of KG reasoning paths. This syn-
ergy enables effective KG exploration without fine-
tuning or dedicated reward model engineering. The
experiments on CWQ and WebQSP demonstrate
that REKG-MCTS achieves state-of-the-art per-
formance among training-free methods and shows
competitive performance with fine-tuned methods.
In summary, our contributions are threefold:

* We introduce a novel training-free framework,
REKG-MCTS, that incorporates MCTS to
guide LLM-based reasoning on KGs, offering
a flexible alternative to static or predefined
search strategies.

* We demonstrate how LLMs can serve as both
policy model and value method within the
MCTS process for KG reasoning, thereby en-
hancing multi-hop search efficiency without
additional fine-tuning or reward engineering.

* We conduct extensive evaluations on two
benchmark datasets (CWQ and WebQSP),
where REKG-MCTS achieves state-of-the-
art results among training-free approaches,
providing interpretable and robust multi-hop
reasoning paths.

2 Methods

2.1 Preliminaries

Notations We denote a knowledge graph as G,
which comprises triples of the form (e, r, e,), rep-
resenting subject entity e, relation r, and object
entity e,. We use £ and R” to represent the sets
of entities and relations explored at depth D during
the search process, respectively. Specifically, E°
denotes the initial set of entities extracted from the
question, and EP (for D > 1) represents the set of

entities reached after D reasoning steps. Individual
reasoning paths are denoted as p,,, and the compo-
nents of these paths at depth d are indexed as e‘in,
rd, and ein. The beam width used in exploration
is denoted by NNV, indicating the top-N entities or
relations considered at each step. We utilize a pol-
icy model 7y to guide the search, and the reward
value derived from the evaluation module is rep-
resented as vy. T represents the search tree for
a given question ¢, and nodes within this tree are
denoted as C, with associated visit counts n¢ and
reward values vo. Dpax indicates the maximum
tree search depth.

Problem Formulations The central problem ad-
dressed in this work is enhancing the knowl-
edge graph reasoning capabilities of LLMs to
answer complex questions (Pan et al., 2024).
Formally, given a knowledge graph G consist-
ing of triples (es,r,e,) and a question z, the
objective is to find a set of reasoning paths
P = {(6%, Tl? 6%), (627 Tzv 63)7) (€SD7 TD? e?)}
within G that effectively answers x. Traditional
approaches often rely on heuristic search methods
or manual annotations to guide the search for such
paths (Xiong et al., 2017; Xian et al., 2019; Wan
et al., 2021; Zhong et al., 2023). However, these
methods typically require extensive training data or
carefully designed reward functions, which limits
their scalability and adaptability. Given the recent
advances in LLMs and their strong semantic un-
derstanding capabilities, we explore the possibility
of leveraging LLMs to dynamically evaluate the
reward value of reasoning paths, aiming to enable
efficient and accurate knowledge graph reasoning
without the aforementioned requirements (Shen
et al., 2018; Zhu et al., 2021; Valmeekam et al.,
2024).

2.2 Reasoning on Knowledge Graphs

KG represent structured information in the form of
triples (es, 7, €,). Reasoning over a KG involves
finding a sequence of triples, known as a reasoning
path, that connects entities to answer a specific
question. Formally, given a question x, the goal
is to find reasoning paths on the KG that lead to
the answer. Generally, reasoning on knowledge
graphs to answer questions can be summarized into
the following steps: initialization of search, graph
exploration, and reasoning.

Initialization Given a question zx, the process
typically starts by identifying initial entities rele-

9289

Question: Which celestial body in the solar system is most likely]
to have liquid water (besides Earth)?
- Topic Entity

\ sammn S \
LLM Knowledge:
Agent Graph |

member_of 1
06 I<:| Y °0 i

:0. I8
Europa® '] " ’| 'm' g 90 :

NS T e e - N ——— /
f —P Relation Exploration o O -\
I LLM Reasoning ' O I

(Path(s) Evaluation) @ (-]

[}

[/‘?o o I
i | Current l Retrieved Selected | ll
. Entities Relations Relations -
| e ¥ |
| ¥

I Reasoning r " “Reward " I
g ;] 'Lu_]—'Paths . Vawe _))

Figure 1: Visualization of graph exploration.

vant to the question to begin reasoning paths on the
KG. This initialization step aims to identify a set
of top- N entities as starting points for exploration:
EY = {e,¢eY,...,e%}. It’s important to note that
the number of initially extracted entities might be
less than N if fewer relevant entities are identified.

Graph Exploration In each iteration of explo-
ration, reasoning paths are extended step by step.
At the beginning of the D-th iteration, each rea-
soning path p, is composed of a sequence of
(D — 1) triples. We can represent the d-th triple
in the n-th reasoning path as (e? d-ed .

sy Tno Con

Thus, the reasoning path p, can be viewed as:
pn={(el,, rd el) }5:_11 . The sets of entities
and relations at the end of these paths at depth D—1
are represented as FP~! and RP~! respectively.
The exploration phase aims to discover relevant
entities £ from the neighbors of the current en-
tity set EP~1, based on the question z, and to
extend the reasoning paths. To manage the com-
plexity, exploration is often structured into relation
exploration and entity exploration (Sun et al., 2024;
Markowitz et al., 2024). Following these steps,
each reasoning path p,, is updated by appending
the new relation r2 and entity e”, thus further
extending the reasoning paths. As the example il-
lustrated in Figure 1, this typically involves two
main steps at each depth D:

Relation Exploration: A beam search approach is
often employed to transition from the set of entities
EP~1 to a set of relations RP. For each reasoning
path p,,, candidate relations RCDandm connected to
D-1

the entity e,; * are considered. From the aggre-

gated candidate relations Rgmd, a selection process

is applied to identify the top-/V relevant relations
RP = {rP D ... rR}, based on their rele-
vance to x and the current reasoning paths;

Entity Exploration: For each selected relation
rD ¢ RP and corresponding entity e”~!, the
KG is queried to find entities connected via 2.
Candidate entities are aggregated into the set
EP | by querying patterns like (eD~!, rD, ?)
or (7, rP, eP=1). A selection process is
then used to choose the top-N entities E” =
{eP, e ..., D}, based on their relevance to
the question z and the extended reasoning paths.
Following these steps, each reasoning path p,, is up-
dated by appending the new relation 72 and entity

eD, thus further extending the reasoning paths.

Reasoning The reasoning process aims to find
an answer to question x through iterative path eval-
uation and extension. At each depth D, we main-
tain a set of N most promising paths {p1, ..., px},

where each path p, consists of a sequence of

triples p, = {(e;m,r}”e})’n),...,(egn,rf,egn)}.

For each path p,, we compute a reward value
vg = Evaluate(x, p,) using the evaluation mod-
ule, which leverages the LLM to assess both
path relevance and answer sufficiency. Based
on these evaluations, paths are extended accord-
ing to the value method 7y (edt!, rétt|z, p,) o
exp(fo(e® L, rdtl 2. p,)), where fs(-) is the
scoring function implemented by the LLM. This
process continues until either a path achieves
a reward value above threshold 7 or the maxi-
mum depth Dy, is reached, at which point the
final answer is further generated as answer =
Reasoning(x, p*) using the best path p*, thereby
enabling dynamic exploration of the knowledge
graph guided by the LLM’s understanding.

2.3 REKG-MCTS

In this section, we introduce REKG-MCTS,
a novel framework that integrates Monte Carlo
Tree Search (MCTS) with Large Language Model
(LLM) heuristics to efficiently reason over knowl-
edge graphs. Our approach redefines question an-
swering as a sequential decision-making problem.
Given a knowledge graph G and a query z, the al-
gorithm seeks an optimal reasoning trajectory p*
by guiding an LLM agent through a series of entity-
to-entity transitions. Formally, we can define the
objective as: p* = arg maxpep m(p | x,G), where

9290

Question: Which celestial body in the solar system is most
likely to have liquid water (besides Earth)? Label: Europa

(2 Path Expansion

Topic Entity,
|:> Celestial body

Celestial
Body

Answer:

Based on the provided knowledge graph
| paths, Europa shows evidence for containing
liquid water through its subsurface ocean,

which is supported by geological features.

V06, 1
W The final answer is Europa.

- J .

PRt climate_ €eophysicy

oot e feature geological EVidence I
V05 V03] featurey” (Vi) iVioB;.

traces

Riverbed Mars Polar Subsurface Hydrother I
Caps Ocean mal activity
.

i
LLM Agent

b

8eophysica

& feature geological evidence |
iV:0:3] feature /iVi0B] Vo8

r Celestial Body —» member_of — Europa,
I Europa — geological feature — Subsurface
Ocean,

Subsurface Ocean - type_of — Liquid Water

traces Caps Ocean mal activity traces

Rlverbed Mars Polar Subsurface Hydrother Riverbed Mars Polar Subsurface Hydrother 1
ivif Caps Ocean malactivity | |

J

rpo.otg
l f Liquid |

| _water

type_of 'r“o‘
[L|qu|d 1

! water ! r
N

1 Reasoning Paths of Best Tree Node

Figure 2: Illustration of the REKG-MCTS reasoning process on a knowledge graph for answering the question
"Which celestial body in the solar system is most likely to have liquid water?". The figure demonstrates a complete
MCTS iteration. After MCTS completes, the LLM agent uses the best reasoning paths to generate the final answer.

‘P is the set of all plausible reasoning paths, and
7(p | «,G) denotes the LLM-derived evaluation
of path p with respect to the query and knowledge
graph context. To enhance the search process in
knowledge graph reasoning, we leverage the classi-
cal Monte Carlo Tree Search (MCTS) framework,
which naturally addresses several key challenges
in path finding through its four phases: Node Selec-
tion, Path Expansion, Simulation, and Backpropa-
gation. This integration is particularly beneficial
as MCTS’s systematic exploration-exploitation bal-
ance helps navigate the vast reasoning space, while
its simulation-based evaluation provides a robust
mechanism for assessing partial paths avoiding full
traversal. In the subsequent sections, we detail each
of these phases and describe how their integration
enables effective KG-based reasoning.

Node Selection Node selection process initiates
from the root node C of the search tree T, which
contains the initial entity set £¥ identified from
question z. At each step, we traverse the tree
by selecting nodes according to the Upper Con-
fidence Bound (UCB) criterion. For a node C;
representing a partial reasoning path p; at depth d,
the UCB score combines both exploitation and ex-
ploration terms, formally expressed as UCB(C;) =

C; In np

, where v, denotes the cumulative

reward Value obtarned from the evaluation mod-
ule, nc, represents the visit count for node Cj,
n, is the visit count of the parent node, and c
is the exploration coefficient. Through this for-
mula, the selection strategy maintains a crucial

balance between exploiting known high-reward
paths and exploring less-visited branches of the tree.
The node selection can be formally described as
C* = argmazc,cchilgren(c) UCB(C;), where the
selected node C* represents a partial reasoning
path p* = {(ei*, rd,ed)}P_| that will be further
expanded in the subsequent exploration phase, with
D < Dynax. This selection mechanism ensures effi-
cient traversal of the search space while adaptively
focusing on promising reasoning paths.

Path Expansion Path expansion phase is trig-
gered when the selection process reaches a non-
terminal leaf node Cj in the search tree T},. At this
stage, we systematically expand the tree by generat-
ing new child nodes that represent potential reason-
ing steps in the knowledge graph G. The expansion
process begins by examining the current entity ec,
represented by node C; and identifying all valid
outgoing relations R(C;) = {r|(ec,,r,¢') € G}.
For each relation r € R(C}), we identify the set
of target entities E(ec,,r) = {€'|(ec,,7,€’) € G}
that can be reached through . This exploration
can be formally expressed as the generation of new
child nodes Chey for each valid triple (ec,,r, €),
where ¢/ € E(ec,,r). The complete path to
each new node Pc,,, is constructed by append-
ing the new triple to the parent path: Pc,

Pc,U{(ec,,r, €')}. To evaluate the reward value of
these newly expanded paths, we employ the LLM-
based evaluator mey,1, Which assesses the semantic
alignment between the complete path P¢, ., and the
original question g. This evaluation is formalized

9291

as vo,,, = Teval (PO, s q), Where ve,, represents
the initial reward value assigned to the new node.
Additionally, we initialize the visit count n¢,,, =1
for each new node, establishing the foundation for
future UCB-based selection decisions. This expan-
sion mechanism ensures a systematic exploration
of the knowledge graph while maintaining a bal-
ance between path relevance and search efficiency,
as guided by the LLM’s semantic understanding of
the question-path relevance.

Simulation and Backpropagation Following
the expansion of leaf node (', the simulation phase
commences by employing a greedy MC rollout
strategy that combines UCB-guided node selection
with exploration. The process begins at C; and iter-
atively selects subsequent nodes according to the
UCB criterion until reaching a state where further
selection is not possible. At this point, REKG-
MCTS transitions into a greedy MC rollout phase
guided by the policy module 74, which is also re-
alized through LLM reasoning with task-specific
prompts. For each step ¢ in the rollout, given the
current entity e; and the accumulated path py, the
policy model further generates a probability distri-
bution over possible relations: my(7¢|es, pt, ¢, G).
The next relation 7, is sampled from this distribu-
tion, and the corresponding target entity e is se-
lected from the set & (e, 7¢) = {€’|(et, 74, €') € G}
This process continues until either reaching a termi-
nal state or the maximum depth Dy, resulting in
a complete path psm = {(es, 7, €111) }—1, where
T < Dpax. The reward value of this simulated path
is then evaluated using the LLM-based evaluator:
Vg = Teval(Psim, ¢)- The backpropagation phase
updates the statistics of all nodes in the traversal
path from root Cj to leaf C;. For each node C' in
this path, we update its cumulative value according
to vo < (ve - ne + vk)/(ne + 1) and increment
its visit count ng <+ ng + 1.

Overview and Implementation Details Figure 2
illustrates an example of the REKG-MCTS rea-
soning process over a knowledge graph for answer-
ing a query. This recursive update mechanism en-
sures that the search tree’s value estimates converge
toward the true path qualities while maintaining
exploration-exploitation balance through the UCB
selection criterion. The complete algorithm itera-
tively applies these four phases - node selection,
path expansion, simulation, and value backpropa-
gation - until either a satisfactory reasoning path
is found or the computational budget is exhausted

Algorithm 1 REKG-MCTS Algorithm

Require: KG G, question z, max depth D«
Ensure: Optimal reasoning path p*

1: Initialize root node C{y with entities from x

2: while budget not exhausted do
C) + SelectNode(Cp)
4 if C; is non-terminal then
5 for each valid (ec,,r,¢') in G do
6: Expand Ciey with triple (ec,, 7, €’)
7
8
9

w

PCaew <= Py U{(ecy, 7€)}
Ve, < Evaluate(z, po,.,,)

end for
10 end if
11: Psim < Simulate(C}, Diax)
12: vg, < Evaluate(z, psim)
13: Backpropagate v, from Cj to root

14: end while

15: return best path p* in search tree

16: function SELECTNODE(C)

17: while C' has children do

18: C <+ argmaxc; Zgl + ¢, /mg%em
19: end while l L
20: return C

21: end function

22: function SIMULATE(C}, Dyax)

23: Initialize psim with pc,

24: while d < Dp,,x do

25: r ~ 74(rled, psim, T, G)

26: Append (e4, 7, ed+1) to psim
27: end while

28: return pgm,

29: end function

(e.g., maximum iterations or tree depth). Relevant
prompts, and detailed operators with the Knowl-
edge Graph are described further in Appendix E.
The pseudocode for the REKG-MCTS algorithm
is formalized in Algorithm 1.

3 Experiments

3.1 Experimental Setup

Evaluation = Metrics Following previous
works (Li et al., 2024b; Jiang et al., 2023b; Sun
et al., 2024), we use Hits@1 as our evaluation
metric, which measures the proportion of questions
whose top-1 predicted answer is correct.

Baselines We compare our approach with three
main categories of baselines. The first category con-
sists of fundamental LLM prompting techniques:
standard input-output prompting (IO) (Brown et al.,

9292

2020), Chain-of-Thought (CoT) (Wei et al., 2022),
and Self-Consistency (SC) (Wang et al., 2023). The
second category focuses on LLM-enhanced KG rea-
soning methods that explicitly model graph struc-
tures, including RoG (Luo et al., 2024b), ToG (Sun
et al., 2024), GoG (Xu et al., 2024a), and Tree-of-
Traversals (Markowitz et al., 2024). The third cate-
gory comprises retrieval-enhanced methods: KB-
BINDER (Li et al., 2023), StructGPT (Jiang et al.,
2023b), ChatKBQA (Luo et al., 2024a), and GNN-
RAG (Mavromatis and Karypis, 2024), which em-
ploy different strategies for knowledge retrieval
and integration.

LLMs We evaluate six LLMs across differ-
ent scales: closed-source GPT-4 (Achiam et al.,
2023) and open-source models including LLaMA-
3-70B/8B (Dubey et al., 2024), Mistral-7B (Jiang
et al., 2023a), Qwen-7B (Yang et al., 2024), and
DeepSeek-7B (DeepSeek-Al et al., 2024). The
GPT-4 model is accessed through OpenAl API. All
open-source models are deployed using the offi-
cial HuggingFace implementations with identical
generation constraints.

Experimental Configurations The experiments
are conducted on two complex question answering
benchmarks: WebQSP (Talmor and Berant, 2018)
and CWQ (Yih et al., 2016). Freebase (Bollacker
et al., 2008) serves as the basic knowledge graph
for both datasets. Each LLM is utilized in con-
junction with different prompt designs as part of
the Teya and w4 modules. Detailed setup regarding
the experimental environment, datasets, specific
parameter configurations for models’ implementa-
tions are provided in Appendix A.

3.2 Main Results

As shown in Table 1, our experimental results
across the two benchmark datasets clearly demon-
strate that the proposed REKG-MCTS framework
achieves superior performance compared to other
baselines. In particular, REKG-MCTS attains su-
perior performance in a training-free setting, and
can effectively match or even surpass some of the
performance of fine-tuned KG approaches. When
compared to KG-based LLM reasoning approaches,
REKG-MCTS exhibits a noticeable advantage.
This result underscores the benefit of incorporat-
ing MCTS for graph exploration while integrating
semantic cues provided by LLMs regarding path
plausibility. Additionally, REKG-MCTS demon-
strates promising progress in narrowing the gap

Table 1: The Hits@1 scores of different models over
two datasets under different settings (%).

Method CWQ | WebQSP
w.t. Knowledge Graph / Fine-tuned
RoG 66.1 88.6
GNN-RAG 66.8 85.7
ChatKBQA 76.5 78.1

w.t. Knowledge Graph / Training-Free

KB-BINDER - 50.7
StructGPT - 76.4
ToG 71.0 80.3
GoG 75.2 84.4
Tree-of-Traversals | 74.4 83.8
REKG-MCTS 76.3 86.0

with fine-tuned architectures on KG tasks. On the
other hand, REKG-MCTS narrows the gap with
fine-tuned models, outperforming GNN-RAG and
approaching ChatKBQA, this further highlights
how strategic KG exploration can compensate for
the absence of model fine-tuning. By dynamically
traversing the KG and harnessing evaluations from
LLMs, REKG-MCTS enables more in-depth and
precise multi-hop inference, ultimately validating
its effectiveness.

3.3 Ablation Studies

We perform ablation studies to evaluate the indi-
vidual components of the REKG-MCTS. We in-
vestigate the impact of different backbone models,
the inclusion of generated knowledge graph (KG)
paths, the choice of value methods, and various
search tree configurations. Additionally, we pro-
vide a detailed error analysis in the Appendix D.

Performance of Different LLMs Table 2
presents several critical insights into both model
scalability and method robustness, underscoring
the effectiveness of our REKG-MCTS framework.
Our experiments on WebQSP and CWQ reveal that
the proposed approach consistently outperforms
competitive baselines—such as GoG and Tree-of-
Traversals—across various LLM sizes. Notably,
while high-capacity models achieve the best ab-
solute scores, the relative improvements delivered
by REKG-MCTS are especially pronounced in
smaller, 7B settings. In several cases, smaller mod-
els empowered by REKG-MCTS are even able to
match or even outperform larger models. The archi-
tectural strengths of our framework, including its

9293

Table 2: Hits@1 scores (%) of different methods with different LLM backbones on WebQSP and CWQ benchmarks.

WebQSP (1)

Method GPT4 Llama3-70B Llama3-8B Mistral-7B Qwen-7B DeepSeek-7B
10 prompt 68.5 61.4 55.2 55.9 54.1 52.8
CoT 74.6 63.1 57.8 59.0 56.3 55.1
CoT+SC 78.5 67.2 63.3 63.5 61.5 60.7
ToG 80.3 73.8 68.1 69.3 67.2 65.9
GoG 84.4 77.4 71.6 72.1 70.3 68.8
Tree-of-Traversals | 83.8 75.5 69.0 70.5 68.5 67.1
REKG-MCTS 86.0 78.9 72.2 73.4 70.9 69.6

CwQ ()

Method GPT4 Llama3-70B Llama3-8B Mistral-7B Qwen-7B DeepSeek-7B
10 prompt 40.6 36.3 30.5 32.0 30.0 29.3
CoT 493 447 33.8 34.3 33.1 32.7
CoT+SC 53.9 46.4 36.9 38.7 36.4 35.2
ToG 71.0 58.5 51.8 53.1 51.9 50.9
GoG 75.2 62.6 56.5 58.2 56.9 55.6
Tree-of-Traversals | 74.4 61.0 56.0 57.7 55.7 55.1
REKG-MCTS 76.3 64.4 59.8 61.0 60.1 58.3

Table 3: Hits@1 scores w.t./w.o. Generated paths (%).

WebQSP CWQ

GoG w.o. Gen. 83.7 74.2
GoG w.t. Gen. 84.4 75.2
REKG-MCTS w.o. Gen. 85.1 754
REKG-MCTS w.t. Gen. 86.0 76.3

MCTS-guided graph exploration and LL.M-based
path evaluation mechanisms, play a pivotal role in
this model-agnostic performance. Moreover, on the
more challenging CWQ dataset, the performance
gap between REKG-MCTS and ToG increases as
the base model shrinks. This further demonstrates
that REKG-MCTS enhances LLM performance
by effectively leveraging knowledge graph search
to support multi-hop reasoning, even with smaller
LLMs. Overall, these observations confirm that our
strategy not only enhances multi-hop reasoning per-
formance but also maintains a stable performance
with varying model size.

Impact of Generated KG Paths Previous work
in GoG validated the effectiveness of incorporat-
ing generated paths into the reasoning process (Xu
et al., 2024a). Motivated by these findings, we fur-
ther evaluated the generated path module within
our framework. As evidenced in Table 3, while
GoG gains modest improvements through gener-
ated paths, our framework, REKG-MCTS, demon-
strates even more favorable performance with im-

Table 4: Comparison of value methods in REKG-
MCTS with Llama3-8B for final answer reasoning.

Method CWQ WebQSP
BM25 52.5 60.3
SentenceBERT 53.7 65.9
Llama3-8B 59.8 72.2

provements of 0.9% on both datasets. These re-
sults illustrate that the strategy of using generated
paths is not only beneficial in the context of GoG,
but also remains effective when integrated into our
MCTS-based reasoning framework. These updated
results indicate that augmenting the graph-based
search with a generation module consistently en-
hances performance, albeit with modest gains. The
generation mechanism appears to compensate for
the missing edges in the knowledge graph, thereby
improving the reasoning performance.

Impact of Value Methods Table 4 presents a
comparative analysis of different value methods
within the REKG-MCTS framework. Traditional
information retrieval approach BM25 (Robertson
et al., 2009) serves as our baseline. The neural
embedding-based SentenceBERT (Reimers, 2019)
shows moderate improvements over BM25, with
gains of 1.2% and 5.6% on CWQ and WebQSP
respectively. Notably, Llama3-8B demonstrates
substantial improvements, outperforming BM25 by

9294

=@®= GPT-4 =M~ Llama3-70B =A= Llama3-8B 4 Mistral-7B Qwen-7B =@~ DeepSeek-7B

5 WebQSP WebQSP CcwWQ CcwQ
® P ® ®
Z85]g——® L ® g5i@ ° ® 15— ® ® i5e ® @
I
x 4 4 704 704
%80 .___.___..___... O g ——l———H=——-H
2 75 1 754 651 ———l—-——=E] 57 gea—— —-—---N
RN PUPPIPPRY SYTTTIT St T4 LSy P IFPER PO 4 n-———1 a N m-—-——H a a

S ER AL = 1) S PP ET IS ST TTTTTE 1o s Ve Vet i
570’ ———e———t————¢ PV P ey~ ——— - p—p—_———] 60 ‘, e == A= === 60 e n = = ——
£ l L o= = = ——
5 T T T — 55 T T — 554 T
a 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

Width Depth Width Depth

Figure 3: Impact of Search Tree Depth and Width on Performance across WebQSP and CWQ.

significant margins of 7.3% on CWQ and 11.9% on
WebQSP. These results suggest that LLMs’ sophis-
ticated semantic understanding capabilities provide
more effective value estimation compared to con-
ventional retrieval or embedding-based methods.

Impact of Tree Configurations We vary the
maximum depth and beam width of the search tree
from 2 to 5 and report the resulting performance
with various LLM backbones on both WebQSP and
CWQ (Figure 3). Across all tested models (GPT-4,
Llama3-70B, Llama3-8B, Mistral-7B, Qwen-7B,
and DeepSeek-7B), the performance consistently
improves as either the depth or width increases, re-
flecting the benefits of more extensive exploration.
The gain is most pronounced when increasing these
parameters from 2 to 3, while further enlarging the
search yields diminishing returns. These findings
underscore that carefully tuning the search tree’s
maximum depth and width is crucial for balancing
computational overhead against the performance
gains of multi-hop knowledge graph reasoning.

4 Related Work

4.1 Knowledge Base Question Answering

Knowledge Base Question Answering (KBQA) has
progressed from Information Retrieval (IR) meth-
ods (Miller et al., 2016; Saxena et al., 2020; Lan
et al., 2022), which extract facts from knowledge
bases, to Semantic Parsing (SP) approaches that
translate questions into logical forms like SPARQL
queries. SP methods include step-wise query meth-
ods (Yih et al., 2015, 2016; Chen et al., 2019) and
sequence-to-sequence models (Das et al., 2021; Ye
et al., 2022) for directly generating logical forms.
The advent of large language models (LLMs) has
introduced both end-to-end and step-by-step meth-
ods. End-to-end approaches leverage in-context
learning (Li et al., 2023) or fine-tuned LLMs (Luo
et al., 2024b,a) to generate queries directly, while
step-by-step methods (Sun et al., 2024; Xu et al.,
2024a; Markowitz et al., 2024) follow a reasoning

process to gradually find answers.

4.2 LLMs Reasoning with KGs

Large Language Models (LLMs) have demon-
strated remarkable success in natural language pro-
cessing tasks (Team et al., 2024; Achiam et al.,
2023; Yang et al., 2024; DeepSeek-Al et al., 2024).
While LLMs show strong reasoning capabilities
through Chain-of-Thought prompting (Wei et al.,
2022) and domain adaptation (Tan et al., 2024),
their structured knowledge reasoning abilities re-
main an active research area. The integration of
Knowledge Graphs (KGs) with LLMs has emerged
as a promising direction to enhance structured rea-
soning capabilities (Pan et al., 2024; Hu et al.,,
2023). Recent work has particularly focused on
developing efficient and effective KG-LLM in-
tegration methods. Notable frameworks includ-
ing ToG, RoG, Tree-of-Traversals pioneered the
combination of reasoning with external knowledge
graphs, introduces structured exploration strategies
for complex multi-hop reasoning (Sun et al., 2024;
Luo et al., 2024b; Markowitz et al., 2024).

5 Conclusion

In this work, we introduce REKG-MCTS, a novel
training-free framework that combines Monte
Carlo Tree Search (MCTS) with LLMs to solve
multi-hop reasoning tasks over KG. This approach
frames KG reasoning as a decision-making process,
where MCTS explores promising paths and LLMs
provide semantic guidance on knowledge graphs.
By leveraging this framework, REKG-MCTS en-
ables effective multi-hop reasoning without the
need for additional training or fine-tuning. Exten-
sive experiments on WebQSP and CWQ demon-
strate that REKG-MCTS not only outperforms
existing training-free methods but also narrows the
performance gap with fine-tuned approaches, indi-
cating that structured search paradigms can effec-
tively enhance LLMs’ KG reasoning capabilities
while preserving their semantic strengths.

9295

Limitation

REKG-MCTS demonstrates competitive perfor-
mance on KG reasoning tasks but has several limi-
tations. First, the iterative search process is compu-
tationally expensive compared to simpler retrieval
methods, resulting in higher token usage. Sec-
ond, the LLM’s context window constrains our
ability to handle complex queries with numerous
entities or lengthy reasoning chains. Additionally,
performance depends on both KG coverage and the
LLM’s parametric knowledge—incomplete graph
information or LLM-generated spurious triples can
lead to inaccuracies in the reasoning process.

Acknowledgements

This work was supported by National Science
and Technology Major Project under Grant
20227D0116408, the Guangdong Provincial Key
Laboratory of Mathematical Foundations for Artifi-
cial Intelligence (2023B1212010001), and a locally
commissioned task from the Shanghai Municipal
Government.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Garima Agrawal, Tharindu Kumarage, Zeyad Alghamdi,
and Huan Liu. 2024. Can knowledge graphs reduce
hallucinations in llms?: A survey. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Pa-
pers), pages 3947-3960.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247-1250.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Cameron B Browne, Edward Powley, Daniel White-
house, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, and Simon Colton. 2012. A survey

of monte carlo tree search methods. IEEE Transac-
tions on Computational Intelligence and Al in games,
4(1):1-43.

Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jij-
nasa Nayak, and Lun-Wei Ku. 2019. Uhop: An
unrestricted-hop relation extraction framework for
knowledge-based question answering. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 345-356.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya
Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen Tan,
Lazaros Polymenakos, and Andrew Mccallum. 2021.
Case-based reasoning for natural language queries
over knowledge bases. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 9594-9611.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
et al. 2024. Deepseek-v3 technical report. Preprint,
arXiv:2412.19437.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models.

Xinyan Guan, Yanjiang Liu, Hongyu Lin, Yaojie Lu,
Ben He, Xianpei Han, and Le Sun. 2024. Mitigating
large language model hallucinations via autonomous
knowledge graph-based retrofitting. Proceedings
of the AAAI Conference on Artificial Intelligence,
38(16):18126-18134.

Linmei Hu, Zeyi Liu, Ziwang Zhao, Lei Hou, Ligiang
Nie, and Juanzi Li. 2023. A survey of knowledge
enhanced pre-trained language models. IEEE Trans-
actions on Knowledge and Data Engineering.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al.
2024a. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open
questions. ACM Transactions on Information Sys-
tems.

Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu,
Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang,
Wenhan Lyu, Yixuan Zhang, et al. 2024b. Position:
Trustllm: Trustworthiness in large language models.
In International Conference on Machine Learning,
pages 20166-20270. PMLR.

9296

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2407.21783

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023a. Mistral
7b. arXiv preprint arXiv:2310.06825.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023b. Struct-
gpt: A general framework for large language model
to reason over structured data. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 9237-9251.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison,
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi,
et al. 2024. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint
arXiv:2403.13787.

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang,
Wayne Xin Zhao, and Ji-Rong Wen. 2022. Complex
knowledge base question answering: A survey. IEEE
Transactions on Knowledge and Data Engineering,
35(11):11196-11215.

Ningke Li, Yuekang Li, Yi Liu, Ling Shi, Kailong Wang,
and Haoyu Wang. 2024a. Drowzee: Metamorphic
testing for fact-conflicting hallucination detection in
large language models. Proceedings of the ACM on
Programming Languages, 8(OOPSLA2):1843-1872.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023. Few-shot in-context learning
on knowledge base question answering. In Proceed-
ings of the 61st Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers),
pages 6966—6980.

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng
Ding, Shafiq Joty, Soujanya Poria, and Lidong Bing.
2024b. Chain-of-knowledge: Grounding large lan-
guage models via dynamic knowledge adapting over
heterogeneous sources. International Conference on
Learning Representations.

Haoran Luo, Haihong E, Zichen Tang, Shiyao Peng,
Yikai Guo, Wentai Zhang, Chenghao Ma, Guant-
ing Dong, Meina Song, Wei Lin, Yifan Zhu, and
Anh Tuan Luu. 2024a. ChatKBQA: A generate-then-
retrieve framework for knowledge base question an-
swering with fine-tuned large language models. In
Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 2039-2056, Bangkok,
Thailand. Association for Computational Linguistics.

Linhao Luo, Yuan-Fang Li, Reza Haf, and Shirui Pan.
2024b. Reasoning on graphs: Faithful and inter-
pretable large language model reasoning. In The
Twelfth International Conference on Learning Repre-
sentations.

Elan Markowitz, Anil Ramakrishna, Jwala Dhamala,
Ninareh Mehrabi, Charith Peris, Rahul Gupta, Kai-
Wei Chang, and Aram Galstyan. 2024. Tree-of-
traversals: A zero-shot reasoning algorithm for aug-
menting black-box language models with knowledge

graphs. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 12302-12319.

Ariana Martino, Michael Iannelli, and Coleen Truong.
2023. Knowledge injection to counter large language
model (1lm) hallucination. In European Semantic
Web Conference, pages 182—185. Springer.

Costas Mavromatis and George Karypis. 2024. Gnn-
rag: Graph neural retrieval for large language model
reasoning. arXiv preprint arXiv:2405.20139.

Nimrod Megiddo, S Louis Hakimi, Michael R Garey,
David S Johnson, and Christos H Papadimitriou.
1988. The complexity of searching a graph. Journal
of the ACM (JACM), 35(1):18-44.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 1400-1409.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-
apu Wang, and Xindong Wu. 2024. Unifying large
language models and knowledge graphs: A roadmap.
IEEE Transactions on Knowledge and Data Engi-
neering.

Ganesan Ramalingam and Thomas Reps. 1996. On the
computational complexity of dynamic graph prob-
lems. Theoretical Computer Science, 158(1-2):233—
277.

N Reimers. 2019. Sentence-bert: Sentence embed-
dings using siamese bert-networks. arXiv preprint
arXiv:1908.10084.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm?25 and be-

yond. Foundations and Trends® in Information Re-
trieval, 3(4):333-3809.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar.
2020. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings.
In Proceedings of the 58th annual meeting of the as-
sociation for computational linguistics, pages 4498—
4507.

Amrith Setlur, Katie Kang, Aviral Kumar, Feryal Behba-
hani, Roberta Raileanu, and Rishabh Agarwal. 2025.
Self-improving foundation models without human
supervision. In ICLR 2025 Workshop Proposals.

Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing
Guo, and Jianfeng Gao. 2018. M-walk: Learning
to walk over graphs using monte carlo tree search.
Advances in Neural Information Processing Systems,
31.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, loannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering

9297

https://doi.org/10.18653/v1/2024.findings-acl.122
https://doi.org/10.18653/v1/2024.findings-acl.122
https://doi.org/10.18653/v1/2024.findings-acl.122

the game of go with deep neural networks and tree
search. Nature, 529(7587):484-489.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Lionel Ni, Heung-
Yeung Shum, and Jian Guo. 2024. Think-on-graph:
Deep and responsible reasoning of large language
model on knowledge graph. In International Confer-
ence on Learning Representations.

Maciej Swiechowski, Konrad Godlewski, Bartosz Saw-
icki, and Jacek Mandziuk. 2023. Monte carlo tree
search: A review of recent modifications and appli-
cations. Artificial Intelligence Review, 56(3):2497—
2562.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641-651.

Zhen Tan, Dawei Li, Song Wang, Alimohammad
Beigi, Bohan Jiang, Amrita Bhattacharjee, Man-
sooreh Karami, Jundong Li, Lu Cheng, and Huan
Liu. 2024. Large language models for data annota-
tion and synthesis: A survey. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 930-957.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2024. Planbench: An extensible benchmark for eval-
uating large language models on planning and reason-
ing about change. Advances in Neural Information
Processing Systems, 36.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michaél Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. 2019. Grandmaster level in starcraft
ii using multi-agent reinforcement learning. Nature,
575(7782):350-354.

Guojia Wan, Shirui Pan, Chen Gong, Chuan Zhou, and
Gholamreza Haffari. 2021. Reasoning like human:
Hierarchical reinforcement learning for knowledge
graph reasoning. In International Joint Conference
on Artificial Intelligence. International Joint Confer-
ence on Artificial Intelligence.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
International Conference on Learning Representa-
tions.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Yikun Xian, Zuohui Fu, Shan Muthukrishnan, Gerard
De Melo, and Yongfeng Zhang. 2019. Reinforcement
knowledge graph reasoning for explainable recom-
mendation. In Proceedings of the 42nd international
ACM SIGIR conference on research and development
in information retrieval, pages 285-294.

Wenhan Xiong, Thien Hoang, and William Yang Wang.
2017. Deeppath: A reinforcement learning method
for knowledge graph reasoning. arXiv preprint
arXiv:1707.06690.

Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu
Song, Hanghang Tong, Guang Liu, Jun Zhao, and
Kang Liu. 2024a. Generate-on-graph: Treat LLM
as both agent and KG for incomplete knowledge
graph question answering. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 18410-18430, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli.
2024b. Hallucination is inevitable: An innate lim-
itation of large language models. arXiv preprint
arXiv:2401.11817.

Bingcong Xue and Lei Zou. 2022. Knowledge graph
quality management: a comprehensive survey. /[EEE
Transactions on Knowledge and Data Engineering,
35(5):4969—-4988.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen?2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2022. Rng-kbqa: Generation
augmented iterative ranking for knowledge base ques-
tion answering. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6032-6043.

Scott Wen-tau Yih, Ming-Wei Chang, Xiaodong He,
and Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the Joint Con-
ference of the 53rd Annual Meeting of the ACL and
the 7th International Joint Conference on Natural
Language Processing of the AFNLP.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201-206.

9298

https://doi.org/10.18653/v1/2024.emnlp-main.1023
https://doi.org/10.18653/v1/2024.emnlp-main.1023
https://doi.org/10.18653/v1/2024.emnlp-main.1023

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. ReST-MCTS*:
LLM self-training via process reward guided tree
search. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Qinggang Zhang, Junnan Dong, Hao Chen, Daochen
Zha, Zailiang Yu, and Xiao Huang. 2024b. Knowgpt:
Knowledge graph based prompting for large language
models. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Dengwei Zhao, Shikui Tu, and Lei Xu. 2024. Effi-
cient retrosynthetic planning with mcts exploration

enhanced a* search. Communications Chemistry,
7(1):52.

Peixiang Zhao and Jiawei Han. 2010. On graph query
optimization in large networks. Proceedings of the
VLDB Endowment, 3(1-2):340-351.

Lingfeng Zhong, Jia Wu, Qian Li, Hao Peng, and Xin-
dong Wu. 2023. A comprehensive survey on auto-
matic knowledge graph construction. ACM Comput-
ing Surveys, 56(4):1-62.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhon-
neux, and Jian Tang. 2021. Neural bellman-ford net-
works: A general graph neural network framework
for link prediction. Advances in Neural Information
Processing Systems, 34:29476-29490.

A Implementation Details

A.1 Dataset Statistics

In this work, we evaluate our KBQA methods on
two widely used benchmarks, WebQSP (Talmor
and Berant, 2018) and CWQ (Yih et al., 2016),
both based on Freebase (Bollacker et al., 2008).
WebQSP consists of natural language questions
that require up to 2-hop reasoning, whereas CWQ
contains more complex questions that call for up to
4-hop reasoning. In addition to the overall number
of questions, both datasets provide rich annota-
tions including logical form skeletons, participat-
ing entities, and relations. Table 5 summarizes the
main statistics of the 2 datasets. All experiments
were conducted on a Linux server equipped with 8
NVIDIA A100 80GB GPUs.

A.2 LLMs

GPT-4 (Achiam et al., 2023) represents the cutting-
edge closed-source LLM developed by OpenAl,
known for its robust natural language processing
capabilities across a wide range of tasks, including
text generation, summarization, question answer-
ing, and more.

LLaMA3-70B/8B (Dubey et al., 2024) is the
70B/8B-parameter version of the large language

model series, Llama3 by Meta-Al. Built on a
decoder-only transformer architecture, it features
a 128K-token vocabulary and grouped query atten-
tion (GQA) to enhance inference efficiency, having
been pretrained on over 15 trillion tokens.

Mistral-7B (Jiang et al., 2023a) is the 7B-
parameter version of the large language model se-
ries, Mistral by Mistral-Al It incorporates a sliding
window attention mechanism with a rolling buffer
cache, enabling efficient handling of long-range de-
pendencies in text. This model leverages sparse at-
tention patterns to effectively capture relationships
in data while maintaining low inference latency.

Qwen-7B (Yang et al.,, 2024) is the 7B-
parameter version of the large language model
series, Qwen by Alibaba Cloud. Qwen-7B is a
Transformer-based large language model, which
is pretrained on a large volume of data over 2.4
trillion tokens.

DeepSeek-7B (DeepSeek-Al et al., 2024) is the
7B-parameter version of the large language model
series, DeepSeek by DeepSeek-Al, it was trained
on 2 trillion tokens in both English and Chinese.

B Baseline Details

B.1 Prompting Methods

IO (Brown et al., 2020) employs a straightfor-
ward prompting strategy for large language models
(LLMs). It presents a query (input) followed di-
rectly by the desired response (output), relying on
the model’s pre-trained knowledge. While simple
to implement, it may struggle with complex reason-
ing or multi-step inference tasks.

CoT (Wei et al., 2022) introduces a Chain-
of-Thought prompting procedure that guides the
model through intermediate reasoning steps. By re-
vealing explicit chains of reasoning, CoT improves
interpretability and enables better performance in
tasks requiring multi-hop or compositional logic.

SC (Wang et al., 2023) (Self-Consistency) builds
upon Chain-of-Thought by generating multiple rea-
soning paths and then selecting the most consistent
answer. This approach aims to mitigate error prop-
agation from a single chain of thought.

B.2 LLM-Enhanced KG Reasoning Methods

RoG (Luo et al., 2024b) (Reasoning over Graphs)
leverages LLLMs to generate and navigate the triplet-
based structure of a knowledge graph (KG). By
dynamically capturing node and relation contexts,

9299

https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5

Table 5: Detailed statistics for WebQSP and CWQ datasets.

Statistics

Basic Statistics
#Questions

#Logical Form Skeletons

#Entities
#Relations
Max #Hop

Answer Distribution
Single answer
2-4 answers
5-9 answers
> 10 answers

WebQSP CWQ
4737 34,689
34 174
2461 11,422
628 845
2 4
512% 70.6%
274% 19.4%
83% 6.0%
121% 4.0%

RoG improves reasoning accuracy in scenarios
with complex graph connectivity.

ToG (Sun et al., 2024) (Think-on-Graph) de-
signs a step-by-step reasoning mechanism over
KGs by incrementally tracking the entities and
relations involved. This approach refines logical
consistency at each step, enhancing interpretabil-
ity for multi-hop queries. Nevertheless, its staged
reasoning can increase computational overhead in
large-scale graphs.

GoG (Xu et al., 2024a) (Generate on Graph)
views KG reasoning as a generative process where
intermediate nodes and edges are produced in a
sequential manner. By encoding the graph struc-
ture within prompt-based generation, GoG aims to
reduce ambiguity in entity-relation mapping.

Tree-of-Traversals (Markowitz et al., 2024) ex-
tends KG reasoning with a tree-structured expan-
sion. Rather than following a single reasoning path,
this method explores multiple branches in parallel.

B.3 Retrieval-Enhanced Methods

KB-BINDER (Li et al., 2023) combines large lan-
guage models with minimal supervision by per-
forming on-demand retrieval from a knowledge
base (KB). It structures in-context learning tem-
plates to guide answer generation, striking a bal-
ance between efficiency and accuracy.

StructGPT (Jiang et al., 2023b) integrates struc-
tured knowledge retrieval with LLMs, focusing on
the alignment of textual prompts with KB schema.
By enforcing structural consistency during retrieval
and generation, it reduces the risk of hallucinations
in knowledge-intensive tasks.

ChatKBQA (Luo et al., 2024a) employs multi-
turn dialogue to refine both retrieval and answer

generation. It iteratively queries the KB to gather
relevant facts, clarifying ambiguous or incomplete
user inputs.

GNN-RAG (Mavromatis and Karypis, 2024)
(Graph Neural Network-Retrieved Augmented
Generation) couples a graph neural network-based
retrieval module with a generation model, targeting
improved discovery of relevant KB elements.

C Hyperparameter Settings

In this appendix, we detail the experimental hyper-
parameters employed by REKG-MCTS. During
the exploration stage, each MCTS rollout is capped
at 2 expansions to keep the computational overhead
manageable, while the search depth Dy, is also
set to 5. The reward threshold 7 is set to 0.8. The
exploration coefficient c is set to 0.5 and 0.7 for
the WebQSP and CWQ dataset, respectively. We
restrict the number of candidate paths considered
at each expansion step by employing a beam size
of 2. We also use a TopK filtering strategy—setting
TopK to 5 for relations entities when expanding
relations and entities. This ensures that only the
most relevant candidates are considered. During
this stage, the LLM-based evaluator assesses the
semantic relevance of each partial path and gives
an initial reward score that helps guide backprop-
agation updates. Once exploration concludes, the
final MCTS prediction stage retains many of the
same parameters but narrows the beam size to 1,
thereby focusing on the single most promising rea-
soning trajectory per rollout. The number of roll-
outs remains at 2 to preserve consistency with the
exploration phase. All models evaluated in this
framework are temperature constrained to 0.5 and
have a maximum token length limited to 256.

9300

WebQSP

20.6%

48.3%

31.1%

cwQ

27.4%
Hallucination Error
47.7% Generate Error
Refuse and Format Errors

24.9%

Figure 4: Error distributions.

D Error Analysis

In this section, we present three primary error types
observed for proposed methods. These categories
are selected based on the issues highlighted in
the foregoing discussions regarding incomplete an-
swers, incorrect information, or output misformat-
ting.

Hallucination Error A hallucination error oc-
curs when the Large Language Model (LLM) pro-
duces a final answer that lacks proper grounding in
the knowledge graph or relevant context. In our ex-
periments, hallucinations remain the most frequent
source of incorrect results, as certain constraints
and evidence from the intermediate reasoning paths
are occasionally overlooked. Strengthening the link
between contextual clues from the graph and the
LLM’s generation process can potentially mitigate
such errors.

Refuse and Format Errors Refuse and format
errors encompass two distinct but related issues
in our framework. Refuse errors occur when the
LLM declines to provide any answer, often citing
insufficient information.

Format errors, on the other hand, manifest when
the output structure deviates from the expected for-
mat, such as missing required components or pre-
senting information in an inconsistent manner.

Generate Error Generate errors involve in-
stances where the LLM produces partial or clearly
wrong entities during the final answer generation.
These errors may appear if the system fails to track
the question throughout multiple reasoning hops,
leading to a mismatch between the reasons uncov-
ered in the search process and the final predicted
entities.

Results Analysis Figure 4 presents a detailed
breakdown of the errors observed in our system, re-
vealing that hallucination errors are the most preva-
lent, followed by refuse and format errors, with
generate errors occurring least frequently. The high
incidence of hallucination errors suggests that, de-
spite the grounding provided by the knowledge
graph, the LLM sometimes produces answers that
are insufficiently anchored to the available context.
This observation motivates the need for tighter in-
tegration between the intermediate reasoning paths
and the final answer generation process. In con-
trast, the moderate frequency of refuse and format
errors points to challenges in the LLM’s adherence
to output constraints and its tendency to exercise
undue caution, indicating potential benefits from
refining the prompt design and output formatting
guidelines. Finally, the relatively low occurrence of
generate errors demonstrates that the system gen-
erally maintains context across multiple reasoning
hops; however, occasional lapses in tracking the
query details can still lead to incomplete or erro-
neous outputs.

E Prompts and SPARQL Operators

In this appendix, we document the prompt tem-
plates and SPARQL operators employed in our
knowledge graph-based reasoning pipeline, draw-
ing inspiration from best practices in large language
model prompting and structured retrieval strategies.

E.1 SPARQL Operators

In this section, we introduce several SPARQL
queries that enable relation discovery, entity re-
trieval, and label conversion for entities within
the Freebase knowledge graph (Bollacker et al.,
2008). These queries serve as building blocks for

9301

the datasets’ knowledge graph traversal and entity 11
resolution tasks. Below, we provide each query in '
13

a code block alongside brief descriptions. "

Relations Extraction

Extract head relations
sparql_head_relations =

nnn

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?relation
WHERE {
ns:%s ?relation ?x
3

nnn

Extract tail relations
sparql_tail_relations =

nonon

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?relation
WHERE {
?x ?relation ns:%s
3

nonon

These queries enable relation extraction in both
directions. The head relations query retrieves all
predicates where a given entity acts as the subject,
while the tail relations query finds predicates where
the entity appears as the object.

Entities Extraction

Extract tail entities
sparql_tail_entities_extract =
PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?tailEntity
WHERE {

ns:%s ns:%s ?tailEntity

3

nonon

nonon

Extract head entities
sparql_head_entities_extract =
PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?tailEntity
WHERE {

?tailEntity ns:%s ns:%s

}

nonn

nnn

These queries facilitate entity extraction in both
directions of a relation.

Resolving Names and Aliases

nnn

sparql_ids =
PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?name

WHERE {
{
ns:%s ns:type.object.name ?name . #
Direct label retrieval
3
UNION
{

ns:%s <http://www.w3.0rg/2002/07/owl
#sameAs> ?alias # Alias
retrieval

?alias ns:type.object.name ?name
}
}

nnn

In some cases, an entity may have multiple names
or aliases. This query unifies those labels by ex-
ploring owl:sameAs relationships and retrieving
the corresponding human-readable names.

E.2 Prompts

Path Value Evaluation Template

The EVALUATE_STATE_PROMPT, as shown in Fig-
ure 5, is designed to rigorously assess whether a
selected knowledge graph triplet path contributes
to resolving the original query. It provides a struc-
tured rubric to score the relevance and usefulness
of the triplet, factoring in direct or indirect refer-
ences to key question entities, the specificity of
the presented facts, and the potential for bridging
knowledge gaps. A final numeric rating, alongside
a concise explanatory note, is returned to signal
how effectively the triplet aids in progressing to-
ward the solution.

Extract Relation Prompt

When identifying which knowledge graph
relations matter most to the wuser query,
EXTRACT_RELATION_PROMPT, as shown in
Figure 6 ranks candidate edges by their potential
contribution. This helps allocate search resources
efficiently in complex graphs or when domain
knowledge is sparse. The system prompts for a
user-facing explanation of how the chosen relations
connect, assigning scores to each that sum to 1.

Entity Extract Prompt

The EXTRACT_ENTITY_PROMPT, as shown in Fig-
ure 7 helps identify which entities are worth in-
vestigating further. When given a user’s question,
the current discussion context, and a list of poten-
tial entities to explore next, this template creates
a clear ranking to help the system focus on the
most relevant and important options. This hierar-
chical selection echoes typical beam-search—style
expansions in knowledge graph traversal, limiting
combinatorial explosion in large graphs.

Answer Prompt

The ANSWER_PROMPT is designed for straightfor-
ward question answering from both local knowl-
edge graph data and any relevant external knowl-
edge. It outlines a template for structured reasoning

9302

and the formulation of a final response. When in-
formation from the knowledge graph is insufficient,
the system is permitted to incorporate general back-
ground knowledge to fill in gaps.

E.3 LLMe-integrated KG Query

This section details the integration of Large Lan-
guage Models (LLMs) with SPARQL queries for
entity and relation selection, leveraging predefined
prompting templates and SPARQL operators.

Relation Selection

The relation_select function refines which re-
lations to explore once entities have been chosen.
It achieves this in two distinct steps:

1. SPARQL Retrieval: The function runs two
SPARQL queries, sparql_head_relations
and sparqgl_tail_relations, to collect all
potential predicates where the entities appear
as either the subject or the object. This step
generates a comprehensive list of candidate
relations for graph traversal.

2. LLM-based Relation Selection: Once the
SPARQL queries are executed, the next step
involves using EXTRACT_RELATION_PROMPT
in conjunction with a large language model
(LLM) to evaluate and rank the relevance of
the extracted relations. The LLM assigns rele-
vance scores to each relation, and these scores
are used to select the most promising candi-
dates for further exploration. This ranking pro-
cess ensures that the top N most contextually
relevant relations are prioritized in subsequent
SPARQL queries.

This process combines SPARQL queries with
LLM’s understanding to effectively search the
knowledge graph, helping find relevant relations.

Entity Selection

The entity_select function refines which enti-
ties to explore once relations have been chosen. It
achieves this in two distinct steps:

1. SPARQL Retrieval: The function begins by
executing SPARQL queries to extract all con-
nected candidate entities based on the chosen
relations from the previous step. This process
retrieves a comprehensive set of entities from
the knowledge graph that are linked to the
current entities.

2. LLM-based Entity Selection: Next, the func-
tion utilizes the EXTRACT_ENTITY_PROMPT in
combination with a large language model
(LLM) to evaluate and rank the candidate en-
tities. By incorporating the current question
context, candidate entities, and path history
into the prompt, the LLM assesses the rele-
vance of each entity and selects the top N
most promising candidates.

This process combines SPARQL queries with
LLM’s understanding to effectively search the
knowledge graph, helping find relevant entities.

F Future Work

Future work could address these challenges by in-
tegrating advanced aggregation functions or spe-
cialized operators, allowing the framework to han-
dle queries involving complex numeric reasoning
(e.g., “How many mountains are above 3500 me-
ters?”). Incorporating domain-specific knowledge
bases—such as medical or legal corpora—would
further extend the utility of our approach to special-
ized, high-stakes applications.

Reinforcement learning (RL) techniques could
also be explored to continually refine the search
policy module. By using a LLM model as a search
agent through RL to discover optimal reasoning
paths in knowledge graphs (e; — eg — ... %
€target), WE can obtain high-reward reasoning tra-
jectories. These trajectories can then be utilized
for supervised fine-tuning of the language model,
establishing a synergistic cycle where the RL agent
explores enhanced reasoning strategies while the
fine-tuned LLM generates more accurate candidate
triples.

G Broader Impact

The proposed REKG-MCTS framework presents
a novel framework on reasoning over knowledge
graphs using Large Language Models (LLMs) and
Monte Carlo Tree Search (MCTS). Its positive im-
pacts include improving question answering sys-
tems, enabling effective knowledge graph explo-
ration, and empowering smaller models to perform
complex tasks. However, challenges such as com-
putational overhead, dependency on the quality of
knowledge graphs, and potential biases must be
carefully managed. Future developments could
focus on expanding the framework to specialized
domains and addressing ethical concerns, ensuring
that Al systems are transparent, fair, and beneficial.

9303

PATH_VALUE_EVALUATION_PROMPT:

Prompt Template:

Your task is to rigorously evaluate whether the selected triplet from the knowledge graph is useful for
reasoning toward answering the given question. Follow these steps carefully:

EVALUATION CRITERIA:

1. Does the triplet directly or indirectly mention entities or relationships from the question? If indirect,
is the connection clear and meaningful?

2. Does the triplet provide specific information that helps narrow down or answer the question? Is the
information sufficient to make progress toward the answer, or is it too vague or tangential?

3. Do the triplets logically necessary or strongly supportive for constructing a reasoning path to the
answer? Does it fill a critical gap in the reasoning process?

SCORING GUIDELINES:

0.0-0.3: The triplet is irrelevant or provides no meaningful contribution to answering the question.
0.4-0.6: The triplet is somewhat relevant but only loosely connected or provides minimal information.
0.7-0.8: The triplet is relevant and contributes to the reasoning process but is not decisive or critical.
0.9-1.0: The triplet provids a clear, unambiguous, and direct answer to the question. It must fully
resolve the question or provide a critical piece of information that leaves no room for ambiguity or
further reasoning.

Important: The presence of entities from the question alone does not guarantee relevance. The triplet
must actively help resolve the question, not just include related triplets’ entities.

OUTPUT FORMAT: Provide a score between 0.0 and 1.0 with one decimal place. Include a concise
explanation justifying the score based on the evaluation criteria.

EXAMPLES:

Q: The artist nominated for The Long Winter lived where?

T: Laura Ingalls Wilder -> people.person.places_lived -> Unknown

RATING [0.0-1.0]: 0.5

EXPLANATION:

The triplet connects the author (key entity) to places_lived, but "Unknown" value makes it incomplete.
While it indicates the KG has author residency data, the lack of concrete location requires supplement-
ing with external knowledge bridging.

Q: What is the official language of the country where Hokkaido is located?

T: Hokkaido -> location.administrative_division.country -> Japan

RATING [0.0-1.0]: 0.8

EXPLANATION:

This triple establishes the direct relationship between the administrative division and its country.
Combined with common knowledge that Japanese is the official language of Japan, this connection
provides the key information needed to answer the language question.

<Other Examples...>

Q: {question}
T: {triple}
RATING [0.0-1.0]:"""

Figure 5: Path Value Evaluation Prompt.

9304

EXTRACT_RELATION_PROMPT:

Prompt Template:

Please retrieve N relations (separated by semicolon) that contribute to the question and rate their
contribution on a scale from 0 to 1 (the sum of the scores of N relations is 1).

Q: Name the president of the country whose main spoken language was Brahui in 19807

Topic Entity: Brahui Language

Relations: language.human_language.main_country; language.human_language.language_family;
language.human_language.iso_639_3_code; base.rosetta.languoid.parent;
language.human_language.writing_system;

base.rosetta.languoid.languoid_class; language.human_language.countries_spoken_in;
kg.object_profile.prominent_type; base.rosetta.languoid.document;
base.ontologies.ontology_instance.equivalent_instances;

base.rosetta.languoid.local_name; language.human_language.region

A:

1. language.human_language.main_country (Score: 0.4)): ...

2. language.human_language.countries_spoken_in (Score: 0.3): ...

3. base.rosetta.languoid.parent (Score: 0.2): ...

Q: {Question}

Topic Entity: {Topic Entities}
Relations: {Selected Relations}
A:

Figure 6: Relation Extract Prompt.

ENTITY_EXTRACT_PROMPT:

Entity Extraction Prompt:
Based on the question and path history, filter the most relevant {top_k} entities from the candidate
entities.

Input Format:
¢ Question: {question}
e Current Entity: {current_entities}
¢ Current Relation: {current_relation}
* Path History: {path_history}
¢ Candidate Entities: {candidate_names}

Output Requirement:
Please output the entity names in descending order of relevance, separated by commas.

Figure 7: Entity Extract Prompt.

9305

ANSWER_PROMPT:

Answer Prompt:

Given a question and the associated retrieved knowledge graph triplets (entity, relation, entity), you
are asked to answer the question using these triplets and your own knowledge. Some triplets may be
irrelevant or insufficient, in which case you should rely on your internal knowledge to reason logically.

Answer Format:
Combine the provided triplets with your knowledge to perform comprehensive reasoning.
End your answer with a summary starting with "The final answer is...".

Reasoning Guidance:

First examine if the triplets provide direct relevant information.

If triplets are insufficient or irrelevant, clearly explain how you use your internal knowledge.
Make logical connections based on both given information and commonly known facts.
Provide clear reasoning steps when bridging information gaps.

Q: What is the capital of France?

Knowledge Triplets: France — has.city — Lyon, France — exports.wine — Italy

A: While the triplets mention France but don’t provide information about its capital, from common
knowledge we know that Paris is the capital of France. The given triplets about Lyon and wine exports
are not relevant to this question.

The final answer is Paris.

<Other Examples...>

Q: {Question}
A:

Figure 8: Answer Prompt.

9306

