First-Step Advantage: Importance of Starting Right in Multi-Step Math Reasoning

Kushal Jain, Moritz Miller, Niket Tandon, Kumar Shridhar


Abstract
Language models can solve complex reasoning tasks better by learning to generate rationales for their predictions. Often these models know how to solve a task but their auto-regressive decoding nature leads to incorrect results if started incorrectly. We observe that smaller models in particular, when corrected, can solve a task that they would otherwise struggle with. We demonstrate this phenomenon by using a larger model to guide smaller models, which leads to significantly improved performance (up to +24 points on the GSM8K dataset by 7B models). To assist smaller models in initiating the starting step, we propose QuestCoT, where a smaller model first asks how to start before proceeding with a chain of reasoning. On various multistep mathematical reasoning datasets over multiple smaller models, we show that getting the start right can lead to significant performance gains across all models (gains of up to +6 points on GSM8K, +9 on SVAMP, +5 on ASDiv, and +7 on MultiArith).
Anthology ID:
2025.findings-acl.42
Volume:
Findings of the Association for Computational Linguistics: ACL 2025
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, Mohammad Taher Pilehvar
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
766–778
Language:
URL:
https://preview.aclanthology.org/landing_page/2025.findings-acl.42/
DOI:
Bibkey:
Cite (ACL):
Kushal Jain, Moritz Miller, Niket Tandon, and Kumar Shridhar. 2025. First-Step Advantage: Importance of Starting Right in Multi-Step Math Reasoning. In Findings of the Association for Computational Linguistics: ACL 2025, pages 766–778, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
First-Step Advantage: Importance of Starting Right in Multi-Step Math Reasoning (Jain et al., Findings 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/landing_page/2025.findings-acl.42.pdf