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Abstract

Automated vulnerability detection has become
increasingly important. Many existing meth-
ods utilize deep learning models to obtain
code representations for vulnerability detec-
tion. However, these approaches predomi-
nantly capture the overall semantics of the code
rather than its intrinsic vulnerability-specific
semantics. To address this issue, we propose
CLeVeR, the first approach that leverages con-
trastive learning to generate precise vulnera-
bility code representations under the supervi-
sion of vulnerability descriptions. Specifically,
we introduce an Adapter, a Representation Re-
finement module, and a Description Simula-
tor to mitigate the challenges of semantic mis-
alignment and imbalance between code and
descriptions, and input data inconsistency be-
tween pre-training and fine-tuning stages, re-
spectively. For vulnerability detection and clas-
sification tasks, CLeVeR achieves F1 scores of
72.82% (real-world dataset) and 80.34%, out-
performing state-of-the-art methods (SOTAs)
by 11.85% and 13.61%. Additionally, CLeVeR
also outperforms SOTAs in zero-shot inference,
demonstrating the transferability of its gener-
ated vulnerability code representations.

1 Introduction

In recent years, with the development of deep learn-
ing (DL), DL-based code vulnerability detection
has gained significant attention. Many approaches
have been proposed to utilize various deep neural
networks such as LSTM and BERT (Devlin et al.,
2019) to learn code representations from source
code (Rahman et al., 2024) and related code struc-
tures (code gadget (Lietal., 2018), SeVCs (Lietal.,
2022), CPG (Chakraborty et al., 2022), PDG (Wu
et al., 2022)) for vulnerability detection.

Despite the promising improvement, existing
methods still suffer low precision and low recall
in real-world scenarios. This is primarily because
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Figure 1: The Motivation of CLeVeR.

they typically learn overall code representations
that capture broad functional semantics (e.g., "this
code performs file parsing"), inevitably introduc-
ing noises irrelevant to vulnerability patterns, as
shown in Figure 1(a). In contrast, we argue that ac-
curately capturing vulnerability-related semantics
is essential for effective detection. We observe that
vulnerability descriptions contain rich vulnerability
characteristics — such as "without bounds check-
ing" — which inherently define the discriminative
features we seek to capture. Thus, we propose to
leverage semantic alignment techniques to utilize
vulnerability description for enhancing the genera-
tion of vulnerability-specific code representations.

Leveraging generative models is one feasible ap-
proach, as it reconstructs descriptions from code.
However, its reconstruction objectives tend to pri-
oritize linguistic fluency over the detection of vul-
nerabilities. As a result, the model tends to focus
on superficial code properties that correlate with
textual patterns, rather than on the underlying vul-
nerability patterns. Contrastive learning, under the
CLIP (Radford et al., 2021) framework, mitigates
this issue by directly optimizing the semantic align-
ment between code and text in a shared latent space.
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By maximizing the mutual information of matched
vulnerability pairs, the model learns more discrim-
inative vulnerability features, avoiding the noise
introduced by syntactic reconstruction.

In this paper, we propose a Contrastive Learning
for Vulnerability Code Representation (CLeVeR)
framework that leverages contrastive learning to ac-
quire vulnerability code representations. Through
CLIP’s distinctive dual-encoder architecture and
contrastive loss, CLeVeR establishes fine-grained
semantic alignment between code and vulnerabil-
ity descriptions. Hence, representations generated
by CLeVeR are capable of capturing more precise
code semantics that better characterize vulnerabil-
ity patterns, which can be effectively applied in
vulnerability-related downstream tasks. Although
idea is simple, the direct application of CLIP faces
three main challenges, as shown in Figure 1(b).

The first challenge is the semantic misalignment
between different modalities, which is mainly be-
cause the variables in code and the words in descrip-
tions are typically not in the same feature space.
The second challenge arises from the semantic im-
balance between different modalities. Since the
full source code is much longer than the vulnera-
bility descriptions, the semantics embedded in the
code far exceed those in the descriptions, which
further complicates semantic alignment. The third
challenge is the input data inconsistency between
pre-training and fine-tuning stages, as only source
code is available during fine-tuning and testing.

CLeVeR introduces three novel components to
systematically address these challenges. First, it
proposes Adapter to project code and description
representations to the same common space to im-
prove alignment. Second, it introduces a Represen-
tation Refinement module that pre-refines code se-
mantics to match the level of description semantics,
enabling improved alignment. Third, it introduces
the Description Simulator, which learns to gener-
ate refined code representations during pre-training,
enabling the code representations to self-refine
without descriptions. This allows CLeVeR to simu-
late descriptions and obtain accurate vulnerability
code representations during fine-tuning. Further-
more, for evaluation, we prepared a well-annotated
dataset named Vulnerability Contrastive Learning
Data (VCLData)!, which includes 280,034 vulnera-
ble and secure functions along with corresponding

! Currently, no public dataset exists that aligns vulnerability
code with natural language descriptions.

descriptions, sourced from SARD (SARD).

We conduct experiments on several datasets and
vulnerability-related downstream tasks. On semi-
synthetic and real-world datasets for the vulnerabil-
ity detection task, CLeVeR achieves F1 scores of
98.03% and 72.82%, respectively, outperforming
SOTAs by 5.70% and 11.85%. For the classifica-
tion task, CLeVeR attains a weighted-F1 score of
80.34%, surpassing SOTAs by 13.61%. Further-
more, CLeVeR demonstrates superior performance
in zero-shot scenarios compared to previous meth-
ods. We employ visualization techniques to show-
case the representations generated by CLeVeR,
proving it indeed captures precise vulnerability se-
mantics. We summarize contributions as follows:

* We propose CLeVeR, the first approach that
leverages contrastive learning to generate pre-
cise vulnerability code representations under
the supervision of vulnerability descriptions.

* We design the Adapter, the Representation Re-
finement module, and the Description Simula-
tor to address the challenges faced in aligning
semantics of code and descriptions.

* Experiments demonstrate that CLeVeR outper-
forms SOTA methods in vulnerability detec-
tion and classification. Our code is available
at https://github.com/yoimiya-nlp/CLeVeR.

2 Related work

2.1 DL-based Vulnerability Detection

Early DL-based vulnerability detection methods
(Li et al., 2018; Russell et al., 2018) utilize simple
models like LSTM and CNN to capture code rep-
resentations for detection. However, the detection
performance of these text-based methods remains
sub-optimal as they overlook the logical structure
in source code. To overcome this challenge, many
studies (Dam et al., 2018; Zhou et al., 2019; Wu
etal., 2021, 2022; Wen et al., 2023) leverage pro-
gram analysis techniques to derive both syntactic
and semantic information from source code. They
represent the source code with various code struc-
tures like abstract syntax trees and code property
graphs (CPG), and then feed them into DL models
for detection. Nevertheless, these methods focus
primarily on learning overall code representations
rather than specific vulnerability representations.
Recently, with the emergence of CodeBERT
(Feng et al., 2020), GraphCodeBERT (Guo et al.,
2021) and UniXcoder (Guo et al., 2022), methods
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Figure 2: The overview of CLeVeR. It consists of four modules: 1) Representation Extraction module extracts both
code and description representations and adapts them to the same feature space. 2) Representation Refinement
module utilizes a cross-attention mechanism to generate the vulnerability code representation. 3) Contrastive
Learning module compares the code and description representations to align semantics. 4) Downstream Fine-tuning

module executes tasks with linear probe.

like SVulD (Ni et al., 2023) and CasualVul (Rah-
man et al., 2024) apply code pre-training models
into vulnerability detection. However, the key chal-
lenge of extracting vulnerability-specific semantics
remains unable to be addressed. In addition to de-
tection, a few methods (Zou et al., 2019; Akshar
et al., 2024; Li et al., 2025) explore classification,
but they also suffer from the inability to capture
vulnerability snippet representations accurately.

2.2 Contrastive Learning

Contrastive learning, as proposed in (Hadsell et al.,
2006), emerges as a powerful framework in self-
supervised learning, intending to learn meaning-
ful and discriminative representations by contrast-
ing positive and negative sample pairs. Recently,
contrastive learning methods are widely applied in
the domain of image and text representation learn-
ing (He et al., 2020; Chen et al., 2020; Giorgi et al.,
2021; Wang et al., 2023b), and then extended to
code (Cheng et al., 2022; Zamani et al., 2023). In
addition, many cross-modal contrastive learning
methods are proposed. For example, CLIP (Rad-
ford et al., 2021) leverages natural language su-
pervision to learn transferable visual features, then
CLAP (Wang et al., 2024) applies it to assembly
code. However, vulnerability descriptions often
contain less information compared to source code,
posing a challenge for precise semantic alignment.

3 Methodology

The overview of CLeVeR is shown in Figure 2. In
pre-training stage, we first generate the code and
description representations and project them to the
same feature space. Then, we refine the code repre-
sentation through a cross-attention mechanism and
obtain the vulnerability code representation. Con-
sequently, we optimize the parameters of CLeVeR
by comparing the vulnerability code representa-
tion with the corresponding description represen-
tation through contrastive learning, thereby obtain-
ing a more accurate representation. In fine-tuning
stage, we fine-tune the pre-trained CLeVeR model
to achieve vulnerability detection and classification.
Since no vulnerability descriptions are available to
refine the code representation during fine-tuning
and testing stages, we propose a description simula-
tor, additionally training a feed-forward network to
ensure accurate vulnerability code representation
without the supervision of description.

3.1 Representation Extraction

3.1.1 Pre-trained Model

Considering raw code lacks logical information,
we use CPG to augment the representation. First,
we utilize the previous pre-trained models to ex-
tract representations of both code and descriptions.
For the code, we choose CodeBERT (Feng et al.,
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2020) to extract the sequential semantic features
from source code and the syntax and logical se-
mantic features from CPG. Specifically, we flatten
CPG into a node sequence and then concatenate it
with the token sequence of the source code. The
relationships between nodes are represented using
an adjacency matrix. The code representation is
denoted as C' € RUstlo)*de where [, and l4 repre-
sents the maximum length of the source code and
the number of corresponding graph nodes, and d,
is the dimension of the code representation.

For the natural language descriptions, besides
the basic cause of the vulnerability, we also con-
sider the source and sink descriptions, which in-
dicate where the vulnerability data is introduced
and triggered, respectively. Considering these fac-
tors comprehensively can better assist in generat-
ing vulnerability code representation. We utilize a
pre-trained RoBERTa (Liu et al., 2019) model to
generate the representation of the natural language
description, denoted as Dy,, Dy;, Dy € Rla*dd,
where [ represents the maximum length of all de-
scriptions and dg is the dimension of the descrip-
tion representation. Then, we take the value of the
[CLS] token as the global contextual representation
and calculate the weighted average for source, sink,
and reason description representations to generate
the comprehensive description representation D =
Ao(Dso[0] + Dgi[0]) + (1 — 2X0) Dye[0], D € R%,

3.1.2 Adapter

Pre-trained models we chose are trained within
their respective modality domains, leading to sub-
stantial semantic discrepancies in the learned fea-
ture representation spaces. To ensure more consis-
tent semantic features of both modalities, we pro-
pose a learnable Adapter following the pre-trained
models. The Adapter projects the features from
different modalities into a common semantic space,
facilitating subsequent semantic alignment.

For the code Adapter, we integrate the sequential
and logical code semantics using a similar structure
with the transformer (Vaswani et al., 2017) encoder.
It contains a multi-head self-attention (MHA) layer,
a feed-forward network (FFN), a layer normaliza-
tion (LN) layer, and a residual connection, which
establish the relations between semantic informa-
tion of the code tokens and the CPG nodes, gener-
ating a richer and precise code representation. The
adapted code representation can be expressed as:

Q,K,V=wec,wkc,wVc (1)
T

MHA(Q,K,V) = softmaz(ci/[;
k

C=LN(FFN(MHA(Q,K,V)+(C)) (3)

where W&, WE WV € R4 are used to cal-
culate the query, key, and value in the attention
mechanism, and d;, denotes the dimension of K.

For the description Adapter, we simply convert
the description representation into the same dimen-
sionality as the code features, denoted as d, where
d = d.. This conversion is implemented using a

FFN and LN. The description representation can
be represented as D = LN (FFN(D)).

o2

3.2 Representation Refinement

Through the aforementioned module, we derived
code and description representations within the
same feature space. However, code representations
generally encapsulate comprehensive information,
whereas description representations are confined to
vulnerability-specific information, posing a chal-
lenge for direct semantic alignment. Consequently,
we propose a Representation Refinement module,
utilizing the description representation as the query,
and the code representation as the key and value.
Using multi-head cross-attention (MHA), we refine
the code representation, thereby generating the por-
tion of the code representation that is relevant to
the vulnerability representation. The refined code
representation R can be denoted as:

Q, K, V=wWeDWwWEC[1:],WVC[1:] @
R=MHA(Q,K,V) 5)
where three weights W@, WK WV € R4 are
calculated in the multi-head cross-attention. To en-
sure that the final vulnerability code representation
encompasses contextual information, we perform
a weighted average of the code representations be-
fore (i.e., the value of [CLS] token in (') and after
refinement, resulting in the final vulnerability code
representation V = A\ C[0] + (1 — A1) R.
Additionally, there is a significant input data in-
consistency, as no descriptions are available during
both fine-tuning and testing stages on downstream
tasks. To address this issue and generate accu-
rate representations under these circumstances, we
propose a Description Simulator, which learns to
predict the refined representation directly from the
original code representation during pre-training.
During fine-tuning and testing, this simulator en-
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ables the model to generate the vulnerability code
representation directly from the code, just like sim-
ulating the description. Specifically, we employ
a FFN and a mean squared error (MSE) loss to
perform this simulator, which can be expressed as:

R =FFN(C|0]) (6)
d

(R*
k=1

['desc = - Rk)Q (7)

IS

3.3 Contrastive Learning

Inspired by the CLIP method, we apply contrastive
learning to achieve semantic alignment between
vulnerability code representations and their corre-
sponding description representations. In CLeVeR,
we consider the representations of a piece of vul-
nerability code and its corresponding description
as a positive pair (R;, D;), while the representa-
tion of the vulnerable code and other unrelated
descriptions are treated as multiple negative pairs
(Ri, Dj) ;. We utilize the InfoNCE loss (van den
Oord et al., 2018) to distinguish between correctly
and incorrectly interpreted vulnerable code repre-
sentations, which can be defined as:

1 ezp(R; - D;)
Linfo=—-= ) lo
TN ; ng'Vzl exp(R; - Dj)
where N denotes the number of samples in a
single batch. By optimizing L;,, ., we enhance the
mutual information between code and vulnerability
description, supremely aligning representations.

®)

3.4 Downstream Fine-tuning

Following contrastive learning, we derive the pre-
trained CLeVeR model, which can generate precise
vulnerability code representation solely based on
source code. To evaluate CLeVeR in vulnerability
detection and classification tasks, we choose the
commonly used linear probing (Fu et al., 2022), a
prevalent method in representation learning, which
involves freezing the pre-trained model parameters
and training only a single linear projection layer.
The loss functions of the pre-training stage and
fine-tuning stage are denoted as:

»Cpre—t’rain = ["mfo +a X Lgese &)

N C
1 .
ﬁfineftune - _N Z Z[yi,c log(yi,c)] (10)

i=1 c=1
where « is a tunable hyperparameter, N is the
number of samples, y; . represents the ground-truth
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Figure 3: The zero-shot inference process of CLeVeR.

label of sample 7 on category c, g; . represents the
predicted results of sample ¢ on category ¢, and C'
is the number of categories.

3.5 Zero-shot Inference

CLeVeR incorporates the rich semantics from nat-
ural language descriptions into vulnerability code
representations, demonstrating impressive transfer
capabilities. Even without fine-tuning, the vulnera-
bility code representations generated by CLeVeR
can be directly employed for zero-shot vulnera-
bility detection and classification tasks. Figure 3
illustrates the application of zero-shot techniques in
these tasks. Taking the vulnerability classification
task as an example, CLeVeR first generates the vul-
nerability code representation V; for the function
to be classified. Concurrently, we construct n dif-
ferent prompts to describe various vulnerabilities
corresponding to different CWE categories, which
CLeVeR processes to generate n corresponding
description representations [D1, Do, ..., D,,]. We
then compute the dot product between V; and each
D; to calculate the similarity, labeling the prompt
with the highest similarity as the zero-shot classi-
fication result. Then we use the SoftMax function
to acquire the probability of each category, and the
kth category’s probability can be expressed as:

exp(Vi - Dy)
iy exp(Vi - Dy)

P(D = Dy|Vi) = (11)

4 Evaluation

4.1 Experimental Setup

4.1.1 Dataset

We construct our VCLData dataset from SARD,
a widely used benchmark dataset in vulnerability
detection. VCLData comprises 280,034 C/C++
functions with aligned descriptions (i.e., 77,861
vulnerable functions and 202,173 secure functions)
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VCLData-ft SynData RealData
Method ‘ A(%) P(%) R(%) Fl1(%) ‘ A(%) P(%) R(%) Fl(%) ‘ A(%) P(%) R(%) Fl(%)
SySeVR (TDSC22) 86.02 9139 6999 7927 | 87.81 91.77 79.77 8535 | 6581 5594 4275 48.46
Reveal (TSE22) 88.41 8740 81.39 84.29 | 89.64 9143 84.64 8791 | 69.31 6031 53.73 56.83
VulCNN (ICSE22) 87.15 92.82 7193 81.05 | 86.04 8335 8576 8454 | 67.78 59.24 4593 51.74
AMPLE (ICSE23) 90.82 9450 80.67 87.04 | 92.10 93.00 8894 9092 | 7094 62.00 58.68 60.29
CodeT5 (EMNLP21) | 88.25 86.04 82.68 84.32 | 88.71 9037 83.52 86.81 | 69.78 61.40 52.84 56.80
UnixCoder (ACL22) | 89.30 87.95 8343 8563 | 91.81 9271 88.55 90.58 | 71.09 6441 51.67 57.34
SVulD (FSE23) 89.36 85.16 87.35 86.25 | 91.29 9227 8778  89.97 | 72.05 64.61 56.77 60.43
CasualVul (ICSE24) | 90.67 9030 84.67 87.39 | 93.11 91.59 93.08 9233 | 72.78 66.15 56.54 60.97
CLeVeR 96.53 9292 9841 9558 | 98.19 96.14 100.00 98.03 | 79.13 86.25 63.01 72.82
CLeVeR(zero-shot) | 90.63 8555 90.81 88.11 | 9549 9551 9442 9496 | 72.04 7181 60.87 65.89

Table 1: Comparison with SOTA vulnerability detection approaches in semi-synthetic and real-world datasets.

across 146 CWEs. We perform deduplication, man-
ual review, and correction on VCLData. Detailed
dataset processing procedures are described in Ap-
pendix A. We randomly select 80% for pre-training,
denoted as VCLData-pt, while the remaining 20%
is used for fine-tuning, denoted as VCLData-ft.

In addition to VCLData-ft, we evaluate CLeVeR
on two traditional and widely used datasets in vul-
nerability detection. One is a semi-synthetic dataset
proposed by (Wu et al., 2022), denoted as SynData,
which contains 12,303 vulnerable functions and
21,057 secure functions. The other is the merger of
two large real-world vulnerability datasets, FFM-
Peg+Qemu proposed by (Zhou et al., 2019) and
Reveal proposed by (Chakraborty et al., 2022), de-
noted as RealData. RealData consists of 14,700 vul-
nerable functions and 35,352 secure functions. By
testing on multiple diverse datasets, we can more
objectively demonstrate CLeVeR’s performance.

4.1.2 State-of-the-Art Approaches

We compare CLeVeR with nine SOTA methods,
namely pVulDeePecker (Zou et al., 2019), Sy-
SeVR (Li et al., 2022), Reveal (Wu et al., 2022),
VulCNN (Wu et al., 2022), AMPLE (Wen et al.,
2023), CodeT5 (Wang et al., 2021), UnixCoder
(Guo et al., 2022), SVulD (Ni et al., 2023), and
CasualVul (Rahman et al., 2024). It is worth men-
tioning that vulnerability descriptions are only used
during the pre-training stage. After pre-training, all
methods perform vulnerability detection or classifi-
cation solely based on the source code.

4.1.3 Configuration

We run CLeVeR on a server configured with In-
tel(R) Xeon(R) Gold 6230R CPU, NVIDIA A100-
PCIE-80GB GPU, and Ubuntu 20.04. Unless oth-
erwise specified, we randomly split the dataset into

70% for training, 10% for validation, and 20% for
testing. We conduct the experiments five times and
present the average results.

4.1.4 Metrics

We evaluate the performance in terms of five widely
used metrics: Accuracy (A), Precision (P), Recall
(R), F1 score (F1), and Weighted-F1.

4.2 Performance on downstream tasks

4.2.1 Performance on vulnerability detection

As reported in Table 1, CLeVeR achieves signif-
icant performance improvements across all three
datasets. Compared to previous SOTAs, CLeVeR
improves accuracy by 5.71%, 5.08%, and 6.35%,
and enhances F1 by 8.19%, 5.70%, and 11.85%,
respectively. On RealData, CLeVeR achieves a re-
call rate of 63.01%, surpassing the previous SOTA
(i.e., AMPLE) by 4.33%. Additionally, with a pre-
cision rate of 86.25%, CLeVeR substantially re-
duces manual verification costs of false positives
in practical vulnerability detection. On SynData,
CLeVeR achieves a recall rate of 100%, demon-
strating its capability to completely capture vulner-
abilities in simpler scenarios. Notably, CLeVeR’s
performance improvement is more pronounced on
real-world datasets than on semi-synthetic ones.
This indicates that the vulnerability code represen-
tations generated by CLeVeR effectively capture
the semantic intricacies of complex functions, en-
hancing its detection ability in real-world scenarios.

To exhibit the transferability of CLeVeR, we
also report the zero-shot testing results in Table 1.
The results demonstrate that CLeVeR outperforms
all SOTAs, achieving F1 improvements of 0.72%,
2.63%, and 4.92% across three datasets, thereby
validating its impressive transferability. It is worth
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Figure 5: Comparison with SOTA vulnerability classifi-
cation approaches in VCLData-ft.

noting that CLeVeR can generate precise represen-
tations while effectively avoiding overfitting issues.

4.2.2 Performance on vulnerability
classification

We select the top 10 CWE categories with the high-
est number of correctly detected vulnerabilities by
CLeVeR on the VCLData-ft dataset, totaling 9,011
vulnerabilities, for evaluation in vulnerability clas-
sification. We fine-tune the model using 1%, 10%,
25%, 50%, and 100% of the training data and also
test CLeVeR in zero-shot scenarios.

As illustrated in Figure 5, with only 1% of the
training data, CLeVeR achieves an accuracy of
73.90% and a Weighted-F1 of 74.87%, significantly
outperforming previous methods, which demon-
strates CLeVeR’s excellent generalization capabil-
ities and proficiency in few-shot learning. With
50% training data, CLeVeR achieves an accuracy
of 84.16% and a Weighted-F1 of 79.75% and then
increases to 85.58% and 80.34% when training on
the full dataset, outperforming the previous best
results by 9.95% and 13.61%, respectively. The
above results indicate that CLeVeR reaches conver-
gence more quickly and with less data compared to
other models that require larger data volumes to en-
hance performance. Moreover, as illustrated in Fig-
ure 5, even in zero-shot scenarios, CLeVeR demon-

strates comparable vulnerability classification per-
formance to the previous best results, with an accu-
racy of 72.87% and a Weighted-F1 of 66.68%.

4.3 Quality of CLeVeR Representations

We conduct an intrinsic assessment to evaluate the
quality of the vulnerability code representations
generated by CLeVeR. We create a dataset con-
sisting of 300 vulnerable functions by selecting
30 functions from each of the top 10 CWEs in
VCLData-ft and then generate representations us-
ing CodeT5, AMPLE, UnixCoder, CasualVul, and
CLeVeR. These representations are visualized in a
lower-dimensional space using the t-SNE (Van der
Maaten and Hinton, 2008) algorithm.

As shown in Figure 4, we observe that the code
representations generated by existing approaches
are chaotic and disordered from the perspective
of vulnerabilities, indicating that these approaches
fail to highlight the vulnerability semantics from
the overall code semantics. In contrast, the repre-
sentations generated by CLeVeR precisely extract
and emphasize the vulnerability semantics of each
function, showing that similar types of vulnerabil-
ity functions have similar code representations.

4.4 Ablation study

We conduct ablation experiments on the RealData
dataset to analyze the impact of CLIP and the three
crucial components we proposed. First, we set a
baseline by directly using CodeBERT and then eval-
uate the direct benefit of the generative model and
contrastive learning. Second, we evaluate CLeVeR
with three components individually removed to val-
idate the contributions of each component.

As shown in Table 2, first, using CLIP leads to a
greater improvement (i.e., 5.38% in F1) compared
to using generative model (Sutskever et al., 2014),
which shows a 2.77% improvement, validating the
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Method A(%) P(%) R(%) Fl1(%)
Baseline 69.49 60.93 52.59 56.45
Baseline+GM 71.31 63.61 55.39 59.22
Baseline+CLIP  73.11 66.32 5791 61.83
w/o adapter 78.44 7591 62.50 68.56
w/o refinement 73.57 66.34 60.34 63.20
w/o simulator 76.27 71.75 60.87 65.87
CLeVeR 79.13 86.25  63.01 72.82

Table 2: Contribution of each proposed component.
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Figure 6: Comparison of varying hyperparameters.

effectiveness of CLIP. Second, all three compo-
nents contribute significantly to performance im-
provements. Among them, the refinement module
provides the largest boost, with an F1 increase of
9.62%, which suggests that the semantic imbalance
between code and description representations poses
a substantial challenge for semantic alignment. The
simulator contributes a 6.95% F1 increase, which
is less than the improvement from the refinement
module. This indicates that while training the re-
finement module during the pre-training stage, the
original code representations are also optimized.
Thus, even without using the simulator to eliminate
data inconsistency, the performance still improves
(i.e., 2.67% in F1). Lastly, the adapter module en-
hances F1 by 4.26%, a relatively smaller improve-
ment compared to other components. This is likely
because both pre-training models for code and de-
scriptions belong to the BERT family, producing in-
herently similar feature spaces. Its impact would be
more significant when utilizing pre-training models
with distinct architectures.

4.5 Hyperparameters Analysis

CLeVeR has three important hyperparameters: the
weight of the description simulator «, the propor-
tion of source and sink information in vulnerabil-
ity description Ag, and the proportion of the pre-
refinement part in generating vulnerability code
representations A;. We conduct vulnerability de-
tection and classification tasks on the RealData and

VCLData-ft datasets to evaluate CLeVeR’s perfor-
mance across different values of « and A\ in the
[0,1] range, and g in the [0,0.5] range.

As illustrated in Figure 6, increasing o initially
improves both vulnerability detection and classi-
fication, peaking at = 0.7 with an F1 score of
72.82% and a Weighted-F1 score of 80.34%. The
optimal \g for detection is 0.25, while for classifica-
tion, it is 0.3. Analysis reveals that although setting
Ao to 0.3 increases the Weighted-F1 score for clas-
sification by 0.03%, it decreases the F1 score for
detection by 1.75%. Thus, we determined the final
value of A\ to be 0.25 to balance both tasks. The
trend for \; is similar to that of «, with the best
performance at \; = 0.2. Notably, setting A; to 0,
which relies solely on refined code representation,
results in a performance drop for CLeVeR. This
supports the earlier assertion in Section 3.2 that
incorporating contextual information is crucial for
effective vulnerability code representation.

5 Discussion

The aforementioned experiments demonstrate that
CLeVeR can indeed generate precise vulnerability
code representations. Beyond this, we also explore
other potentials of CLeVeR. We validate its compu-
tational costs, compare it with recent LLM-based
methods, and examine its detection performance
in real-world scenarios, thereby substantiating its
potential as a practical vulnerability detection tool.
Due to the page limit, we present the detailed re-
sults of these experiments in the Appendix.

6 Conclusion

In this paper, we propose CLeVeR, the first ap-
proach that utilizes contrastive learning to generate
precise vulnerability code representations through
vulnerability description supervision. To meet the
challenges of semantic alignment, we introduce
an Adapter that projects representations from dis-
parate modalities into a unified feature space. Ad-
ditionally, we design a Representation Refinement
module to mitigate semantic imbalance and pro-
pose a Description Simulator to handle data incon-
sistency. Extensive experiments demonstrate that
CLeVeR significantly outperforms all SOTA meth-
ods in several datasets and downstream tasks, with
its superior performance in zero-shot scenarios fur-
ther highlighting the transferability of its vulner-
ability code representations. This work opens up
new possibilities for vulnerability detection.
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Limitations

Although the CLeVeR model is capable of generat-
ing precise vulnerability code representations and
performs well in vulnerability detection and clas-
sification tasks, it still has limitations. First, while
the proposed VCLData dataset contains 280,034
samples across 146 CWE categories, its source is
singular, as all samples are derived from SARD.
Second, we have only validated the effectiveness
of the CLeVeR model in vulnerability detection
and classification tasks, leaving its potential for
tasks such as vulnerability localization and repair
unexplored. In future work, we plan to collect
vulnerability data and descriptions from multiple
sources, including various open-source software
projects, to enrich the VCLData dataset. Addition-
ally, we will further investigate the application of
CLeVeR-generated vulnerability representations to
tasks such as vulnerability localization and repair.

Ethics Statements

With the increasing prevalence of open-source
software, software vulnerabilities pose significant
threats to property and security, making accurate
automated vulnerability detection increasingly crit-
ical. We aim to leverage deep learning techniques
to obtain precise vulnerability code representa-
tions, thereby assisting security experts in detecting
vulnerabilities more accurately. The pre-training
dataset used in our study (VCLData-pt) was col-
lected from SARD, an authoritative vulnerability
database for vulnerability detection published by
NIST (National Institute of Standards and Tech-
nology), which does not contain any sensitive or
unpublished data. The testing datasets are also
publicly available in vulnerability detection, and
their use strictly adheres to data source usage agree-
ments. For manual verification of VCLData, the
process is conducted with four human security ex-
perts and they are all paid according to their indi-
vidual working hours. After our verification, all the
data we use and will open source do not contain
personal or any harmful offensive information. We
hope that our work contributes to maintaining a
secure and reliable cyber environment.
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A Detailed Dataset Processing Procedures

First, we perform hash-based deduplication on
VCLData, ensuring there is no overlap between
VCLData-pt and VCLData-ft. We also compare
the hash values of VCLData with SynData and Re-
alData, which shows that RealData has no overlap
with VCLData-pt, while 4.12% of samples in Syn-
Data appeared in VCLData-pt. This overlap likely
occurs because SynData also collected data from
SARD, which explains why CLeVeR performs bet-
ter on SynData than on VCLData-ft.

Second, we conduct a manual review of all
280,034 samples. We totally found 12,826 sam-
ples (4.58%) that are missing certain vulnerability
descriptions (such as source or sink information),
which we then supplemented. Since SARD is an
official dataset, label errors were rare - we only
identified 78 samples (0.03%) with incorrect labels,
which were corrected after thorough discussion.

B Computation Costs of CLeVeR

The CLeVeR model contains about 0.3 billion pa-
rameters and requires just 1.5 hours of pre-training
per epoch. With convergence achieved in 8-10
epochs for VCLData-pt, the total pre-training time
generally remains under 15 hours. For fine-tuning,
CLeVeR completes the task in less than 1 hour on
the SynData dataset, which contains approximately
33,000 samples. During testing, linear probe evalu-
ation averages only 0.112 seconds per test sample,
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CVEID Vulnerability type Status ‘ SynData ‘ RealData
CVE-2017-8309  memory leak(CWE-772)  report in NVD Method ‘ A(%) R(%) Fl(%) ‘ A(%) R(%) Fl(%)
CVE-2017-8380 buffer overflow(CWE-119) report in NVD GRACE 89.15 84.02 8733 | 6973 53.84 57.22
CVE-2017-8112 infinite loop(CWE-835)  reportin NVD Defecthunter | 88.36 82.86 8637 | 67.09 50.65 53.65
CVE-2017-5973 infinite loop(CWE-835) report in NVD VSP 89.98 86.51 89.62 | 73.62 5478 60.96
CVE-2016-9922  divide by zero(CWE-369)  report in NVD LLM4Vul | 88.12 83.95 87.60 | 66.08 5534 55.09

- memory leak no report
CLeVeR ‘ 98.19 100.00 98.03 ‘ 79.13 63.01 72.82
- off-by-one error no report

Table 3: Vulnerabilities detected by CLeVeR in real-
world scenarios.

while zero-shot testing takes 0.176 seconds per
sample for detection tasks and 0.426 seconds for
classification tasks. Overall, these computational
costs are fully manageable for practical use.

C Vulnerability Detection in Real-world
Scenarios

Although we have already validated CLeVeR’s vul-
nerability detection performance using several real-
world datasets, these may not fully reflect real-
world vulnerability detection scenarios. There-
fore, we selected the open-source software Qemu
2.7.0 and applied the CLeVeR model pre-trained
on VCLData to detect its vulnerabilities. We ran-
domly extract 200 functions for vulnerability de-
tection. Among the 9 vulnerabilities reported in
the National Vulnerability Database (NVD) (NVD),
we successfully detected 5, achieving a recall rate
of 55%. In comparison, the previous best method,
CasualVul, detects only 3 vulnerabilities, while
UnixCoder detects just one (both methods are fine-
tuned on RealData). This demonstrates CLeVeR’s
superior performance in real-world vulnerability
detection scenarios.

Furthermore, upon analyzing the false positives
detected by CLeVeR and referencing subsequent
Qemu versions, we discovered 2 vulnerabilities
that were modified in later versions but have not
been reported in NVD. We report the 7 vulnerabili-
ties detected by CLeVeR in Table 3. These results
comprehensively illustrate CLeVeR’s potential to
serve as an assistant for security experts in practical
vulnerability detection scenarios.

D Comparison with Recent LLLM-based
Vulnerability Detection Methods

With the development of large language models
(LLMs) represented by GPT (OpenAl, 2023), many
researchers have begun to explore the effective-
ness of LLLMs in vulnerability detection. However,

Table 4: Comparison with LLM-based vulnerability
detection methods.

(Ullah et al., 2024) has shown that LLMs face sev-
eral challenges in vulnerability detection, including
high false positive rates and unstable outputs. Nev-
ertheless, some methods have been proposed and
made certain progress. We select four recent LLM-
based vulnerability detection methods (GRACE
(Lu et al., 2024), Defecthunter (Wang et al., 2023a),
VSP (Nong et al., 2024), LLM4Vul (Sun et al.,
2024)) and evaluate their detection performance on
both SynData and RealData.

As shown in Table 4, CLeVeR significantly out-
performs recent LLM-based vulnerability detec-
tion methods on SynData and RealData. Specif-
ically, CLeVeR achieves F1-score improvements
of 8.39% and 12.13% respectively compared to
these LLM-based methods, demonstrating its excel-
lent vulnerability detection capability. Moreover,
as mentioned in Section B, the CLeVeR model
contains only about 0.3 billion parameters, requir-
ing significantly less computational resources than
LLM-based methods. In conclusion, compared to
LLM-based methods, CLeVeR demonstrates supe-
rior performance in both vulnerability detection
effectiveness and computational cost.
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