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Abstract

We introduce semantic topology, a novel frame-
work for discourse analysis that leverages Cir-
cuit Topology to quantify the semantic arrange-
ment of sentences in a text. By mapping re-
curring themes as series, parallel, or cross rela-
tionships, we identify statistical differences in
communication patterns in long-form true and
fake news. Our analysis of large-scale news
datasets reveals that true news is more likely to
exhibit more complex topological structures,
with greater thematic interleaving and long-
range coherence, whereas fake news favors sim-
pler, more linear narratives. These findings sug-
gest that topological features capture stylistic
distinctions beyond traditional linguistic cues,
offering new insights for discourse modeling.

1 Introduction

Recent years have witnessed increasing intersec-
tions between bioinformatics and natural language
processing, spanning applications such as phylo-
genetic trees (Enright and Kondrak, 2011), text
mining for automated information retrieval (Chen
et al., 2013), network analysis (Mehler, 2006a), and
bio-inspired computational models for language
evolution (Araujo, 2007). However, many oppor-
tunities remain unexplored, particularly with the
growing availability of data and machine learn-
ing techniques. One such opportunity involves
leveraging topology, originally used to describe the
three-dimensional structure of biological macro-
molecules, to analyze textual structure. Specifi-
cally, we propose applying the Circuit Topology
(CT) framework (Mashaghi, 2021; Mashaghi et al.,
2014; Golovnev and Mashaghi, 2020; Scalvini
et al., 2020, 2023a) to quantify the arrangement of
semantic “contacts” within a sequence of sentences.
In biology, CT models how loops formed by intra-
chain contacts influence macromolecular function;
in language, these loops correspond to semantic

recurrences, representing the re-introduction of a
theme or topic.

Our work builds on the idea that repeated or
closely-related concepts form the backbone of co-
herent discourse. By treating each sentence as a
node and linking sentences with high semantic sim-
ilarity, we can apply CT to capture how themes are
repeated, interleaved, or nested (Figure 1). This
yields topological descriptors—series, parallel, and
cross—whose relative prevalence can characterize
a text’s rhetorical structure. Additionally, we intro-
duce the globularity score as a means of weight-
ing these topological features by the distance over
which a semantic connection spans.

As a case study, we perform semantic topologi-
cal analysis on two datasets, the Kaggle Fake News
Dataset1 and the Fake News Corpus (Pathak and
Srihari, 2019). Fake news manipulates public opin-
ion purposefully, often with profound political and
social consequences. Although many linguistic fea-
tures have been suggested for fake news extraction,
it is still unclear which ones are the most mean-
ingful (Choudhary and Arora, 2021; Verma et al.,
2021). Here, we characterize these articles in topol-
ogy space, and observe statistical differences in the
semantic arrangement of true and fake news. We
demonstrate how topological descriptors highlight
characteristic stylistic patterns in long-form true
and fake news (extended narratives composed by at
least 15 sentences). All code used for the analysis
outlined in this paper is freely available on Github
2.

2 Previous work

Discourse analysis has long sought to characterize
how concepts and arguments are structured within a
text. Early influential frameworks, such as Rhetori-

1https://www.kaggle.com/datasets/emineyetm/
fake-news-detection-datasets

2https://github.com/circuittopology/Semantic_
Topology
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Figure 1: Graphical representation of the three fundamental topological relationships applied to a simple text
example. The example illustrates two semantic contacts: Contact A - formed by the red-highlighted sentences
related to the weather - and Contact B - formed by the blue-highlighted sentences about pets.

cal Structure Theory (RST) (Mann and Thompson,
1988), break down discourse into elementary dis-
course units and analyze how these units connect
via rhetorical relations. Subsequent approaches,
such as Argumentation Mining (AM) (Stede and
Schneider, 2018) have focused on the detection of
Argumentative Discourse Units (ADUs), such as
claims, premises, and conclusion structures. In this
framework, ADUs can have relationships of differ-
ent kinds, e.g., support or attack. Similarly related
work in coherence modeling (Hobbs, 1979; Barzi-
lay and Lapata, 2008) has used features like entity
grids or lexical chains to capture patterns of entity
distribution in a text and coherence assessment. In
parallel, the rise of distributional and embedding-
based paradigms of semantics have offered new
opportunities for automated discourse exploration.
Topic modeling methods (Mersha et al., 2024; Gao
et al., 2019; Das et al., 2015; Le and Mikolov, 2014)
cluster semantically similar passages or documents,
thereby allowing for the identification of high-level
themes within texts. Topological frameworks have
also been previously applied for the modeling of
language structure, although these efforts remain
sporadic. For instance, Mehler (2006b) represent
text as a “small-world” network of textual units,
revealing structural properties such as clustering or
centrality. Moreover, related studies in Topological
Data Analysis (TDA) (Zhu, 2013) have investigated
persistent homology of text features, identifying

semantic loops within documents. Misinformation
detection represents a particularly appealing appli-
cation for discourse analysis. Although many ap-
proaches have thus far prioritized lexical or stylistic
cues (Rubin, 2017; Conroy et al., 2015), sentiment
features (Bhutani et al., 2019), or source reliabil-
ity, several recent studies have demonstrated the
value of rhetorical structure for fake news detec-
tion. For instance, Kuzmin et al. (2020) incorpo-
rate RST-based features (bag-of-rst) to detect fake
news in Russian, Karimi and Tang (2019) intro-
duce a hierarchical discourse-level structure that
outperforms prior baselines, and Atanasova et al.
(2019) exploit both contextual and discourse-level
information to improve claim classification and
fact-checking. Work by Rubin and Lukoianova
(2015) and Pisarevskaya (2017) likewise show that
coherence relations and nuclearity can highlight
differences between deceptive from truthful docu-
ments.

3 Methods

3.1 Circuit Topology

Circuit topology provides a general framework for
the topological characterization of folded linear
(molecular) chains. It involves two main steps:
(1) identifying contacts that form loops within the
chain, and (2) characterizing how these loops are
arranged relative to one another.
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Figure 2: Graphical representation of the Concerted Se-
ries (CS) and Concerted Parallel (CP) relation. Here,
one sentence in each diagram (sentence number in
black) has a semantic contact with two other sentences.

This concept can be applied to text by treating it
as a chain of sentences (or other elementary units,
such as words). For simplicity, we will focus on
sentences as the basic building blocks of the chain
in this analysis. A contact in this textual chain oc-
curs when two sentences are semantically similar.

Figure 1 provides an example of this idea with
a text made of four sentences. Two sentences per-
tain to the weather (highlighted in red), and two
pertain to pets (highlighted in blue). Each pair of
semantically similar sentences forms a contact. For
example:

• Contact A connects the weather-related sen-
tences: "It was a very sunny day" and "There
was not a cloud to be seen in the sky."

• Contact B connects the pet-related sentences:
"My dog was sleeping on the porch" and "The
cat was also sleepy."

If we decide that two sentences (S1,S2) are con-
nected (i.e., they form a contact) when their simi-
larity passes a certain threshold, this example has
two contacts: A and B.

Figure 1 also shows three possible arrangements
of these contacts:

• Example a: Series relationship. Each contact
is separate. The weather sentences (Contact
A) and pet sentences (Contact B) don’t over-
lap. Themes are kept apart.

• Example b: Parallel relationship. Contact
A (weather) wraps around Contact B (pets).

The reader moves from one theme (weather)
to the next (pets) and back to the first theme
(weather).

• Example c: Cross relationship. The two con-
tacts intersect. The reader alternates between
themes: weather → pets → weather → pets.

In Circuit Topology, these arrangements are
called Series (S), Parallel (P), and Cross (X), re-
spectively. These relationships are defined between
pairs of contacts. For example, we would say, "Con-
tact A is in a Series relationship with Contact B."

We can give a formal definition of topological
relations as follows. Let us call Ci,j the contact
connecting sentence i and j, and Cr,s the contact
connecting sentence r and s. Then we define the
three topological relations as:

Ci,j S Cr,s ⇐⇒ [i, j] ∩ [r, s] = ∅

Ci,j P Cr,s ⇐⇒ [i, j] ⊂ (r, s)

Ci,j X Cr,s ⇐⇒ [i, j] ∩ [r, s] /∈ {[i, j], [r, s]}∪
P({i, j, r, s})

Here, P denotes the powerset, i.e., all subsets
of a set including the null set (∅). In simple terms,
the series relations describes two contacts with no
intersection; the parallel relation describes a situ-
ation where one contact is completely enveloped
by the other; while the cross relation describes two
intersecting contacts. Sentence indexes (i, j, r, s)
are assigned by the order with which they appear
in the text.

In practice, a sentence can present semantic con-
tacts with multiple other sentences. In that case,
multiple arcs will span from a sentence (Figure
2), and two sub-categories of topological relations
are created - Concerted Series, CS (a Series rela-
tion between two contacts where one contact site
is shared) and Concerted Parallel, CP (a Parallel
relation where one contact site is shared). Formally,
CS and CP relations are expressed as:

Ci,j CSCr,s ⇐⇒ ([i, j] ∩ [r, s] = {i})∨
([i, j] ∩ [r, s] = {j})

Ci,j CPCr,s ⇐⇒ ([i, j] ⊂ [r, s])∧
(i = r ∨ j = s).
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Figure 3: Example of an application of CT analysis to a short text. The threshold for semantic similarity was set to
0.4 for demonstrative purposes. Three semantic contacts emerge, connecting sentences 1 and 6 (C1), 2 and 7 (C2),
and 3 and 4 (C3). C1 and C2 intersect, placing them in a cross relation. Meanwhile, both C1 and C2 encompass C3,
meaning they are in a parallel relation with it. These relationships are then stored in the topology matrix, which can
be further processed numerically to compute the Globularity Score. For this text, the topological fractions are as
follows: X = 0.33 (one-third of the relations are cross), P = 0.66 (two-thirds of the relations are parallel), S = 0 (no
series relations) and G = 0.583

For a first order analysis, these contacts are
treated as regular series or parallel relations. This
creates no issue in the pipeline, as contacts are
inherently broken down into sentence pairs. There-
fore, if a sentence is in contact with two other sen-
tences, it will result in two separate contacts in-
volving that sentence. In certain specialized appli-
cations CP and CS relations are treated separately
(Scalvini et al., 2022). However, for most first-
order applications, it is acceptable to incorporate
them into series and parallel relations, as we do in
this paper.

For more information about the formalism, we
invite the reader to refer to Mashaghi (2021);
Mashaghi et al. (2014). The topological relation be-
tween each pair of contacts in a text can be stored in
a matrix for further analysis. Therefore, the topol-
ogy matrix T will be a N × N matrix, where N
is the total number of contacts in the text, and its
possible elements are S, P and X (Figure 3).

3.2 Semantic Topology: the arrangement of
semantic themes within a text

Originally developed for biopolymers, the Circuit
Topology framework can also be applied to dis-
course analysis by examining S, P, and X relations
in text. Series relations (S) reflect a linear, se-
quential structure where topics are introduced and
concluded before moving on, in a list-like man-

ner, resulting in minimal thematic interaction and
lower complexity. In contrast, parallel (P) and cross
(X) relations introduce structural intersections that
shape how information is organized. Parallel rela-
tions (P) suggest a circular structure, where a topic
is introduced, interrupted by other content, and re-
visited later. Cross relations (X) indicate an alterna-
tion between different semantic areas, with a back-
and-forth discussion of topics. In sufficiently long
texts, all three relations typically coexist in varying
proportions, allowing each text to be mapped in
a three-dimensional space based on its semantic
topology.

3.3 Second order analysis: the Globularity
Score

So far we have only considered the relative amount
of S, P and X relations in a text. However, for a sec-
ond order analysis, it is also possible to weigh these
relations differently, depending on the range of the
relation: that is, whether the two contacts forming
the relation occur close by within the text, or not.
This consideration is particularly relevant for P and
X relations. The reason is intuitive: long-range
alternation and reoccurrence of themes within the
text might indeed indicate a cyclical structure of
the text, where the author revisits certain semantic
areas to draw their conclusions. On the other hand,
short-range alternation of themes might just indi-
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Figure 4: Scatterplot showing the relationship between the three topological relations (S, P, and X) and text size,
measured as the number of sentences per text, along with their corresponding correlation values.

cate a very confused and non-linear information
delivery. Under this assumption, we attempt to cre-
ate a unified descriptor of topology, by weighing
relations more when the contacts forming them are
further away in the topology matrix. We call this
descriptor the globularity score G, as it describes
the tendency of the text to adopt a cyclical, globular
topology.

In order to define the G score, we need to exploit
the topology matrix T representation. We assign
the three topological relations a numerical score, to
allow for computation: S = 0, P = 1, and X = 2 (Fig-
ure 3). We choose this convention to emphasize the
role of semantic alternation: S corresponds to no
alternation, in P we alternate semantic areas once,
and in X, twice. For a matrix of size N ×N , the
score is defined as the weighted average of diago-
nal contributions, normalized by their theoretical
maximum. The weighted contribution for diagonal
d (off-diagonal entries (i, i+ d)) is given by:

scored = wd ·
1

N − d

N−d−1∑

i=0

T[i, i+ d]

normd = wd ·
1

N − d

N−d−1∑

i=0

N[i, i+ d]

where wd = d
N−1 is the diagonal weight empha-

sizing distant relationships, and N is a normaliza-

tion matrix with all off-diagonal values set to their
theoretical maximum. The theoretical maximum is
given by a matrix where all entries are X (X = 2).
The total weighted score is:

score_tot =
N−1∑

d=1

scored

norm_score =
N−1∑

d=1

normd

The final globularity score G is the ratio of the
total weighted score to the total normalization:

G =
score_tot

norm_score

ensuring G ∈ [0, 1], where higher values indi-
cate more compact and strongly connected topolo-
gies.

3.4 Hopping between semantic clusters:
calculating the rate of semantic
alternation

The concept of contacts based on semantic similar-
ity is based on the notion that semantically simi-
lar elements will reside in spatial proximity in the
multi-dimensional embedding space. As such, it is
possible in principle to cluster all sentences that be-
long to the same semantic area together (Angelov,
2020; Grootendorst, 2022; Dieng et al., 2020). As
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Figure 5: Distribution of article length (expressed in
number of sentences) for the Kaggle dataset and the
Fake News Corpus.

we have seen in the previous section, the text might
hop between different semantic areas and create
different semantic topologies. In the embedding
space, this phenomenon translates into hopping be-
tween different semantic clusters. We can therefore
calculate what is the rate associated to hopping, for
each text. Here, the rate R is defined as:

R =
1

⟨Ns⟩
,

where ⟨Ns⟩ is the average number of consecu-
tive sentences appearing in the text from the same
cluster before hopping to a different cluster. Ns is
therefore analogous to a characteristic lifetime of
the cluster - in analogy with lifetime in biomolec-
ular topology analysis (Scalvini et al., 2023b). In
practice, we extract sentence embeddings and re-
duce their dimensionality to five components us-
ing UMAP (McInnes et al., 2018). Next, we ap-
ply HDBSCAN—a hierarchical extension of DB-
SCAN that explores multiple epsilon values and
selects the most stable configuration—to cluster the
reduced embeddings. Finally, we compute ⟨Ns⟩
and use it to determine the hopping rate R.

3.5 Experimental setup

In this study, we analyze articles sourced from the
Kaggle Fake News Dataset, which contains 21,417
True and 23,481 Fake articles, as well as from the
Fake News Corpus, from which we randomly se-
lect 30,000 “fake” and 30,000 “reliable” entries.
We further filter these articles to include only those
whose number of sentences, Ns, lies in the range
15 ≤ Ns ≤ 100. This filtering yields about 43%

of the original Fake News Corpus sample (25922
articles) and 56% of the Kaggle dataset (25060 arti-
cles). We do this filtering to ensure a sufficient num-
ber of sentences to observe a statistically significant
number of semantic contacts. As part of this pro-
cess, we also filtered out articles that were deemed
unfit for analysis because they were in languages
other than English or because they consisted solely
of a title and advertisement banners. To calculate
semantic similarity, we use the Sentence Trans-
former library (Reimers and Gurevych, 2019), em-
ploying the top-scoring STS model on the MTEB
leaderboard (bilingual-embedding-large). We
set the cosine similarity threshold to ts = 0.6, en-
suring that sentences in contact exhibit a moderate
degree of thematic or contextual overlap. Lastly,
we retain only those articles having more than five
contacts (N > 5) for analysis of topological frac-
tions (16298 articles for the Kaggle dataset and
13590 from the Fake News Corpus extract).

We found that choosing a higher semantic simi-
larity threshold would significantly reduce the num-
ber of articles retained, raising questions about
the method’s validity. For instance, a threshold
of 0.7 would result in only 3099 articles from the
Fake News Corpus extract and 919 from the Kaggle
dataset. These numbers are not unexpected, since
articles do not typically display multiple sentences
with such a high reciprocal semantic similarity. On
the other hand, lowering the threshold to 0.5 or
below would typically result in numerous contacts
between unrelated sentences. Considering these
factors, we considered a threshold of 0.6 to be a
balanced and appropriate choice for this analysis.

The topological analysis consists of the follow-
ing steps:

• Calculate the percentages of P, S, and X rela-
tions in each article, as well as the Globularity
score G, and examine how these parameters
vary with article size.

• Compare the statistical distributions of P, S,
X, and G between true and fake news.

• Compute the hopping rate between semantic
clusters within each article.

• Compare the statistical distributions of these
hopping rates in true versus fake news.
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Figure 6: Bar plots reporting the average value of the three topological fractions (parallel, series, and cross) and
the Globularity score for the two dataset extracts. Error bars represent 95% confidence intervals (computed via
bootstrapping) around the mean.

4 Results

4.1 The ratio of semantic arrangements
correlates with text size

To investigate whether the overall ratio of P, S, and
X depends on the length of the text, we correlated
them with the number of sentences in an article
(Figure 4). Our findings show a weak but statisti-
cally significant relationship between text length
and both the series and parallel ratios, with a small
positive correlation for series and a small negative
correlation for parallel. By contrast, the cross ratio
exhibits an almost zero correlation. Importantly,
these trends hold across both datasets.

These consistent correlations imply that there
are fundamental principles governing how texts
are constructed from a semantic topology perspec-
tive. In practical terms, texts are often divided
into paragraphs, each focusing on a single topic,
which naturally increases the number of series
relationships (see example a, Figure 1). Conse-
quently, longer texts have more paragraphs, more
self-contained units, and therefore more series re-
lations—resulting in a lower proportion of other
topological relationships. Because these ratios de-
pend on text size, comparing datasets with widely
different length distributions (Figure 5) can be prob-
lematic. For this reason, we chose to analyze the

two datasets separately.

4.2 Semantic topology identifies differential
patterns in communication style between
true and fake news.

Since our topological fractions (S, P, and X) de-
pend nonlinearly on text size, it is essential to en-
sure that any observed differences between true
and fake news are not merely artifacts of differing
length distributions. To address this, we resample
our data so that both classes (true vs. fake news)
have an equivalent size distribution. This balancing
sampling yields, for a similarity threshold of 0.6, a
subset of 8708 articles from the Kaggle dataset, and
10452 articles from the Fake News Corpus extract.
We calculated the semantic topology descriptors (S,
P, X fraction and Globularity score) over these two
subsets and compared the results for true and fake
news. A consistent pattern seems to emerge (Fig-
ure 6). In both datasets, true news seem to display
statistically higher Globularity score, lower series
ratio, and higher parallel ratio. The cross fraction,
on the other hand, seems to be higher for fake
news in the Kaggle dataset, while results are incon-
clusive for the Fake News Corpus extract, where
these two values seem equivalent. If we compare
the distributions, we see that p values are consis-
tently below the 0.05 threshold, except for cross
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True/Fake news – p value
N = 600 N = 4000

Kaggle - balanced
Globularity score 0.0429 1.60e-08
series 0.0005 1.08e-11
parallel 0.0129 3.20e-06
cross 0.0003 1.05e-18
Hopping rates 0.0079* 0.0355

N = 600
FNC - balanced
Globularity score 0.0261 1.58e-06
series 0.0040 1.21e-08
parallel 0.0002 5.60e-20
cross 0.4854 9.05e-05
Hopping rates 0.1830* 0.0004

Table 1: Comparison of True vs. Fake News (p-values)
for Kaggle and FNC under balanced sampling. P-values
were computed using the Kolmogorov–Smirnov test,
except those marked with an asterisk (*), which were
calculated using the Mann–Whitney U test because Lev-
ene’s test indicated statistically equivalent variances (p
> 0.01).

relation in the Fake News Corpus dataset, where p
= 0.4854 for samples containing 600 articles. For
all other topological descriptors, we observe sta-
tistically significant differences between the fake
and true news classes, which become statistically
more pronounced if we increase sample size (N =
4000 articles). While results for the cross relation
remain ambiguous on the FNC dataset extract, we
observe statistical difference for the Globularity
score, which takes into account both parallel and
cross relations, with cross relations weighing dou-
ble in the calculation. This indicates that not only
cross relation does play a role, but the range of the
interaction matters as well. In simple terms, when
a topic, concept, or semantic area is recalled in
distant parts of the text, it plays an important role
in shaping the overall semantic topology profile of
the text, and possibly, its stylistic properties.

4.3 True news exhibit a slightly higher rate of
hopping between semantic clusters

The results of the clustering procedure reveal that
the two datasets differ, on average, in their number
of semantic clusters, most likely due to differences
in article length distributions (Figure 5). Specif-
ically, the Fake News Corpus has an average of
NC,FN = 4.95± 0.02 clusters per article, whereas
the Kaggle dataset has NC,K = 3.66± 0.01. More-

over, we find that the rate of hopping between
clusters correlates with the total number of clus-
ters NC , with a Spearman correlation coefficient
of r = 0.518 (p-value < 0.01). Intuitively, this
implies that the more semantic clusters an article
possesses, the more frequently it alternates among
them. In contrast, the correlation between hop-
ping rates and article size (number of sentences) is
weaker, at r = 0.173 (p-value < 0.01). Following
the procedure in previous sections, we sampled the
two datasets separately to create size-equivalent
distributions of true and fake news. This yielded
19,888 articles from the Kaggle dataset and 20,498
from the Fake News Corpus. The resulting hopping
rates R for true and fake news are depicted in Fig-
ure 7. In both datasets, true news exhibit slightly
higher hopping rates than fake news. However, the
difference is small, visible only in very large sam-
ples of articles (Table 1, N = 4000) and is much
less pronounced than the difference in topological
fractions. Finally, the gap between true and fake
news appears to be overshadowed by the larger
discrepancy between the two datasets themselves,
suggesting that unknown stylistic factors—possibly
linked to the selection process of the articles—may
influence these observations.

5 Discussion

Here, we propose semantic topology as a candidate
for discourse analysis. We found that semantic
topology highlights statistical differences in long-
form true and fake news, with complex topologies
that entail semantic alternation (parallel and cross)
being more prevalent in the former. These findings
are in line with previous research indicating fake
news as a simpler form of communication (Horne
and Adali, 2017; Rashkin et al., 2017), although the
topological complexity of semantic arrangement
identifies a different level of analysis with respect
to syntax and word choice. Hopping between dif-
ferent semantic clusters seems to happen less fre-
quently in fake news articles. However, evidence
for this particular effect is weak, and it requires
further investigation of what other stylistic choices
influence the rate of hopping between semantic
clusters. Personal perception of semantic similar-
ity is a key concept in the cognitive behavioral
sciences (Goldstone, 1994), where it was proven
to correlate with personality traits (Richie et al.,
2020), and to participate in false memory genera-
tion (Buchanan et al., 1999). In consideration of
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the findings presented above, there is reason to in-
vestigate whether the arrangement of semantically
similar units (sentences) in a text might contribute
to the psychological allure of fake news, as well
as other cognitive phenomena involving effective
communication.

The semantic topology framework, as introduced
in this paper, represents a novel approach rooted
in quantitative, data-driven modeling rather than
the qualitative categories and relations typical of
classical discourse theory. Establishing a direct
correspondence between Circuit Topology (CT) re-
lations and classical discourse frameworks is there-
fore not straightforward. However, certain patterns
of semantic arrangements may be indirectly cap-
tured by semantic topology. For example, topic
shifting in discourse might manifest as series (S)
relations within our framework, where themati-
cally distinct units follow one another without re-
currence. Similarly, semantic merging could be
represented by transitions from predominantly se-
ries topologies toward more parallel (P) and cross
(X) structures, indicating increasing thematic inter-
leaving. Moreover, classical discourse frameworks
often aim to identify what we refer to as seman-
tic contacts—recurrences of meaning across a text.
Relations such as restatement, summary, and evalu-
ation, as framed within Rhetorical Structure Theory
(RST), might correspond to ’semantic contacts’ in
the semantic topology framework. However, our
method focuses on capturing the pairwise arrange-
ment of these contacts, offering a complementary
perspective. While the model presented does not
yet capture the full spectrum of semantic structur-
ing described in discourse theory, it introduces a
promising higher-order analytical dimension that
warrants further exploration.

6 Conclusion

In this paper, we introduce semantic topology as
a novel approach to discourse analysis, leveraging
the Circuit Topology framework from bioinformat-
ics. By mapping and quantifying sentence-level
semantic relationships, we reveal significant differ-
ences in how true and fake news structure recurring
themes. Our findings suggest that fake news fol-
lows simpler topological patterns, aligning with
prior research on deceptive discourse. The Globu-
larity Score and topological descriptors highlight
the role of textual loops in coherence and complex-
ity. Future work should explore interactions with

Figure 7: Bar plot showing the average Hopping Rate
between semantic clusters for the two dataset extracts.
Error bars represent the 95% confidence intervals (com-
puted via bootstrapping) around the mean.

other discourse frameworks, broader text types, and
the cognitive significance of topological relation-
ships. Additionally, this method offers potential
insights into communication style variations across
lifespan development and neurological conditions.

7 Limitations

We focused on long-form fake news articles since
sentences serve as our basic unit of analysis and
we needed to provide enough data to observe sta-
tistical patterns. While this choice may reduce the
generalizability of our findings (given that much
fake news appears in shorter formats like tweets),
our framework is adaptable and could use alter-
native units (e.g., words or tokens) in future stud-
ies. Moreover, although our analysis reveals only
very small statistical differences in communication
styles, these findings hint at a characteristic com-
munication style detectable by semantic topology.
While we believe our conclusions to be significant
from the point of view of qualitative analysis, fur-
ther feature engineering work is needed to make
the framework directly applicable for fake news
detection.
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