
Findings of the Association for Computational Linguistics: ACL 2025, pages 766–778
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

First-Step Advantage:
Importance of Starting Right in Multi-Step Math Reasoning

Kushal Jain ♠ Moritz Miller ♦ Niket Tandon ■ Kumar Shridhar ♦

♠ UC San Diego ■ Allen Institute for AI ♦ ETH Zurich
{shkumar@ethz.ch}

Abstract

Language models can solve complex reasoning
tasks better by learning to generate rationales
for their predictions. Often these models know
how to solve a task, but their auto-regressive de-
coding nature leads to incorrect results if they
start incorrectly. We observe that smaller mod-
els, in particular, when corrected, can solve a
task that they would have otherwise struggled
with. We demonstrate this phenomenon by us-
ing a larger model to guide smaller models,
which leads to significantly improved perfor-
mance (up to +24 points on the GSM8K dataset
by 7B models). Furthermore, to assist smaller
models in initiating the starting step correctly,
we propose QuestCoT, where a smaller model
first asks itself how to start, before proceeding
with a chain of reasoning. On various multistep
mathematical reasoning datasets for multiple
smaller models, we show that getting the right
start can lead to significant performance gains
across all models (gains of up to +6 points on
GSM8K, +9 on SVAMP, +5 on ASDiv, and +7
on MultiArith).

1 Introduction

Over the years, large language models (LLMs)
have improved their reasoning abilities by explain-
ing their intermediate thoughts (Wei et al., 2022).
This trend has been extended to smaller models 1,
either through pre-training (Jiang et al., 2023; Mag-
nusson et al., 2023), fine-tuning (Yu et al., 2023;
Shao et al., 2024), or knowledge distillation (Shrid-
har et al., 2023b; Yuan et al., 2023; Magister et al.,
2023; Hsieh et al., 2023; Zhu et al., 2023). Al-
though it is commonly assumed that smaller models
acquire new knowledge through fine-tuning or dis-
tillation, recent research by Gekhman et al. (2024)
suggests that the acquisition of new knowledge is
quite slow. Instead, models often improve in areas

1we use smaller models in a relative sense and most of our
experiments are carried out on models smaller or equal to 7B
parameters

they are already familiar with. This suggests that
while models may have the knowledge to solve
a given task, they struggle to understand how to
apply it effectively.

Wang et al. (2023b) demonstrates that model
accuracy improves significantly when multiple rea-
soning chains are generated, indicating that the
model understands how to answer the given prob-
lem. However, models often struggle to select the
correct initial chain, and if they start on an incorrect
reasoning path, it becomes difficult to fix it due to
the autoregressive nature of decoding. Similarly,
in our work, we observed that if a smaller model
initiates an incorrect reasoning chain, it will con-
tinue down that incorrect path. Conversely, if the
initial step is correctly determined, the model can
successfully complete tasks that it would otherwise
find challenging.

In this work, we first investigate whether pro-
viding initial guidance can improve the reasoning
capabilities of smaller language models. We then
investigate whether the quality of this initial guid-
ance varies depending on the expertise of different
large language models (LLMs). In particular, we
investigate whether smaller models can use this
guidance without fine-tuning or additional train-
ing, and whether models of different sizes benefit
equally. Finally, we investigate whether the bene-
fits of initial guidance extend beyond simple two-
step problems to tasks that require four to eight
steps of reasoning.

Once the critical role of initial step guidance
in reasoning is established, we focus on en-
abling smaller models to learn how to start cor-
rectly. To this end, we introduce QuestCoT, a self-
questioning guidance mechanism designed to teach
models how to start. With QuestCoT, the model
first generates a sub-question that initiates the rea-
soning chain and then follows that path. Essentially,
it identifies the most effective reasoning chains
needed to answer the given question. A compari-

766

LM

Natalia sold 48+72=120 clips in total.Natalia sold clips to 48 of her
friends in April.... How many
clips did Natalia sell
altogether in April and May?

INPUT

Natalia has 48 clips to sell. April is ..

Natalia sold 48/2=24 clips in May. In ..

Chain of Thought

LM Natalia sold 48+72 .
Natalia sold
clips ...

INPUT

Natalia has 48 clips ..

Natalia sold 48/2 ..

QuestCoT

How many clips she sell in
May?

Figure 1: Comparison between Chain-of-Thought (CoT) approach and QuestCoT. The CoT approach enables
a Language Model (LM) to generate accurate answers through multiple samplings, yet it frequently struggles to
confidently select the correct one. Conversely, QuestCoT utilizes self-question-guided generation, which facilitates
the model’s ability to choose the appropriate reasoning chain with higher confidence.

son of our proposed methodology, QuestCoT and
Chain-of-Thought (CoT) is demonstrated in Fig-
ure 1.

We demonstrate the importance of self-
questioning for initializing reasoning chains
(QuestCoT) on several mathematical datasets in-
volving multi-step word problems. Additionally,
we also show some preliminary results on Strate-
gyQA to show the generalizability of our method
in different reasonsing domains. Consistent perfor-
mance improvements were observed for all smaller
models (all within 7B parameters). Moreover,
QuestCoTperforms similarly to expert LLM guid-
ance improving the quality of reasoning and outper-
forms the standard reasoning techniques of chain-
of-thought (Wei et al., 2022, CoT) and sub-question
decomposition approaches (Shridhar et al., 2022;
Zhou et al., 2023, Subques).

2 Related Work

It is possible to elicit reasoning abilities from
LLMs through in-context learning, either by pro-
viding the model with intermediate steps (Wei et al.,
2022; Kojima et al., 2023; Yang et al., 2023; Wang
et al., 2023b), or by decomposing the problem into
smaller sub-problems (Shridhar et al., 2022; Zhou
et al., 2023) and solving them to reach the final an-
swer. However, if the problem is misinterpreted, it
can lead to a cascade of errors in subsequent steps.

Various methods and techniques have been pro-
posed to get around this limitation of CoT. One
such category involves having a multi-stage prompt
setup that allows the model to spend some ad-
ditional tokens to think about the solution. For
example, (Wang et al., 2024) introduces a two-
stage prompt where the model first generates an
explicit problem-solving strategy before attempting
to solve it by multi-step reasoning. Along similar
lines, (Jiang et al., 2024) also uses a two-stage pro-
cess where in stage 1 the model generates a step-
by-step solution and in stage 2 revisits each step
with guided questions to judge correctness. Fur-
thermore, several works have focused on ways to
intervene and correct intermediate steps by provid-
ing feedback on their own generations, and even-
tually “self-correcting” them (Welleck et al., 2022;
Madaan et al., 2023; Shridhar et al., 2023a; Li et al.,
2023).

While the LLM’s ability to revise its own gen-
erations may prove helpful in many cases, it can
lead to worse results after refinement, requiring a
“rollback” to the previous output (Shridhar et al.,
2023a). To address this, (Yao et al., 2023) intro-
duces the Tree of Thoughts (ToT), which plans
subsequent steps to solve a reasoning task (Huang
et al., 2022; Wang et al., 2023a,c). ToT conceptu-
alizes the decision-making process as a series of
heuristically based decisions. Through deliberate

767

0 5 10 15 20 25 30 35
Number of Samples

40

50

60

70

80

90

100
Ac

cu
ra

cy

Accuracy (LLaMA 70B)
Accuracy (Mistral 7B)
Accuracy (GPT-4)

Figure 2: Accuracy (if an answer exists in one of the
output chains) comparison on GSM8K data set between
different sized models: Mistral 7B, LLaMA-70B, and
GPT-4.

search, ToT explores different reasoning paths and
self-reflects on its decision at each step. Similarly,
(Xue et al., 2024) breaks the entire setup into three
stages: the model first decomposes the problem
into sub-problems forming tree nodes, then solves
the sub-questions at each node and finally rethinks
by propagating feedback from the child nodes to
the parent nodes. We, on the other hand, propose
to get the first step right, thus reducing the cost of
“finding” and “fixing” errors.

Previous work has also focused on understand-
ing when to intervene and correct the errors. Saha
et al. (2023) presented an approach based on The-
ory of Mind (Kosinski, 2023; Kadavath et al.,
2022), where a teacher model intervenes in a stu-
dent model only for harder questions by creating an
implicit mental model of the student’s understand-
ing. In contrast, an alternative that avoids the need
to backtrack and correct mistakes, thus saving time
and effort, is to start right.

3 First-Step Advantage

In this section, we address three research questions:
1) the ability of smaller models to solve a reasoning
task, 2) the importance of taking the correct first
step in reasoning, and 3) how smaller models can
learn to take the correct first step.

We start by defining a language model M that,
given a question q, generates an answer a through
a reasoning process r. The model aims to find the
most probable answer a∗ by maximizing P (a |
q). In the standard setting, the model generates a
sequence of tokens y = (y1, y2, . . . , yT), where yt
is the t-th token in the combined reasoning chain r

and answer a. The probability of generating y is:

P (y | q) =
T∏

t=1

P (yt | y<t, q)

Keeping the above definition in mind, we explore
the three research questions stated above.

3.1 Are smaller models capable of solving a
reasoning task?

Hypothesis Smaller models can solve a given
task but are not confident enough to choose the
correct reasoning chain.

Our Approach To test the hypothesis, we take
a question q, and use a smaller language model
M to generate K different reasoning chains
{r(1), r(2), . . . , r(K)} with corresponding answers
{a(1), a(2), . . . , a(K)}. The probability of generat-
ing each reasoning chain is given by:

P (r(k), a(k) | q) =
T∏

t=1

P (y
(k)
t | y(k)<t , q)

where y(k)t is the t-th token in the k-th reasoning
chain, and y

(k)
<t denotes all previous tokens. We

evaluate whether any of the K generated answers
a(k) matches the correct answer a∗. This approach
will show that the model understands how to solve
the problem, but has difficulty selecting the correct
chain at first.

Experimental Design We investigate the ability
of smaller models to solve reasoning tasks by sam-
pling their output chains multiple times [1, 3, 5, 10,
15, 20, 25, 30, 35]. A temperature setting of 0.7
is used to generate diverse multiple samples. We
compared the performance of the smaller model
(Mistral-7B (Jiang et al., 2023)) with the larger
ones (LLaMA2-70B (Touvron et al., 2023), and
GPT-4 (OpenAI, 2023)) on the GSM8K dataset
(Cobbe et al., 2021) for mathematical reasoning.
Our analyses were conducted on a test set of 1,319
samples using a 4-shot Chain-of-Thought (CoT)
reasoning chain. The prompts used are listed in the
Appendix (Figure 9).

Results Figure 2 illustrates the accuracy of
whether an answer exists in one of the sampled
outputs for different model sizes (ranging from Mis-
tral 7B to LLaMA 70B to GPT-4, where the true
size of GPT-4 is unknown but presumably large)
when sampled multiple times. In a single sample,

768

the performance gap between GPT-4 and Mistral
7B is nearly 50 points, indicating GPT-4’s supe-
rior ability to select the correct reasoning chain in
its initial sample. However, with 35 samples, this
gap narrows to less than 10 points, suggesting that
smaller models can answer correctly but struggle
to consistently select the right chain in their first
few attempts. Conversely, GPT-4’s accuracy does
not increase significantly with additional samples,
suggesting greater consistency in generating and
selecting the correct inference chain. This finding
is consistent with Lyu et al. (2024), which suggests
that scaling improves output consistency.

Key Findings We observed that smaller models
can answer a reasoning question when sampled
multiple times, but fail to select the correct reason-
ing chain on the first attempt.

3.2 Importance of starting right
Now that we’ve established that smaller models
are capable of solving a given question, why don’t
they choose the right reasoning chain on first try?
We believe that this is because the smaller models
struggle to get the starting step correct. Chain of
Thought (CoT) (Wei et al., 2022) is one of the most
common reasoning strategies based on intermediate
steps, and if an error occurs in the initial steps, it
becomes difficult to correct due to its accumulation
over steps. Let ϵt denote the error probability at
step t. The cumulative error probability over N
steps is

PCoT
error = 1−

N∏

t=1

(1− ϵt)

An error in early steps significantly impacts the
overall error probability due to the multiplicative
effect.

Hypothesis Smaller models can solve a given
task if they get the first step right

Our Approach To verify our hypothesis, we use
a larger model, such as GPT-4 (OpenAI, 2023), to
generate the first step of the solution s1 for each
question q. The smaller model M then generates
the rest of the reasoning chain r and the final an-
swer a, conditioned on both q and s1:

P (a, r | q, s1) =
T∏

t=1

P (yt | y<t, q, s1)

We perform sanity checks to ensure that no an-
swer is revealed in this step (detailed analysis in

Section 4) and limit the first step to a maximum
of one equation. Since the problem requires at
least two to eight equations to solve, the first-step
guidance does not lead directly to the answer but
provides a solid starting point for the model. Fig-
ure 3 shows an example of LLM-based first-step
guidance or s1 (highlighted in yellow).

Experimental setup We investigate whether pro-
viding first-step guidance can help smaller mod-
els get better results. We evaluate smaller mod-
els in the 2B - 7B range, namely Gemma-2B
(Team et al., 2024), Phi3-mini 3.8B (Abdin et al.,
2024), LLaMA2-7B (Touvron et al., 2023), OlMo-
7B (Magnusson et al., 2023), Mistral-7B (Jiang
et al., 2023), and Gemma-7B (Team et al., 2024).
All the models are instruction-tuned versions ex-
cept LLaMA2 and Mistral. For guidance coming
from LLMs, we use LLaMA2-70B (Touvron et al.,
2023), GPT-3.5, and GPT-4 (OpenAI, 2023). We
test our hypothesis on the test set of two datasets:
GSM8K with 1319 samples and SVAMP (Patel
et al., 2021) with 1000 samples. Greedy sampling
(temperature=0) was used for sampling and acc@1
accuracy is reported.

Results Table 1 demonstrates the usefulness of
the first-step guidance provided by LLMs. The per-
formance of the pre-trained models increases by
more than 2-3X when a larger model such as GPT-
4 is used for first-step guidance. For example, the
performance of Gemma-2B (Team et al., 2024) and
LLaMA2-7B model (Touvron et al., 2023) goes
from 7.5 → 17.8 and 10.5 → 23.2, respectively,
while for OlMo-7B it goes from 13.6 → 37.9 (an
almost 3X jump). Performance increases monotoni-
cally with larger and more expert models providing
first-step guidance (for Gemma-2B, performance
increases from 7.5 → 12.8 with LLaMA-70B first-
step guidance and to 16.2 with GPT-3.5). For the
more expert models on the GSM8K task, Mistral-
7B (Jiang et al., 2023) gains almost +10 points
(40.25 → 49.50), Gemma-7B gains +17 points
(46.5 → 63.4), and Phi3-Mini (Abdin et al., 2024)
gains almost +4 points (76.9 → 80.2). The trend
is similar for the SVAMP dataset, where accuracy
goes from 34.6 → 49.2 for Gemma and 38.0 →
48.2 for LLaMA2-7B with GPT-4 first-step guid-
ance, and from 18.6 → almost 50 for OlMo-7B.
This shows the importance of the first-step guid-
ance in arriving at the correct final answer.

769

Question The toothpaste in Anne’s family’s bathroom contains 105 grams. Anne’s dad uses 3 grams at each brushing, her mom
uses 2 grams, Anne and her brother use 1 gram each. Each member of the family brushes their teeth three times a day. How
many days will it take for the toothpaste to run out?

LLM-based first step guidance Anne and her brother use 1 gram + 1 gram = «1+1=2»2 grams . Anne’s dad uses 3 grams and
Anne’s mom uses 2 grams so together they use 2 grams + 3 grams + 2 grams = «3+2+2=7»7 grams/wash. Each day, the family
uses 7 grams/wash * 3 washes/day = «7*3=21»21 grams. Using that amount daily, the toothpaste will last 105 grams / 21
grams/day = «105/21=5»5 days. The answer is 5.

Figure 3: LLM-based first step guidance is highlighted in yellow followed by model generation.

GSM8K SVAMP
Model CoT LLM Guidance CoT LLM Guidance

No guidance LLaMA2-70B GPT-3.5 GPT-4 No guidance LLaMA2-70B GPT-3.5 GPT-4
Gemma-2B 7.50 12.81 16.23 17.84 34.60 36.30 46.70 49.20
Phi3-Mini-3.8B 76.95 75.10 77.39 80.27 86.30 84.20 86.10 87.80
LLaMA2-7B 10.53 19.48 21.00 23.27 38.00 40.10 41.40 48.20
OlMo-7B 13.64 28.20 36.54 37.90 18.60 40.90 46.50 49.90
Mistral-7B 40.25 46.17 48.82 49.50 62.00 65.60 66.80 73.40
Gemma-7B 46.55 52.23 59.43 63.45 70.30 72.10 74.10 78.30

Table 1: Accuracy comparison when the first step is provided by a larger LLM versus the baseline (no first step
provided) for a smaller model. The best results are shown in bold. Note that when a weaker model provides
guidance (LLaMA2-70B performance is worse than Phi3-mini), it hurts the performance (underlined).

Is correcting first step more effective than cor-
recting subsequent steps? We analyzed the im-
pact of correcting different steps on GSM8K with
Mistral-7B as student and GPT-4 as the teacher
model. We observed that correcting only individ-
ual steps (e.g., step 3) without checking the pre-
ceding steps (steps 1 and 2) significantly degrades
performance.

Specifically, Mistral’s performance improved
from 40.25 (baseline CoT) to 49 when the first
step was corrected by GPT-4. However, it only in-
creased to 41.6 when only step 2 was corrected and
dropped below baseline for step 3 and onwards,
with performance at 37.5 when only step 3 was
corrected and 32 when only step 4 was corrected,
and so on. This decline is due to the sudden mis-
match in logic between the reasoning steps, which
worsens the model’s performance. Conversely, if
all preceding steps were corrected, performance
improved to 54 when steps 1 and 2 were corrected
and 57 when steps 1, 2, and 3 were corrected.

Key Findings We observed that when the first
step of the reasoning chain is provided to the
smaller models as a starting point, the performance
of the smaller models improves significantly.

3.3 QuestCoT: Teaching smaller models to get
the first step right

Given that smaller models can get better results
if they learn to start right, can we teach smaller

models to learn the first step on their own?

Hypothesis Smaller models can learn to take the
correct first step through self-questioning.

Our approach We introduce QuestCoT, a self-
questioning strategy where the model first gener-
ates a sub-question s that guides the reasoning pro-
cess.

s = argmax
s′

P (s′ | q)

Then, the model generates the reasoning chain r
and the corresponding answer a conditioned on the
question q and the sub-question s:

P (a, r | q, s) =
T∏

t=1

P (yt | y<t, q, s)

The initial question the model asks itself can also
be thought of as a search strategy that looks for the
right starting chain and, once selected, continues
along that path. An example of our approach and
its comparison to CoT is presented in Figure 4.
Note that the model learns this questioning itself,
and the only change from CoT is to add an extra
question in the prompt as a demonstration.

Why QuestCoT works Conditioning on the sub-
question s reduces the entropy of the model’s out-
put and focuses the model on the correct reasoning
path. By introducing the subquestion s, we increase

770

Question Gene is sewing a quilt out of old souvenir t-shirts. He has one shirt from each vacation he has been on. Every shirt is
its own quilt block. Each row is made of blocks from a different year of vacations. He goes on four vacations a year and has been
vacationing since he was 23 years old. He is now 34. How many quilt blocks does he have in total?

CoT He has been on 4 vacations a year for 34 years so he has been on 4*34 = «4*34=136»136 vacations. Each vacation is a
quilt block so he has 136 quilt blocks. Each quilt block is one shirt so he has 136 shirts. The answer is 136. ✗

QuestCoT How many years Gene has been on vacation? Gene has been on 34 - 23 = «34-23=11»11 years of vacations . Each
row is made of 4 blocks, and she has 11 rows of blocks. So he has 11*4 = «11*4=44»44 blocks in total. The answer is 44. ✓

Figure 4: Example of a comparison between CoT reasoning and QuestCoT. QuestCoT first asks a question that
helps to decide the first step and is highlighted in pink .

Model Dataset

GSM8K SVAMP ASDiv MultiArith
CoT QuestCoT CoT QuestCoT CoT QuestCoT CoT QuestCoT

Gemma-2B 7.50 8.76 (↑ +1.1) 34.60 35.00 (↑ +0.4) 42.34 42.95 (↑ +0.6) 17.77 18.88 (↑ +1.1)
Phi3-Mini-3.8B 76.95 78.92 (↑ +2.0) 86.30 88.40 (↑ +2.1) 80.82 82.34 (↑ +1.5) 98.83 99.44 (↑ +0.6)
LLaMA2-7B 10.53 15.10 (↑ +4.5) 38.00 41.10 (↑ +3.1) 41.43 40.90 (↓ -0.5) 25.55 28.88 (↑ +3.3)
OlMo-7B 13.64 19.40 (↑ +5.8) 18.60 27.20 (↑ +8.6) 39.37 44.40 (↑ +5.0) 20.00 27.22 (↑ +7.2)
Mistral-7B 40.25 45.47 (↑ +5.2) 62.01 65.15 (↑ +3.1) 54.18 57.26 (↑ +3.0) 61.66 65.55 (↑ +3.9)
Gemma-7B 46.55 48.21 (↑ +1.6) 70.30 71.40 (↑ +1.1) 68.59 69.84 (↑ +1.2) 79.44 78.22 (↓ -1.2)
LLaMA3-8B 78.86 79.80 (↑ +1.0) 83.70 84.89 (↑ +1.2) 73.88 74.27 (↑ +0.4) 97.77 98.33 (↑ +0.5)

Table 2: Accuracy comparison between the chain of thought (CoT) and QuestCoT . QuestCoT achieves the best
results across all model sizes for various multi-step mathematical reasoning datasets.

the probability of generating the correct reasoning
chain r∗ and answer a∗:

P (a∗, r∗ | q) =
∑

s

P (s | q)P (a∗, r∗ | q, s)

Since the subquestion s is designed to focus the
model on the appropriate starting point, P (a∗, r∗ |
q, s) is higher than without conditioning on the
subquestion s.

Conditioning on s reduces the cumulative error
probability:

P QuestCoT
error = 1−

(
1− ϵ′1

) N∏

t=2

(1− ϵ′t)

where ϵ′1 < ϵ1 and ϵ′t ≤ ϵt for t > 1. Therefore,
we have:

P QuestCoT
error < PCoT

error

In other words, conditioning on the subquestion
s increases the mutual information between the
model’s output and the correct answer:

I(a, r; a∗ | q, s) = H(a, r | q, s)−H(a, r | a∗, q, s)

A lower entropy H(a, r | q, s) implies that the
model’s predictions are more concentrated around
the correct reasoning paths, increasing the likeli-
hood of producing the correct answer.

Experimental setup We explore the effect of
starting right on four multi-step mathematical data
sets: GSM8K (Cobbe et al., 2021), SVAMP (Patel
et al., 2021), ASDiv (Miao et al., 2020), and Multi-
Arith (Roy and Roth, 2015). GSM8K consists of
grade-school math word problems with a test set
of 1319 samples, requiring between two and eight
steps to solve. SVAMP consists of 1000 samples of
math word problems designed to challenge systems
that require reasoning beyond shallow approaches.
ASDiv consists of 2,305 test samples of word prob-
lems that were constructed to have more lexical
diversity than other datasets at the time. Multi-
Arith is a dataset of 180 test samples published
with the algorithmic solver for mathematical word
problems.

We tested smaller models ranging from 2B to
8B parameters, starting with Gemma-2B, followed
by Phi3-mini with 3.8B parameters, followed by
Mistral-7B, LLaMA2-7B, OlMo-7B, and Gemma-
7B with 7B parameters, and finally LLaMA3-8B
with 8B parameters. We report the top-1 accu-
racy (maj@1) on the test sentences of both datasets.
To compare CoT and QuestCoT, we used 4-shot
prompting with prompts randomly selected from
the train set. All models were evaluated using a
greedy approach (temperature=0, top p=1). A com-
parison of prompts between CoT and QuestCoT

771

can be found in the Appendix (Figure 10).

Results We test the effectiveness of QuestCoT
against one of the most popular reasoning strate-
gies: CoT. QuestCoT outperforms CoT on all four
datasets for all models except LLaMA2-7B on AS-
Div and Gemma-7B on MultiArith. Smaller mod-
els such as Gemma-2B and Phi-mini-3.8B gain
between +0.5 and +2 points on all four datasets.
We hypothesize that Gemma-2B’s limited gains
are due to its initial weak performance and under-
training, while Phi3-mini is already a very strong
model with performance in the 80s and 90s, mak-
ing further improvement difficult. Nevertheless,
improvements are observed in both cases.

Performance improves significantly with the 7B
models, with OlMo-7B showing the most gains
(+6 on GSM8K, +9 on SVAMP, +5 on ASDiv,
and +7 on MultiArith). This is followed by
LLaMA2-7B and Mistral-7B, which show gains of
+3− 5 points, and Gemma-7B, which shows gains
of +1− 2 points. Similar to Phi3-mini, LLaMA3-
8B’s baseline performance is quite high, showing
gains of +0.5− 1 points.

Key Takeaways Smaller models improve their
performance by learning to get the first step right by
asking themselves how to start. This improvement
is achieved with our proposed approach, QuestCoT.
We also present a deeper exploration of errors made
by CoT that are corrected by QuestCoT in ??.

3.4 Extending QuestCoT beyond
mathematical reasoning

In addition to the exhaustive results and analysis
done on mathematical reasoning tasks, we also
conduct some preliminary experiments on a com-
monsense reasoning dataset - StrategyQA(Geva
et al., 2021). For both, Gemma-7B and Mistral-7B,
we see performance improvements with QuestCoT
over CoT Table 3, alleviating any generalizabil-
ity concerns. Furthermore, it is important to note
that unless the initial sub-question leads the model
down an incorrect path, QuestCoT’s performance
will always be at least on par with CoT across vari-
ous tasks.

Model CoT QuestCoT

Gemma-7B 61.1 62.1
Mistral-7B 57.4 58.9

Table 3: Accuracy comparison between the CoT and
QuestCoT on StrategyQA

4 Analysis

Does the first step leak the final answer? We
investigate whether the performance gains from
LLM guidance are due to LLMs leaking the answer
to the smaller models. To verify this, we created a
development set of 1000 samples from the GSM8K
training set. By comparing the generated first-step
answers with the final answers in the dataset, we
found that in 999 out of 1000 samples, the answers
did not match. Furthermore, our instructions to
the LLMs specified that they could only generate
the first step, corresponding to the first step in the
inference chain with only the first equation, and
could not reveal the final answer. This strategy was
applied consistently across all data sets. Since each
question required at least 2-8 steps to solve, we are
confident that the final answer was not revealed.
Furthermore, if the approach relied on revealing
the final answer, the QuestCoT approach would not
have been effective in the prompt style at all.

Can first-step guidance go beyond two-step
problems? Figure 6 illustrates the performance
of the Mistral-7B model with and without first-step
LLM guidance for different steps in the GSM8K
dataset. For all steps (2 to 8), first-step guidance im-
proves performance, suggesting that starting with a
solid foundation can help reasoning over a longer
context.

What if subquestions are included at each step?
The subquestion that guides the model on how to
start can be applied to any reasoning step in the
chain to guide that specific step. This approach
is similar to subquestion decomposition (Shridhar
et al., 2022; Zhou et al., 2023, Subques), where a
complex reasoning problem is first broken down
into simpler problems that are then solved sequen-
tially. Figure 5 shows a comparison between Sub-
ques and QuestCoT over different models on two
datasets: GSM8K and SVAMP. QuestCoT shows
higher accuracy across all models on both datasets
while incurring lower token costs. On average,
QuestCoT is 10-15% more expensive than CoT
(due to the additional sub-question) and around
40% cheaper than sub-questioning Through man-
ual inspection of over 100 samples, we found that
introducing additional questions increases the like-
lihood of errors propagating through the inference
chain. In contrast, QuestCoT guidance avoids this
by focusing solely on how to start. These errors
can result from incorrect decomposition, incorrect

772

Gemma Phi3-Mini LLaMA2 OlMo Mistral LLaMA3
Models

0

20

40

60

80

Ac
cu

ra
cy

GSM8K Dataset
Subques
QuestCot

Gemma Phi3-Mini LLaMA2 OlMo Mistral LLaMA3
Models

SVAMP Dataset
Subques
QuestCot

Figure 5: Accuracy comparison between Subques and QuestCoT on the GSM8K and SVAMP datasets. Gemma
refers to Gemma-2B, Phi3-Mini is Phi3-mini-3.8B, and LLaMA2, OlMo, and Mistral are all 7B variants, while
LLaMA3 is LLaMA3-8B.

2

3
4

5

6

7
8

Baseline
GPT-4 first-step guidance

Figure 6: Accuracy comparison between baseline (no
guidance) and LLM guidance (GPT-4) for the Mistral-
7B model on the GSM8K dataset. 2-8 represents the
number of steps required to solve the problem.

reasoning about the decomposed problem, or in-
consistencies throughout the inference chain.

Comparing CoT, Subques and QuestCoT Fig-
ure 7 presents a Venn diagram illustrating when
different strategies correctly solve problems on
the GSM8K dataset using the Phi-3 mini-model.
QuestCoT has more overlaps with both CoT and
Subques (82 and 95, respectively) than the overlaps
between CoT and Subques (71). This suggests that
while CoT and Subques each have unique cases
where they are successful, QuestCoT captures the
strengths of both strategies, resulting in better over-
all performance.

Can QuestCoT work with even smaller models?
We tested our approach on the OlMo-1B model,
which has 1 billion parameters, and found that
it was not well equipped to understand the in-
structions or to generate a reasoning chain start-

CoT only
46

QuestCoT only
48

CoT & QuestCoT
82

Subques only
37

CoT & Subques
71

QuestCoT & Subques
95

All three
816

CoT QuestCoT

Subques

Figure 7: Venn diagram to show when different strate-
gies got the solutions right.

ing with an initial question (a necessary condition
for QuestCoT). On the GSM8K dataset, the CoT
performance was 3%, and QuestCoT performed
comparably at 3.5%, with the outputs not look-
ing significantly different. As a result, we did not
observe any statistically significant improvements.
We suspect that because the OlMo-1B model’s CoT
abilities are quite limited in mathematical reason-
ing tasks, it cannot leverage any advantages from
QuestCoT.

5 Deeper exploration of why QuestCoT
works

We conduct a detailed analysis of instances where
QuestCoT was successful and broadly categorize

773

the errors made with CoT. Understanding why one
technique outperforms another can be quite chal-
lenging. To address this, we examined instances
where QuestCoT was successful and conducted a
detailed analysis. We identified situations where
CoT failed and broadly categorized these errors.
Here are some error types where QuestCoT was
beneficial:

Unnecessary calculations A common mistake
CoT makes is performing unnecessary calculations
on the numbers in the statement. These numbers
may be completely irrelevant to the problem, or
they may need to be used in a different way than
the model uses them. QuestCoT helps to correct
these errors by initiating the reasoning process with
an appropriate question. An example of an unnec-
essary calculation is given in appendix (Figure 11)
with the main error shown in red, where there was
no need to calculate the total cost of coffee for the
entire week at the old price.

Real-world knowledge The first step in CoT can
often seem "rushed," focusing on quickly manip-
ulating numbers without considering real-world
facts or knowledge. In such cases, the model
demonstrates its understanding of facts and knowl-
edge in the subsequent steps but cannot elicit it
immediately in the first step. This suggests that en-
couraging the model to think more deliberately in
the first step (e.g., by allowing it to consider what
needs to be done before it starts reasoning) may
remedy this problem. These scenarios illustrate the
effectiveness of QuestCoT. An example is shown
in Figure 11, where the model fails to convert "half
a dozen" to 6, and instead continues its calculations
with 0.5 (as shown in blue). Although the model
demonstrated its understanding of "dozen" later
in the problem, since it started incorrectly, it was
unable to correct the chain later.

Context understanding With CoT, the model
often confuses or misses the context in the prob-
lem statement and makes incorrect initial assump-
tions that are difficult to recover from in later steps.
For example, in Figure 11 we can see that despite
following a fairly elaborate reasoning template of
variable assumptions, the CoT reasoning misses
the fact that the price of the Super Ticket already
includes the price of the popcorn. The incorrect
assumption is highlighted in the response.

Other errors Other errors we have observed in-
clude that QuestCoT may be better at handling di-

rect numeric computations and understanding the
simple arithmetic required by the problems. In
contrast, CoT may deviate or fail to capture the
essential computational aspects of the query. In
addition, CoT sometimes takes more steps than
necessary, resulting in an incorrect final solution.

6 Conclusion

We find that smaller models sometimes struggle
with taking the correct first step, but their per-
formance increases significantly once this step is
corrected. We demonstrated this by using LLMs
to guide smaller models to take the correct first
step, helping them to establish the correct reason-
ing chain. To facilitate this for smaller models
without reliance on a larger model, we propose
QuestCoT, which uses initial question-based guid-
ance to improve their reasoning themselves without
any guidance. We show the effectiveness of our ap-
proach on four multi-step mathematical reasoning
datasets using different open-source small models.

7 Limitations

Our experiments focus only on English datasets,
and we have not tested the performance of our
methods in other languages. We acknowledge that
including a sub-question to initiate the chain of rea-
soning may incur some additional cost compared to
the chain-of-thought approach. However, it is sig-
nificantly less costly than the sub-question decom-
position approach and yields superior performance
compared to both methods.

8 Ethical Considerations

The initial guidance provided by expert LLMs or
the self-questioning mechanism could introduce or
perpetuate bias due to the unknown training process
of the large LLMs (especially the closed-source
LLMs such as GPT-4). It’s crucial to evaluate and
mitigate any biases in the generated output of the
LLMs.

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias

774

Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Zorik Gekhman, Gal Yona, Roee Aharoni, Matan Eyal,
Amir Feder, Roi Reichart, and Jonathan Herzig. 2024.
Does fine-tuning llms on new knowledge encourage
hallucinations? arXiv preprint arXiv:2405.05904.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander J. Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. ArXiv, abs/2305.02301.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, Pierre Sermanet,
Noah Brown, Tomas Jackson, Linda Luu, Sergey
Levine, Karol Hausman, and Brian Ichter. 2022. In-
ner monologue: Embodied reasoning through plan-
ning with language models.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gi-
anna Lengyel, Guillaume Lample, Lucile Saulnier,
L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre
Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2023. Mis-
tral 7b. ArXiv, abs/2310.06825.

Zhuoxuan Jiang, Haoyuan Peng, Shanshan Feng, Fan
Li, and Dongsheng Li. 2024. Llms can find math-
ematical reasoning mistakes by pedagogical chain-
of-thought. In Proceedings of the Thirty-Third Inter-
national Joint Conference on Artificial Intelligence,
IJCAI ’24.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, Scott Johnston, Sheer El-Showk,
Andy Jones, Nelson Elhage, Tristan Hume, Anna
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
Deep Ganguli, Danny Hernandez, Josh Jacobson,
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka-
mal Ndousse, Catherine Olsson, Sam Ringer, Dario
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,
Ben Mann, Sam McCandlish, Chris Olah, and Jared
Kaplan. 2022. Language models (mostly) know what
they know.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-
guage models are zero-shot reasoners.

Michal Kosinski. 2023. Theory of mind might have
spontaneously emerged in large language models.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
large language models better reasoners with step-
aware verifier.

Qing Lyu, Kumar Shridhar, Chaitanya Malaviya,
Li Zhang, Yanai Elazar, Niket Tandon, Mari-
anna Apidianaki, Mrinmaya Sachan, and Chris
Callison-Burch. 2024. Calibrating large language
models with sample consistency. arXiv preprint
arXiv:2402.13904.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Iterative
refinement with self-feedback.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub
Adamek, Eric Malmi, and Aliaksei Severyn. 2023.
Teaching small language models to reason.

Ian Magnusson, Akshita Bhagia, Valentin Hofmann,
Luca Soldaini, Ananya Harsh Jha, Oyvind Tafjord,
Dustin Schwenk, Evan Pete Walsh, Yanai Elazar,
Kyle Lo, et al. 2023. Paloma: A benchmark
for evaluating language model fit. arXiv preprint
arXiv:2312.10523.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984, Online.
Association for Computational Linguistics.

OpenAI. 2023. Gpt-4 technical report.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743–1752, Lisbon, Portu-
gal. Association for Computational Linguistics.

Swarnadeep Saha, Peter Hase, and Mohit Bansal. 2023.
Can language models teach? teacher explanations
improve student performance via personalization. In
Thirty-seventh Conference on Neural Information
Processing Systems.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and
Daya Guo. 2024. Deepseekmath: Pushing the limits
of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300.

775

http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2101.02235
http://arxiv.org/abs/2101.02235
http://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
http://arxiv.org/abs/2207.05608
http://arxiv.org/abs/2207.05608
http://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.24963/ijcai.2024/381
https://doi.org/10.24963/ijcai.2024/381
https://doi.org/10.24963/ijcai.2024/381
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2302.02083
http://arxiv.org/abs/2302.02083
http://arxiv.org/abs/2206.02336
http://arxiv.org/abs/2206.02336
http://arxiv.org/abs/2206.02336
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2212.08410
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://openreview.net/forum?id=IacxcFpvWQ
https://openreview.net/forum?id=IacxcFpvWQ

Kumar Shridhar, Harsh Jhamtani, Hao Fang, Ben-
jamin Van Durme, Jason Eisner, and Patrick Xia.
2023a. Screws: A modular framework for reasoning
with revisions.

Kumar Shridhar, Jakub Macina, Mennatallah El-Assady,
Tanmay Sinha, Manu Kapur, and Mrinmaya Sachan.
2022. Automatic generation of socratic subquestions
for teaching math word problems.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya
Sachan. 2023b. Distilling reasoning capabilities into
smaller language models. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
pages 7059–7073, Toronto, Canada. Association for
Computational Linguistics.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open foundation
and fine-tuned chat models. ArXiv, abs/2307.09288.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models.

Yu Wang, Shiwan Zhao, Zhihu Wang, Heyuan Huang,
Ming Fan, Yubo Zhang, Zhixing Wang, Haijun Wang,
and Ting Liu. 2024. Strategic chain-of-thought:
Guiding accurate reasoning in llms through strategy
elicitation.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu,
Xiaojian Ma, and Yitao Liang. 2023c. Describe,
explain, plan and select: Interactive planning with
large language models enables open-world multi-task
agents.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-
man, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. 2022. Generating sequences by learning to
self-correct.

Shangzi Xue, Zhenya Huang, Jiayu Liu, Xin Lin, Yuting
Ning, Binbin Jin, Xin Li, and Qi Liu. 2024. Decom-
pose, analyze and rethink: Solving intricate prob-
lems with human-like reasoning cycle. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2023.
Large language models as optimizers.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models.

Long Long Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zheng Li,
Adrian Weller, and Weiyang Liu. 2023. Metamath:
Bootstrap your own mathematical questions for large
language models. ArXiv, abs/2309.12284.

Zheng Yuan, Hongyi Yuan, Cheng Li, Guanting Dong,
Chuanqi Tan, and Chang Zhou. 2023. Scaling re-
lationship on learning mathematical reasoning with
large language models. ArXiv, abs/2308.01825.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.
2023. Least-to-most prompting enables complex rea-
soning in large language models.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang,
Yongfeng Huang, Ruyi Gan, Jiaxing Zhang, and Yu-
jiu Yang. 2023. Solving math word problems via
cooperative reasoning induced language models. In
Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics.

A Appendix

776

http://arxiv.org/abs/2309.13075
http://arxiv.org/abs/2309.13075
http://arxiv.org/abs/2211.12835
http://arxiv.org/abs/2211.12835
https://doi.org/10.18653/v1/2023.findings-acl.441
https://doi.org/10.18653/v1/2023.findings-acl.441
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2409.03271
http://arxiv.org/abs/2409.03271
http://arxiv.org/abs/2409.03271
http://arxiv.org/abs/2302.01560
http://arxiv.org/abs/2302.01560
http://arxiv.org/abs/2302.01560
http://arxiv.org/abs/2302.01560
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
http://arxiv.org/abs/2211.00053
http://arxiv.org/abs/2211.00053
https://openreview.net/forum?id=NPKZF1WDjZ
https://openreview.net/forum?id=NPKZF1WDjZ
https://openreview.net/forum?id=NPKZF1WDjZ
http://arxiv.org/abs/2309.03409
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2205.10625
http://arxiv.org/abs/2205.10625
https://doi.org/10.18653/v1/2023.acl-long.245
https://doi.org/10.18653/v1/2023.acl-long.245

Below is a math word problem that requires multiple steps to solve it. Your job is to only provide the first step of the solution and
not to reveal the final answer. The first step consists of only one equation in it.

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for a month
(30 days). If he continues to train for the next 12 days, how many hours will he spend on training in total?

Response: Total hours for first month=5hours/day×30days

Figure 8: Instructions to generate first step by LLM. The model-generated output is presented in green.

Below is an instruction that describes a task, paired with an ### Input that provides further context. Write a ### Response that
appropriately completes the request.

Instruction: Solve the given math problem step by step, and put your final answer after ’Final answer:’.

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for a month
(30 days). If he continues to train for the next 12 days, how many hours will he spend on training in total?

Response: In total Thomas would train on 30 + 12 = «30+12=42»42 days. Thomas trained 5 hours every day,
which would bring us to 42 * 5 = «42*5=210»210 hours of training in total. Final Answer: 210 <eot_id>

[Similar 3 more examples randomly sampled from the training set]

Input: Nina made a two-layer cake and a dozen cupcakes for her friend’s birthday party. Each layer of cake takes the same
amount of sugar to make as a dozen cupcakes. Nina used 720 grams of sugar to bake everything. How many grams of sugar are
in one cupcake?

Response: Model generated response ..

Figure 9: Four-shot CoT demonstration.

Below is an instruction that describes a task, paired with an ### Input that provides further context. Write a ### Response that
appropriately completes the request.

Instruction: Solve the given math problem step by step, and put your final answer after ’Final answer:’.

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for a month
(30 days). If he continues to train for the next 12 days, how many hours will he spend on training in total?

Response: How many days will Thomas train in total? In total Thomas would train on 30 + 12 = «30+12=42»42 days.
Thomas trained 5 hours every day, which would bring us to 42 * 5 = «42*5=210»210 hours of training in total. Final Answer:
210 <eot_id>

[Similar 3 more examples randomly sampled from the training set]

Input: TNina made a two-layer cake and a dozen cupcakes for her friend’s birthday party. Each layer of cake takes the same
amount of sugar to make as a dozen cupcakes. Nina used 720 grams of sugar to bake everything. How many grams of sugar are
in one cupcake?

Response: Model generated response ..

Figure 10: Four-shot QuestCoT demonstration. The only difference from CoT is underlined.

777

Unnecessary calculations

Question Roger goes to the store to buy some coffee. The normal brand of coffee he buys cost $5 per pound. He had to buy a
more expensive brand that cost 20% more since his favorite brand was sold out. He decides to buy a week’s worth of coffee and
he uses 1 pound of coffee per day. He also decided to buy himself a donut for $2. How much did everything cost?

CoT Roger buys 7 pounds of coffee at $5 per pound, so the cost of coffee is 7 * $5 $«7*5=35»35. The more expensive brand
of coffee costs 20% more, so it costs $5 * 1.20 = $«5*1.20=6»6 per pound. The cost of the more expensive coffee is 7 * $6
= $«7*6=42»42. Roger also buys a donut for $2. The total cost of everything is $42 + $35 + $2 = $«42+35+2=79»79. Final
Answer: 79 ✗

QuestCoT What is the cost of the more expensive brand of coffee? The more expensive brand costs 20% more than the normal
brand, so it costs $5 * 20/100 = $«5*20/100=1»1 more per pound. So, the more expensive brand of coffee costs $5 + $1 =
$«5+1=6»6 per pound. Roger buys a week’s worth of coffee, which is 7 days, and he uses 1 pound of coffee per day. So, he buys
7 pounds of the more expensive coffee. The total cost of the coffee is 7 pounds * $6/pound = $«7*6=42»42. He also buys a
donut for $2. So, the total cost of everything is $42 (coffee) + $2 (donut) = $«42+2=44»44. Final Answer: 44 ✓

Real world knowledge

Question Twenty dozen cups cost $1200 less than the total cost of half a dozen plates sold at $6000 each. Calculate the total cost
of buying each cup.

CoT Let’s find the total cost of half a dozen plates: 6000 * 0.5 = $3000 Now, let’s find the total cost of twenty dozen cups: $3000
+ $1200 = $4200. Since there are 12 cups in a dozen, there are 20 * 12 = «20*12=240»240 cups in twenty dozen. The cost of
each cup: $4200 / 240 = $17.50. Final Answer: 17.50 ✗

QuestCoT How many cups are in 20 dozen? 1 dozen is equal to 12 cups, so 20 dozen is equal to 20 * 12 = «20*12=240»240
cups. Half a dozen plates is equal to 0.5 * 12 = «0.5*12=6»6 plates. The total cost of half a dozen plates is 6 * $6000 =
$«6*6000=36000»36000. The total cost of buying 20 dozen cups is $1200 less than the cost of half a dozen plates, so it is
$36000 - $1200 = $«36000-1200=34800»34800. The total cost of buying 20 dozen cups is $34800, so the cost of each cup is
$34800 / 240 = $«34800/240=145»145. Final Answer: 145 ✓

Context understanding

Question You can buy a movie super ticket for $20 that includes rights to watch any movie and you get one popcorn with a soda
for only $1 extra. Or you can buy a movie ticket for $12 and buy one popcorn and a soda at regular price. What’s the regular
price of popcorn if the soda costs $3 and you didn’t buy the super ticket and ended up saving $2?

CoT Let’s denote the regular price of popcorn as P. If you buy the regular ticket and popcorn and soda, the total cost would
be:$12 (movie ticket) + P (popcorn) + $3 (soda) = $12 + P + $3. If you buy the super ticket and popcorn with soda, the total cost
would be:$20 (super ticket) + $1 (popcorn) + $3 (soda) = $20 + $1 + $3. You saved $2 by not buying the super ticket, so the cost
of the regular ticket and popcorn and soda is $2 more than the cost of the super ticket and popcorn and soda:$12 + P + $3 = $20 +
$1 + $3 + $2. Now, let’s solve for P:$12 + P + $3 = $20 + $1 + $3 + $2. $12 + P + $3 = $26. P + $15 = $26. P = $26 -$15 = $3.
Final Answer: 3 ✗

QuestCoT What is the total cost of buying a ticket, popcorn and soda? Let’s denote the regular price of popcorn as P. The total
cost of buying a regular ticket, popcorn, and soda is $12 + P + $3 = $15 + P. The total cost of buying a super ticket, popcorn, and
soda is $20 + $1 = $21. Since you saved $2 by not buying the super ticket, the cost of the regular ticket, popcorn, and soda is $21
- $2 = $19. Therefore, $15 + P = $19. Solving for P, we get P = $19 - $15 = $4. Final Answer: 4 ✓

Figure 11: Example cases associated with different error types and how QuestCoT assists in getting the correct
reasoning chain.

778

