BadWindtunnel: Defending Backdoor in High-noise Simulated Training
with Confidence Variance

Ruyi Zhang, Sonlei Jian*, Yusong Tan*, Heng Gao, Haifang Zhou, Kai Lu
National University of Defense Technology / Changsha, Hunan, China
{zhangruyi, jiansonglei, ystan, gaoheng21, haifang_zhou, kailu}@nudt.edu.cn

Abstract

Current backdoor attack defenders in Natural
Language Processing (NLP) typically involve
data reduction or model pruning, risking los-
ing crucial information. To address this chal-
lenge, we introduce a novel backdoor defender,
i.e., BadWindtunnel, in which we build a high-
noise simulated training environment, similar
to the wind tunnel, which allows precise con-
trol over training conditions to model the back-
door learning behavior without affecting the
final model. We also use the confidence vari-
ance as a learning behavior quantification met-
ric in the simulated training, which is based
on the characteristics of backdoor-poisoned
data (shorted in poisoned data): higher learn-
ability and robustness. In addition, we pro-
pose a two-step strategy to further model poi-
soned data, including target label identifica-
tion and poisoned data revealing. Extensive
experiments demonstrate BadWindtunnel’s su-
periority, with a 21% higher average reduction
in attack success rate than the second-best de-
fender. The source code is public available at
https://github.com/bettyzry/LBD.

1 Introduction

Backdoor attacks are a significant security risk in
NLP. These attacks manipulate a victim model that
has good performance on clean data but always
predicts the farget label on poisoned data, which
is applied with a specific trigger pattern. Triggers
in NLP are categorized into four types: word, sen-
tence, style, and syntax. Word and sentence trig-
gers often involve inserting rare words or short
sentences into the original text (Kurita et al., 2020;
Chen et al., 2021; Dai et al., 2019). Style and syn-
tactic triggers modify the text to match predefined
styles or syntax (Qi et al., 2021b,c). These triggers
have more implicit characteristics, allowing for a
natural backdoor injection while preserving seman-

*Corresponding author.

(a) Data Reduction Methods

g Train

(b) Model Pruning Methods

Simulated Training
— E Train o

Poisoned-revealing data

(c) Our Method

Figure 1: The diagram of current methods versus ours:
(a) data reduction methods, reducing poisoned informa-
tion from the data; (b) model pruning methods, pruning
poisoned neurons from the model; In contrast, (c) our
method, revealing poisoned data through controlled sim-
ulated training and conducting defensive real training
by fully utilizing both clean and poisoned information.

tics. This semantic invariance makes such attacks
particularly challenging to defend against.

As shown in Figure 1, current research mitigates
backdoor attacks by reducing backdoor-related in-
formation from the data or model perspectives.
As shown in Figure 1a, data reduction methods
identify the statistical traits of poisoned data, such
as spurious correlations with the target label, to
eliminate poisoned data or remove embedded trig-
gers (Yang et al., 2021; Qi et al., 2021a; He et al.,
2023). However, these methods do not fully ex-
ploit the eliminated data and struggle with remov-
ing semantic-invariant attacks. In addition, residual
poisoned data can still lead to a high attack success
rate (Carlini et al., 2024), making this approach
insufficient for an effective defense. As shown in
Figure 1b, model pruning methods learn the differ-
ences in neuron activation between clean and poi-
soned data, enabling model pruning (Zheng et al.,
2021; Tang et al., 2023; Yi et al., 2024). However,

9259

Findings of the Association for Computational Linguistics: ACL 2025, pages 9259-9273
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/bettyzry/LBD

neurons often carry mixed information from both
clean and poisoned data. Pruning may inadver-
tently eliminate some clean information, leading to
a potential decline in overall model performance.

To overcome the above limitations, we pro-
pose an effective backdoor defense method, i.e.,
Backdoor defender in Wind tunnel (dubbed
BadWindtunnel), that avoids data and model re-
ductions, as shown in Figure 1c. In our method,
we create a simulated training scheme, similar to a
wind tunnel, to reveal poisoned data for real train-
ing. The simulated training does not affect the final
model and allows precise control over training con-
ditions to better model the learning behavior of
poisoned data. The learning behavior during simu-
lated training can be used to reveal poisoned data,
guiding the gradient descent direction and rate in
real training. Thus, BadWindtunnel manages back-
door attacks without reduction to data or pruning
of the model, preserving all detailed information.

Specifically, in BadWindtunnel, we propose to
use confidence variance instead of normal-used loss
to quantify learning behavior in simulated training.
The confidence variance indicates shifts in confi-
dence throughout a training epoch, representing the
model’s learning speed, with poisoned data exhibit-
ing higher values due to its greater learnability (Du
et al., 2020; Hong et al., 2020; Li et al., 2021a). In
addition, we control the noise rate in the simulated
training to amplify the difference in confidence vari-
ance between the clean and poisoned data. Given
the high robustness of poisoned data (Yang et al.,
2021; Wei et al., 2024; Wu and Wang, 2021; Zhao
et al., 2024), its learnability remains stable at the
same noise level, making the confidence variance
more distinguishable. To further reveal poisoned
data, we propose a two-step strategy, including tar-
get label identification and poisoned data revealing.
The strategy ensures that the confidence variance
distribution is unaffected by semantic category, fo-
cusing solely on whether the data is poisoned. The
main contributions are as follows:

* We propose an effective backdoor defender,
i.e., BadWindtunnel, without reducing data
or pruning neuron connections. It models
poisoned data’s learning behavior to generate
poison-revealing data, guiding the gradient
descent direction and rate in real training.

* We propose a novel backdoor defense scheme,
i.e., simulated training, which isolates and

controls the training environment to thor-
oughly explore poisoned data characteristics
without affecting real training.

* We propose an easy but effective learning be-
havior quantification method, i.e., confidence
variance, which leverages the high learnabil-
ity of poisoned data and applies to multiple
backdoor attacks.

Extensive experiments show that: (1) Our
method effectively defends against the backdoor,
achieving an average 21% lower attack success rate
than the second-best defender and maintaining sta-
ble clean accuracy. (2) A comprehensive ablation
study validates and visualizes the effectiveness of
the simulated training, confidence variance, two-
step strategy, and other key designs. (3) By increas-
ing the proportion of poisoned data, we validate
the robustness of the proposed model, which does
not require any hyperparameter tuning.

2 Related Work

2.1 Characteristics of Poisoned Data

High Learnability. Many studies find that poi-
soned data are easier to learn because they only
need to identify the triggers, unlike text semantics,
which require full-text analysis. Zheng et al. (2021)
observe that poisoned data often activate shortcuts
from input to output layers. Other research shows
that the average loss of backdoor samples drops
faster than that of clean data after each training
epoch (?Li et al., 2021a; Tang et al., 2023). In this
paper, we also find that the confidence of poisoned
data increases faster, further supporting this view.

High Robustness. Backdoor’s high robustness is
a key trick in its defenses. Due to the strong corre-
lation between trigger and target label, backdoors
are less affected by noise. Studies show that noisy
poisoned data can still lead to stable outputs (Gao
et al., 2019; Yang et al., 2021; Zhai et al., 2023),
and noisy backdoored models also maintain con-
sistent outputs for poisoned data (Wei et al., 2024).
Even after random label scrambling and retraining,
backdoor models retain the trigger-target label asso-
ciation (Cao et al., 2024). In our work, we leverage
this robustness by creating a high-noise simulated
training environment to amplify the learnability
differences, enhancing defense effectiveness.

9260

2.2 Methods for Backdoor Defense

Data Reduction Methods. Some researchers
focus on modeling statistical features of poi-
soned data to eliminate poisoned data or triggers.
RAP (Yang et al., 2021) and BDMMT (Wei et al., 2024)
identify and remove data with high robustness. Xi
et al. (2024) uses KL divergence in active space to
distinguish poisoned data. ONION (Qi et al., 2021a)
removes words that increase text perplexity. He
et al. (2023) eliminate words falsely associated
with the target label. Qi et al. (2021c) removes trig-
gers through multiple translations. However, these
methods struggle with semantic-invariant attacks
and waste the information in poisoned data.

Model Pruning Methods. Liu et al. (2018) try to
prune neurons inactive during clean data training.
Li et al. (2021Db) tries to reconstruct the compro-
mised neural network through knowledge distil-
lation. Wu and Wang (2021) employ adversarial
weight perturbation to enhance the difference be-
tween clean and malicious neurons. Tang et al.
(2023) use the model’s shallow network to cre-
ate a honeypot for backdoor attacks. MuSclelLoRA
encourages models to prioritize learning high-
frequency clean mappings (Wu et al., 2024). How-
ever, these pruning methods necessitate a compre-
hensive understanding of the attacked model, limit-
ing their generalizability and usability. Moreover,
pruning may eliminate some correct connections,
potentially reducing model performance.

In conclusion, current methods often use re-
moval or pruning for defense, leading to informa-
tion loss. This paper proposes a non-reductive train-
ing scheme to leverage the high learnability and
robustness, enhancing defense effectiveness.

3 Method

3.1 Problem Formulation

Backdoor Attacks. Given a raw dataset D =
{(zi,v:)}Y, with N samples, where z; is a
text and y; is the semantic label. We set y =
{v0, Yi, - . ., yn }. Backdoor attack aims to manipu-
late the outputs of the victim model M to satisfy:

Tinput = Lg,

ZTinput = 7-(531')7

M(xinput) = {yi’ (1

ytarget)

in which 7(+) denotes the trigger injection function,
and Yrarger 15 a predefined target label.

The typical backdoor attack usually employs
data poisoning. Specifically, given an attack rate

%/, the attacker randomly selects a sub-
set Z from the dataset D and poisons it into
T = {(7(2i), Ytarger) }.op- The poisoned dataset,
Dpoison = (D —Z) UZ', is then used to train M.
Thus, data in Dpisen also contains a hidden label
Ypoison,i> Which indicates the poisoned status with 1
denotes poisoned. Notably, such attacks are often
implicit, with the attacker choosing data with se-
mantic label y; = Yarger rather than forcibly chang-
ing it. This implicit poisoning aligns all texts and
labels in Dyoison, increasing defense complexity.

Backdoor Defends. Upon receiving Dpoison, the
defenders do not know which data are attacked,
nor do they have any knowledge of the target label
Ytarget OT specific trigger patterns 7(-). The ultimate
goal of the defenders is to identify and cleanse the
poisoned inputs 7(x;) or reform the victim model
M, enabling it to predict the real semantic labels
1y; without affecting the performance on clean data.
Appendix A summarizes main notations.

r =

3.2 Overview

Figure 2 illustrates the framework of our pro-
posed BadWindtunnel, which consists of three
main steps: (1) Simulated Environment Building:
We construct the environment by label balancing
and noise injection to build Df)oison with amplified
distinction in learning behaviors. (2) Learning
Behavior Modeling: We generate the confidence
variance by simulate training on Dy, to quantify
the learning behavior. Then, use it to identify the
target label. We fit target data with a Gaussian mix-
ture model (GMM), using GMM’s posterior prob-
ability to generate poison-revealing data D .,
The modeling quality is evaluated. If the modeling
is substandard, revert to the environment building
step and increase the noise rate. Otherwise, pro-
ceed to (3) Real Train: Use Djoison to produce a

clean model by loss-corrected real training.

3.3 Simulated Environment Building

We first establish a simulated environment with
controlled training conditions. It transforms a raw
poisoned dataset, Dpojson, into D;Oison to augment
both the modeling accuracy and defense efficacy
in subsequent learning behavior modeling. This

process consists of two stages:

Label Balancing. The data quantity across cate-
gories may be imbalanced in the raw data, leading
to uneven training frequency and distinct confi-
dence variances between categories. To mitigate

9261

4 @ Simulated N (7
Environment
Building

1.1 Label Balance

@ Learning Behavior Modeling
2.1 Learning Behavior Quantification

2.2 Target Label Identification .«
—_—

N(® Real Training h

TRaise Noise_ ™

Vnger = argmax Count(y, Acs,,)) oG
Vi M)‘ :1
lAcmrgcl
2.3 Poisoned Data Revealing
Fit . O =t
—| GMM L 3 3
Ay P, =GMM(Ac,,,)

w,=atanh(p,)
/

Figure 2: The framework of BadWindtunnel. Take yareee = 1 for example. (D Given poisoned data, BadWindtunnel
initially builds the simulated training environment through label balancing and noise injection. 2) The processed
data undergoes simulated training, quantifying learning behavior. Subsequently, the poisoned data is revealed and
assigned weights through a two-step strategy: target label identification and poisoned data revealing. 3) Finally, we
use the poison-revealing data for loss-corrected real training.

this, we initially balance the labels by upsampling
underrepresented categories.

Noise Injection. As the poisoned data have high
robustness, the text semantics are susceptible to
equivalent noise rate. By introducing artificial
noise, we can accentuate the learnability difference
between clean and poisoned data, enhancing the
accuracy of subsequent modeling. We achieve this
by randomly swapping the order of letters in % of
the words within the text. The noise rate increases
with the number of simulated training. Details are
shown in Appendix B.

3.4 Learning Behavior Modeling

In this section, we first generate confidence vari-
ance by simulated training on D{,oison to quantify
learning behaviors. We then utilize this confidence
variance in two phases: target label identification
and poisoned data revealing, resulting in poison-
revealing data Dji;c o, = { (24, yi, wi) }iL .

3.4.1 Learning Behavior Quantification

As shown in Figure 3, the confidence variance Ac
of poisoned data is significantly larger than that of
the clean data. Thus, we use it to quantify learning
behavior. Given a text x;, its confidence c; is:

¢; :=max(hg, Y, ..., hy),
. 2
h), = Softmax(h,,) = ie/xpﬂ’ @
Zm eXp(hm)

in which h,, = P(y; = n|z;) is the probability of
the model classifying x; into category n. Y is the
amount of semantic categories. We can calculate
the confidence variance Ac; as:

Ac; = ¢i(1) = ¢i(0), 3
where ¢;(0) and ¢;(1) are the confidence values
before and after a training epoch, respectively.

Notably, many studies recognize the high learn-
ability of poisoned data with loss variance (Li et al.,
2021a; Tang et al., 2023). In contrast, we use con-
fidence as the quantification standard. By defini-
tion, confidence reflects the model’s assurance in
classifying text into “any category”’, whereas loss
indicates the certainty of the “real category”. Confi-
dence can reveal numerical differences more easily
and earlier without requiring higher model capabil-
ity or deeper learning. Thus, we prefer confidence
variance for simplicity and early detection.

3.4.2 Target Label Identification

We identify the target label rather than model the
raw data directly, as the raw data contains two dis-
tinct distributions: (1) semantic category and (2)
poisoned status. Isolating the target label helps re-
move bias from the semantic category, ensuring a
purer distribution for more accurate results.
Identifying the target label leverages the observa-
tion that the poisoned data have higher confidence
variances. Define Count(y, C') as the number of
category’s occurrences under condition C'. The

9262

target label yrger is the category with the highest
proportion in the top 5% of data with the most
significant confidence variance Acs9):

Ytarget = arg H?X Count(y, Ac(5%)). 4)

This way, the non-target data can be immediately
classified as clean with weights w; = 1. We only
need to model the target data’s confidence variance

Actarget = {Aci|yi = Ytarget, Yi € y}
3.4.3 Poisoned Data Revealing

As shown in Figure 3, the poisoned status signifi-
cantly affects the confidence variance distribution.
We aim to leverage this feature to reveal poisoned
data easily, efficiently, and effectively without hy-
perparameters. Gaussian Mixture Models (GMMs),
a popular unsupervised technique (Reynolds et al.,
2009; Arazo et al., 2019), are used for this pur-
pose. The probability density function of a GMM
with K components in terms of confidence vari-
ance Acgrge 1s defined as:

K
P(Actarget) = Z P(Actarget,k)7 (%)

k=1
in which Acgrger i is the set of Acrger belonging
to class k and Acgrers ~ N (1ig, 07). We use a
two-component (clean-poisoned) GMM to model
the distribution. The probability p; of z; being
poisoned, calculated by its corresponding Acrget,s
is determined using GMM'’s posterior probability:

Di = P(k = 1’Actzlrget,i)

_ P(Acurgerilk = 1)P(k = 1) (6)
P (Actarget,i) ’

where k£ = 0 (1) denotes a clean (poisoned) data.

We aim to adjust the loss weight of each x; in
real training based on p;. The weight should be
negative if the data is likely poisoned (p; — 1),
positive if it is likely safe (p; — 0), and have min-
imal impact if its poisoned probability is unclear
(pi — 0.5). The soft weight can be achieved using
the inverse hyperbolic tangent function:

/

w; = atanh(p;) = %ln <1 jig) , (D
where p, = —1.6p; + 0.8 is a linear transformation
of p;. Since the function is monotonically increas-
ing in [—1,1] and p; € [0, 1], we use this scaling
to ensure the maximum weight is 1, maintaining
consistency with the weights of non-target data.

Histogram of {Aci[ypoison.i = 0, A¢; € ACrarget }

1,A¢; € Mg}

Histogram of {Ac;[yjoison.i
——GMM fit

Frequency

ol
-0.2 0 0.2 0.4
Value

Figure 3: The actual distribution and GMM fitting re-
sults of confidence variance for clean and poisoned data
within the target data. The poisoned status is indicated
by Ypoison, With O for clean and 1 for poisoned, and are
colored for clarity.

By combining the weights from Section 3.4.2
and Section 3.4.3, we get the poison-revealing data

;;oison = {(wh Yi wZ)}ZZ\LO

3.5 Real Train

We design an iterative mechanism to improve de-
fense efficacy. If the modeling is unsatisfactory,
we introduce additional noise and return to the sim-
ulated environment building phase; otherwise, it
proceeds to the real training phase. The modeling
quality is quantified by the Davies-Bouldin Index
(DBI), with a detailed explanation in Appendix C.

The real training aims to maximize information
utilization from all data. It involves gradient de-
scent on clean data and gradient ascent on poisoned
data. The corrected loss based on D, is:

poison
b= >

wiLee(Mo(x4),y:). (8)
(x4 ,yi,w;) EDH

poison

This approach avoids any data reduction or model
pruning. Comprehensively using the information
enhances the defense efficacy of our method.

The time complexity of BadWindtunnel is ana-
lyzed in Appendix D.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct experiments on four
widely used text classification datasets: SST-
2 (Socher et al.,, 2013), HSOL (Davidson
et al.,, 2017), IMDB (Maas et al., 2011) and
AG News (Zhang et al., 2015). The former three
are binary-classification datasets, while AGNews
is a four-classification dataset. More details can be
found in Appendix E.

9263

Data Attack No-Defense ONION RAP Z-SEQ MuScleloRA BadActs Ours

CACCT ASR| CACCtT ASR| CACCtT ASR| CACCT ASR| CACCtT ASR| CACCt ASR||CACCtT ASR|

BadNets| 91.31 9627 87.29 19.34 90.21 73.93 91.24 6.84 8325 21.62 8890 0.68] 90.21 0.00*

S AddSent| 9122 100.00 87.46 93.55 90.17 100.00 91.15 20.57 81.65 45.59 89.25 37.04| 91.37 0.00%
B Stylebkd| 90.06 8520 84.16 8571 89.12 8480 8791 7055 8242 37.11 8834 70.94| 89.21 32.87
Synbkd | 90.09 9542 8496 9539 79.21 90.13 77.57 33.18 84.22 28.73 88.15 87.21| 88.81 7.18

BadNets | 89.52 99.01 89.26 8.57 71.60 59.35 89.52 30.15 89.54 1.15 89.54 0.30| 91.57 0.00%

5‘ AddSent| 91.59 99.99 91.16 94.18 91.29 99.99 91.55 5.23 89.54 11.93 89.09 16.94| 91.48 0.00*
(£ Stylebkd | 89.08 8547 87.68 80.76 88.76 8491 76.58 86.59 89.42 18.19 86.37 62.77| 89.05 3191
Synbkd | 90.28 98.27 89.53 90.18 89.52 98.12 83.67 86.11 89.34 0.80 88.52 39.83| 90.75 5.72
BadNets | 93.93 86.44 93.55 4926 9236 6594 8659 637 86.43 13.08 92.07 12.03| 92.52 1.19
g AddSent| 93.90 96.33 93.55 66.25 8393 77.50 8499 7.09 8633 1432 92.11 67.31| 92.55 947
E Stylebkd | 93.74 98.93 93.32 99.20 91.76 98.64 50.06 81.05 86.11 64.40 9191 0.06| 91.32 0.03
Synbkd | 93.73 41.67 93.37 4221 8329 3843 89.53 26.78 86.25 3347 91.89 3.28| 91.67 3.82

, BadNets| 9397 8355 9269 6.75 9370 59.67 92.16 028 8835 2.03 92.12 92.83| 88.39 0.00%

£ AddSent| 94.32 100.00 93.16 81.62 79.94 80.00 8329 0.0l 8797 99.96 92.19 72.95| 93.44 0.00%
é Stylebkd | 94.32 100.00 93.16 81.62 79.94 80.00 83.29 0.01 87.97 9996 92.19 7295 92.26 32.52
Synbkd | 94.24 99.83 9323 96.52 93.61 99.79 8522 5.87 8746 9729 9220 57.24| 9338 691
Average 9221 91.65 9047 68.19 86.78 80.70 84.02 29.17 86.64 36.85 90.30 43.40| 91.12 8.23

Table 1: CACC and ASR on four datasets with four attackers. Six defenders are tested. The grayed out records

the raw model without defense. All the results are in %. The best are in bold and the second best are in underline.
* denotes the attainment of the theoretical optimum outcome.

Backdoor Attackers. We evaluate our method
with four widely used attackers: (1) BadNets se-
lects rare word like “cf” as a trigger and randomly
inserts it into the text (Kurita et al., 2020). (2)
AddSent uses short sentence like “I watch this 3D
movie” as a trigger and randomly inserts it into the
text (Dai et al., 2019). (3) Stylebkd employs Bible
style as a trigger (Qi et al., 2021b). (4) Synbkd
uses predefined syntactic template as a trigger (Qi
et al., 2021c). All attackers are implemented by the
open-source project OpenBackdoor!.

Backdoor Defenders. We compare our method
against five backdoor defenders, each addressing
different aspects like data reduction and model
pruning. These include: (1) ONION minimizes
the words contributing to text confusion (Qi et al.,
2021a). (2) RAP reduces the texts with strong pre-
diction robustness to noise (Yang et al., 2021).
(3) Z-SEQ reduces words with spurious correla-
tions to the target label (He et al., 2023). (4)
MuScleLoRA encourages the model to prioritize the
high-frequency clean mappings (Wu et al., 2024).
(5) BadActs purifies the poisoned data by aligning
abnormal activations with optimized clean activa-
tion intervals (Yi et al., 2024). All defenders are
tested using their open-source codes and default
hyperparameters.

"https://github.com/thunlp/OpenBackdoor

Evaluation Metrics. We evaluate defense per-
formance using two metrics: (1) Clean Accu-
racy (CACC): The likelihood of victim model
correctly classifying clean data. A good defense
should maintain a high CACC, close to the orig-
inal undefended value. (2) Attack Success Rate
(ASR): The likelihood of the victim model mis-
classifying poisoned data as the target label. A
successful defense should achieve a lower ASR.

Parameter Settings and Implementations. Our
experiments are conducted on a workstation with
an Intel Xeon Silver 6230R CPU, three NVIDIA
A40 GPUs, and 503 GB of RAM. We employ the
widely-used BERT-base-uncased model (Devlin
et al., 2019). The attack rate is set at 20%, con-
sistent with the original attack settings (Qi et al.,
2021b; Yi et al., 2024). We use the poisoned data
for five epochs of backdoor training with a learning
rate of 2e — 5 to get the poisoned model.

4.2 Effectiveness Test

We test BadWindtunnel’s defense effectiveness
against backdoor attacks using four datasets, each
exposed to four different attackers. No defense and
five other defenders are compared. Each experi-
ment runs five times independently, and we log the
average CACC and ASR for reliability.

Table 1 displays the experimental results, with
BadWindtunnel consistently excelling across in all

9264

https://github.com/thunlp/OpenBackdoor

10 BadNets 10 AddSent 10 Stylebkd 10 Synbkd
0o m M= =====1y 3 ;
- - - —— - m-y
0 0.8 L 0.8 O 0.8 0 0.8
2 0.7 2 0.7 2 0.7 2 0.7
0.6 0.6 0.6 0.6
0.5 0.5 0.5 0.5
0.100.150.200.25 0.30 0.35 0.40 0.100.150.200.25 0.30 0.35 0.40 0.100.150.200.25 0.30 0.35 0.40 0.100.150.200.25 0.30 0.35 0.40
Attack Rate Attack Rate Attack Rate Attack Rate
BadNets AddSent Stylebkd Synbkd
1.0 1.0 s —u 1.0 1078 o w—w—p—a
0.8 ././._._._./- 0.8 0.8 0817
- - - ,‘—’I/.'—H -
gi P 0.6 o 0.6{0="" = 0.6
2 . 0 0.4 W—‘——‘ 2 0.4 v 0.4
02) gty g To5 o — v <,
0.0j6—o—0—86—9o—9o—9¢ 0.0{e—e—o—o——0—¢ 0‘0 0.0
0.100.150.200.25 0.30 0.35 0.40 0.100.150.200.25 0.30 0.35 0.40 "70.100.150.200.250.30 0.35 0.40 0.100.150.200.25 0.30 0.35 0.40
Attack Rate Attack Rate Attack Rate Attack Rate
No-Defense ONION —m— RAP Z-SEQ —4— MuScleLoRA BadActs —e— BadWindtunnel (Ours)

Figure 4: Robustness test. Defensive results of different defenders against backdoor attack rates of 10%-40% under
four attackers. Each column represents an attacker, each row corresponds to an evaluation metric, and each line
represents a defender. Mean and standard deviation values are plotted for each case.

settings and metrics. It achieves a top-two ASR
reduction in all cases and reaches the theoretically
optimal value in 6 cases, with an average ASR
reduction that is 21% higher than that of the next-
best defender. In maintaining CACC, it secures
top-two results in 14 out of 16 cases, boasting
the highest average CACC. Although Z-SEQ out-
performs BadWindtunnel in some ASR reduction
cases in AGNews, this comes with a significant
CACC decrease. The low ASR on most defenders
on IMDB dataset is due to its longer texts charac-
teristics. Stylebkd and Synbkd modifying entire
texts are less effective on long texts. Therefore,
low initial ASR limits defense potential. Besides,
most methods experience a notable performance
decline against Stylebkd and Synbkd attacks, while
BadWindtunnel maintains a stable defense. These
results underscore BadWindtunnel’s superiority in
backdoor defense, attributed to its full utilization
of data and model information.

4.3 Robustness Test

We evaluate the robustness of BadWindtunnel and
five competitors against attack rates ranging from
10% to 40%, which represent the fraction of the
poisoned data in Dpison. These evaluations use the
SST-2 dataset, a standard NLP resource, ensuring
a precise assessment of each method’s robustness.

Figure 4 presents the average and standard devia-
tions of the CACC and ASR from five independent
runs. While most methods’ defenses deteriorate
as attack rates increase, our method consistently
performs well. Notably, under the Synbkd attack,
BadWindtunnel’s ASR is higher at lower attack
rates, possibly because the smaller proportion of

. Attackers
Metrics Defenders | 5. iNets AddSent Stybkd Synbkd
BadWindtunnel 91.6 915 89.1 90.8
w/o Lab.Bal. -2.3 -1.9 343 462
w/o N.Inject -27.9 -22.3 -0.1 -38.1
CACCT w/o TwoStep -37.7 -41.8 -15.0 -25.7
w/o SoftWeight -2.0 -1.9 -0.2 2.0
w/o Ac -16.9 94 4.6 -17.7
BadWindtunnel 0.0 0.0 319 5.7
w/o Lab.Bal. +99.8 +100.0 +42.2 +92.7
ASR | w/o N.Inject +70.4 +41.2 +11.8 +74.6
w/o0 TwoStep +1.0 0.0 +326 +2.2
w/o SoftWeight +99.4 +99.9 +12.5 +82.9
w/o Ac +20.0 +40.0 +22.6 +35.7

Table 2: Ablation study. Five simplified versions on
four attackers are tested. We record the CACC and ASR
on the original BadWindtunnel, as well as changes in
the corresponding values on the simplified versions. All
the results are in %. The best are in bold.

poisoned data allows clean data to catch up in learn-
ability through additional training. Despite this,
BadWindtunnel’s ASR still ranks second, empha-
sizing its stable defense. Interestingly, BadActs’
performance improves as the attack rate increases,
a phenomenon not discussed in its original paper.
We verified this result using the provided source
code, only altering the attack rate. Overall, these
results highlight BadWindtunnel’s effective and
stable defense against backdoor attacks.

4.4 Ablation Study

We assess the key designs of BadWindtunnel
with four attack methods through five simpli-
fied versions: w/o Lab.Bal. (without label
balance), w/o N.Inject. (without noise injec-
tion), w/o TwoStep (without the two-step strategy),

9265

Frequency
Frequency

-0.2 0 0.2 0.4 -0.2 0 0.2 0.4
Value Value

(a) All Data (b) Semantic Category

—GMM fit
Histogram of {Ac;|y; € y}

>
qg) Histogram of {Ac;|y; = 0,y; € y}
qg)_ Histogram of {Ac;|y; = 1.y, € y}
s Histogram of {Ac;|ypoison: = 0. € y}
"—'—'—‘L Histogram of {Aci|ypoisoni = 1, Ui € Y}
-0.2 0 0.2 0.4
Value

(c) Poisoned Status

Figure 5: Confidence variance distribution in all data. y;
represents the semantic category. Ypoison,; represents the
poisoned status label, where 0 is clean and 1 is poison.
The figure takes 1iarger = 1 as an example.

w/o SoftWeight (directly use poisoned probability
as weights), and w/o Ac (substituting loss for con-
fidence). We use HSOL for evaluation, chosen for
its label imbalance, to highlight the effectiveness
of label balancing. Each experiment runs five times
independently, with average performance recorded.
Table 2 shows that BadWindtunnel notably sur-
passes all the simplified versions, validating its key
designs. Omitting any of these features results in a
considerable increase in ASR. Specifically, exclud-
ing label balancing and noise injection consider-
ably reduces the CACC, as these elements enhance
learning behavior. Removing the two-step strategy
also leads to a sharp decrease in CACC, as the learn-
ing behavior, influenced by the semantic category,
results in incorrect poisoned status identification.
Replacing soft weights with hard weights causes a
significant increase in ASR, with negligible CACC
changes, suggesting that while hard weights align
with the defense strategy, they can be overly abso-
lute. Substituting loss for confidence has a minor
effect but is less effective than the original method,
indicating the superiority of the proposed confi-
dence model. In summary, all the proposed key
designs are vital for the defense’s effectiveness.

4.5 Visualization Test

We visualize the importance of the two-step strat-
egy, i.e., identifying the target label first and then
revealing the poisoned data. Figure 5a shows the
confidence variance Ac distribution and the fitted
GMM curve for all datasets. The distribution can
be divided into two types: (1) the semantic category

Frequency
Frequency

-0.2 0 0.2 0.4 0.6
Value

(b) ytarget =1

-0.2 0 0.2 0.4 0.6
Value

(a) ylarget = 0

o
o

Frequency
Frequency

o
)

0 0.2 0.4 0.6
Value

(d) Yrarget = 3

Histogram of {Ac;|y; = 2,y; € y}

s
N

0 0.2 0.4 0.6
Value

(c) Yrarget = 2
Histogram of {Ac;|y; = 0,y; € y}

Histogram of {Ac;|y; = 1,y; € y} Histogram of {Aci|y; = 3, y; € y}

it AC(',‘M

Figure 6: Visualization of target label identification. We
present the distribution and the 5% percentile point of
confidence variance. Four categories are color-coded for
clarity. Each sub-graph represents a target label setting.
1; indicates the semantic label.

(shown in Figure 5b) and (2) the poisoned status
(shown in Figure 5c). Directly modeling the mixed
distribution may overly focus on the semantic cate-
gory, leading to incorrect GMM fitting and failing
to distinguish the poisoned status. On the contrary,
as shown in Figure 3, identifying the target label
first allows GMM to focus on the poisoned status,
accurately revealing the poisoned data.

We visualize the effectiveness of confidence vari-
ance in identifying the target label. Figure 6 shows
the confidence variance distribution for different
categories and the Acsy, percentile point, with
various target label sets. Due to space limitations,
we only display the results on AGNews under Bad-
Nets attack. AGNews is chosen because it is a
four-class dataset, making target label identifica-
tion more challenging and validating our method
robustly. More experiments are provided in Ap-
pendix F.1. In all scenarios, the category corre-
sponding to the target label shows a significant
increase in confidence variance and constitutes the
majority within the 5% percentile, confirming the
effectiveness of confidence variance.

The ability of confidence variance to reveal the
poisoned status is visualized in Figure 3. Addi-
tional experiments on all datasets are provided in
Appendix F.2.

9266

5 Conclusion

This paper introduces BadWindtunnel, a novel de-
fense scheme for backdoor attacks in NLP. It builds
a high-noise simulated training environment to re-
veal poisoned data without data reduction or model
pruning. Precisely, we quantify the high learnabil-
ity of poisoned data using confidence variance and
model it with the GMM in a two-step strategy. The
poison-revealing data guides the gradient descent
direction and rate during the defensive real training.
Experimental results show that BadWindtunnel re-
duces the attack success rate by an additional 21%
compared to the second-best defender on average
and demonstrates robustness. Ablation and visual-
ization experiments further validate the effective-
ness of our key designs.

6 Limitations

We propose a confidence variance-based simulated
training in the high-noise environment against back-
door attacks in NLP. Our approach uses the learn-
ability of poisoned data to quantify learning be-
havior and reveals the poisoned data to guide the
defensive real training.

However, the learnability of poisoned data poses
a limitation when the clean data vastly outnumber
it. Over more training chances, clean data can
match the learning progress of the poisoned data,
thus masking their learning behavior differences.
We mitigate the quantity disparity from category
imbalance via label balancing but cannot eliminate
it when the attack rate is extremely low. As shown
in Section 4.3, BadWindtunnel maintains optimal
performance under most attacks when the attack
rate is 10%. However, its performance starts to
decrease for semantic invariant attacks like Synbkd.

Given this limitation, future research could ex-
plore further ways to magnify the differences in
learnability. For instance, we can try to increase
the learning difficulty of clean data by creating
more complex artificial noise or investigating dif-
ferent perturbation methods. Alternatively, efforts
could be made to enhance the learnability of the
poisoned data, such as implementing controlled
loss reduction in simulated training.

7 Ethics Statement

Our study introduces an efficient method to protect
NLP models from backdoor attacks. We believe
that our proposed method will contribute to miti-
gating security risks associated with such attacks.

All experiments conducted in this paper utilize es-
tablished open datasets. We do not anticipate any
direct negative consequences to the work, and we
hope to expand upon our research and advance the
development of more robust defense methods in
future investigations.

Acknowledgments

This work is sponsored in part by the NUDT foun-
dation under Grant No.24-ZZCX-JDZ-07 and Na-
tional Natural Science Foundation of China under
Grant No. 62421002.

References

Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor,
and Kevin McGuinness. 2019. Unsupervised label
noise modeling and loss correction. In International
Conference on Machine Learning, pages 312-321.
PMLR.

Bochuan Cao, Yuanpu Cao, Lu Lin, and Jinghui Chen.
2024. Defending against alignment-breaking attacks
via robustly aligned llm. Annual Meeting of the As-
sociation for Computational Linguistics.

Nicholas Carlini, Matthew Jagielski, Christopher A.
Choquette-Choo, Daniel Paleka, Will Pearce, Hyrum
Anderson, Andreas Terzis, Kurt Thomas, and Florian
Tramer. 2024. Poisoning web-scale training datasets
is practical. In IEEE European Symposium on Secu-
rity and Privacy, pages 407-425. IEEE.

Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael
Backes, Shiqing Ma, Qingni Shen, Zhonghai Wu, and
Yang Zhang. 2021. Badnl: Backdoor attacks against
nlp models with semantic-preserving improvements.
In Annual Computer Security Applications Confer-
ence, pages 554-569.

Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. 2019. A
backdoor attack against Istm-based text classification
systems. IEEE Access, 7:138872—138878.

Thomas Davidson, Dana Warmsley, Michael Macy, and
Ingmar Weber. 2017. Automated hate speech detec-
tion and the problem of offensive language. In AAAI
Conference on Artificial Intelligence, volume 11,
pages 512-515.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In North American Chapter of the Associa-
tionfor Computational Linguistics.

Min Du, Ruoxi Jia, and Dawn Song. 2020. Robust
anomaly detection and backdoor attack detection via
differential privacy. The International Conference on
Learning Representations.

9267

https://doi.org/10.18653/v1/2024.acl-long.568
https://doi.org/10.18653/v1/2024.acl-long.568
https://doi.org/10.1109/sp54263.2024.00179
https://doi.org/10.1109/sp54263.2024.00179
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423

Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C. Ranasinghe, and Surya Nepal. 2019.
STRIP: A defence against trojan attacks on deep
neural networks. In Annual Computer Security Ap-
plications Conference, pages 113—125.

Xuanli He, Qiongkai Xu, Jun Wang, Benjamin Rubin-
stein, and Trevor Cohn. 2023. Mitigating backdoor
poisoning attacks through the lens of spurious cor-
relation. In Conference on Empirical Methods in
Natural Language Processing, pages 953-967.

Sanghyun Hong, Varun Chandrasekaran, Yigitcan Kaya,
Tudor Dumitras, and Nicolas Papernot. 2020. On
the effectiveness of mitigating data poisoning attacks
with gradient shaping. arXiv:2002.11497.

Keita Kurita, Paul Michel, and Graham Neubig. 2020.
Weight poisoning attacks on pretrained models. In
Annual Meeting of the Association for Computational
Linguistics.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu,
Bo Li, and Xingjun Ma. 2021a. Anti-backdoor learn-
ing: Training clean models on poisoned data. Con-

ference on Neural Information Processing Systems,
34:14900-14912.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu,
Bo Li, and Xingjun Ma. 2021b. Neural attention dis-
tillation: Erasing backdoor triggers from deep neural
networks. The International Conference on Learning
Representations.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
2018. Fine-pruning: Defending against backdooring
attacks on deep neural networks. In International
symposium on research in attacks, intrusions, and
defenses, pages 273-294. Springer.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Annual Meeting of the Association for Computational
Linguistics, HLT *11, pages 142-150, USA.

Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao,
Zhiyuan Liu, and Maosong Sun. 2021a. ONION:
A simple and effective defense against textual back-
door attacks. In Conference on Empirical Methods
in Natural Language Processing.

Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li,
Zhiyuan Liu, and Maosong Sun. 2021b. Mind the
style of text! adversarial and backdoor attacks based
on text style transfer. In Conference on Empirical
Methods in Natural Language Processing.

Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang,
Zhiyuan Liu, Yasheng Wang, and Maosong Sun.
2021c. Hidden killer: Invisible textual backdoor
attacks with syntactic trigger. In Annual Meeting of
the Association for Computational Linguistics.

Douglas A. Reynolds et al. 2009. Gaussian mixture
models. Encyclopedia of biometrics, 741(659-663).

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Conference on Empirical Methods in
Natural Language Processing, pages 1631-1642.

Ruixiang Ryan Tang, Jiayi Yuan, Yiming Li, Zirui Liu,
Rui Chen, and Xia Hu. 2023. Setting the trap: Captur-
ing and defeating backdoors in pretrained language
models through honeypots. Conference on Neural
Information Processing Systems, 36:73191-73210.

Jiali Wei, Ming Fan, Wenjing Jiao, Wuxia Jin, and Ting
Liu. 2024. BDMMT: Backdoor sample detection
for language models through model mutation test-
ing. IEEE Transactions on Information Forensics
and Security, 19:4285-4300.

Dongxian Wu and Yisen Wang. 2021. Adversarial neu-
ron pruning purifies backdoored deep models. In
Conference on Neural Information Processing Sys-
tems, volume 34, pages 16913-16925.

Zongru Wu, Zhuosheng Zhang, Pengzhou Cheng, and
Gongshen Liu. 2024. Acquiring clean language mod-
els from backdoor poisoned datasets by downscaling
frequency space. In Annual Meeting of the Asso-

ciation for Computational Linguistics, pages 8116—
8134.

Zhaohan Xi, Tianyu Du, Changjiang Li, Ren Pang, S. Ji,
Jinghui Chen, Fenglong Ma, and Ting Wang. 2024.
Defending pre-trained language models as few-shot
learners against backdoor attacks. Conference on
Neural Information Processing Systems, 36.

Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and
Xu Sun. 2021. RAP: Robustness-aware perturba-
tions for defending against backdoor attacks on nlp
models. In Conference on Empirical Methods in
Natural Language Processing.

Biao Yi, Sishuo Chen, Yiming Li, Tong Li, Baolei
Zhang, and Zheli Liu. 2024. BadActs: A universal
backdoor defense in the activation space. In Annual
Meeting of the Association for Computational Lin-
guistics, pages 5339-5352.

Shengfang Zhai, Qingni Shen, Xiaoyi Chen, Weilong
Wang, Cong Li, Yuejian Fang, and Zhonghai Wu.
2023. NCL: Textual backdoor defense using noise-
augmented contrastive learning. IEEE International
Conference on Acoustics,Speech and Signal Process-
ing.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Conference on Neural Information Pro-
cessing Systems, volume 28.

Shuai Zhao, Leilei Gan, Zhongliang Guo, Xiaobao Wu,
Luwei Xiao, Xiaoyu Xu, Cong Duy Nguyen, and
Luu Anh Tuan. 2024. Weak-to-strong backdoor at-
tacks for LLMs with contrastive knowledge distilla-
tion. arXiv:2409.17946.

9268

https://doi.org/10.18653/v1/2023.emnlp-main.60
https://doi.org/10.18653/v1/2023.emnlp-main.60
https://doi.org/10.18653/v1/2023.emnlp-main.60
https://doi.org/10.18653/v1/2020.acl-main.249
https://doi.org/10.18653/v1/2021.emnlp-main.752
https://doi.org/10.18653/v1/2021.emnlp-main.752
https://doi.org/10.18653/v1/2021.emnlp-main.752
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/10.18653/v1/2021.acl-long.37
https://doi.org/10.18653/v1/2021.acl-long.37
https://doi.org/10.1109/TIFS.2024.3376968
https://doi.org/10.1109/TIFS.2024.3376968
https://doi.org/10.1109/TIFS.2024.3376968
https://doi.org/10.18653/v1/2024.acl-long.441
https://doi.org/10.18653/v1/2024.acl-long.441
https://doi.org/10.18653/v1/2024.acl-long.441
https://doi.org/10.18653/v1/2021.emnlp-main.659
https://doi.org/10.18653/v1/2021.emnlp-main.659
https://doi.org/10.18653/v1/2021.emnlp-main.659
https://doi.org/10.18653/v1/2024.findings-acl.317
https://doi.org/10.18653/v1/2024.findings-acl.317
https://doi.org/10.17023/800Q-PG80
https://doi.org/10.17023/800Q-PG80

an unbelievably stupid film , though occasionally
fun enough to make you forget its absurdity .

random select {n~t%] words

an unbelievably stupid film , though occasionally
fun enough to make you forget its absurdity .

random swap adjacent letters’ order

an uneblievably stupid film , though occasionally
fun enough to amke you forget its absurdity .

Figure 7: Instruction of noise injection. The sentence
contains 14 words, and we set the noise rate t = 10%.
Thus, two pairs of adjacent letters’ order are swapped.

Songzhu Zheng, Yikai Zhang, Hubert Wagner, Mayank
Goswami, and Chao Chen. 2021. Topological de-
tection of trojaned neural networks. Conference on
Neural Information Processing Systems, 34:17258—
17272.

A Notations

Detailed notation of the main symbols is provided
in Table 3. Notably, y; and ypoison are the private
attributes of each sample, while ¥rger 1S a public
target label defined by the attacker.

B Details of Noise Injection

Given a dataset Dpison With IV samples and a noise
rate t%, we inject noise into all samples. Specifi-
cally, for any sample x; in Dpoison, let it contains
n words. As illustrated in Figure 7, we randomly
select [n - t%] words from ;. For each selected
word, we randomly choose a pair of adjacent letters
and swap their order. This noise injection is cumu-
lative, with subsequent rounds of noise injection
applied to already noise-injected samples.

C Modeling Quality Evaluation

The revealing performance of poisoned data re-
lies on the quality of GMM modeling learning be-
haviors. To enhance defensive effectiveness, we
develop an iterative improvement scheme. When
the modeling is suboptimal, BadWindtunnel intro-
duces additional noise and returns to the simulated
environment-building phase. Thus, we aim to find
an index to identify the modeling quality.

This paper employs the Davies-Bouldin Index
(DBI) as the index. The DBI quantifies the dis-
tances between clusters in the results of a mixture
model fit, with a smaller DBI indicating a better

clustering outcome. DBI is defined as the average
of the maximum inter-cluster similarities:

DBI = — max R;;, 9
2. i 2

in which K denotes the total number of clusters.
R;; represents the similarity between cluster ¢ and
cluster 5 which is defined as:

Si + 8
b
dij

R;j = (10)
in which s; denotes the average distance from all
samples in the i-th cluster to its cluster centre, also
known as the intra-cluster diameter. d;; represents
the center distance between the ¢-th and j-th clus-
ters , also known as the extra-cluster distance.

This study assumes K = 2, thus DBI is re-
duced to DBI = Ry;. A lower DBI value indicates
smaller intra-cluster diameter (sg and s1) and larger
extra-cluster distance (dg;), which correspond to
better clustering results. Specifically, a lower DBI
signifies superior modeling. In practice, the DBI
can be computed using the davies_bouldin_score
function from the sklearn package.

D Time Complexity Analysis

In the analysis of the time complexity of
BadWindtunnel, we decompose the main process
into three parts:

(1) Simulated Environment Building: This
phase involves two steps: label balance and noise
injection. Both steps require a single pass through
Dioison thus having a time complexity of O(N).

(2) Simulated Training: This phase involves

three steps:
* Learning Behavior Quantification: This re-

quires a simulated training epoch on M, re-
sulting in a time complexity of O(N).

» Target Label Identification: This involves
traversing and counting the number of each
semantic label within the data with the high-
est confidence variance, resulting in a time
complexity of O(V).

* Poisoned Data Revealing: This step fits
Acarger With a two-component GMM, and
uses GMM to calculate the poisoned prob-
ability of each sample. In practice, we use
the sklearn® package for GMM implementa-
tion, with the training and posterior probabil-
ity calculation time complexity roughly being

2https://scikit-learn.org/stable/index.html

9269

https://scikit-learn.org/stable/index.html

Format

Notations - Descriptions

Calligraphic fonts

Bold lowercase letters

D - raw dataset, Dpoison - poisoned dataset, D

*

poison ~ poisoned-revealing dataset

x - texts, y - semantic labels,

Ac - confidence variances, Acge - confidence variances of target data,
Ac(sy) - confidence variances with top 5% values

Lowercase letters

T - a text, y - a semantic label, ypoison - @ poisoned status label,

Ac - a confidence variance, p - a poisoned probability, w - a loss weight,
Yrarger - the target label, 7 - the attack rate, ¢ - the noise rate

Uppercase letters

M - victim model, P - probability density function, L - loss function,

N - number of raw dataset, N’ - number of poisoned dataset

Table 3: The main notations used in the paper: Calligraphic font signifies a dataset; bold lowercase letter symbolizes
a set of data; lowercase letter denotes a individual data point; and uppercase letter designates a model, a function, or

the cardinality of a set.

O(ng?) and O(nq) respectively. Here, n is
the size of Aciarger, and ¢ is the dimensional-
ity of each Ac;. As Ac; is one-dimensional
(g = 1) and n = N, the time complexity
simplifies to O(N).

(3) Real Training: As the poisoned-revealing
dataset D;oison has the sample number of samples
to the raw poisoned dataset, the time complexity of
real training is O(N).

In summary, the total time complexity of
BadWindtunnel is O(V), on par with the unde-

fended method’s complexity.

E Datasets

We employ four widely used text classifi-
cation datasets covering binary and multi-
class scenarios to evaluate BadWindtunnel:
(a) Stanford Sentiment Treebank (SST-2) is a
sentiment analysis dataset for movie reviews, man-
ually annotated and categorized into (0) negative re-
views and (1) positive reviews (Socher et al., 2013).
(b) Hate Speech and Offensive Language
(HSOL) is a hate speech detection dataset in Twit-
ter comments, manually annotated and classified
into (0) non-hateful and (1) hateful (Davidson
et al., 2017). (c) IMDB is a sentiment analysis
dataset for movie reviews, where the sentiment
orientation is determined based on the IMDB
score: (0) scores < 5 as negative reviews and
(1) scores > 7 as positive reviews (Maas et al.,
2011). (d) AG’s News Corpus (AGNews) is
a subdataset of AG’s corpus of news articles
constructed by assembling titles and description
fields of articles from the four largest classes:
(0) world, (1) sports, (2) business, (3) science and

technology (Zhang et al., 2015). The statistical
details are summarized in Table 4. Most datasets
are label-balanced, but HSOL has a serious
imbalance problem.

F Additional Empirical Results

F.1 Visualize of Target Label Identification

We add visualization experiments over four attack-
ers to demonstrate the effectiveness of confidence
variance in determining the target label. Figure 8
shows that the target label category exhibits a sig-
nificant increase in confidence variance and con-
stitutes the majority within the 5% percentile, con-
firming the effectiveness of confidence variance in
identifying the target label.

F.2 Visualize Of Confidence Variance

We add visualization experiments to demonstrate
the effectiveness of confidence variance in differ-
entiating poisoned states over all cases. Figure 9
shows the confidence variance distribution of target
data and GMM fitting results across four datasets
and four attackers. In all cases, there is a clear
difference between clean and poisoned data, indi-
cating the effectiveness of confidence variance in
quantifying data learning behavior. Notably, in AG-
News, the proportion of clean data seems minimal.
This is because we set the attack rate at 20%, and
AGNews is a four-classification dataset with each
category approximately accounting for 25%. Thus,
in this scenario, the ratio of clean to poisoned data
within the target data is 1:4.

9270

Dataset Train Valid Test Categories Category Proportion Avg. #W
SST-2 6,920 872 1,821 2 (Negative/Positive) 3,310: 3,610 19.2
HSOL 7,071 987 1,999 2 (Non-Hateful/Hateful) 6,206:865 18.1
IMDB 31,500 3,500 15,000 2 (Negative/Positive) 15,756:15,744 231.5

AGNews | 107,961 11,995 7,600 4 (World/Sports/Business/Science) 26,998:27,034:27,029:26,900 31.1

Table 4: Statistics details of datasets. “Train”, “Valid” and “Test” denote the text numbers in the training, validation
and test sets, respectively. “Category” indicates the number of classifications. “Category Proportion” represents the
proportion of each category. “Avg. #W?” signifies the average text length (number of words).

Ytarget = 0 Ytarget = 1 Ytarget = 2 Ytarget = 3

0

g g

= 3

© o

a 8

o w

e 7

o c

(T2l

s g

< &

o >

= 2

© 3

> g

n & plalfinialelb
< T

£ 5

S g

v

-0.2 0 0.2 0.4 06 -0.2 0 0.2 0.4 0.6 -0.2 0 0.2 0.4 06 -0.2 0 0.2 0.4 0.6
Value Value Value Value
Histogram of {Aci|y; = 0,y; € y} Histogram of {Ac;|y; = 1. y; € y} Histogram of {Ac;ly; = 2,y € y} Histogram of {Acilyi =3,y € y} ----Aeiy

Figure 8: Visualization of target label identification. We present the distribution and the 5% percentile point. Four
categories are color-coded for clarity. Each row represents an attacker. Each column represents a target label setting.

1y; represents the semantic label.

F.3 Parameter Analysis

F.3.1 Threshold for Target Label
Identification

A 5% parameter setting is used to identify data with
the highest confidence variance and determine their
label categories, thereby identifying target labels.
As shown in Figure 8, target labels generally have
larger confidence variance, a phenomenon consis-
tent across datasets and attack methods, regardless
of threshold settings. Figure 10 shows CACC and
ASR results when the threshold ranges from 5%
to 30%. The results indicate minimal changes in
CACC and ASR, suggesting that BadWindtunnel
is insensitive to threshold changes, which aligns
with our expectations.

F.3.2 Threshold for DBI

According to the definition of the Davies-Bouldin
Index (DBI), a smaller DBI indicates better clus-
tering and thus more effective backdoor defense.
However, lowering the DBI threshold requires mul-
tiple training rounds to meet the threshold, increas-
ing time consumption. To balance defensive ef-
fectiveness and time efficiency, we set the DBI
threshold at 0.4 in this study. Real training is initi-
ated when DBI is smaller than 0.4; otherwise, the
process returns to learning behavior modeling.

Figure 11 presents the DBI parameter sensitivity
experiment, where we test DBI thresholds rang-
ing from 0.3 to 0.7 and record CACC, ASR, and
time consumption. Results show that as the DBI
threshold increases, model efficiency rises but per-
formance drops. Notably, when the DBI threshold

9271

BadNets AddSent

S
S
t=3

Stylebkd Synbkd

SST-2
Frequency
N w
8 8

i
o
S

o

ol
ol

IMDB

'

HSOL
Frequency
- 28§88

nass

2z
v 8
= =20,000
S g
< 10,000

0

-0.2 0 0.2 0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

Value Value Valu Value
—— GMM fit Histogram of {A¢;[ypoisoni = 0, Aci € Aciarger} Histogram of {Ac;|ypoisoni = 1, Ac; € Aciarger}

Figure 9: Visualization of confidence variance in target data. We present the distribution and GMM fitting results.
Clean and poisoned data are colored for clarity. Each row represents a dataset. Each column represents an attacker.
Ypoison,i Tepresents the poisoned status label, where 0 is clean and 1 is poison. We take #argec = 1 as an example.

BadNets AddSent
—o—0—0— 06— —o——0— 06—
0.8 075
v 0.6)
3 30.50
g 0.4 g
02 0.25
0.0{M-------—-@--------4----8| 0.00{W----4--—- - -0
Threshold Threshold
Stylebkd Synbkd
*—o—o—0—0—90 L 4 L4 A A 4 \ 4 @
0.8 0.8
9] 0.6
E 3
g 06 o4
0.4 0.2
| et _iwnini_Jnteieh_ sttt etieted | R el S S et |
0.1 0.2 0.3 0.1 0.2 0.3
Threshold Threshold

—e— CACC -#-- ASR

Figure 10: Confidence variance’s parameter sensitivity
test on SST-2 dataset.

is below 0.45, the model achieves optimal perfor-
mance across most datasets. The overall experimen-
tal results are exactly in line with our expectations
In summary, BadWindtunnel is relatively insensi-
tive to DBI thresholds. Stable optimal performance
is achieved when DBI is smaller than 0.45. Consid-
ering time efficiency and model performance, we
set the DBI threshold at 0.4.

BadNets AddSent
3{4TA EIEN
\
A=Ak Ak k= A | S S S

Q2 L2

3 3

O ©

> 1 0090000 oo > 1 ——90—90 000 0

O{M----E-- - (M-
Threshold Threshold
Stylebkd Synbkd
A 614
\ N\,
\ \l—‘

o4\ v "\\

3 Ak—A—A 3 \

S 5 “a-A—a—a-A| S 5 | S S |
e —rurara—y o—eo—9o 909090000
-8R o{m----N--8--8--E-8-8-8
0.3 04 05 06 07 03 04 05 06 07

Threshold Threshold

—e— CACC -#-- ASR —&- Time/min

Figure 11: DBI’s parameter sensitivity test on SST-2
dataset.

G Algorithm

Algorithm 1 outlines the detailed defense process
of BadWindtunnel. Given a poisoned dataset
Dpoison, We first build the simulated training en-
vironment in Steps (4-9). Specifically, we initialize
the best memory and noise rate in Steps (5-6). The
label balancing and noise injection are executed
in Step (4) and Step (9). The noise rate is itera-
tively increased in Step (8). Afterwards, a single

9272

round of learning behavior modeling is performed
in Steps (10-17). The modeling primarily involves
simulated training in Steps (10-11) to calculate Ac.
Then, in Steps (12-13), the target label is deter-
mined, and the Acge; corresponding to the target
data is extracted. Following this, in Steps (14-16),
the learning behavior is modeled using a Gaussian
Mixture Model (GMM), and the weights w are cal-
culated using GMM’s posterior probability. This
single-round modeling process is repeated, and the
return condition is evaluated based on the fitted
DBI value. The optimal result stored in best mem-
ory is output in Steps (17-19). Finally, in Steps
(21-23), real training is carried out to obtain the
clean NLP model M.

Algorithm 1 The Process of BadWindTunnel

Input: Dyoison - The poisoned dataset.
Parameter: ¢ - The noise rate.
Output: M - A clean NLP model.
D]’Joison <+ Label balancing on Dpoison
Set the best memory as NULL
t=10%
repeat
t+t+10% # ¢ is max to 100%
D)gison < Inject ¢ noise to Dy i,
c(0), (1) <= Train My on Dy, for one
epoch # Simulated training
11: Ac+ ¢(1) — ¢(0)
12 Yrarger < arg maxy, Count(y, Aciso)
13: ACtarget — {Aci’yi = Ytarget; Yi € y}
14: DBI < Fit GMM on Acgarget
15: p < GMM(Acrget)
16: w < according to Equation (7)
17: if bestDBI] > DBI then
18: best <— {DBI, Acarger, w}
19: end if
20: until Reach maximum number of simulated
train or bestDBI] < 0.4
21: w < best{w]
22: Train M on D

poison
23: return M

R A A ey

_.
e

with w # Real training

9273

