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Abstract

Understanding robustness is essential for build-
ing reliable NLP systems. Unfortunately, in the
context of machine translation, previous work
mainly focused on documenting robustness fail-
ures or improving robustness. In contrast, we
study robustness from a model representation
perspective by looking at internal model rep-
resentations of ungrammatical inputs and how
they evolve through model layers. For this pur-
pose, we perform Grammatical Error Detection
(GED) probing and representational similarity
analysis. Our findings indicate that the encoder
first detects the grammatical error, then corrects
it by moving its representation toward the cor-
rect form. To understand what contributes to
this process, we turn to the attention mecha-
nism where we identify what we term Robust-
ness Heads. We find that Robustness Heads
attend to interpretable linguistic units when re-
sponding to grammatical errors, and that when
we fine-tune models for robustness, they tend
to rely more on Robustness Heads for updating
the ungrammatical word representation. !

1 Introduction

Neural Machine Translation (NMT) has seen great
success, especially since the introduction of the
Transformer architecture (Vaswani et al., 2017).
Recent advances in NMT introduced models that
can translate between over 200 languages (NLLB
Team et al., 2022). While this achievement is im-
pressive and drives the deployment in real-world
scenarios, evaluating and understanding NMT ro-
bustness remains essential for building reliable
NMT systems.

Early works have focused on documenting the
robustness failures of NMT models, or improv-
ing their robustness (Napoles et al., 2016; Khayral-
lah and Koehn, 2018; Belinkov and Bisk, 2018;

Your code: https://github.com/issam9/
nmt-robustness-analysis.

Anastasopoulos, 2019; Jayanthi and Pratapa, 2021).
However, there has been limited analysis of model
representations in response to noise. Therefore, our
goal in this work is to fill this gap by analyzing
robustness from a representation perspective.

Our hypothesis is that the encoder detects and
corrects the representation of the ungrammatical
word by moving its representation toward the cor-
rect form. To study the detection part, we use GED
probing to evaluate how the accuracy of detecting
the ungrammatical word changes through the en-
coder layers. For the correction part, we measure
the representation distance between the ungrammat-
ical word and its correct grammatical form. We find
that generally the probing performance increases
in the first half layers of the model, then plateaus
or decreases, while the representation distance on
the overall decreases along model layers.

To understand what contributes to correcting the
representations, we turn to the attention mechanism
due to its crucial contribution to transformer model
performance. We identify what we term Robustness
Heads, which are attention heads that contribute
to moving the ungrammatical word’s representa-
tion toward its correct form. We find that after
fine-tuning models on ungrammatical sentences,
and thus, making them more robust, they learn to
rely more on Robustness Heads for updating the
ungrammatical word’s representation especially in
deeper layers where we hypothesize that the cor-
rection is happening.

Our work addresses the following research ques-
tions and makes the following contributions:
RQ1: How do models represent and handle gram-
matical errors to achieve robustness? NMT en-
coders inherently implement a Grammatical Error
Correction (GEC) setup in which they first detect
the ungrammatical word, then correct it by moving
its representation toward the grammatical form.
RQ2: How does grammatical error representa-
tion differ across models and languages? Models
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respond similarly to grammatical errors however
we find differences across languages which we at-
tribute to their linguistic differences.

RQ3: How does fine-tuning for robustness in-
fluences models to achieve improved robustness?
Fine-tuned models exhibit similar behavior to their
base models but tend to rely more on Robustness
Heads for handling grammatical errors and enhanc-
ing their resilience to noisy inputs.

2 Related Work

There have been multiple works analyzing trans-
former models representations for different pur-
poses. Probing has been explored for understand-
ing information that is encoded in pre-trained
model representations (Belinkov et al., 2017; Et-
tinger, 2020; Belinkov et al., 2020; Liu et al., 2021;
Davis et al., 2022), as well as to understand the
effect of fine-tuning (Mosbach et al., 2020; Durrani
et al., 2021; Zhou and Srikumar, 2022; Durrani
et al., 2023a), and contextual embeddings (Ten-
ney et al., 2019; Klafka and Ettinger, 2020). The
attention module, given its importance in the suc-
cess of the transformer architecture, has also been
explored for interpreting transformer models (Ra-
ganato and Tiedemann, 2018; Clark et al., 2019;
Voita et al., 2019; Zhang et al., 2023). Other works
have focused on understanding and comparing be-
tween different models through the lens of simi-
larity analysis (Kudugunta et al., 2019; Wu et al.,
2020; Vazquez et al., 2021). In our work, we com-
bine all these techniques to understand NMT mod-
els robustness to grammatical errors.

Fine-tuning on downstream tasks leads to
changes in representations that might not be fa-
vorable (e.g. catastrophic forgetting), and thus has
been an active area of analysis (Merchant et al.,
2020; Durrani et al., 2021; Phang et al., 2021; Zhou
and Srikumar, 2022; Durrani et al., 2023b; Neerudu
et al., 2023). Our work focuses on understanding
the effects of fine-tuning for robustness to grammat-
ical errors in the context of NMT, where we look at
both model representations and downstream NMT
performance.

Robustness is of critical importance for NLP
models. Early works have explored improving ro-
bustness to different types (e.g. User Generated
Data, Automatic Speech Recognition, Non native
speakers, ...) of noise by using synthetic data
(Anastasopoulos et al., 2019; Zhou et al., 2019;
Karpukhin et al., 2019; Salesky et al., 2019; Jayan-

thi and Pratapa, 2021; Wang et al., 2021; Zhao and
Calapodescu, 2022). Recent works show that even
Large Language Models (LLMs) witness perfor-
mance degradation when confronted with synthetic
noise (Chen et al., 2024; Zhu et al., 2024). Multiple
techniques were introduced to deal with noise or
adversarial attacks by pushing noisy or adversarial
samples representations to be similar to those of
the original samples (Xu et al., 2021; Passban et al.,
2021; Yang et al., 2022; Wang et al., 2023) and
our experiments show that NMT encoders do this
inherently when trained on synthetic noise. While
analyzing the robustness of NMT transformer mod-
els has been an area of exploration (Napoles et al.,
2016; Khayrallah and Koehn, 2018; Belinkov and
Bisk, 2018; Anastasopoulos, 2019; Jayanthi and
Pratapa, 2021), the focus was more on document-
ing model failures under noise or adversarial at-
tacks rather than analyzing the model internals,
therefore, our work is an attempt to fill this gap. In
computer vision, however, Cianfarani et al. (2022)
explored representation similarity to understand ad-
versarially trained Deep Neural Networks (DNNs)
and compare them to non-robust DNNs, while we
focus on understanding the effect of fine-tuning
NMT transformer models on synthetic grammati-
cal errors, and we compare them against their base
model as a less robust model, as well as against a
domain adapted model. In addition, we probe the
linguistic features encoded in the representations
and we compare the models on the basis of their
attention mechanism.

3 Methodology

Our analysis starts by introducing grammatical er-
rors in the dataset, which we describe in §3.1. Sub-
sequently, in §3.2 we describe how we fine-tune
models for robustness to analyze the effects of fine-
tuning. Finally, in §3.3 we present the methods
of our analysis, namely: GED probing, representa-
tion similarity, and Robustness Heads, where we
describe our method for finding Robustness Heads,
and analyzing their attention to POS tags.

3.1 Synthetic Grammatical Errors

To provide a representation level analysis of ro-
bustness, it is crucial to have granular control over
grammatical errors. We achieve this by introducing
synthetic grammatical errors into clean sentences.
We focus on three types of grammatical errors that
are common in non-native speaker language (Izumi
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et al., 2004; Napoles et al., 2016; Anastasopoulos,
2019), and we create an adversarial copy of the
dataset for each type, where we insert one error per
sentence when possible. We focus on grammatical
errors with clear linguistic functions to be able to
link our analysis to the linguistic features of the
source language. However, to validate the general-
izability of our analysis to different types of errors
as well as more than one error per sentence, we use
MORPHEUS (Tan et al., 2020) as a black-box ad-
versarial attack that greedily introduces inflectional
errors to minimize the BLEU score.

We follow the implementation of (Anastasopou-
los et al., 2019) to introduce article (Article), prepo-
sition (Prep) and noun number (Nounnum) replace-
ment errors in the dataset. For each sentence
X = {w1,ws,ws,...,w,} in the dataset D, we
introduce one of the three grammatical errors in
X when possible to get X = {w, wa, w3, ..., wy },
where w3 is the noisy word that was sampled to
replace ws. Therefore, w3 represents the ungram-
matical word, and wj is its target grammatical form.
The result is an adversarial dataset D for each error

type.

3.2 Fine-tuning for Robustness

Our analysis focuses on four well established NMT
models, namely: OPUS-MT, M2M100, MBART
and NLLB. We fine-tune these models on the ad-
versarial dataset of one of the error types, and since
this leads to improving their robustness to the error
type, we also analyze the representations of fine-
tuned models. To separate the effect of robustness
from domain adaptation, we compare against a ver-
sion of the model that is fine-tuned on the clean
version of the data. We refer to these models as
Base, Noise-Finetuned, and Clean-Finetuned re-
spectively. However, we only fine-tune the encoder
given that it is the source-side representation engine
of the model. We justify this focus in Appendix
A where we find that fine-tuning only the encoder
achieves similar robustness to fine-tuning the full
model, which is not the case when fine-tuning only
the decoder or the cross attention.

3.3 Model Analysis

3.3.1 GED Probing

Following (Davis et al., 2022), we perform GED
probing to understand how the detection of ungram-
matical words changes through the encoder layers.
We train linear probes on the word representation
of each encoder layer to predict whether the word is

grammatically correct or not. Similarly to previous
work (Liu et al., 2019; Davis et al., 2022), we take
the representation of the last subword as the word
representation when a word is split into subwords.

3.3.2 Representation Similarity

To study how encoders affect the representation of
the ungrammatical word toward its correct form,
we measure the distance between the ungrammat-
ical word and its target grammatical form in each
of the encoder layers. We use Centered Kernel
Alignment (CKA) (Kornblith et al., 2019) to mea-
sure the distance as 1 — CKA(W,W), where
W e RV gre ungrammatical word representa-
tions, W € RNV*? are their target grammatical
word representations, N is the number of data
points, and d is the model hidden dimension. We
use CKA because compared to other similarity
methods, it does not require the number of data
points to be considerably higher than the represen-
tation dimension (Kornblith et al., 2019). We note
that CKA outputs a similarity score between 0 and
1.

3.3.3 Robustness Heads

3.3.4 From Influential Heads to Robustness
Heads

Voita et al. (2019) measured the amount of influ-
ence of a token w; on another token w; as the dis-
tance between w;’s representation before and after
w,; was masked. We apply the same method but
to measure head influence instead. We collect the
word representation after masking one head at a
time, then we compute the CKA distance to the
original word representation from the same layer.
In our hypothesis, masking an attention head that
has the most influence on the word’s representation
will lead to the highest distance, therefore, we term
this Influential Heads. Formally, for a layer [, we
mask each head h; € {1,2,..., H} in layer [ — 1,
and we take the representation of the word w to
compute 1 — CK A(wp,, w), where H is the num-
ber of heads, wy, is the word representation after
masking the head h;, and w is the original word
representation.

Since we are more interested in understanding
which attention heads contribute to correcting the
ungrammatical word’s representation, we are led to
introduce what we term Robustness Heads, which
we define as heads that influence the ungrammat-
ical word’s representation toward its grammatical
form. This requires a simple redefinition of In-
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fluential Heads, where instead of computing the
distance to the original word itself, we compute
the distance from the noisy word representation to
the representation of its clean form. Formally, in-
stead of computing 1 — C' K A(wp,, w) we compute
1 — CKA(wp,,w), where wy, is the representa-
tion of the ungrammatical word w after head h; is
masked.

3.3.5 Attention to POS Tags

The attention mechanism offers a straightforward
way to interpret NLP models, based on the assump-
tion that, like human attention, models focus on
parts of the sentence that they find important for
making a prediction. This assumption combined
with the granularity and clear linguistic functions
of the grammatical errors we introduce, offer a way
to linguistically analyze the attention of Robust-
ness Heads, which we achieve by inspecting their
attention to Part Of Speech (POS) Tags. We collect
the attention scores directed from the ungrammati-
cal tokens to the other tokens in the sentence, then
group the attention scores over words, following
(Clark et al., 2019). When the noisy word is split
into tokens, we take the mean of the scores. Con-
versely, when the word it is attending to is split
into tokens, we take their sum. This preserves the
property that word level attention scores sum to 1.
Following this transformation, we use Spacy 2 to
label each word in the sentence with its POS tag
and collect the attention scores that each POS tag
has received.

4 Experimental Setup
4.1 Data

We use the Europarl-ST (Iranzo-Sédnchez et al.,
2020) dataset which contains official speech, tran-
scriptions and translations of European Parliament
debates of multiple European languages. For this
work, we only use the transcriptions and transla-
tions of 5 directions: En-Es, En-De, En-It, En-N1
and Fr-Es (Dataset splits and sizes are in §B.2).
Introducing grammatical errors and interpreting
the results of our analysis required understanding
of the source languages, which limited the choice
of language directions. We were also limited by
the performance of models (e.g. MBART scores
51.18 COMET on Fr-N1) and availability of NLP re-
sources for introducing grammatical errors. Never-
theless, there is a high number of non-native speak-

2https://spacy.io/

ers of both English and French, which makes them
relevant for our analysis.

After we introduce synthetic errors into the
dataset, we sample 30% of the train set for training
the GED probes and we use the rest for fine-tuning
the models. When sampling, we make sure that the
error labels are balanced between the two subsets.
Since we seek to experiment with fine-tuning on
clean data as well, we keep the clean version of
the fine-tuning subset. This results in clean and
noisy fine-tuning subsets for the 3 grammatical er-
rors that we introduce, which we use to fine-tune
Clean-Finetuned and Noise-Finetuned models of
each error type. While for GED probing, we only
use the noisy version to probe the models on each
error type.

4.2 Synthetic Errors

Nounnum: We find nouns in the sentence then
sample one of them and change its number from
plural to singular or the opposite depending on
its actual number. For English, we use Berkeley
parser (Petrov et al., 2006) to identify nouns and
their number, and for French we use Spacy-lefff 3.

Article and Prep: We find articles or prepositions
in the sentence with string matching, and sample
one of them uniformly, then sample a replacement
based on statistics from CONLL-14 Shared Task on
GEC (Ng et al., 2014) dataset in the case of English,
and uniformly in the case of French. The list of
articles and prepositions is provided in Appendix
B.1.

Morpheus: MORPHEUS (Tan et al., 2020) is
a black-box adversarial attack that greedily intro-
duces inflectional errors to minimize or maximize
a target metric, which in our case is the BLEU
score. Similarly to the original work, we only in-
flect nouns, verbs and adjectives, and we restrict the
possible inflections to the original POS tag to pre-
serve the meaning of the sentence. We use Spacy
and Spacy-lefff for tokenization and POS tagging
of English and French sentences respectively, and
we use LemmlInflect # to find inflections for En-
glish similarly to the original work, and Inflecteur
3 to find inflections for French. For further details,
we refer the reader to the original work (Tan et al.,
2020).

3https://github.com/sammous/spacy—lefff
4https://github.com/bjascob/LemmInflect
Shttps://github.com/Achuttarsing/inflecteur
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4.3 Models

We run experiments on multilingual machine trans-
lation models. More specifically, we analyzed
three models: Multilingual translation version of
MBART (Tang et al., 2020), M2M100 (Fan et al.,
2021) and NLLB (NLLB Team et al., 2022). We
also experimented with bilingual models of OPUS-
MT (Tiedemann and Thottingal, 2020) for En-Es,
En-De, En-It, En-N1 and Fr-Es. Each of these mod-
els has a different level of multilinguality, where
OPUS-MT models support a single direction, while
MBART, M2M100 and NLLB support many-to-
many translation between 50 languages, 100 lan-
guages, and over 200 languages respectively.

4.4 Fine-tuning

We fine-tune the models using HuggingFace trans-
formers library . We use AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
of 5e-05 and a batch size of 64. We save the best
model based on development set BLEU score dur-
ing a maximum of 5000 steps. For validation, we
use the clean and noisy development sets when fine-
tuning on the clean and noisy subsets respectively.
We fine-tune the models with a frozen decoder un-
less it is mentioned otherwise.

4.5 GED Probe Training

We train single layer probes using the Pytorch
framework. we use Adam optimizer with a learn-
ing rate of 1e-03 and a weight decay of 1e-04. We
train with a batch size of 32 for 50 epochs with a
dropout of 0.1 and a patience of 10 epochs for early
stopping based on validation F1 score.

4.6 Evaluation

We evaluate translation on the Europarl-ST test sets.
For each grammatical error, we report results on
both clean and noisy test sets. We also report the
difference in performance between clean and noisy.
As metrics, we use COMET (Rei et al., 2020),
BLEU (Papineni et al., 2002) and ChrF (Popovic¢,
2015). COMET is a neural based metric that was
shown to be more aligned with human judgments
(Freitag et al., 2022). We use the reference-based
model wmt22-comet-da 7, and we report BLEU
and ChrF results in our repository.

For GED probing, we evaluate probes of each
model on the noisy version of the test set of each

https://github.com/huggingface/transformers

7https://huggingface.co/Unbabel/
wmt22-comet-da

grammatical error using the F1 score.

S5 Results and Analysis

5.1 Fine-tuning

In Table 1 we show the COMET scores of Base,
Clean-Finetuned and Noise-Finetuned models on
clean and noisy test sets and their difference (A)
for En-Es (and Table 3 for the other language di-
rections). We can see that even in our simple setup,
where we insert one error per sentence, we still see
a significant drop in performance in Base models
(0.66 at minimum) (Kocmi et al., 2024). Further-
more, fine-tuning on clean or noisy data leads to
better results but only fine-tuning on noisy data
leads to improving robustness, which is seen in
the reduced difference in COMET (e.g. from 0.74
to 0.01 for NLLB on Article errors). Surprisingly,
fine-tuning on grammatical errors doesn’t affect
performance on clean data, and can even lead to
better results compared to fine-tuning on clean
data (e.g. 77.51 compared to 77.14 for M2M100
on Prep errors). This suggests that fine-tuning
on grammatical errors has a regularization effect.
Across error types, we see that Prep errors lead to
the most significant drop, and that even after fine-
tuning, the drop in performance is still significant
(e.g. up to 0.29 for NLLB). We note that Clean-
Finetuned models performance on clean data is
different across errors because the clean train sub-
sets were sampled to match the noisy subsets which
are different because of the error distribution.

In this sub-section, we established that grammat-
ical errors lead to a significant drop in performance,
and that fine-tuning on them leads to increased ro-
bustness, therefore in the next sub-section we pro-
ceed to analyze Base, Noise-Finetuned and Clean-
Finetuned models representations when responding
to the grammatical errors. Furthermore, in Ap-
pendix C.6 we provide the results on Morpheus,
which confirms the generalizability of our analysis
to other error types and to sentences containing
more than one error per sentence.

5.2 GED Probing

Figure 1 (and Figure 6 for the other language di-
rections) shows that the GED probing performance
improves during roughly the first half layers of
the model, then generally plateaus in the second
half for Base and Clean-Finetuned but decreases
for Noise-Finetuned models. Additionally, across
Base models the representation of errors achieves
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Direction =~ Model Article Nounnum Prep
Clean  Noisy A Clean  Noisy A Clean  Noisy A

opus-mt-base 78.72 77.71 1.0 78.72 71.74 0.97 78.72 77.67 1.05
opus-mt-clean 78.88 78.05  0.84 7897 78.12 085 78.93 78.05  0.88
opus-mt-noise 7894 7889 0.06 7899 7882  0.17  79.06 78.83  0.23
m2m100-base 75.99 74.84 .15 7599 7512 088  75.99 74.63 1.36
m2m100-clean  77.39 76.4 099  77.28 7622 1.07  77.14 76.14 1.0

En-Es m2m100-noise ~ 77.57 7754 003  77.58 71.5 0.08 77.51 7723  0.28
mbart-base 78.04 7723 081 78.04 7725 079  78.04 7724 0.79
mbart-clean 78.51 7777 074  78.64 77.74 0.9 78.49 7173 0.76
mbart-noise 78.61 7858  0.04  78.57 7851 0.06  78.58 78.38 0.2
nllb-base 78.34 71.6 0.74  78.34 77.69  0.66  78.34 7752 0.83
nllb-clean 78.82 78.14  0.68  78.85 78.16  0.69  78.81 78.21 0.6
nllb-noise 78.81 78.8 0.01  78.78 78.73  0.06  78.94 78.66  0.29

Table 1: COMET scores on En-Es. The Base model is the original model, Clean is fine-tuned on the clean version
of the data, and Noise is fine-tuned on the noisy version (with the same noise as the one they are tested on). We
present the performance on the clean and noisy test sets and their difference (A).

closely similar GED F1 score on each layer, while
across errors, the F1 scores are different. For ex-
ample, the GED F1 score of Nounnum errors at
layer 1 is almost 0., while that of Article errors is
0.7. When looking at French as a different source
language, Figure 6(a) shows that French error de-
tection is represented differently, especially that
of Nounnum errors where the maximum F1 score
on En-Es is 0.48, while on Fr-Es it is 0.84. This
might be explained by the fact that in French, the
noun number is indicated by adjectives and articles,
while it is not the case for English.

Fine-tuning negatively affects the GED probing
performance in deeper layers, where our GEC setup
hypothesis suggests that correction is happening.
Noise-Finetuned models maintain their ability to
detect errors in lower layers, then correct them in
deeper layers, which makes the GED probing accu-
racy more challenging because the representation
is corrected. In the next sub-section, we further
support this correction hypothesis.

5.3 Representation Distance

Figure 2 (and Figure 7 for other language direc-
tions) shows the representation distance between
the ungrammatical or noisy word and its target
clean word at each layer of the encoder. Generally,
for Base and Clean-Finetuned models the CKA dis-
tance decreases from one layer to the next except
for Prep errors where the distance decreases then
increases in deeper layers. This can be explained
by the fact that both words have the same linguis-
tic function (nouns, articles or prepositions), and
because they share the same context which leads
their representation to move closer as the encoder
integrates context into it. On the other hand, Noise-

GED Probing F1 Score on En-Es

OPUS-MT | Article OPUS-MT | Nounnum OPUS-MT | Prep

F1 Score

M2M100 | Article M2M100 | Nounnum M2M100 | Prep

F1 Score

MBART | Article MBART | Nounnum MBART | Prep

F1 Score

NLLB | Article NLLB | Nounnum NLLB | Prep

F1 Score

0
1234567 8910111213
Layer

12345678910111213 123456 7 8 910111213

Layer

ayer
Noise-Finetuned Clean-Finetuned Base

Figure 1: GED probing performance of Noise-
Finetuned, Clean-Finetuned and Base models on En-Es.
GED probing performance of Noise-Finetuned models
witnesses a degradation in deeper layers.

Finetuned models exhibit similar behavior to their
Base model but they learn to drive the representa-
tion to be closer (almost 0. CKA distance in most
cases), this means that the similarity is driven by ro-
bustness as well, where models correct ungrammat-
ical words by pushing their representation toward
their grammatical form. Combined with the GED
probing results, this supports our hypothesis that
the encoder detects and corrects grammatical errors
to achieve robustness. In the next sub-section, we
analyze Robustness Heads to explain this behavior
in Noise-Finetuned Models.
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CKA distance on En-Es
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Figure 2: CKA distance of clean and noise word repre-
sentations across models and errors on En-Es. Noise-
Finetuned models drive the representation of the noisy
word to be more similar to the clean word.

5.4 Robustness Heads

5.4.1 Attention to POS Tags

Figure 3 (and Figures 8, 9, 10, 11 for other lan-
guage directions) presents the average attention
scores of each POS tag. The scale of attention is
relative to each base model and error type. For
clarity reasons, we only show the attention scores
over the 10 most common POS tags in the dataset.
We keep the tags as they are named in Spacy, but
their full names are presented in Appendix B.3.
The figure shows that generally, the attention of
Robustness Heads to POS tags is concentrated in
the early layers which is related to how early work
have found that lower layers are better at POS tag-
ging (Belinkov et al., 2017). Furthermore, Robust-
ness Heads attend to words in the sentence that can
help identify or correct the grammatical error in
question. Although the attention is distributed dif-
ferently across models, they still attend to similar
POS tags when responding to the same error. How-
ever, when comparing between English and French,
models attend to different POS tags, which can be
explained by their linguistic differences. If we look
at Article errors, English models primarily focus
their attention on adjectives, nouns, and proper
nouns, while their French counterparts primarily
focus on nouns. This difference can be attributed

to the ordering of adjectives in each language. In
English, adjectives mostly precede nouns, while
the opposite is true for French. This means that
adjectives in English have more direct influence
on articles, especially when making the choice be-
tween "a" and "an" (they depend on whether the
next word starts with a consonant or a vowel). An-
other fact that could lead the model to focus less on
adjectives in French, is that certain adjectives do
not follow their noun in gender or number. When
examining Nounnum errors, models exhibit a com-
mon pattern of focusing primarily on adjectives
and determiners, however, attention to determiners
in English is notably lower compared to French,
which can be explained by the fact that in French,
the noun number is indicated by articles. Finally,
for Prep errors, the models focus mainly on verbs,
nouns, and determiners. The three definitely can
affect the choice of prepositions; although it is not
clear with determiners, we note that some preposi-
tions are more common with definite vs. indefinite
determiners, such as "on" and "the".

Base, Clean-Finetuned, and Noise-Finetuned
models distribute their attention similarly to POS
tags, but in some cases, the noisy model has learned
to put more attention to the correct POS tags. For
example, M2M 100 model on Fr-Es has learned to
put more attention on determiners and adjectives
to deal with Nounnum errors (going from a mean
over layers of 0.021 and 0.030 to 0.023 and 0.035
respectively). On Fr-Es Article errors, NLLB and
OPUS-MT models learned to put more attention on
nouns (from 0.051 and 0.065 to 0.053 and 0.069).
On En-Es Article errors, NLLB and OPUS-MT
have learned to put more attention on nouns and
proper nouns respectively (going from 0.052 and
0.057 to 0.055 and 0.061), while on Prep errors,
they have learned to put more attention on verbs
(from 0.062 and 0.062 to 0.067 and 0.069). We see
this trend in other language directions as well as
across models and errors, although in some cases it
is not very clear and the attention scores of Robust-
ness Heads of Noise-Finetuned and Base models
are very close.

5.4.2 Similarity between Robustness and
Influential Heads

The previous section shows that Base, Clean-
Finetuned and Noise-Finetuned models each con-
tain Robustness Heads that attend similarly to in-
terpretable POS tags when dealing with grammat-
ical errors. So what gives the Noise-Finetuned
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Figure 4: Accuracy of Robustness and Influential heads
on En-Es. We find the accuracy is higher for Noise-
Finetuned models especially in deep layers.

models an advantage in terms of robustness? To
answer this question, we start by identifying Influ-

ential Heads of the noisy word, as the heads that
most influence it toward its current state, then we
compare them with Robustness Heads. Figure 4
presents the accuracy between Influential Heads
and Robustness Heads at each layer of the encoder.
The figure shows that this accuracy is higher in
Noise-Finetuned models especially in deeper lay-
ers, which means that models after fine-tuning on
noise, tend to employ more Robustness Heads for
updating the noisy word representation, and this
can explain their improved robustness.

6 Discussion

RQ1: How do models represent and handle gram-
matical errors to achieve robustness? The encoder
implements a GEC setup where it first detects the
error then corrects it, and this behavior is more
distinguishable in Noise-Finetuned models. Com-
pared to Base or Clean-Finetuned models, Noise-
Finetuned models maintain their error detection in
lower layers, while they drive the representation of
the ungrammatical word to be as closely similar
to the grammatical form (§5.3). We argue that the
correction component becomes more prominent
later in the model, leading to lower GED probing
accuracy and increased usage of Robustness Heads
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in deeper layers (§5.2 and §5.4.2). This finding
coupled with the results in Appendix A show that
fine-tuning only the encoder while freezing the de-
coder is sufficient for achieving robustness, while
also preserving performance on clean data.

RQ2: How does grammatical error representa-
tion differ across models and languages? Davis
et al. (2022) suggest that GED probing perfor-
mance can reflect the linguistic knowledge of pre-
trained models. While this might be true, our ev-
idence indicates that it is more influenced by the
linguistic features of the language itself (specifi-
cally the source language) (§5.2). For example, the
GED probing performance of Nounnum errors on
Fr-Es peaks at around 0.8, while on En-Es, it peaks
at maximum 0.5. This difference can be explained
by the fact that in French articles and adjectives
follow their noun in number, providing easy access
to information about the noun in question. Fur-
thermore, we find similarities across models in our
analysis of representation distance and attention
to POS tags as well (§5.3 and §5.4.1). However,
when comparing across source languages, mod-
els represent and handle the same error differently.
This suggests that languages might interfere with
one another when fine-tuning for robustness across
multiple languages, or even during training, which
can be avoided by using language-specific adapters
(Bapna and Firat, 2019).

RQ3: How does fine-tuning for robustness in-
fluences models to achieve improved robustness?
Fine-tuning for robustness leverages the existing
knowledge of the Base models and generally does
not go beyond it. If we look at probing perfor-
mance, we see that generally, Noise-Finetuned
models do not go beyond the peak in performance
achieved by their Base model (§5.2), even though
they are trained on the grammatical errors. More-
over, the Robustness Heads of Noise-Finetuned
models distribute their attention to POS tags simi-
larly to their Base models (§5.4.1). However, we
find that Noise-Finetuned models rely more on Ro-
bustness Heads especially in deeper layers to in-
fluence the noisy word toward the correct form
(§5.4.2). This suggests that fine-tuning for robust-
ness builds on the existing structure in pre-trained
NMT models, therefore, analyzing the effects of
different pre-training strategies and training data
can be a valuable direction for future work.

7 Conclusion and Future Work

In this work, we analyze transformer NMT en-
coders under the effect of grammatical noise, and
investigate how fine-tuning for robustness affects
model behavior and internal representations. We
find that the encoder -especially after fine-tuning-
implements a GEC setup: it first detects the error
and then corrects it by adjusting the representa-
tion of the ungrammatical word towards its cor-
rect form. To better understand this behavior, we
propose a method for finding Robustness Heads-
attention heads that attend to POS tags and help
detect and correct the grammatical error. Addition-
ally, we find that fine-tuning on grammatical errors
leads the model to use more Robustness Heads
especially in deeper layers.

These findings suggest a practical strategy for
improving robustness in NMT systems: fine-tuning
only the encoder on (synthetically) noisy data can
substantially enhance robustness without degrad-
ing performance on clean data. This makes it an
efficient and interpretable alternative to full model
fine-tuning. In practice, such systems may ben-
efit from selectively introducing common error
types—especially those relevant to their deploy-
ment context—during fine-tuning.

Furthermore, our analysis framework, which
combines GED probing, representational similarity
and influential attention heads, is model-agnostic
and generalizable. It provides a systematic way
to audit robustness across different models and
languages and could be applied to other encoder-
decoder NLP systems.

Although we focused our analysis on encoder-
decoder models, we hypothesize that decoder-only
models may exhibit a similar behavior especially
in their early layers, therefore, we will extend this
analysis to decoder only models in future work.

8 Limitations

Although Spanish, Italian and French belong to
the Romance family, while English, German, and
Dutch are Germanic languages. All of the lan-
guages belong to the Indo-European family, which
might limit the generalization of our work to other
languages. Additionally, we use synthetic noise
which is more controllable and allows us to pro-
vide a fine-grained analysis of models, but there are
definitely limitations in how close it can simulate
natural noise. Finally, due to resource limitations,
we focus on relatively small models, and while
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larger models might be more robust, we think that
our analysis still offers interesting insights about
robustness.

Acknowledgments

The research presented in this paper was conducted
as part of VOXReality project®, which was funded
by the European Union Horizon Europe program
under grant agreement No 101070521.

References

Antonios Anastasopoulos. 2019. An analysis of source-
side grammatical errors in NMT. In Proceedings of
the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
213-223, Florence, Italy. Association for Computa-
tional Linguistics.

Antonios Anastasopoulos, Alison Lui, Toan Q. Nguyen,
and David Chiang. 2019. Neural machine translation
of text from non-native speakers. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3070-3080, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ankur Bapna and Orhan Firat. 2019. Simple, scal-
able adaptation for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1538—
1548, Hong Kong, China. Association for Computa-
tional Linguistics.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan
Sajjad, and James Glass. 2020. On the linguistic
representational power of neural machine translation
models. Computational Linguistics, 46(1):1-52.

Yonatan Belinkov, Lluis Marquez, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James Glass. 2017. Evalu-
ating layers of representation in neural machine trans-
lation on part-of-speech and semantic tagging tasks.
In Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume
1: Long Papers), pages 1-10, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Junkai Chen, Zhenhao Li, Xing Hu, and Xin Xia.
2024. Nlperturbator: Studying the robustness of
code llms to natural language variations. Preprint,
arXiv:2406.19783.

8https://voxreality.eu/

Christian Cianfarani, Arjun Nitin Bhagoji, Vikash Se-
hwag, Ben Zhao, Haitao Zheng, and Prateek Mittal.
2022. Understanding robust learning through the
lens of representation similarities. In Advances in
Neural Information Processing Systems.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276-286, Florence, Italy. Association for Com-
putational Linguistics.

Christopher Davis, Christopher Bryant, Andrew Caines,
Marek Rei, and Paula Buttery. 2022. Probing for
targeted syntactic knowledge through grammatical
error detection. In Proceedings of the 26th Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 360-373, Abu Dhabi, United Arab
Emirates (Hybrid). Association for Computational
Linguistics.

Nadir Durrani, Fahim Dalvi, and Hassan Sajjad. 2023a.
Discovering salient neurons in deep nlp models. Jour-
nal of Machine Learning Research, 24(362):1-40.

Nadir Durrani, Fahim Dalvi, and Hassan Sajjad. 2023b.
Discovering salient neurons in deep nlp models. Jour-
nal of Machine Learning Research, 24(362):1-40.

Nadir Durrani, Hassan Sajjad, and Fahim Dalvi. 2021.
How transfer learning impacts linguistic knowledge
in deep NLP models? In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4947-4957, Online. Association for Computa-
tional Linguistics.

Allyson Ettinger. 2020. What BERT is not: Lessons
from a new suite of psycholinguistic diagnostics for
language models. Transactions of the Association for
Computational Linguistics, 8:34—48.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi-
taliy Liptchinsky, Sergey Edunov, Edouard Grave,
Michael Auli, and Armand Joulin. 2021. Beyond
english-centric multilingual machine translation. J.
Mach. Learn. Res., 22(1).

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-kiu Lo,
Craig Stewart, Eleftherios Avramidis, Tom Kocmi,
George Foster, Alon Lavie, and André F. T. Martins.
2022. Results of WMT?22 metrics shared task: Stop
using BLEU — neural metrics are better and more
robust. In Proceedings of the Seventh Conference
on Machine Translation (WMT), pages 46—68, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

Javier Iranzo-Sanchez, Joan Albert Silvestre-Cerda,
Javier Jorge, Nahuel Rosell6, Adria Giménez, Al-
bert Sanchis, Jorge Civera, and Alfons Juan. 2020.

8588


https://doi.org/10.18653/v1/W19-4822
https://doi.org/10.18653/v1/W19-4822
https://doi.org/10.18653/v1/N19-1311
https://doi.org/10.18653/v1/N19-1311
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://doi.org/10.1162/coli_a_00367
https://doi.org/10.1162/coli_a_00367
https://doi.org/10.1162/coli_a_00367
https://aclanthology.org/I17-1001
https://aclanthology.org/I17-1001
https://aclanthology.org/I17-1001
https://arxiv.org/abs/2406.19783
https://arxiv.org/abs/2406.19783
https://voxreality.eu/
https://openreview.net/forum?id=SbAaNa97bzp
https://openreview.net/forum?id=SbAaNa97bzp
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/2022.conll-1.25
https://doi.org/10.18653/v1/2022.conll-1.25
https://doi.org/10.18653/v1/2022.conll-1.25
http://jmlr.org/papers/v24/23-0074.html
http://jmlr.org/papers/v24/23-0074.html
https://doi.org/10.18653/v1/2021.findings-acl.438
https://doi.org/10.18653/v1/2021.findings-acl.438
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://aclanthology.org/2022.wmt-1.2
https://aclanthology.org/2022.wmt-1.2
https://aclanthology.org/2022.wmt-1.2

Europarl-st: A multilingual corpus for speech trans-
lation of parliamentary debates. In ICASSP 2020 -
2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 8229—
8233.

Emi Izumi, Kiyotaka Uchimoto, and Hitoshi Isahara.
2004. The overview of the SST speech corpus of
Japanese learner English and evaluation through the
experiment on automatic detection of learners’ er-
rors. In Proceedings of the Fourth International
Conference on Language Resources and Evaluation
(LREC’04), Lisbon, Portugal. European Language
Resources Association (ELRA).

Sai Muralidhar Jayanthi and Adithya Pratapa. 2021. A
study of morphological robustness of neural machine
translation. In Proceedings of the 18th SIGMOR-
PHON Workshop on Computational Research in Pho-
netics, Phonology, and Morphology, pages 49-59,
Online. Association for Computational Linguistics.

Vladimir Karpukhin, Omer Levy, Jacob Eisenstein, and
Marjan Ghazvininejad. 2019. Training on synthetic
noise improves robustness to natural noise in ma-
chine translation. In Proceedings of the 5th Work-
shop on Noisy User-generated Text (W-NUT 2019),
pages 42-47, Hong Kong, China. Association for
Computational Linguistics.

Huda Khayrallah and Philipp Koehn. 2018. On the
impact of various types of noise on neural machine
translation. In Proceedings of the 2nd Workshop on
Neural Machine Translation and Generation, pages
74-83, Melbourne, Australia. Association for Com-
putational Linguistics.

Josef Klafka and Allyson Ettinger. 2020. Spying on
your neighbors: Fine-grained probing of contex-
tual embeddings for information about surrounding
words. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
48014811, Online. Association for Computational
Linguistics.

Tom Kocmi, Vilém Zouhar, Christian Federmann, and
Matt Post. 2024. Navigating the metrics maze: Rec-
onciling score magnitudes and accuracies. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1999-2014, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey E. Hinton. 2019.  Similarity of
neural network representations revisited. CoRR,
abs/1905.00414.

Sneha Kudugunta, Ankur Bapna, Isaac Caswell, and
Orhan Firat. 2019. Investigating multilingual NMT
representations at scale. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1565-1575, Hong Kong,
China. Association for Computational Linguistics.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073—1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Xuebo Liu, Longyue Wang, Derek F. Wong, Liang Ding,
Lidia S. Chao, Shuming Shi, and Zhaopeng Tu. 2021.
On the complementarity between pre-training and
back-translation for neural machine translation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 2900-2907, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, and
Ian Tenney. 2020. What happens to BERT embed-
dings during fine-tuning? In Proceedings of the
Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pages 33—44,
Online. Association for Computational Linguistics.

Marius Mosbach, Anna Khokhlova, Michael A. Hed-
derich, and Dietrich Klakow. 2020. On the interplay
between fine-tuning and sentence-level probing for
linguistic knowledge in pre-trained transformers. In
Proceedings of the Third BlackboxNLP Workshop on
Analyzing and Interpreting Neural Networks for NLP,
pages 68—82, Online. Association for Computational
Linguistics.

Courtney Napoles, Aoife Cahill, and Nitin Madnani.
2016. The effect of multiple grammatical errors on
processing non-native writing. In Proceedings of the
11th Workshop on Innovative Use of NLP for Building
Educational Applications, pages 1-11, San Diego,
CA. Association for Computational Linguistics.

Pavan Kalyan Reddy Neerudu, Subba Oota, Mounika
Marreddy, Venkateswara Kagita, and Manish Gupta.
2023. On robustness of finetuned transformer-based
NLP models. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 7180-
7195, Singapore. Association for Computational Lin-
guistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task, pages 1-14,
Baltimore, Maryland. Association for Computational
Linguistics.

NLLB Team, Marta R. Costa-jussa, James Cross, Onur
Celebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,

8589


https://doi.org/10.1109/ICASSP40776.2020.9054626
https://doi.org/10.1109/ICASSP40776.2020.9054626
http://www.lrec-conf.org/proceedings/lrec2004/pdf/470.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/470.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/470.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/470.pdf
https://doi.org/10.18653/v1/2021.sigmorphon-1.6
https://doi.org/10.18653/v1/2021.sigmorphon-1.6
https://doi.org/10.18653/v1/2021.sigmorphon-1.6
https://doi.org/10.18653/v1/D19-5506
https://doi.org/10.18653/v1/D19-5506
https://doi.org/10.18653/v1/D19-5506
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2024.acl-long.110
https://doi.org/10.18653/v1/2024.acl-long.110
https://arxiv.org/abs/1905.00414
https://arxiv.org/abs/1905.00414
https://doi.org/10.18653/v1/D19-1167
https://doi.org/10.18653/v1/D19-1167
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/2021.findings-emnlp.247
https://doi.org/10.18653/v1/2021.findings-emnlp.247
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2020.blackboxnlp-1.4
https://doi.org/10.18653/v1/2020.blackboxnlp-1.4
https://doi.org/10.18653/v1/2020.blackboxnlp-1.7
https://doi.org/10.18653/v1/2020.blackboxnlp-1.7
https://doi.org/10.18653/v1/2020.blackboxnlp-1.7
https://doi.org/10.18653/v1/W16-0501
https://doi.org/10.18653/v1/W16-0501
https://doi.org/10.18653/v1/2023.findings-emnlp.477
https://doi.org/10.18653/v1/2023.findings-emnlp.477
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701

Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzman, Philipp
Koehn, Alexandre Mourachko, Christophe Rop-
ers, Safiyyah Saleem, Holger Schwenk, and Jeff
Wang. 2022. No language left behind: Scal-
ing human-centered machine translation. Preprint,
arXiv:2207.04672.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL °02, page 311-318, USA.
Association for Computational Linguistics.

Peyman Passban, Puneeth Saladi, and Qun Liu. 2021.
Revisiting robust neural machine translation: A trans-
former case study. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages
3831-3840, Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics, pages 433—440, Sydney,
Australia. Association for Computational Linguistics.

Jason Phang, Haokun Liu, and Samuel R. Bowman.
2021. Fine-tuned transformers show clusters of simi-
lar representations across layers. In Proceedings of
the Fourth BlackboxNLP Workshop on Analyzing and
Interpreting Neural Networks for NLP, pages 529—
538, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Maja Popovié. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395, Lisbon, Portugal. Association for
Computational Linguistics.

Alessandro Raganato and Jorg Tiedemann. 2018. An
analysis of encoder representations in transformer-
based machine translation. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
287-297, Brussels, Belgium. Association for Com-
putational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685-2702, Online. Association
for Computational Linguistics.

Elizabeth Salesky, Matthias Sperber, and Alexander
Waibel. 2019. Fluent translations from disfluent
speech in end-to-end speech translation. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 27862792, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Samson Tan, Shafiq Joty, Min-Yen Kan, and Richard
Socher. 2020. It‘s morphin’ time! Combating lin-
guistic discrimination with inflectional perturbations.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 2920~
2935, Online. Association for Computational Lin-
guistics.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with extensi-
ble multilingual pretraining and finetuning. Preprint,
arXiv:2008.00401.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim, Ben-
jamin Van Durme, Sam Bowman, Dipanjan Das, and
Ellie Pavlick. 2019. What do you learn from con-
text? probing for sentence structure in contextualized
word representations. In International Conference
on Learning Representations.

Jorg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT - building open translation services for the world.
In Proceedings of the 22nd Annual Conference of
the European Association for Machine Translation,
pages 479-480, Lisboa, Portugal. European Associa-
tion for Machine Translation.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Radl Vazquez, Hande Celikkanat, Mathias Creutz, and
Jorg Tiedemann. 2021. On the differences between
BERT and MT encoder spaces and how to address
them in translation tasks. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing: Student Re-
search Workshop, pages 337-347, Online. Associa-
tion for Computational Linguistics.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. The
bottom-up evolution of representations in the trans-
former: A study with machine translation and lan-
guage modeling objectives. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 4396-4406, Hong Kong,
China. Association for Computational Linguistics.

8590


https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2021.findings-emnlp.323
https://doi.org/10.18653/v1/2021.findings-emnlp.323
https://doi.org/10.3115/1220175.1220230
https://doi.org/10.3115/1220175.1220230
https://doi.org/10.18653/v1/2021.blackboxnlp-1.42
https://doi.org/10.18653/v1/2021.blackboxnlp-1.42
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/N19-1285
https://doi.org/10.18653/v1/N19-1285
https://doi.org/10.18653/v1/2020.acl-main.263
https://doi.org/10.18653/v1/2020.acl-main.263
https://arxiv.org/abs/2008.00401
https://arxiv.org/abs/2008.00401
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-srw.35
https://doi.org/10.18653/v1/2021.acl-srw.35
https://doi.org/10.18653/v1/2021.acl-srw.35
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448

Tao Wang, Chengqi Zhao, Mingxuan Wang, Lei Li,
Hang Li, and Deyi Xiong. 2021. Secoco: Self-
correcting encoding for neural machine translation.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4639—4644, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Yibin Wang, Yichen Yang, Di He, and Kun He. 2023.
Robustness-aware word embedding improves certi-
fied robustness to adversarial word substitutions. In
Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 673-687, Toronto, Canada.
Association for Computational Linguistics.

John Wu, Yonatan Belinkov, Hassan Sajjad, Nadir Dur-
rani, Fahim Dalvi, and James Glass. 2020. Similar-
ity analysis of contextual word representation mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
4638-4655, Online. Association for Computational
Linguistics.

Weiwen Xu, Ai Ti Aw, Yang Ding, Kui Wu, and Shafiq
Joty. 2021. Addressing the vulnerability of NMT
in input perturbations. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Industry Papers, pages 80—
88, Online. Association for Computational Linguis-
tics.

Yichen Yang, Xiaosen Wang, and Kun He. 2022. Ro-
bust textual embedding against word-level adversar-
ial attacks. In The 38th Conference on Uncertainty
in Artificial Intelligence.

Jingyi Zhang, Gerard de Melo, Hongfei Xu, and Kehai
Chen. 2023. A closer look at transformer attention
for multilingual translation. In Proceedings of the
Eighth Conference on Machine Translation, pages
496-500, Singapore. Association for Computational
Linguistics.

Yuting Zhao and Ioan Calapodescu. 2022. Multimodal
robustness for neural machine translation. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 8505—
8516, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Shuyan Zhou, Xiangkai Zeng, Yingqi Zhou, Antonios
Anastasopoulos, and Graham Neubig. 2019. Im-
proving robustness of neural machine translation
with multi-task learning. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), pages 565-571, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Yichu Zhou and Vivek Srikumar. 2022. A closer look
at how fine-tuning changes BERT. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1046-1061, Dublin, Ireland. Association for
Computational Linguistics.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang,
Hao Chen, Yidong Wang, Linyi Yang, Wei Ye, Yue
Zhang, Neil Zhengiang Gong, and Xing Xie. 2024.
Promptrobust: Towards evaluating the robustness
of large language models on adversarial prompts.
Preprint, arXiv:2306.04528.

A Freezing Results

When fine-tuning different parts of the model on
grammatical errors, while keeping the other parts
frozen, we find that fine-tuning only the encoder ap-
proaches fine-tuning the full model (both encoder
and decoder) in terms of robustness, as shown in
Figure 5. Although the target translation is gener-
ated on the decoder side, fine-tuning the decoder
does not lead to similar improvements as fine-
tuning the encoder. This suggests that in NMT,
robustness is more related to the source side repre-
sentation than to the generation process, and there-
fore, we focus our analysis on the encoder.

B Experiments Details

B.1 Articles and Prepositions Lists

We provide the list of articles and prepositions that
we consider for our analysis:

English Articles: {a, an, the}.

English Prepositions: {on, in, at, from, for, un-
der, over, with, into, during, until, against, among,
throughout, of, to, by, about, like, before, after,
since, across, behind, but, out, up, down, off}.
French Articles: {la, le, un, une, les, des}.
French Prepositions: {a, apres, avant, avec, chez,
contre, dans, de, depuis, derriere, devant, durant,
en, entre, envers, environ, jusque, malgré, par,
parmi, pendant, pour, sans, sauf, selon, sous, suiv-
ant, sur, vers}.

B.2 Data Splits

Table 2 shows the amount of data for each language
direction in our experiments. Although the train
set for Fr-Es is small in comparison to the other
language directions, the COMET improvements af-
ter fine-tuning shown in Table C.1 suggest that it is
enough for fine-tuning and potentially for drawing
conclusions about its effects. The test sets which
we use for evaluating models and for our analysis
are almost similar in size.

B.3 POS Tags List

ADJ: Adjective.
ADP: Adposition.
ADV: Adverb.
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‘ Train ‘ Dev ‘ Test

En-Es | 31607 | 1272 | 1267
En-De | 32628 | 1320 | 1253
En-NI | 31401 | 1269 | 1235
En-It | 29552 | 1122 | 1130
Fr-Es | 7857 | 1072 | 1098

Table 2: Dataset splits for each language direction

AUX: Auxiliary.

CCONJ: Coordinating conjunction.
DET: Determiner.

NOUN: Noun.

PRON: Pronoun.

PROPN: Proper noun.

PUNCT: Punctuation.

VERB: Verb.

C Additional Results

C.1 Fine-tuning Results

We present the results of fine-tuning NMT models
for robustness on Fr-Es, En-De, En-It and En-NI in
Table 3.

C.2 GED Probing

Figure 6 shows the GED probing performance on
Fr-Es, En-De, En-It, and En-NI.

C.3 Respresentation Similarity

Figures 7 shows the CKA distance of clean and
noisy word representations on Fr-Es, En-De, En-It
and En-NL

C.4 Attention to POS Tags

Figure shows the accuracy of Robustness and Influ-
ential heads on Morpheus errors. Figures 8, 9, 10
and 11 show Robustness Heads attention to POS
tags on Fr-Es, En-De, En-It and En-NI respectively.

C.5 Similarity between Robustness and
Influential Heads

Figure 12 shows the accuracy of Robustness and
Influential heads on Fr-Es, En-De, En-It and En-N1.

C.6 Generalization to Morpheus

To validate the generalization of our analysis, we
present the results of using Morpheus. We find
similar results in terms of fine-tuning performance,
probing, representational distance and similarity

between robustness and influential heads (Shown
in Table 4 and Figures 13, 14 and 15 respectively).
We do not present the results of attention to POS
tags because the interpretation of results requires
granular errors.

C.6.1 Fine-tuning Results

We present the results of fine-tuning for robustness
to Morpheus errors in Table C.6.

C.6.2 GED Probing

Figure 13 shows the GED probing performance of
Morpheus errors.

C.6.3 Representation Distance

Figures 14 shows the CKA distance of clean and
noisy word representations of Morpheus errors.

C.6.4 Similarity between Robustness and
Influential Heads

Figure 15 shows the accuracy of Robustness and
Influential heads on Morpheus errors.
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Figure 5: COMET difference between performance on clean and noisy test sets after fine-tuning different parts of
the models. We show the average across 3 multilingual models (M2M 100, MBART, NLLB) and bilingual models
(OPUS-MT for each language pair). Fine-tuning the encoder is almost as good as fine-tuning the full model.

Article Nounnum Prep
Direction = Model Clean  Noisy A Clean  Noisy A Clean  Noisy A

opus-mt-base 74.57 73.79 0.79 74.57 73.98 0.6 74.57 71.88 2.7
opus-mt-clean 75.36 74.7 0.66 75.13 7477 043 75.7 73.11 2.58
opus-mt-noise 75.62 75.54 0.07 75.69 75.62  0.07 75.65 7518 046

m2m100-base 73.04 72.21 0.83 73.04 7245 059 73.04 70.06 298
m2m100-clean 74.01 73.45 0.55 73.98 73.65 0.33 74.27 72.21 2.07

Fr-Es m2m100-noise 74.24 74.23 0.01 74.22 7416  0.06 742 73.84 036
mbart-base 69.13 68.27 0.87 69.13 68.82 031 69.13 67.02  2.12
mbart-clean 74.25 73.72 0.52 74.28 737 0.58 74.17 72.41 1.76
mbart-noise 73.68 73.57 0.11 74.33 7429  0.04 74.23 739 033
nllb-base 74.92 74.23 0.69 74.92 7444 048 7492 73.12 1.8
nllb-clean 76.1 75.55 0.55 76.03 75.62 041 75.99 74.68 131
nllb-noise 76.0 75.97 0.04 76.12 76.04  0.08 76.07 7579  0.28

opus-mt-base 76.93 75.89 1.04 76.93 76.0  0.93 76.93 7522 171
opus-mt-clean 77.83 76.91 0.93 77.82 77.03 0.79 77.89 76.47 1.42
opus-mt-noise 77.86 77.86 0.0 77.93 71.73 0.2 7793  77.54 0.4

m2m100-base 72.94 72.05 0.89 72.94 72.19  0.75 72.94 71.42 1.52
m2m100-clean 75.29 74.64 0.65 75.08 7431  0.78 75.1 74.02  1.09

En-De m2m100-noise 75.61 75.54 0.07 75.42 75.14  0.28 75.31 7514 017
mbart-base 76.26 75.44 0.82 76.26 75.64  0.62 76.26 74.78 1.48
mbart-clean 77.29 76.84 0.45 77.35 76.87 048 77.54 76.66  0.88
mbart-noise 77.5 77.49 0.02 71.5 7735  0.15 77.47 77.34  0.13
nllb-base 76.7 76.03 0.67 76.7 76.15  0.55 76.7 75.79 0.9
nllb-clean 77.52 76.96 0.56 77.49 77.05 043 77.6 76.72  0.88
nllb-noise 77.56 77.52 0.04 77.51 7739 012 77.61 7745 0.16

opus-mt-base 7722 76.08 1.14 7722 7626 095 7722 76.13  1.09
opus-mt-clean 77.31 76.35 0.96 77.45 76.53 0.92 77.42 76.37 1.05
opus-mt-noise 77.53 77.46 0.07 71.71 7758  0.13 71.7 77.51 0.2

m2m100-base 75.0 73.82 1.19 75.0 73.95 1.06 75.0 74.11 0.89
m2m100-clean 76.83 75.77 1.06 76.5 75.51 0.99 76.61 7588  0.73
En-It m2m100-noise 76.81 76.8 0.01 76.83 76.8  0.03 76.91 76.75  0.16
mbart-base 75.73 74.97 0.75 75.73 75.08  0.65 75.73 75.04  0.68
mbart-clean 77.63 76.88 0.76 71.75 77.01 0.74 77.67 77.18 048
mbart-noise 77.58 77.53 0.05 71.73 77.62  0.11 77.62 7741  0.21
nllb-base 77.47 76.75 0.72 77.47 76.7  0.77 77.47 7693  0.53
nllb-clean 78.07 77.45 0.61 77.94 7735  0.59 77.94 7153 041
nllb-noise 77.96 77.92 0.04 77.88 71.77 0.1 77.86 7776  0.09

opus-mt-base 78.03 76.99 1.03 78.03 77.13  0.89 78.03 76.62 141
opus-mt-clean 78.66 77.76 0.9 78.65 77.83 0.82 78.86 77.61 1.25
opus-mt-noise 79.05 79.0 0.06 78.93 788  0.14 7898  78.62 0.36

m2m100-base 74.9 73.91 0.98 74.9 74.08  0.82 74.9 73.59 1.31
m2m100-clean 76.67 75.82 0.86 76.75 75.89  0.86 76.85 7593 0.92
En-NI m2m100-noise 76.78 76.79  -0.01 76.9 76.81  0.08 7699  76.66  0.32
mbart-base 74.86 73.97 0.89 74.86 74.26 0.6 74.86  73.89 097
mbart-clean 77.82 77.12 0.71 77.86 77.08 0.79 78.05 77.22 0.83
mbart-noise 71.77 77.73 0.04 77.98 77.8  0.18 78.08 7793  0.15
nllb-base 77.95 77.4 0.56 77.95 7753 042 77.95 7721 0.74
nllb-clean 78.85 78.26 0.59 78.81 783 045 78.74  78.12  0.63
nllb-noise 78.74 78.72 0.02 78.7 78.67  0.03 78.73 78.52  0.22

Table 3: COMET scores on Fr-Es, En-De, En-It and En-NL. The Base model is the original model, Clean is
fine-tuned on the clean version of the data, and Noise is fine-tuned on the noisy version (with the same noise as the
one they are tested on). We present the performance on the clean and noisy test sets and their difference (A).
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Figure 6: GED probing performance of Noise-Finetuned, Clean-Finetuned and Base models on Fr-Es, En-De, En-It
and En-N1. GED probing performance of Noise-Finetuned models witnesses a degradation in deeper layers.
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Figure 7: CKA distance of clean and noise word representations across models and errors on Fr-Es, En-De, En-It
and En-NI1. Noise-Finetuned models drive the representations of the noisy word to be more similar to the clean
word.
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Average Attention Scores for POS Tags on Fr-Es
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Figure 8: Robustness Heads attention to the 10 most common POS tags in the test set on Fr-Es. The scale of

attention is relative to each base model and error. We highlight POS tags that are attended to the most across models.
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Figure 9: Robustness Heads attention to the 10 most common POS tags in the test set on En-De. The scale of

attention is relative to each base model and error. We highlight POS tags that are attended to the most across models.
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Average Attention Scores for POS Tags on En-It
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Figure 10: Robustness Heads attention to the 10 most common POS tags in the test set on En-It. The scale of

attention is relative to each base model and error. We highlight POS tags that are attended to the most across models.

Average Attention Scores for POS Tags on En-NI
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Figure 11: Robustness Heads attention to the 10 most common POS tags in the test set on En-NI. The scale of

attention is relative to each base model and error. We highlight POS tags that are attended to the most across models.
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Accuracy of Robustness vs. Influential Heads on Fr-Es Accuracy of Robustness vs. Influential Heads on En-De
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Figure 12: Accuracy of Robustness and Influential heads on Fr-Es, En-De, En-It and En-NI1. We find the accuracy is
higher for Noise-Finetuned models especially in deep layers.
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Morpheus

Direction  Model Clean  Noisy A
opus-base 76.03 71.78 425
opus-clean 76.2 7228 392
opus-noisy 75.85 75.35 0.5

m2m100-base 75.98 71.8 4.18
m2m100-clean 76.48 72.54 394

En-Es m2m100-noisy 75.79 75.58  0.22
mbart-base 76.44 7275 3.69
mbart-clean 78.38 7477 3.62
mbart-noisy 78.27 78.08  0.19
nllb-base 75.18 71.78 3.4
nllb-clean 75.83 7246  3.36
nllb-noisy 75.64 7545  0.19
opus-base 71.18 67.63 3.55
opus-clean 73.97 70.71 3.26
opus-noisy 73.57 73.05  0.52
m2m100-base 73.0  68.64 435
m2m100-clean 73.3 70.2 3.09

Fr-Es m2m100-noisy 73.42 7323  0.19
mbart-base 65.36 60.31  5.06
mbart-clean 73.07 69.69 3.39
mbart-noisy 7412 73.62 0.5
nllb-base 71.34 68.53 2.8l
nllb-clean 73.1 70.68 242
nllb-noisy 7374 7343 0.3
opus-base 68.62 63.91 4.71
opus-clean 70.1 6529 481
opus-noisy 69.15 684 0.75

m2m100-base 72.92 69.02 39
m2m100-clean 74.53 71.3 3.23

En-De m2m100-noisy 73.98 73.65 033
mbart-base 74.52 69.94 457
mbart-clean 77.38 74.1 3.28
mbart-noisy 77.02 76.82 0.2
nllb-base 65.19 62.09 3.1
nllb-clean 66.24 63.45 278
nllb-noisy 66.52 66.02 0.5
opus-base 74.82 70.14  4.69
opus-clean 76.16 72.11 4.05
opus-noisy 76.22 7573 048

m2m100-base 74.94 7097  3.98
m2m100-clean 76.69 7338 331

En-It m2m100-noisy 76.59 7646  0.13
mbart-base 7522 7201 322
mbart-clean 77.55 742 335
mbart-noisy 77.58 7137  0.22
nllb-base 7484  71.68  3.17
nllb-clean 7578 7282 296
nllb-noisy 7559 7526 033
opus-base 74.07 69.39  4.68
opus-clean 75.32 715 382
opus-noisy 76.08 7551  0.58

m2m100-base 74.84 71.45 3.4
m2m100-clean 75.28 71.99  3.29

En-N1 m2m100-noisy 74.78 74.63  0.15
mbart-base 74.09 71.46 2.63
mbart-clean 77.25 744 285
mbart-noisy 77.38 77.28 0.1
nllb-base 72.61 69.73  2.87
nllb-clean 73.64 71.13 251
nllb-noisy 73.53 7339  0.15

Table 4: COMET scores for Morpheus on En-Es, Fr-Es, En-De, En-It and En-NL. The Base model is the original
model, Clean is fine-tuned on the clean version of the data, and Noise is fine-tuned on the noisy version (with the
same noise as the one they are tested on). We present the performance on the clean and noisy test sets and their
difference (A).
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GED Probing F1 Score:

Morpheus
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Figure 13: GED probing performance of Noise-Finetuned, Clean-Finetuned and Base models on En-Es, Fr-Es,
En-De, En-It and En-NI on Morpheus errors. GED probing performance of Noise-Finetuned models witnesses a

degradation in deeper layers.

CKA Distance: Morpheus
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Figure 14: CKA distance of clean and noise word representations across models and errors on En-Es, Fr-Es, En-De,
En-It and En-NI1 on Morpheus Errors. Noise-Finetuned models drive the representations of the noisy word to be

more similar to the clean word.
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Accuracy of Robustness vs. Influential Heads: Morpheus
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Figure 15: Accuracy of Robustness and Influential heads on En-Es, Fr-Es, En-De, En-It and En-NI on Morpheus
errors. We find the accuracy is higher for Noise-Finetuned models especially in deep layers.
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