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Abstract

Digital agents capable of automating complex
computer tasks have attracted considerable at-
tention. However, existing agent methods ex-
hibit deficiencies in their generalization and
specialization capabilities, especially in han-
dling open-ended computer tasks in real-world
environments. Inspired by the rich functional-
ity of the App store, we present AgentStore, a
scalable platform designed to dynamically inte-
grate heterogeneous agents for automating com-
puter tasks. AgentStore allows the system to
continuously enrich its capabilities and adapt to
rapidly evolving operating systems. Addition-
ally, we propose a novel core MetaAgent with
the AgentToken strategy to efficiently manage
diverse agents and utilize their specialized and
generalist abilities for both domain-specific and
system-wide tasks. Extensive experiments on
three interactive real-world benchmarks demon-
strate that AgentStore significantly expands the
capability boundaries of agent systems in both
generalization and specialization, underscoring
its potential for developing the specialized gen-
eralist ' computer assistant.

1 Introduction

The continual evolution of computer Operating
Systems (OS), along with proliferating applica-
tions, has transformed how people work and live.
This transformation goes beyond daily life like
shopping and gaming, encompassing professional
works such as writing in Office or editing in Photo-
shop. However, this increased functionality comes
with a steep learning curve, often burdening users.
As aresult, autonomous computer assistants—once
limited to fiction like JARVIS in Iron Man or MOSS
in Wandering Earth—have become a concrete pur-
suit, attracting great interest from researchers.

= Equal corresponding author.

'The concept of “Specialized Generalist” refers to an Al
system that excels in specific tasks while still maintaining
broad general capabilities (Zhang et al., 2024).
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Advancements in Multimodal Large Language
Models (MLLMs) (OpenAl, 2023; Reid et al.,
2024), are gradually turning this vision into reality.
However, real-world OS environments encompass
a diverse array of open-ended computer tasks, each
with inherent requirements for capabilities across
multi-dimensions (Xie et al., 2024), posing sub-
stantial challenges to existing methods. Specifi-
cally, “Task_1” in Figure 1 illustrates that many
computer tasks necessitate specific knowledge and
operations. In such scenarios, existing generalist
agents (Wu et al., 2024; Tan et al., 2024) often un-
derperform due to their lack of these specialized
abilities. Conversely, specialized agents, despite
excelling at specific tasks within single domains
like tabular data processing (Li et al., 2024; Chen
et al., 2024a) or web browsing (Zhou et al., 2023;
Deng et al., 2024), struggle to perform when con-
fronted with more integrated, system-wide tasks
like “Task_2” in Figure 1. This heterogeneous
demand for capabilities presents a challenge for
existing single generalist or specialized agents.

We attribute this dilemma to overlooking a key
factor behind the success of modern operating sys-
tems: App store” which continuously expands the
range of functionalities beyond the core OS itself.
Correspondingly, we argue that specialized gener-
alist computer agents should possess this charac-
teristic, evolving to grow heterogeneous abilities
and autonomously handle an increasingly diverse
range of tasks. To substantiate this, we propose
AgentStore, a flexible and scalable platform for dy-
namically integrating various heterogeneous agents
to independently or collaboratively automate OS
tasks (illustrated on the right in Figure 1).

We develop a prototype of AgentStore, establish-
ing an integration protocol and implementing over
20 computer OS agents and 10 mobile OS agents

%In this paper, App store not only refers to App Store for
Apple but all similar platforms. See the concept in App store.
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Task_1: In a new sheet with 4 headers "Year", "CA changes", "FA changes", and "OA changes",

calculate the annual changes for the Current Assets, Fixed Assets, and Other Assets columns.

pip install openpyxl && Isof | grep '.xIsx’

L deE-® vAYRBBE Q-
Bru-a @ = c.mEE an

Current Assets Fixed Assets Other Assets Assets
2014 $ 185,682.00 $ 45,500.00 $ 3,580.00
2015 § 204,527.00 $ 43,243.00 $ 3520.00
2016 $ 219,289.00 $ 40,840.00 $ 3,726.00
38,419.00 $ 4,011.00
35,854.00 $ 4,030.00
33,181.00 $ 4,088.00

6.762.00 $
7,653.00 $
8,258.00 $
9,133.00 $
9,839.00 $
10,585.00 $

2017 248,718.00 $
2018 s 264,792.00 $
2019 s 282,148.00 $

wnnnnnd

rent Liabilities Long-term Liabilities
50,000.00 $
50,000.00 $
40,000.00 $
40,000.00 $
30,000.00 S
30,000.00

ws_new = wh.create_sheet(title=sheet_name)
Owner's Equity ws_new.append(headers), wb.save(file_path)
172,474.00
196,318.00
220,797.00
239,576.00
253,852.00
282,688.00

SheetAgent
specializes in
sheet processing

for row in range(2, ws_original.max_row + 1):
year = ws_original.cell(arg).value,...

Task_2: Find the daily paper and take down the meta information of papers on 1st March,
2024 in the opened . pptx file. Please conform to the format and complete others.

DB L

The Al community
building the future.

[
L

ws_new.append([year, ...])

Different specialist agents are required to
collaborate on system-wide tasks

Step 1: Click daily papers to browsing
Step 2: Filter results by choosinglst March
Step 3: Extract info for selecting papers

WebAgent
specializes in
web browsing

subtask complete message passing

Step 1: Install package and locate .pptx file
Step 2: load content for current .pptx file

Slld_eA_gen! Step 3: Write info into corresponding file
specializes in Step 4: S d ite the original fil
slide editing ep 4: Save and overwrite the original file

Figure 1: Task examples illustrate that diverse open-ended tasks require a combination of generalization and
specialization capabilities. The right part provides a simple overview of specific steps.

with diverse functionalities. Based on this founda-
tion, the main challenge is efficiently managing the
rapidly growing and increasingly large number of
agents, which overwhelms traditional management
methods, such as In-Context Learning (ICL; Dong
et al., 2022) and full Fine-Tuning (FT; Qin et al.,
2023). To this issue, we introduce a novel MLLM-
based MetaAgent with AgentToken strategy, to
select the most suitable agent(s) to complete tasks.
Each integrated agent in AgentStore is denoted as
a learnable token embedding in MetaAgent’s ar-
chitecture like a word token embedding. During
inference, MetaAgent activates the corresponding
agent to execute the task when an agent token is
predicted. Innovatively, we enhance this approach
by shifting from single-token (Hao et al., 2024)
to multi-token prediction, allowing MetaAgent to
predict and coordinate multiple agents for collab-
orative task execution. Additionally, we propose
an automated process with self-instruct for tuning
AgentToken without relying on manual data.

We validate the effectiveness of AgentStore
across three real-world dynamic benchmarks in-
volving both computer and mobile OS platforms.
On the highly challenging OSWorld benchmark,
AgentStore achieves a success rate of 23.85%,
more than doubling the performance of the pre-
vious generalist agent (11.21%) (Xie et al., 2024).
On a novel benchmark OSWorld-Multi for evalu-
ating agent collaboration, AgentStore significantly
improves the execution success rate from 6.93% to
22.77%, and achieves strong performance across
all metrics. These results highlight the impor-
tance of scalable agent integration in expanding
the system’s capabilities. Similar outcomes are ob-

served when evaluating AgentStore in mobile en-
vironments. Additionally, we also demonstrate the
advantage of AgentToken in comparison to other
strategies, highlighting its efficiency in training and
its effectiveness in dynamic management.

2 Related Work

LLM-based Agents. Recent advancements in
(M)LLMs (OpenAl, 2023; Reid et al., 2024) have
led to the development of highly capable Al agents,
applied across various domains, including robotics
(Driess et al., 2023), software development (Wang
et al., 2024), and beyond. A rapidly growing re-
search field among these is automating interac-
tions with computer environments to solve complex
tasks. Early work primarily focused on specific sce-
narios, such as web manipulation (Yao et al., 2022;
Deng et al., 2024; Cheng et al., 2024), command-
line coding (Sun et al., 2024), and gaming (Wang
et al., 2023a). Following this, recent methods (Wu
et al., 2024; Tan et al., 2024) have started explor-
ing general-purpose computer agents capable of
interacting with diverse components in OS. Unfor-
tunately, both of these struggle with open-ended
tasks in real environments, exposing limitations in
their generalization and specialization capabilities.

Multi-Agent Systems. Recently, various ap-
proaches (Park et al., 2023; Sun et al., 2023; Hong
et al., 2023) have been proposed to facilitate ef-
fective collaboration among multi-agents to over-
come hallucinations. Advanced frameworks like
AutoGen (Wu et al., 2023) and Dylan (Liu et al.,
2023) have demonstrated flexible agent orchestra-
tion capabilities, primarily focusing on tool-based
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task execution with structured workflows. Simi-
larly, Camel and the concurrent [oA explore agent
integration for specialized tasks. While these ap-
proaches have shown promising results in domains
such as automating coding, their application to OS
environments presents unique challenges. First, OS
tasks demand dynamic integration across hetero-
geneous applications with varying operational con-
straints and system-level interactions. Second, OS
automation requires specialized capabilities across
diverse system operations, from low-level file man-
agement to application-specific automation. These
unique challenges motivate AgentStore’s design
to expand multi-agent capabilities specifically for
real-world OS applications.

3 AgentStore

As illustrated in Figure 2, AgentStore consists of
two main components: AgentPool and MetaA-
gent. The AgentPool (in Section 3.1) stores feature-
specific agents with distinct functionalities and de-
fines the integration protocol for adding new agents.
The MetaAgent (in Section 3.2 and 3.3) selects the
most suitable agent(s) from AgentPool to indepen-
dently or collaboratively complete tasks.

3.1 AgentPool

The AgentPool is a collection of all available agents
within AgentStore. When the developer creates a
new agent and seeks to integrate it into AgentStore,
it is essential to register the agent’s information
in a standardized format. To ensure consistency
in the integration process, we establish an inte-
gration protocol. During enrolling, the developer
completes a predefined form outlining the agent’s
capabilities, limitations, applications, and demon-
strations of its functionality (in Figure 2). For-
mally, the set of all enrolled agents is represented as
A = {(a1,d1), (az,d2), ..., (an,d,)}, where the
completed form for each agent a; constitutes a doc-
ument d;. To build the prototype of AgentStore, we
create 20 computer agents and 10 mobile agents to
handle tasks on their respective platforms. We em-
ploy both manual and automated agent generation.
Manual Generation for Computer: Due to opera-
tion inconsistencies among computer apps, achiev-
ing uniform automated agent generation remains
a significant challenge. Consequently, we man-
ually designed computer agents tailored to com-
mon applications. These agents are evolved by in-
jecting domain-specific knowledge documents into

GUI-based MMAgent (Xie et al., 2024) and CLI-
based FridayAgent (Wu et al., 2024). These agents
range from unimodal to multimodal, from open-
source to closed-source models, and from GUI to
CLI. This heterogeneous combination provides a
solid foundation to validate the effectiveness of the
AgentStore concept. The details of these agents are
presented in Appendix A and B.

Automated Generation for Mobile: In contrast,
the operations of mobile apps are entirely GUI-
based with a more uniform design, enabling us to
automate the generation of domain-specific agents.
Following the approach of APPAgent (Yang et al.,
2023), we initially develop a general GUI-based
APPAgent. Subsequently, we guide it with self-
exploration to navigate and interact with nine com-
mon mobile apps, ultimately evolving it into spe-
cialized agents for mobile platforms. This approach
minimizes manual effort and ensures the efficient
creation of tailored agents for mobile applications.

3.2 MetaAgent with AgentToken

We employ the powerful open-source MLLM as
the foundation for our MetaAgent M. This en-
ables it to process multi-modal information cov-
ering task descriptions and OS states. Since the
number of agents in AgentStore dynamically grows
and reaches a large scale, common methods like In-
Context Learning (ICL) (Chase, 2022; Li et al.,
2023) and Fine-Tuning (FT) (Qin et al., 2023)
become impractical due to the excessive context
length and the high cost of retraining, respectively.

To address these, we propose the AgentToken
strategy. Inspired by ToolkenGPT (Hao et al.,
2024), which captures tool semantics using spe-
cial tokens, AgentToken extends this concept by
encoding enrolled agents as special tokens in the
MetaAgent’s vocabulary. Specifically, the agent
tokens are parameterized as an embedding matrix
W4 € RMAI*4 and appended to the original word
token head W, € RIVI*?. Assuming the agent
tokens W4 have been trained and available (as
described in Section 3.3), the concatenated result
forms the new language modeling head of MetaA-
gent. In this way, MetaAgent predicts the next
token with the following probability:

Ph(tilt<i) = softmax([W,; W4l - hi—1),

where the next token can be either a word token or
an agent token, i.e., t; € V U A,. The operation [; |
denotes concatenation, and h;_; € R represents
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<agent_0> [~ ] o § =

Documents for agents self- =+ concat @ 8 | routing § execute 0
Name: SheetAgent instruct Q il D 0 0oo H H J

Applications: Terminal, LibreOffice Calc training <agent_0>

‘Task_2: Find the daily paper and take down the meta information of papers on 15t March,
20241 tx il t

= MetaAgent as

Capabilities: specializes in creating and modifying
spreadsheets using Python's openpyxl library,...
Limitations:cannot handle GUI operations, cannot
perform tasks outside capabilities of the openpyxl. ..

- <agent_I>

-30-

(N <agent_n-1>
Demostation_1: Add a column to = A subthsk 1
calculate the profit margin assuming[~__ asioa = <agent_1> <agent_n-1>
a fixed percentage on 'Total' sales. j \  <agent n> ) Py
...... More demostations agent = ﬂ 0 0 D aee ] ‘P Cmeule, Q
\_ Y, \document agent token subtask 2 3 )

Manager

execute

o

Figure 2: The illustration on the main components in AgentStore.

the last hidden state. In this context, AgentToken
enables MetaAgent with two primary functions:
MetaAgent as Router: Following the above man-
ner, the most probable next token is obtained by
maximizing the conditional probability:

t; = argmax;cyp g (Pu(tilt<i))

Once an agent token is predicted, i.e., t] € A, the
MetaAgent halts decoding, and the corresponding
agent is invoked to execute the task. As illustrated
in Figure 2, the above method enables MetaAgent
to act as an efficient router, predicting the most
appropriate agent when a single agent is sufficient.
MetaAgent as Hash Manager: We discover that,
although each agent token is trained on individual
tasks, they exhibit generalization capabilities for
complex, collaborative tasks. Specifically, when
a task requires multiple agents, the trained agent
tokens often appear among the top candidates in
the next token predictions. This observation led us
to enhance this approach by shifting from single-
token to multi-token prediction:

T = TopK,e 4 (Pu(tilt<i), K),

where TopK(-) is a function that returns the set
of K tokens from the vocabulary A that have the
highest probabilities. These predicted tokens rep-
resent the K agents most relevant to this task. The
MetaAgent then switches to Manager mode by us-
ing a new prompt consisting of in-context docu-
ments for these selected agents, outlining how to
generate subtasks for the complex task and assign
them to the corresponding agents. This narrows the
management scope to a few selected agents, leav-
ing ample context space for detailed documentation
of these fixed agents. This design shares similari-
ties with hashing methods (Aggarwal and Verma,
2015), which convert inputs of arbitrary size into
fixed-size outputs to facilitate retrieval.

3.3 Train AgentToken with SELF-INSTRUCT

The embedding W 4 corresponding to agent tokens
are the only tunable parameters, introducing mini-
mal additional training overhead. However, train-
ing these agent tokens requires a number of agent
demonstrations that consist of the task descriptions
and initial OS states. The corresponding token
demonstrations were pre-collected for training in
previous efforts (Hao et al., 2024; Chai et al., 2024).
However, this strategy is not applicable in our sce-
nario, as developers only provide a document about
the agent, and it is unrealistic to expect them to
supply massive demonstrations. Therefore, we pro-
pose an automated process with self-instruct (Wang
et al., 2023b) for tuning these tokens.

The overall process follows an iterative algo-
rithm to guide the generation of extra demonstra-
tions, beginning with a limited set of original
demonstrations S; = {(yx)},-, and the agent de-
scription ¢; provided in document d;. Specifically,
we first prompt MetaAgent with existing demon-
strations and agent descriptions:

Sz/ = M(SZ, CZ‘),

where MetaAgent M is expected to produce the
new set of demonstrations S.. Following this, to
ensure the quality of the generated outputs, we ap-
ply BERTScore (Zhang et al., 2019) to all newly
generated outputs y' € S/, ensuring both consis-
tency and diversity. Specifically, we use a greedy
algorithm (see Appendix D) to iteratively filter ele-
ments from S, resulting in a refined set S7** C S..
The new set satisfies the following conditions:

71 < BETRScore(yx, y;) < 72,
vyk)yj € SZ U S?ew and k # j7
where BETRScore(-) represents the similarity be-

tween two demonstrations, with imposing a lower
bound 7; to avoid overly irrelevant outputs and 7
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ensuring diversity among them. In this way, we fil-
ter the generated data, and the refined set is merged,
i.e., S; = 5; U S, The entire process is an au-
tomated iterative bootstrapping. MetaAgent fur-
ther generates additional examples until sufficient
demonstrations to meet the training requirements.
Training with self-generated data: During train-
ing, each task description and initial state in S;
serve as the prefix, and a special agent token
<Agent_i> is appended as the ground truth for the
next token prediction. The training objective is:

A
LWa) =) > —log P(<Agent_i>[y;),

i y;€S;

the embedding W 4 represents the only tunable pa-
rameters for all agents .4 in AgentPool. Notably,
this training paradigm simply introduces additional
tokens to the MetaAgent. The original language
generation of the MLLM remains entirely unaf-
fected when agent tokens are masked. This guaran-
tees that ICL methods can be invoked seamlessly.

4 Experiments

To assess the effectiveness and versatility of
AgentStore, we conduct comprehensive experi-
ments across various tasks. We demonstrate its
outstanding performance on three real-world OS
benchmarks (in Section 4.1), followed by an in-
depth analysis of agent integration and AgentToken
(in Section 4.2 and 4.3). We also provide running
cases for qualitative analysis (in Section 4.4).

Settings We employ InternVL2-8B (Chen et al.,
2024b) as the base model. Additionally, details re-
garding the Agents in the AgentPool can be found
in Appendix A, along with the threshold selection
for 7 and 7 in Appendix D. We generate 100
examples for each agent using self-instruct for to-
ken training. We also apply BertScore filtering to
exclude any overlap with test tasks, thereby pre-
venting data leakage. The AdamW optimizer is
used with a learning rate of 4e-5 and a weight de-
cay of 1.0, for a total of 10 training epochs. When
executing the Hash Manager, K is set to 5.

4.1 Main Results on Real-world Benchmarks

4.1.1 Computer OS Assistant: OSWorld

OSWorld (Xie et al., 2024) provides a scalable and
real environment for evaluating computer agents,
encompassing 369 tasks involving real web and
desktop applications across open domains. As one

of the most realistic and challenging benchmarks,
OSWorld is ideal for capturing the diversity and
complexity of computer tasks. Details of OSWorld
are provided in the Appendix E.

Table 1 presents the performance comparison
between our approach and previous SoTA general-
ist agents on OSworld. While more advanced base
models can improve performance (e.g., GPT-40 out-
performing GogVLM in CogAgent (Hong et al.,
2024)), even the best base models still face signif-
icant challenges. Notably, these methods exhibit
not only overall weak performance but also sig-
nificant disparities and weaknesses in specific task
categories, despite using the same base models. For
instance, MMAgent (Xie et al., 2024) and CRA-
DLE (Tan et al., 2024) struggle with calculation
tasks due to their lack of knowledge and operational
capability in Excel, while Friday (Wu et al., 2024)
and Open-Interpreter (Open-interpreter, 2024),
CLI-based agents, fails to execute GUI operation
effectively in tasks, e.g., Chrome or Thunderbird.

In contrast, AgentStore overcomes these limi-

tations by integrating various specialized agents,
each proficient in specific software and opera-
tions (the base model “Hybrid" indicates that these
agents are built on different base models, as de-
tailed in Appendix A). “AgentStore(GT)” in Table
1 refers to each task being assigned to the most
suitable agents, representing the upper bound of
performance for the current AgentStore implemen-
tation. As shown, using specialized agents to han-
dle tasks in their respective domains consistently
outperforms generalist agents, with no significant
performance shortcomings in almost all domains.
This underscores the importance of various capa-
bilities. Furthermore, when different methods are
used to manage task allocation, all approaches out-
perform previous single-agent systems. AgentTo-
ken (AT) demonstrates the best performance. We
will elaborate on this in Section 4.3.
Cost Analysis: While AgentStore’s deployment
introduces some overhead, it is able to assign spe-
cialized agents to complete tasks with fewer steps
and lower costs. We detail this in Appendix C.

4.1.2 Agent Collaboration: OSWorld-Multi

We develop a novel benchmark OSWorld-Multi
based on OSWorld, comprising over 100 diverse
tasks that necessitate collaboration among multiple
agents. This newly proposed benchmark allows us
to assess the accuracy of both task decomposition
and subtasks handling in a real-world environment.
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Table 1: Detailed success rates of previous methods and AgentStore on OSWorld. Methods marked with “*”
represent our re-implementation of the corresponding agents. Additionally, due to the significant overlap between
the OS and Workflow domains in the original division, we have merged these two domains into “OS*".

Base

Success Rate (%)

Agent

OS* Calc Impress Writer VLC TB Chrome VSC GIMP AVG
CogAgent GogVLM 1.60 2.17 000 435 653 000 217 0.00 0.00 1.32
MMAgent GPT-40 14.44 426 6.81 870 9.50 6.67 1522 3043 0.00 11.21
CRADLE GPT-40 8.00 0.00 4.65 870 6.53 0.00 870 0.00 38.46 7.81
Friday* GPT-40 1520 25,50 0.00 21.73 0.00 0.00 0.00 17.39 1538 11.11
Open-Inter* GPT-40 12.80 12.76 0.00 13.04 0.00 0.00 0.00 17.39 1538 8.94
AgentStore(GT) Hybrid 20.00 36.17 10.63 47.83 47.06 40.00 34.78 47.82 38.46 29.54
AgentStore(ICL) Hybrid 9.60 0.00 2.13 434 3529 3333 3043 3043 1538 13.55
AgentStore(FT)  Hybrid 8.80 27.65 426 13.04 41.17 40.00 3478 8.60 15.38 17.34
AgentStore(AT)  Hybrid 13.86 31.91 8.51 39.13 47.06 40.00 32.61 39.13 30.77 23.85
Table 2: Performance condparison On OSworld-Multi. " .
Random Addition
Agent Subtask Execution 2 Type-Based Addition
Method Match  Acc Acc 2
MMAgent - - 6.93% 18
AgentStore(FT) - - - 16
AgentStore(ICL) 24.75% 40.00% 9.90% 14
AgentStore(ICL*) 28.71% 51.72% 14.85% 12
AgentStore(AT) 36.63% 62.16% 22.77% 10
T3 5 7 9 015 1 12

Additionally, we propose three metrics: Agent-
Match, SubtaskAcc, and ExecutionAcc, which re-
spectively measure multi-agent prediction accuracy,
subtask decomposition accuracy, and execution suc-
cess rate. Detailed benchmark constructions and
metric descriptions are provided in Appendix F.
As shown in Table 2, single-agent MM Agent,
which lacks Agent prediction and task decompo-
sition, performs poorly on this benchmark. The
Fine-Tuning method is not applicable in this sce-
nario due to the infinite combinations of agents,
making it impossible to pre-organize the necessary
data for training. Moreover, while the ICL meth-
ods function to a certain extent, even with advanced
commercial models (with ICL* indicating the use
of GPT-40), the constraints of overly long con-
texts and vast combinatorial spaces result in subpar
outcomes. In contrast, AgentToken leverages its
inherent task awareness, significantly narrowing
the scope to a few selected agents. It demonstrates
excellent performance across all metrics.

4.1.3 Mobile OS Assistant: APPAgent

We also employ the APPAgent (Yang et al., 2023)
benchmark to validate that AgentStore can general-
ize to mobile OS platforms. It consists of 9 popular
mobile applications, each serving distinct purposes

Figure 3: The performance curve as the number of
agents increases, with the y-axis representing the suc-
cess rate (%) on OSWorld and the horizontal x-axis
representing the number of agents.

and collectively forming 45 tasks.

Table 3 compares the performance of AgentStore
with a single general agent in (Yang et al., 2023).
As shown, the performance of the generalist agent,
lacking specific knowledge of each app, is subpar
across many applications, even when utilizing the
strongest base model. In contrast, AgentStore con-
structs dedicated agents tailored to their respective
applications, effectively addressing performance
deficiencies in certain apps and demonstrating a
significant performance improvement from 26.7%
to 57.8%. This underscores the applicability of the
AgentStore concept to other OS platforms.

4.2 Analysis of Agent Quantity and Diversity

To comprehensively analyze the advantages of scal-
able integration, we further explore the impact
of the quantity and diversity of integrated agents
within AgentStore on performance. To ensure thor-
oughness, we analyze AgentStore starting from a
generalist MMAgent and incrementally add agents
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Table 3: Success rates of generalist agents and AgentStore. Methods marked with “*" indicate the re-implementation
of the single agent in APPAgent without app-specific knowledge. Due to differences between the original paper and
the public benchmark, the results vary. Additionally, while Appagent also generated app-specific agents, it did not
integrate them, instead only evaluating individual apps, and thus it is not included in the comparison.

Base

Success Rate (%)

Agent

Maps X TG Temu YT Spotify Yelp Gmail Clock AVG
APPAgent-Single* Qwen-VL 20.0 00 00 00 00 0.0 00 00 200 44
APPAgent-Single* GPT-40 60.0 20.0 20.0 0.0 40.0 20.0 20.0 200 40.0 26.7
AgentStore(GT) GPT-40 80.0 60.0 40.0 40.0 60.0 80.0 80.0 60.0 600 66.7
AgentStore(AT) GPT-40 80.0 40.0 40.0 40.0 60.0 60.0 80.0 60.0 600 57.8
Table 4: Routing success rates of different strategies for enabling MetaAgent as the router.
Agent Base Success Rate (%)

& OS Calc Impress Writer VLC TB Chrome VSC GIMP AVG
ICL GPT-40 5833 14.89 1277 13.04 88.24 100 97.83 60.87 53.85 49.63
ICL InternVL 37.50 6.38 21.28 8.70 35.29 3333 52.17 30.43 30.77 41.57
FT-LoRA  InternVL 50.00 74.47 55.32 13.04 88.23 100 89.13 30.43 34.61 60.82
AgentToken InternVL 75.00 80.85 72.34 4347 100 100 95.65 91.30 73.08 80.60

Table 5: Efficiency comparison. .
Method Params Memory Time Effectiveness As shown in Table 4, ICL me.:th-
ods perform poorly as routers, even when using
FT-Full 7.78B  >80G - advanced models like GPT-4o. This confirms our
FT-Pt 86K 26G - assertion that relying on simple descriptions and
FT-LoRA 38M 28G 2.5 hours few-shot demonstrations to master new agents can
AgentToken 86K 17G 0.2 hours be challenging. In contrast, other tuning meth-

in AgentPool to compare their effects.

We employ two strategies for adding agents: one
involves randomly selecting agents to incremen-
tally add to the AgentPool, while the other catego-
rizes agents into GUI and CLI types, starting with
one type before supplementing with the other. As
shown in Figure 3, performance gradually increases
with the growing number of agents, confirming the
performance benefits of scalable integration within
AgentStore. Additionally, we observe differences
between the two strategies: random selection main-
tains a consistent mix of agent types, leading to
a more stable growth. In contrast, adding agents
of only one type causes the growth rate to slow
over time, but this is mitigated when the other type
is introduced (the x-axis reaches 11). This high-
lights the crucial role of agent diversity, demonstrat-
ing the importance of integrating heterogeneous
agents.

4.3 Analysis of AgentToken

In this section, extensive experiments demonstrate
the advantages of AgentToken in terms of effective-
ness, efficiency, and low data requirements.

ods show some improvement by training on more
task demonstrations. However, these methods are
highly dependent on the quantity of data, while
their overall performance improvement remains
marginal. In comparison, our AgentToken over-
comes these challenges, requiring only minimal
data to efficiently train the corresponding tokens.

Efficiency In Table 5, we compared the efficiency
of the AgentToken with other efficient-tuning meth-
ods, i.e., prompt tuning (Pt) and adapter tuning
(LoRA), focusing on the number of trainable pa-
rameters, memory requirements, and training time
on the same A100 device. Results indicate that
AgentToken is the most efficient across all dimen-
sions, requiring the least amount of parameters
and memory with the shortest training duration.
Specifically, because AgentToken eliminates the
need for gradients to flow through the main body
of MLLM, training time is significantly reduced,
and the process becomes more stable. Conversely,
full fine-tuning and prompt tuning fail to converge
properly due to their sensitivity to data.

Data Requirement Generally, the larger and
higher-quality the demonstration set .S;, the more
beneficial it is for training AgentToken. However,
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Task-1: Set up to forward every email received by anonym-x2024@outlook.com in the future to anonym-x2024@gmail.com. MailAgent
—TY —

o|

Step2: click(new_x, new_y) Step3:

# Click on \"New...\" to create a new filter

Step1: click(filters_x, filters_y)

# Click on \"Manage message filters\"
Task-2 : In a new sheet with "Year", "CA changes", "FA changes", and "OA changes",
calculate the annual changes for the Current, Fixed, and Other Assets columns.

W] Step 2: create new sheet and headers
—

from openpyxl import load_workbook

file_path = ‘/home/user/... Sheet.xlsx’
1 load_workbook(file_path),sheet_name = ...
wh.create_sheet(title=sheet_name)
. e heads=["Year", "CA changes", ...,]
SheetAgent

8 init_state ws_new.append(headers),wb.save(file_path)

Step 1: install and locate
] - ~ 7| # Successfully ran

[pip install openpyxl && lsof | grep '.xlsx’ ]

[

26479200 5 35,8
28214800 § 3318100 §

1
J— ,. "
- } Step 3: insert table for the required data

from openpyxl import load_workbook
original = load_workbook(file_path).activate
for row in range(2, original. max_row+1):

Successfully install openpyxl
h 'SmallBal. Sh

Va
rv-a

saw-avsaeno

fvear CA changtFA changeOA changes
2015 10.15% -4.96%  -1.68%
2016 7.22% -5.56%  5.85%
2017 13.42% -5.93%  7.65%
2018 6.46% -6.68%  0.47%
2019 6.55% -7.46%  1.44%

o

~ 7 | # Successfully execute

ca_current = original.cell(row).value
if row >2:
ca_previous =original.cell(row-1).value
ca_change =(ca_current-ca_previous)
wh.save(file_path) # Save the workbook

final_stSte

_x,choose_y) ...typewrite(’

Step4: click(1424, 629), click(close_x, close_y)
il.com’) #Ensure the filter is enabled and close the window

Forward to Gmail’) ... cli
20

Task-3: Could you assist me in boosting the contrast of my photo in the desktop
and then insert it into the opening document at the point of the cursor ?

B Step 1:install and locate

1
I | apt-get install -y imagemagick | Image
! | && Is ~/Desktop/ Agent
fully install i ick —
{~/Desklop/ berries.png ]

convert ~/Desktop/berries.png -contrast —
- | contrast ~/Desktop/berries_contrast.png

)

# Successfully execute

N ~
1 writer - -
Agent

N
- Viewing Your G Schele o Textsaks
AR\

ol

Step 3: hotkey(“ctrl”, “s”)

Step 2: hotkey(“ctrl”, “v”)

Figure 4: Specific steps involved in executing three tasks mentioned in the qualitative analysis.

82 2385 2385 2389 400
et o%—-7%
o0 o ) ONEANE
3385 23.50
233 o) '
78 1 (6] 78.36
) 123.25
I/
76 - o 23.00
15715
y; 122,75
74 4 7
A O - Routing Acc.(%)  [22.50
4
72'2282'2 --@-- Executing Acc.(%) |5395
70 2620 . . ! —L22.00
50 75 100 125 150

Figure 5: The accuracy curves with increasing training
data corresponding to one agent. The x-axis represents
the demonstration set size corresponding to each agent.
The left y-axis represents the routing accuracy while the
right y-axis indicates the executing accuracy.

in practical scenarios, manually acquiring a large
volume of high-quality demonstrations poses sig-
nificant challenges. The proposed automated pro-
cess can mitigate this issue by generating data auto-
matically; nevertheless, the scope of the generated
data remains relatively limited (Shumailov et al.,
2024). Fortunately, AgentToken can still be ef-
fectively trained due to its small parameter size
and stable training process. As shown in Figure
5, when the demonstration set size reaches 100, a
satisfactory accuracy rate can be achieved.

4.4 Qualitative Analysis

In Figure 4, we provide running cases to illustrate
how AgentStore enhances the overall system’s ca-
pability. In Task-1, the agent is tasked with setting
up automatic email forwarding, which involves fre-
quent GUI interactions and requires understanding
of Thunderbird settings. MetaAgent assigns the
specialized MailAgent to handle the task which
navigates the exact steps to configure the forward-
ing settings. In particular, during the Step3, it ex-
ecutes a sequence of actions to accurately fill out
the required forms and options, showcasing its ad-
vanced understanding capabilities within the mail
domain. Similarly, in Task-2, which requires com-
plex processing of a spreadsheet, MetaAgent se-
lects the SheetAgent from the AgentPool to handle
the task, avoiding overly complex GUI interactions.
SheetAgent possesses knowledge of “openpyxl”
and a deep understanding of the steps needed to
manipulate sheets, efficiently completing this task.
In addition, Task-3 illustrates a system-wide task
that requires collaboration among multiple agents.
MetaAgent successfully decomposes the task into
subtasks and assigns the appropriate agents to com-
plete each one. These cases highlight AgentStore’s
specialized generalist abilities in handling both
domain-specific and system-wide tasks.
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5 Conclusion

In this paper, we introduce AgentStore, a flexible
and scalable platform for dynamically integrating
heterogeneous agents to independently or collabo-
ratively complete OS tasks. Furthermore, we pro-
pose MetaAgent with the AgentToken strategy to
achieve efficient management of the growing num-
ber of agents. Comprehensive quantitative analysis
and qualitative results show that AgentStore ex-
pands the capabilities of existing agent systems
in both generalization and specialization. We be-
lieve that as basic AGI models continue to evolve,
AgentStore will integrate more powerful agents,
progressively advancing toward the vision of build-
ing the specialized generalist computer assistant.
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in this paper. Further, the outputs are not expected
to be potentially harmful. To ensure reproducibility,
we provide experimental details in Section 4 and
their corresponding appendices. All source code
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Limitations

While AgentStore has proven effective in multiple
benchmarks, there still exist the following two di-
rections for exploration: (1) Latency under high
workloads: While task routing is efficient, the si-
multaneous deployment of multiple agents in high-
demand scenarios can lead to increased response

times. Further optimization is required to mini-
mize delays in such environments. (2) Scaling
with larger AgentPool: The current framework
demonstrates promising results with moderately
sized agent pools, but further research is needed
to enable seamless integration and management
of significantly larger AgentPools. It is essential
to explore more robust mechanisms that can dy-
namically allocate resources and resolve conflicts
among a large number of agents. Additionally,
evaluating the system on more complex and diverse
benchmarks involving extensive multi-agent collab-
oration will be critical for validating its scalability
and adaptability.
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A AgentPool

The AgentPool is a collection of all available agents
within AgentStore.  To build the prototype of
AgentStore, we organized 20 agents within Agent-
Pool, each with distinct functionalities. As shown in
Table 6, these agents range from unimodal to mul-
timodal, from open-source to closed-source models,
and from Command-Line Interfaces (CLI) to Graph-
ical User Interfaces (GUI). The diverse capabilities of
these agents cover common applications and tasks in
both daily life and professional settings. In addition
to the domain-specific agents we developed, we also
integrated existing agents, such as Friday (Wu et al.,
2024) and (He et al., 2024). This demonstrates the
scalability of our approach, which allows third-party
agents to be added to the platform.

Specifically, for closed-source model agents, we uni-
formly use GPT-40 as the base model. For open-source
model agents, single-modality agents are based on
Llama 3.1 (Touvron et al., 2023), while multi-modality

GUI vs CLI

Open vs Close

Single-Modal vs Multi-Modal

Extension vs No-Extension

Figure 6: The agent distribution across different

types.

agents are built on InternVL2 (Chen et al., 2024b). The last column of Table 6 indicates whether the agent

has the capability to solve tasks outside its own domain.

Figure 6 illustrates the distribution of different types of agents, showing that the initial version of
AgentStore maintains a consistent balance between GUI and CLI agents. Most models also support exten-
sions to handle additional tasks. Due to the significant gap between open-source and close-commercial
models, most agents in this version are currently based on close-commercial models.

Table 6: The presentation of agents in the AgentPool.

CLI or Single or Open or Close Domain Support
GUI? Multi Modal? Base Model? for OSworld Extension?
OSAgent GUI Multi Close (0N}
Friday (Wu et al., 2024) CLI Single Close OS
SheetAgent CLI Single Close Calc X
CalcAgent GUI Multi Close Calc
SlideAgent CLI Single Close Impress X
ImPressAgent GUI Multi Close Impress
WordAgent CLI Single Close Writer X
WriterAgent GUI Multi Close Writer
VLCAgent GUI Multi Close VLC
MailAgent GUI Multi Close TB
ChromeAgent GUI Multi Close Chrome
WebAgent (He et al., 2024)  GUI Multi Close Chrome X
VSAgent GUI Multi Open VSC X
VSGUIAgent CLI Single Close VSC
GimpAgent GUI Multi Close GIMP
ImageAgent CLI Single Open GIMP
Searcher CLI Single Close - X
GoogleDrive CLI Single Close - X
CoderAgent CLI Single Open - X
VisionAgent CLI Multi Open - X
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Integration Protocol: When a developer creates a new OS agent and seeks to integrate it into AgentStore,
it is essential to register the agent’s information in a standardized format. To ensure consistency in the
integration process, we established an agent integration protocol. As shown in the template below, during
enrollment, the developer completes a predefined form outlining the agent’s capabilities, limitations, the
applications it interacts with, and demonstrations of its functionality.

In the actual enrollment process, we encourage developers to provide more demonstrations—the
greater the number, the more comprehensive the document will be, which also facilitates agentToken
training during the self-instruct process. In this paper, we provide 10 demonstrations for each agent,
which is relatively lightweight but still effectively aids the Metaagent in learning and understanding the
corresponding agent.

Templete: AgentName

# Applications:
# List the applications or tools that the agent supports or interacts with.

# Capabilities

# Describe the main functions and abilities of the agent. Include details about the tasks it

can perform and the libraries or technologies it utilizes.

# Limitations

# Outline the constraints and tasks the agent cannot perform. This helps set clear boundaries
for the agent's functionality.

# Demonstrations

# Demostation_1: <Description of the first demonstration task.> <path_to_demonstration_image_1>
# Demostation_2: <Description of the second demonstration task.> <path_to_demonstration_image_2>

# Demostation_3: <Description of the third demonstration task.> <path_to_demonstration_image_3>

# Demostation_4: <Description of the fourth demonstration task.> <path_to_demonstration_image_4>

\

B Details of Agents within AgentPool

Following the above template, we present six typical agent documents related to LibreOffice tasks to
provide a clearer view of the agents in the AgentPool. Due to space limitations, further details on
additional agents will be available when the entire project is open-sourced.

SlideAgent and ImPressAgent: These two agents serve distinct roles in slide processing tasks, with
SlideAgent being CLI-based and ImPressAgent GUI-based. SlideAgent is derived through enhanced
prompting of the FridayAgent (Wu et al., 2024), leveraging the Python-pptx library documentation. It
effectively utilizes bash commands to locate file paths and generate Python code to perform operations on
slides, such as adding titles or modifying text. In contrast, ImPressAgent specializes in handling tasks via
GUI interactions with LibreOffice Impress, excelling in modifying software defaults, adjusting layout
details, and performing other visual modifications that require direct interface manipulation.
WordAgent and WriterAgent: These two agents serve distinct roles in document processing tasks, with
WriterAgent being CLI-based and WordAgent GUI-based. WriterAgent utilizes Python’s python-docx
library to perform operations such as modifying paragraphs, adding or removing tables, and executing
other programmatic edits on Word documents. In contrast, WordAgent specializes in handling GUI
operations in LibreOffice Writer software, excelling in modifying software defaults, adjusting layout
settings, and performing visually oriented tasks that require direct interaction with the user interface.
SheetAgent and CalcGUI: These two agents are designed for spreadsheet processing tasks, with Shee-
tAgent being CLI-based and CalcGUI GUI-based. SheetAgent leverages Python’s openpyxl library to
excel in tasks such as data entry, formula insertion, chart creation, and spreadsheet formatting, offering
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programmatic efficiency for managing spreadsheets. On the other hand, CalcGUI specializes in handling
GUI operations in LibreOffice Calc software, excelling in modifying software defaults, adjusting layout
settings, and performing visually driven tasks that require direct interface manipulation.

AgentName: SlideAgent

# Applications:
Terminal,LibreOffice Impress

# Capabilities

Specializes in creating and modifying PowerPoint presentations using Python's python-pptx library
It can handle tasks involving slide creation, layout management, text and content insertion, and
formatting adjustments. Also capable of detecting open PowerPoint presentations using Bash
commands.

# Limitations

Cannot handle GUI operations, cannot perform tasks outside the capabilities of the python-pptx
library such as directly interacting with embedded videos and complex animations. Additionally,
cannot modify LibreOffice Impress software defaults or preferences.

# Demostations

Demostation_1: Can you add a new slide at the end of my presentation with the title 'Conclusion'
and the text 'Thank you for your attention'?”

43 Template_429.2016pptx- LbreOffice Impress
e

AEE- DR E-BEE BQ A/ o-0m a-
R =R a ®

Click to add Title

B B [~

UEGE CO0®% M

i@

Click to add Text

a®eEn

Demostation_2: Can you add a footer with text 'Company Confidential' to all slides in the current
PowerPoint presentation?

Logistics Company

GLOBAL
“TRADE"

== ANYWHERE IN THE WORLD!

EEEITIRTTRIITN - o
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AgentName: ImPressAgent

# Applications:
LibreOffice Impress

# Capabilities

Specializes in handling tasks using GUI operations and can modify LibreOffice Impress software
defaults or preferences.

# Limitations

Cannot handle complex tasks such as creating and modifying PowerPoint presentations using
Python's python-pptx library.

# Demonstrations

Demostation_1: Enable the "Grid"” view to help with precise placement of objects.

@ e
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Demostation_2: Change the default font for all text in the presentation to "Helvetica”
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AgentName: WordAgent

# Applications:
Terminal, LibreOffice Writer

# Capabilities

Excels at identifying and manipulating Word documents using Python's python-docx library. Can
manage tasks involving document modification, data insertion, and formatting adjustments. Capable
of detecting open Word or other documents using Bash commands.

# Limitations

Cannot handle GUI operations, cannot perform tasks outside the capabilities of the python-docx
library such as directly interacting with embedded media and scripts within the documents.
Additionally, cannot modify LibreOffice Writer software defaults or preferences.

# Demonstrations

Demostation_1: Add the text 'Grand Opening' as a title at the beginning of the document.”

Q9

A
B
B
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N

Demostation_2: Insert a horizontal line above the 'ABSTRACT' heading.

.9

i DD D

-

&
?

L}
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AgentName: WriterAgent

# Applications:
LibreOffice Writer

# Capabilities

Specializes in handling GUI operations and can perform tasks outside the capabilities of the
python-docx library such as directly interacting with embedded media and scripts within documents
Can modify LibreOffice Writer software defaults or preferences.

# Limitations

Cannot identify and manipulate Word documents using Python's python-docx library, and cannot
manage tasks involving document modification, data insertion, and formatting adjustments.
Additionally, cannot detect open Word or other documents using Bash commands.

# Demonstrations

Demostation_1: Enable the "Show Changes" feature to track document edits location.

741 5-880 KE-0- sE80E -,
BIU-5 AAAAN =@z B aa .

“ Uertexsz

How to use this Business Plan Template °

Other related templates

Demostation_2: Create a custom keyboard shortcut for "Print" set to Ctrl+P.
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AgentName: SheetAgent

# Applications:
Terminal, LibreOffice Calc

# Capabilities

Specializes in creating, analyzing, and modifying Excel spreadsheets using Python's openpyxl
library. It can handle tasks involving data entry, formula insertion, chart creation, and
spreadsheet formatting. Also capable of detecting open Excel files using Bash commands.

# Limitations

Cannot handle GUI operations, cannot perform tasks outside the capabilities of the openpyxl
library such as directly interacting with complex macros. Additionally, cannot modify LibreOffice
Calc software defaults or preferences.

# Demonstrations

Demostation_1: Highlight rows where the total sales exceed $1000.
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Demostation_2: Filter out players older than 35 and list their names and ages in a new sheet
named "Veteran Players”.

sampledatahockeasx- Lbreoffce cale
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i ] K L m o 3 Q " s b v | g
BI = weight in pounds / (Neight n inches x height in inches] x 703 3
Hometown [Slprov [SJpos _[<] Age e[ 2
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AgentName: CalcGUI

# Applications:
LibreOffice Calc

# Capabilities

Specializes in handling tasks using GUI operations and can modify LibreOffice Calc software

defaults or preferences.

# Limitations

Cannot handle complex tasks such as creating, analyzing, and modifying Excel spreadsheets using

Python's openpyxl library.

# Demonstrations

Demostation_1

Set the row height to 18 pixels

for better readability.
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Demostation_2: Filter the data to show only rows where "Health: Mortality, under-5" is greater
than 50.
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C Cost analysis

While AgentStore introduces some computational overhead during deployment, its architecture demon-
strates notable advantages in reducing task execution time and cost through the efficient assignment of
specialized agents. The comparative analysis of AgentStore and MMAgent highlights these benefits,
as summarized in Table 7. Due to potential variations in API response times influenced by network
conditions, the reported running time and cost should be considered approximate estimates.

Table 7: The running times and costs between MMAgent and AgentStore.

Method Base-model running time Budget Cost
MMAgent (Xie et al., 2024) GPT-40 ~12h ~250%
AgentStore(AT) GPT-40+Llama 3.1+InternVL2 ~7h ~100$

Such improvements are attributable to the following factors:

(1) Task-Specialized Assignment: By employing a diverse pool of agents, AgentStore allocates tasks
to agents best equipped for specific domains, minimizing redundant or inefficient processing steps.

(2) Optimized Collaboration Framework: The MetaAgent’s AgentToken strategy enables effective
coordination among agents, ensuring tasks are completed collaboratively where appropriate, without
unnecessary computational duplication.

(3) Model Efficiency: The inclusion of open-source models, such as Llama 3.1 and InternVL2, reduces
dependence on commercial models like GPT-40 for tasks.

These findings underscore the potential of AgentStore to serve as a cost-effective and time-efficient
platform for automating diverse tasks in operating system environments.

D Automated process with self-instruct

In this section, we provide more details about the Automated data generation process, including threshold
selection and the greedy filtering algorithm.

Threshold Selection To ensure the reliability of threshold selection, we first studied the distribution of
thresholds in real-world tasks based on human-labeled standards. As shown in Figure 7, in tasks labeled by
OSworld, the 95% threshold distribution of BertScore across different domains is primarily concentrated
between 0.77 and 0.92. Therefore, to further strictly control the quality of generated data, we ultimately
selected a threshold of 0.8 for 7 and 0.9 for 75 to filter the data.

This approach offers several advantages. By selecting thresholds of 0.8 for 71 and 0.9 for 79, we strike
a balance between retaining high-quality data and ensuring the diversity necessary for robust training.
The 7 threshold helps in eliminating low-quality samples, while 75 enforces stricter criteria for the
final selection of data, ensuring that only the most relevant and high-quality data points are used. This
dual-threshold filtering process not only improves the precision of the generated data but also enhances
the overall performance of agent training, reducing the risk of overfitting to noise or irrelevant tasks.

Greedy Filtering Algorithm Algorithm 1 presents a greedy algorithm for filtering a set of newly
generated demonstrations, S., ensuring that each selected demonstration maintains a BERTScore similarity
within the specified bounds 77 and 73 relative to both existing demonstrations .S; and previously selected
new demonstrations S;**”. The key improvement lies in the prioritization of demonstrations that are
optimally positioned between the two thresholds, thereby enhancing both relevance and diversity.

A prioritization mechanism selects demonstrations optimally positioned between the similarity thresh-
olds. By calculating the minimum distance of each candidate’s BERTScore to the thresholds, the algorithm
ensures that selected demonstrations are neither too similar nor too dissimilar to existing ones. This
strategic ordering facilitates the inclusion of the most appropriate demonstrations first, thereby maximizing
both the relevance and diversity of the refined set S;***. Consequently, the quality of the training data for
AgentToken is significantly improved, fostering more effective training outcomes.
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BertScore Distribution across Domains

VSCode 1 |
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Figure 7: BertScore distribution across different domains.

Algorithm 1 Greedy Filtering of Generated Demonstrations using BERTScore with Prioritized Selection

Require: * S/ = {y},v5,...,y.,}: Set of newly generated demonstrations
e Si=A{v1,92,...,yn}: Existing set of demonstrations
* 71: Lower bound for BERTScore similarity

* 73: Upper bound for BERTScore similarity
Ensure: « S'“’: Refined set of new demonstrations satisfying the similarity constraints
1: Initialize SP** < ()
2: For each ¢’ € S/, compute the minimum distance to the thresholds:

d(y') = min(|BERTScore(y’, y) — 71|, [BERTScore(y/, y) — m2|) Vy € S;

3: Sort S! in descending order based on d(y’)
4: for each ¢’ € S! in sorted order do
5:  Initialize a flag valid < True
6: foreachy € S; US!" do
7: Compute BERTScore(y/, y)
8: if BERTScore(y', y) < 71 or BERTScore(y/,y) > 7> then
9: valid < False
10: break
11: end if
12:  end for
13:  if valid then
14: Addy to SPev
15:  end if
16: end for

17: return S

E OSWorld

OSWorld (Xie et al., 2024) is a scalable, computer environment designed for multimodal agents. This
platform provides a real-world environment for assessing open-ended computer tasks involving various
applications. In this section, we provide a detailed introduction to OSworld, focusing on three key aspects:
the open-ended and diverse nature of tasks, the reliability of evaluations in real-world environments, and
the varied capability requirements for agents. This aims to help readers understand the rationale behind
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Figure 9: OSWorld can serve as a unified environment for evaluating open-ended computer tasks in the real-world
computer environment.

using OSworld as the primary evaluation platform in the main text.

E.1 OSWorld Tasks
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Figure 8: Task instructions distribution in OSWorld (Xie

E.2 Real-world Computer Environment etal., 2024)

As shown in Figure 9, OSworld provides an executable and controllable environment that supports task
initialization, execution-based evaluation, and interactive agent learning in a range of real operating
systems. It also provides easily accessible system screenshots, ally-tree information, and interfaces
that facilitate agent output for mouse and keyboard operations. This rich system information, real-time
execution, and comprehensive task evaluation offer an interactive environment that is not limited to
specific applications or domains.

E.3 Representitive Examples

In Table 8, we present several representative examples from OSworld, which aim to illustrate the distinct
operational logic involved in different tasks and the diverse capabilities required. These examples help
readers better understand the broad range of generalization and specialized skills necessary in real-world
computer environments, which are challenging for a single agent to fully encompass.

Table 8: Representitive Examples from OSWorld to illustrate the distinct operational logic and the diverse capabilities
involved in different tasks.

AR;i)a(tse)d Instruction(s) Screenshot ngﬂ;ggs
specialized
knowled
I want to install Spotify on [ nowledge
- of 0S;
(0N my current system. Could B o
ou please help me? . Proficient
e . C GUI
d operations

Continued on next page
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Table 8 — continued from previous page
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Table 8 — continued from previous page
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F OSWorld-Multi Benchmark

Building on OSworld, we further developed a new benchmark, OSWorld-Multi, to evaluate MetaAgent’s
ability to predict and coordinate multiple agents for collaborative task execution. OSWorld-Multi consists
of 101 tasks, each requiring collaboration with paired agents from the AgentPool. In the following
sections, we will introduce the construction process, task examples, and evaluation metrics.

Construction process To maximize the reuse of tasks, system states, and evaluation functions from
OSworld, we adopted a reverse synthesis approach. By mining paired examples in OSWorld, we generated
tasks requiring agent collaboration. Specifically, we first traversed all pairwise combinations of subtasks,
applying a two-step validation process: an initial filtering with a large language model (LLM), followed by
manual review. This method allowed us to select meaningful collaborative tasks. Moreover, this approach
enabled the synthesis of tasks requiring not only two-agent collaboration but also those involving three or
more agents. In the following section, we will present some of the generated collaborative task results to
demonstrate the outcomes of this synthesis process.

Task examples In the table below, we present several synthesized examples to help readers understand
the generation process. Another advantage of this reverse synthesis approach is the presence of natural
ground truth, allowing us to evaluate not only execution accuracy but also the accuracy of agent predictions
and task decomposition. This enables a comprehensive assessment of collaborative task execution. In the
following sections, we will provide a detailed explanation of the corresponding evaluation metrics.

Synthesis task 1

# Agent:Subtask-1

VLCAgent:Snap a photo of the current video scene, save it as 'interstellar.png', and put it on
the Desktop, please.

# Agent:Subtask-2
WriterAgent: Add page number for every page at the bottom left.
# Synthesis task

Capture a scene from a video in VLC and insert the image into a LibreOffice document with a page
number .

# Required: VLCAgent + WriterAgent

Synthesis task 2

| '

# Agent:Subtask-1

VLCAgent: Help me modify the folder used to store my recordings to Desktop.

# Agent:Subtask-2

Friday: Change the permission of all regular files under current directory tree to 644.
# Synthesis task

Modify VLC's recording folder to Desktop and set file permissions to 644 for all files in this
directory.

# Required: VLCAgent + Friday
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Synthesis task 3

# Agent:Subtask-1

VLCAgent: Can you start streaming the video from this link for me?
https://www.youtube.com/watch?v=pgBsyTKAwLw

# Agent:Subtask-2
ChromeGUI: Could you help me clear browsing history from Youtube?
# Synthesis task

Could you stream a video from a YouTube link in VLC and clear all YouTube browsing history in
Chrome after to ensure a clean search experience?

# Required: VLCAgent + ChromeGUI

J

Evaluation metrics We propose three metrics for evaluation: AgentMatch, SubtaskAcc, and Execution-
Acc, which respectively measure multi-agent prediction accuracy, subtask decomposition accuracy, and
execution success rate.

AgentMatch is designed to assess the accuracy of the agent prediction process during collaborative
task execution. It compares the predicted set of agents selected by the MetaAgent with the ground truth
set of agents that are required for successful task completion. Essentially, AgentMatch measures how
well the MetaAgent can correctly identify the appropriate agents from the AgentPool for a given task.
The metric is computed by calculating the accuracy of the predicted agent set relative to the actual agents
involved in the task. Specifically, it checks whether the predicted agents match the expected agents. A
high AgentMatch score indicates that the MetaAgent is effectively coordinating and predicting the correct
agents for task execution.

SubtaskAcc is an evaluation metric that measures the accuracy of task decomposition by comparing
the predicted subtasks assigned to each agent with the ground truth subtasks. It evaluates how well
the MetaAgent decomposes a given task and assigns the correct subtasks to the respective agents. To
assess SubtaskAcc, we use a textual comparison between the predicted subtasks and the actual subtasks
for the same agent. This comparison is based on textual similarity, using BERTScore as the evaluation
metric. As per our analysis in D, if the BERTScore is below 0.77, the two subtasks are considered too
dissimilar, and the decomposition is deemed unsuccessful. Conversely, if the BERTScore exceeds this
threshold, the decomposition is considered accurate. This threshold ensures that only decompositions
with sufficiently high textual similarity are counted as correct. SubtaskAcc thus reflects how effectively
the MetaAgent can break down a complex task and allocate the correct components to individual agents.
A high SubtaskAcc score indicates that the MetaAgent is accurately identifying the required subtasks for
each agent, contributing to the overall success of the collaborative task execution.

ExecutionAcc is an evaluation metric that measures the success rate of task execution by reusing the
assessment methods from OSworld. This metric focuses on determining whether the predicted subtasks
are correctly executed by the agents, based on their final state in the environment.

To evaluate ExecutionAcc, we rely on OSworld’s system of getter and evaluator functions. The getter
function extracts key components from the final state of the environment (e.g., a modified file or text
contents displayed in a window element), while the evaluator function assesses success based on these
extracted components. If a necessary function does not exist, it is constructed and added to the function
library of the environment. Each task is evaluated by comparing its final execution state with the expected
outcome, and the evaluation process is designed to be robust.
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In the context of our system, ExecutionAcc provides a direct measure of how successfully the agents
complete their assigned tasks, reflecting the practical performance of task execution in real-world scenarios.
A high ExecutionAcc indicates that the agents are accurately following the predicted subtasks and
completing them correctly in the environment.

G Prompt Details

We provide examples of MetaAgent prompts in different modes to help readers understand the inference
process. It is important to note that in manager mode, the prompt templates in Section G.3 for AgentToken
and ICL are identical. The key difference is that AgentToken reduces the number of input documents,
effectively shortening the context length, which in turn improves performance.

Additional prompts, including those related to each individual agent and self-instruct, will be provided
when the project is open-sourced.

G.1 Prompt for router mode for AgentToken

Prompt: Router for AgentToken

Imagine you have a complex task that needs to be executed on an operating system.

This task can be decomposed into sub-tasks corresponding to the model’s capabilities.
You have several agents with different specializations available.

Requirements:

The task is assigned to one agent, the model should return the one token of that agent.
Now your task is: {task_name}

L

G.2 Prompt for router mode for ICL

Prompt: Router for ICL

Imagine you have a complex task that needs to be executed on an operating system.
This task can be decomposed into sub-tasks corresponding to the model’s capabilities.
You have several agents with different specializations available.

{agent_1_document}, {agent_2_document}, ...{agent_n_document?}

Requirements:

The task is assigned to one agent, the model should return the name of that agent.
like:

#i##CalcAgent#itt

Now your task is: {task_name}

\. .

G.3 Prompt for manager mode

Prompt: Manager Mode

Imagine you have a complex task that needs to be executed on an operating system.

This task can be decomposed into sub-tasks corresponding to the model’s capabilities.
You have agents with different specializations available:

{agent_1_document}, {agent_2_document}, ...{agent_n_document}

Requirements:

The task requires multiple agents, the model should specify which sub-tasks each agent should
handle.

The model should ensure that the task assignment optimizes efficiency and effectiveness,
considering the unique capabilities of each agent.

return like:

#i##AgentNamel: compute the sum of data in a new sheet.###

#i##tAgentName2:upload the computed file to the google Drive#i#

Be careful not to assign the same agent to perform tasks consecutively.

don't return like this:

#i##Agent1:compute the sum of data in a new sheet.###

#i##Agent1:rename this sheet.###

Now your task is: {task_name}
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