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Abstract

This paper aims to identify directional causal
relations between events, including the exis-
tence and direction of causality. Previous stud-
ies mainly adopt prompt learning paradigm to
predict a causal answer word based on a Pre-
trained Language Model (PLM) for causality
existence identification. However, the inde-
cision in selecting answer words from some
synonyms and the confusion of indicating op-
posite causal directions with the same an-
swer word raise more challenges in direc-
tional causality identification. Inspired by
the strong capabilities of pre-trained Gener-
ative Language Models (GLMs) in generat-
ing responses or statements, we propose to
instruct a GLM to generate causality state-
ments and identify directional event causality
by evaluating the generated statements. Specif-
ically, we propose an Instructive Generation
and Statement Evaluation method to identify
both the existence and direction of causality.
We first fine-tune a GLM to instructively gen-
erate causality statements based on event de-
scription inputs. Then, we evaluate the ratio-
nality of the generated statements to determine
the existence and direction of event causali-
ties. Experiments on the ESC and MAVEN
datasets show that our method significantly
outperforms state-of-the-art algorithms, even
with fewer training data.

1 Introduction

Event Causality Identification aims to determine
whether a causal relation exists between two event
mentions in text, which is of great importance for
many downstream applications, such as event pre-
diction (Zhou et al., 2022), event-centric knowl-
edge graph construction (Heindorf et al., 2020),
event chain mining (Li et al., 2023), etc. Existing
research focuses on identifying the existence of
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causality between two event mentions (Liu et al.,
2023; Huang et al., 2024; Yuan et al., 2023). How-
ever, the direction of causality is also crucial for
understanding the causal relation. This paper aims
at identifying directional causal relations between
event mentions, which not only recognizes the ex-
istence of causalities but also classifies the cause
and effect events when a causal relation exists.

The recent prompt learning methods (Shen et al.,
2022; Liu et al., 2021; Man et al., 2024) reformu-
late each event pair into a prompt template as input
for a PLM, so as to utilize the PLM to predict a
causal answer word or generate a causality label
word for causal relation identification. For exam-
ple, Shen et al. (2022) design a derivative prompt
template to jointly predict the causality label word,
causal cue word, and causal event mentions using
a PLM, and maps them to a causal relation or none
relation. Man et al. (2024) introduce a hierarchical
optimal transport approach to automatically select
important sentences and words from input docu-
ments as input for a PLM to generate both causality
label word and salient context words.

We argue that the performance of such prompt
learning paradigm is heavily dependent on the man-
ually selected causal answer word or the causal-
ity label word. On the one hand, some synonyms
all have the semantic of causal relations, but they
exhibit subtle differences, such as "because, so,
cause". This raises more difficulty and indecision
for the selection of causal answer words. On the
other hand, these causal words themselves contain
causality directions, such as "cause and caused by"
each representing an opposite causal direction. As
such, we have to use both of them to indicate differ-
ent causal directions, making it more confusing and
challenge to identify causality directions. Mean-
while, the designed prompt templates also have a
significant impact on causal relation predictions.

Instead of using a PLM to predict a selected
causal answer word or causality label word for
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Figure 1: The framework of our proposed directional event causality identification method.

causality identification, we propose to first assume
the existence of a causal relation and instruct a
pre-trained GLM to generate a causality statement
sentence. By evaluating the rationality of the gen-
erated statement, we can determine whether the
causal relation exists or not, and further identify
the causal directions, which neither requires the
effort to select causal answer words nor the design
of prompt templates. This is also in accordance
with the pre-training objective of the GLMs, that is,
generating a response or statement given the input
text sequence, but not predicting an answer word.

Specifically, we propose an Instructively Gener-
ation and Statement Evaluation method to identify
both the existence and direction of causality. Fig. 1
illustrates the overall framework of our proposed
method. We first input the descriptions of each
event pair into a GLM and fine-tune it to instruc-
tively generate a causality statement in a sequence-
to-sequence way. Then we evaluate the rational-
ity of the generated statements to determine the
existence of causal relations. When a causal rela-
tion exists, we further compare the probabilities
of the two event mentions to recognize the cause
and effect events for direction identification. Our
proposed method achieves the state-of-the-art per-
formance on two public datasets and significant
outperforms conventional prompt learning meth-
ods. Experiments in low-resource scenario also
validates the advantages of our proposed method.

2 Methodology

1) Task Reformulation: Since the event mentions
Em are few annotated words within a raw sentence
S that includes their full contextual semantics, we
concatenate the raw sentences Si and Sj of an input
event pair x = (Evti, Evtj) to form the input

event description En(x) for a GLM. If the two
input event mentions are within the same sentence,
it is directly used as the GLM input. Besides, we
insert some virtual event tokens, including <E1>
and /<E1>, <E2> and /<E2>, before and after each
event mentions Emi and Emj , respectively. They
are used to represent the two input event mentions,
which usually consist of diverse words and varying
lengths, for next statement generation and causality
evaluation.

We reformulate the directional causality label of
each event pair into a simple event causality state-
ment for the instructive generation by a GLM, that
is, De(x) = In this sentence, <E1> causes <E2>.
Where the event mention denoted by <E1> is the
cause, and that of <E2> is the effect. Similarly, if
<E2> represents the cause event and <E1> the ef-
fect event, we interchange them directly, i.e., "<E2>
causes <E1>". For the negative samples, i.e., no
causal relation between the input event pair, we
replace the two virtual event tokens by the virtual
token <None>, that is, "<None> causes <None>".

2) GLM Fine-tuning: We fine-tune the GLM
to generate causality statements in a sequence-to-
sequence way, using the event descriptions En(x)
as the encoder input and the causality statements
De(x) are the target decoder output. To ensure that
the GLM can consistently generate causality state-
ments, we adopt the teacher forcing strategy (Good-
man et al., 2020), which provides a forced input
Fc(x) to the decoder, in addition to the encoder
output. The forced input Fc(x) is designed as an
event-invisible causality statement, that is, In this
sentence, <PAD> causes <PAD>. Instead of using the
predicted previous token as input for the next to-
ken generation in GLM decoder, we use the forced
input to direct the generation of next token.
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Causality Existence Identification Causality Direction Identification

ESC MAVEN ESC MAVENMethod
P R F1 P R F1 P R F1 P R F1

BERT (Devlin et al., 2019) 37.2 41.2 39.1 43.3 47.1 45.1 40.7 31.3 35.4 42.4 45.5 43.9
RoBERTa (Liu et al., 2019) 39.7 40.6 40.1 34.6 23.5 28.0 37.3 35.5 36.4 33.8 22.7 27.2

ERGO (Chen et al., 2022) 46.3 50.1 48.1 49.6 62.3 55.2 41.5 43.3 42.4 48.7 60.1 53.8
SENDIR (Yuan et al., 2023) 37.8 82.8 51.9 51.9 52.9 52.4 43.8 43.7 43.7 46.8 43.1 44.9

ChatGLM3-6B (Zeng et al., 2024) 15.3 71.8 25.2 4.3 63.7 8.1 8.4 39.5 13.9 2.5 37.4 4.7
GPT3.5-turbo (Gao et al., 2023) 20.4 58.5 30.2 5.5 38.5 9.6 12.3 35.2 18.2 4.0 28.0 7.0

Our method (BART) 55.8 66.7 60.7 76.8 55.4 64.4 49.0 55.5 52 62.7 56.0 59.1
Our method (LLaMa) 54.6 59.4 57.1 80.6 55.4 65.6 46.2 46.3 46.1 73.3 50.3 59.7

Table 1: Overall results of causality existence and direction identification on both MAVEN and ESC datasets.

Note that, for each generated token, the GLM
decoder estimates a probability p for each word in
its vocabulary (including the added virtual token
words) and adopts the word with the highest prob-
ability as the generated output. We compute the
cross-entropy loss between the estimated probabili-
ties ŷ(k) and the ground truth label y(k) for the two
virtual event tokens <E1> and <E2>, respectively
(denoted as L1 and L2):

L = − 1

K

K∑

k=1

y(k) log(ŷ(k)) + λ‖θ‖2, (1)

where λ and θ are the regularization hyper-
parameters and model parameter respectively, and
k is the training instance number. The overall loss
is Loss = L1 + L2. We use the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with L2 regu-
larization for the GLM fine-tuning.

3) Causality Evaluation: After fine-tuning,
the GLM can consistently generate a templatized
causality statement for each event pair. We use the
predicted probability of the two event-invisible to-
kens for causality evaluation, where Pc and Pe cor-
respond to the preceding and subsequent <PAD> to-
kens, respectively, representing the potential cause
and effect event. We first sum the predicted prob-
abilities of the two <None> tokens to determine
the existence of a causal relation. Specifically, if
p<N>c + p<N>e > τ , it suggests that the two input
events are not with a causal relation, where τ is the
decision threshold. Otherwise, we accept the exis-
tence of a causal relation between the two events
and further identify their causality direction.

For causal event pairs, we use the predicted
probabilities of the virtual event tokens <E1> and
<E2> for identifying causality directions. Here,
p<E1>c and p<E2>c are the probabilities of <E1> and

<E2>, respectively, being the cause event, and p<E1>e

and p<E2>e are the probabilities as the effect event.
Specifically, if p<E1>c + p<E2>e > p<E2>c + p<E1>e , sug-
gesting that <E1> is more likely to be the cause
and <E2> the effect, we acknowledge the causal-
ity direction as "<E1> causes <E2>". Conversely,
if p<E1>c + p<E2>e < p<E2>c + p<E1>e , the direction is
"<E2> causes <E1>".

3 Experiments

We conduct experiments on the widely used
EventStoryLine (ESC) and MAVEN datasets, and
adopt Precision, Recall, and F1-score as the
evaluation metrics. We compare our proposed
method with the following competitors: (1) PLMs
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) use the concatenation of two events’
contextual representations to identify directed event
causalities. We fine-tune these two advanced PLMs
and conduct causal relation and direction classi-
fication using an MLP. (2) ERGO (Chen et al.,
2022) and SENDIR (Yuan et al., 2023) build re-
lational graphs and construct reasoning chains for
undirected event causality identification, respec-
tively. We modify these two SOTA causality ex-
istence identification models to conduct causality
direction identification. (3) Large-scale Language
Model (LLMs) GPT3.5-Turbo (Gao et al., 2023)
and ChatGLM3-6B (Zeng et al., 2024) design in-
put prompts to conduct zero-shot event causality
identification using their official APIs 1. The de-
tails about the datasets, and experiment settings can
be found in Appendix A and Appendix B.

Overall Results: Table 1 compares the over-
all results between our proposed method and the
competitors. We can first observe that neither

1http://platform.openai.com, http://open.bigmodel.cn
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ChatGLM3-6B nor GPT3.5-Turbo, which em-
ploy zero-shot learning based on LLMs, can out-
perform the other competitors that are fine-tuned
based on minor PLMs. This indicates that although
the LLMs are capable of reasoning and answer-
ing questions after being pre-trained with advanced
techniques and large-scale datasets, they are still
not effective for direct application in event causal-
ity identification. The second observation is that
both ERGO and SENDIR outperform the pure
fine-tuned PLMs BERT and RoBERTa. This, how-
ever, is not unexpected. As they are built upon a
PLM with a well-designed neural network to iden-
tify event causalities based on relational graphs or
reasoning chains. Nevertheless, they require both
expert intelligence and intensive efforts to construct
sophisticated neural models.

Finally, our proposed method achieves the best
performance in both causality existence and direc-
tion identification on the two datasets. This vali-
dates the effectiveness of our design objective, that
is, identifying directional event causalities by eval-
uating the statements generated by a GLM. It does
not necessitate constructing an elaborate neural net-
work for event representation learning, nor does it
require selecting causal answer words and design-
ing prompt templates for PLM-based prompt learn-
ing. By simply evaluating the statement generated
from a GLM, it can achieve significant performance
improvement in event causality identification.

Prompt Ablations: To validate the superior-
ity of our proposed instructively generation and
statement evaluation method, we compare it with
a conventional prompt learning model, denoted as
Prompt. It also uses the event description with vir-
tual tokens <E1> and <E2> as the GLM input and
employs a widely used masked prompt template,
i.e., "In this sentence, <E1> <mask> <E2>." to
identify causal relations. The inserted <mask>
token is used to predict one of the virtual answer
words in generation, viz. "cause", "caused by", or
"none", which is then mapped into a causal relation
or a none relation.

Fig. 2 compares the performance of Our
method and Prompt on both the ESC and MAVEN
datasets for both causality existence and direction
identification. We can observe that Our method
has achieved significant performance improvement
than the Prompt in all ablation experiments. This
validates the effectiveness of our proposed method,
which evaluates the instructively generated state-
ment for relation determination, rather than the

Figure 2: Performance of prompt ablation studies.

conventional prompt learning of using a <mask>
token to predict an answer word and map it to a
relation.

Figure 3: Performance in low-resource scenario.

Low-resource Learning: To examine the
performance of our proposed method in low-
resource scenario, we conduct experiments on
down-sampled ESC and MAVEN datasets with
fewer training set; While the development set and
test set remain unchanged. The best-performing
competitor SENDIR and the conventional prompt
model Prompt are used for comparison under the
same dataset scale. We randomly down-sample
the full training set to construct subsets contain-
ing {100%, 50%, 30%, 10%} instances of the full
training set. Fig. 3 summarizes the results of both
causality existence and direction identification in
low-resource scenario on the MAVEN dataset.

It is not unexpected that both Our method and
the competitors SENDIR and Prompt suffer from
the reduction of training data. However, we can
observe that Our method also achieves the best
performance in both causality existence and direc-
tion identification with fewer training data. This
might be attributed to the outstanding capability
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of the pre-trained GLM for generating causality
statements. Even with fewer training data, it can
still generate reliable statements, and Our method
identifies event causality by evaluating these gener-
ated statements.

4 Conclusion

In this paper, we propose to evaluate the gener-
ated statements by a GLM for both causality ex-
istence and direction identification. We propose
an Instructive Generation and Statement Evalua-
tion method to identify directional causalities. Our
proposed method first fine-tunes a GLM to instruc-
tively generate causality statements and then evalu-
ates the rationality of the generated statements for
event causality identification. Experiments on the
ESC and MAVEN datasets have validated that our
method can significantly outperform state-of-the-
art algorithms, even with fewer training data.

Limitations

• Considering the input length limitation of the
GLM, we only input sentence-level event descrip-
tions to the GLM for causality statement genera-
tion, but this lacks document-level semantics and
information.
• Fine-tuning GLMs is computationally demand-
ing; therefore, we only use two smaller-scale
GLMs, BART and LLaMA, in our experiments,
and we abandon the use of the most advanced large-
scale language models, such as GPT4 and Gemini.
• Although our proposed method outperforms the
competitors in a low-resource scenario, its per-
formance gap compared to full training data fine-
tuning is still evident.
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A Experimental Settings

Datasets: We conduct experiments on the widely
used EventStoryLine (ESC) dataset (Caselli and
Vossen, 2017) and the MAVEN dataset (Wang et al.,
2022). The ESC contains 22 topics, 258 documents,
5,334 event mentions, and 5,625 causal event pairs.
Following (Gao et al., 2019), we use the last two
topics as the development set and conduct 5-fold
cross-validation on the remaining 20 topics. The
MAVEN contains 4,480 documents, 103,193 event
mentions, and 57,992 causal event pairs. As it does
not release the test set, following (Tao et al., 2023),
we use the original development set as the test set
and sample 10% of the data from the training set
to form the development set.

Settings: Our method is implemented based
on the pre-trained Generative Language Models,
namely BART-base (Lewis et al., 2020) and Llama-
160M (Liu et al., 2019), and executed using the
PyTorch framework with CUDA acceleration on an
NVIDIA GTX 3090 GPU. We optimize our model
using AdamW and set the learning rate ltr for the
GLM to 5e-6, the weight decay to 1e-2 respectively.
The batch size is set to 16 and the decision thresh-
old τ is set to 1.0. All trainable parameters are
randomly initialized from normal distributions. All
models have undergone parameter tuning to select
the best-performing parameters as the final results.

B LLM Prompt

Figure 4 illustrates the demonstration of the LLM
reasoning process in zero-shot settings. We em-
ploy a two-stage query approach to evaluate the
directional causality identification performance of
the LLM on the ESC and MAVEN datasets. For
causality existence identification, we concatenate
the event sentences as the input to the LLM. No-
tably, if the sentences for two events are identical,
we input only one of them to avoid redundancy.
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Then we query the LLM: Is there a causal rela-
tionship between "marked" and "link", and iden-
tify event causality based on the LLM’s output.
Specifically, we organize the LLM’s input using
the following template.

Input: {Sentences}
Question: Is there a causal relationship be-
tween "marked" and "link" ? Let’s think
step by step. Answer yes or no first. And
give the corresponding reasons.
Answer: Yes, {Response-1}

In the causality direction identification, we again
concatenate the event sentences as the input, and
additionally include the LLM’s inference process
from the previous stage as part of the input. Sub-
sequently, we further query the LLM to determine
the specific directionality of the causal event pair.
We organize the LLM’s input using the following
template.

Input: {Sentences} {Response-1}
Question: According to the Response-1, is
the causal relationship between "marked"
and "link" from "marked" to "link" ? Let’s
think step by step. Answer yes or no first.
And give the corresponding reasons.
Answer: Yes, {Response-2}

C Low-resource Learning

Fig. 5 summarizes the results of both causality ex-
istence and direction identification in low-resource
scenario on the ESC dataset.

Figure 4: A demonstration of LLM reasoning ECI task.

Figure 5: Performance in low-resource scenario.
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