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Abstract

The ranked list truncation task involves deter-
mining a truncation point to retrieve the rel-
evant items from a ranked list. Despite cur-
rent advancements, truncation methods strug-
gle with limited capacity, unstable training and
inconsistency of selected threshold. To address
these problems we introduce TMP Adapter, a
novel approach that builds upon the improved
adapter model and incorporates the Thresh-
old Margin Penalty (TMP) as an additive loss
function to calibrate ranking model relevance
scores for ranked list truncation. We evalu-
ate TMP Adapter’s performance on various re-
trieval datasets and observe that TMP Adapter
is a promising advancement in the calibration
methods, which offers both theoretical and
practical benefits for ranked list truncation.

1 Introduction

Determining the appropriate truncation point is a
fundamental problem in information retrieval and
recommendation systems. An excessively long
ranked list can overwhelm users with redundant
or less relevant information. Conversely, an overly
short list risks omitting highly relevant items that
could enhance user satisfaction. Thus, optimizing
the cutoff point is essential to balance relevance, di-
versity, and usability. The problem of determining
the optimal cutoff point in a ranked list, also known
as ranked list truncation or relevance filtering, has
been approached using two primary methods: adap-
tive thresholding and global thresholding.

Adaptive thresholding focuses on predicting an
optimal cutoff point for each individual list. Bi-
Cut (Lien et al., 2019) leverages a bidirectional
LSTM to model sequential dependencies and pre-
dict truncation points. Choppy (Bahri et al., 2020)
employs a Transformer architecture for the same
task. AttnCut (Wu et al., 2021) further incorporates
attention mechanisms and reward augmented maxi-
mum likelihood for direct optimization. LeCut (Ma

et al., 2022) improves upon these by adding contex-
tual features from the retrieval task to better model
document semantics. In the realm of personalized
recommendations, PerK (Kweon et al., 2024) es-
timates the expected user utility to determine the
ideal list size. More recently, GenRT (Xu et al.,
2024) combines reranking and truncation in a joint
model using sequence generation.

Global thresholding aims to calibrate relevance
scores, enabling the use of a universal threshold
across queries. This approach often involves trans-
forming raw retrieval scores into more interpretable
values. TCM (Zhang et al., 2024) introduces a
margin-based loss that facilitates a consistent dis-
tance threshold and, RCR (Bai et al., 2023), a
regression-compatible ranking approach, ensures
alignment between ranking and regression objec-
tives. JRC (Sheng et al., 2023) consolidates opti-
mization across all samples using a contextualized
hybrid model. The Cosine Adapter (Rossi et al.,
2024) maps cosine similarity scores to interpretable
relevance scores and Surprise (Bahri et al., 2023)
employs statistical methods to adjust a ranked list
using. These methods contrast with adaptive thresh-
olding by seeking a single, universally applicable
cutoff.

Despite the promising progress, we discover that
existing methods suffer from three main issues: (i)
low capacity, especially for Large Language Mod-
els. (ii) unstable training, especially for low-data
training. (iii) threshold inconsistency especially
in case of distribution shift between the training
and test. We address these issues by proposing im-
proved Adapter architecture and training method
with Threshold Margin Penalty inspired by TCM.

2 Methodology

2.1 Threshold Margin Penalty

We propose an additive penalty function with adap-
tive margin for contrastive loss functions. The goal
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of this function is to minimize the number of pair
scores s located in the truncation threshold area
to improve threshold consistency and global pair
separation of positive S+ and negative S− scores.
Threshold Margin Penalty is defined in Equation 1

TMP = wpos∗Ppos+wneg∗Pneg−wm∗Rm (1)

Where Ppos and Pneg are penalties for positive
and negative scores defined in equations 2 and 3.

Ppos =

∑
s∈S+ max (0,m+ − s)

∑
s∈S+

{
1; s ≤ m+

0; s > m+

(2)

Pneg =

∑
s∈S− min (0, s−m−)

∑
s∈S−

{
1; s > m−

0; s ≤ m−

(3)

Rm - margin reward which encourages better
separation given in equation 4.

Rm = m+ −m− (4)

Since the optimal truncation point could change
during training, we add tunable parameters m+

and m−, which are normalized using the sigmoid
function that change positive and negative bound-
aries. This allows us to tune optimal margin place-
ment and size during training. We also include
penalty weights hyperparameters wpos, wneg and
wm empirically selected based on experimental re-
sults remaining close to main loss to save better
convergence. wpos and wneg are codependent and
guide the distributions bias. wm determines mar-
gin size dynamics and should be proportional to
the sum of wpos, wneg, increasing this parameter
enhances scores separation but may lead to training
instability.

2.2 TMP Adapter

We recognize the potential of the Cosine Adapter
model; however, we also identify several limita-
tions, including low consistency of the truncation
threshold, insufficient generalization ability, and
unstable training. In this study, we build upon the
concept of the Cosine Adapter and address these
issues by proposing the TMP Adapter, depicted in
Figure 1. The adjusted score s is computed using a
modified function presented in equation 5.

s = p1 + sp3raw ∗ p22 (5)

Figure 1: TMP Adapter architecture and training
pipeline for Bi-Encoder scores calibration.

where sraw is cosine similarity between query
vector q and candidate vector c.

To enhance threshold consistency, measured by
the deviation of the validation-set-optimized thresh-
old from the optimal test-set threshold, we intro-
duce the Threshold Margin Penalty. This method
expands the optimal threshold region without en-
coder model tuning, similar to several previously
mentioned methods. Additionally, we propose in-
creasing the model’s capacity and modifying its
architecture by incorporating residual connections
and GeLU activation functions to improve training
stability (see Appendix A).

3 Experiments

3.1 Datasets

In this paper, we utilize three key information
retrieval datasets from BeIR benchmark (Thakur
et al., 2021). FiQA is a domain-specific dataset
of financial questions and answers, designed for
retrieval models evaluation. NFCorpus is a dataset
of health-related documents with human-annotated
relevance judgments, applicable for IR tasks in
medicine. Robust04 is a widely used benchmark
from the TREC Robust Track 2004, based on news
articles with relevance assessments, designed to
test the robustness of retrieval models across do-
mains of varying difficulty. This setup provides
diverse retrieval challenges from domain-specific
to general information retrieval tasks. We selected
an amount of varying datasets to evaluate threshold
consistency and quality of ranked list truncation
(which requires both training stability and model
capacity) on different domains. Full datasets char-
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acteristics are available in Appendix B.

3.2 Metrics
In this paper we report Normalized Discounted
Cumulative Gain at rank 10 (NDCG@10) as re-
trieval quality metric, as it accounts for both the rel-
evance and position of retrieved documents. While
NDCG@10 is the standard evaluation metrics of
the retrieval task in MTEB benchmark (Muen-
nighoff et al., 2023) and particularly relevant for
encoder tuning experiments, it is not the primary
metric to assess the proposed method. The TMP
Adapter is implemented as score calibrator rather
than reranker, leading to ranking metrics remaining
unchanged. To comprehensively evaluate ranked
list truncation we consider several key metrics. The
maximum F1 score (F1(M)) represents the maxi-
mum F1 value for a given ranked search result list
without reranking. We also report the oracle F1
score (F1(O)), obtained by optimizing the thresh-
old on test subset. In contrast, the tuned F1 score
(F1(T )) is derived by adjusting the threshold on
the dev subset. For better interpretation we report
F1(T )
F1(M) that calculated as percentage of the maxi-
mum F1 score. To quantify the threshold consis-
tency we compute the F1(T )

F1(O) percentage ratio.

3.3 Baselines
We employ multiple baseline methods to ensure
a comprehensive and reliable evaluation. First of
all, we consider the AttnCut approach 1 and Cosine
Adapter 2. In addition we report two naive base-
lines: Greedy(k) - truncation based on global rank
threshold; Greedy(s) - truncation based on global
scores threshold.

To assess the effectiveness of ranked list trunca-
tion methods under current conditions, we identify
state-of-the-art retrieval models and compare them
to the approaches introduced in AttnCut (BM25)
and polynomial Cosine Adapter (SimLM) (GLUE,
2022).

To address the use of the proposed method on
different sized models we incorporate the small
retrieval model Spice3, which holds the highest
ranking among small models having 33.4M param-
eters in the retrieval task of the MTEB leaderboard
(as of January 30, 2025).

We also include NV-Embed-v2 (Lee et al., 2025)
having 7B parameters, which is ranked first on

1https://github.com/Woody5962/Ranked-List-Truncation
2https://github.com/juexinlin/dense_retrieval_relevance_filter
3https://huggingface.co/iamgroot42/spice

the MTEB retrieval leaderboard (as of January 31,
2025) to benchmark our results against state-of-
the-art Large Language Models. By incorporating
these diverse baselines, we aim to provide a robust
comparative analysis, highlighting the advantages
and limitations of the proposed method in various
retrieval scenarios and its compatibility both with
small and large models. We maintain the original
performance of baseline models without additional
tuning, as we do not rerank the retrieved list. Pro-
posed method serves exclusively as a calibrator for
optimal threshold selection. All of the baselines
are presented in Table 1. To further comparison
of ranked list truncation methods we select two
models with the best F1(M) scores.

4 Results

4.1 Threshold Results

The relative results of the suggested TMP Adapter
(for training details see Appendix C) and other
truncation methods baselines are listed in Table
2. Absolute values are reported in Appendix D.
Threshold consistency results of the TMP Adapter
show an F1(T/O) increase in 4.25%pt over raw
scores (Greedy(s)) and 2.24%pt over the best base-
line model (Cosine Adapter). We attribute the use
of TMP the primary factor leading to this increase
in model’s consistency.

TMP Adapter shows stable improvements in
ranked list truncation metrics over all datasets in
contrast to the Cosine Adapter, which indicates
more stable training due to architecture’s modifica-
tions.

All of these factors combined lead to ranked list
truncation metrics improvement, allowing the TMP
Adapter to achieve F1(T/M) increase both in raw
scores (Greedy(s)) 9.08%pt, and an 5.75%pt im-
provement over the best baseline (Cosine Adapter),
which confirms the effectiveness of proposed score
calibration method.

4.2 Discussion

Experimental results indicate that the optimal
threshold is changing during the training process.
This dynamics can be observed visually analyzing
F1-score curves obtained at model’s validations at
different training epochs (Appendix E). Notably,
the peak F1-scores are achieved across wide range
of thresholds, varying from 0 to 1. Therefore, mar-
gin penalty with fixed boundaries will prevent this
behavior and reduce optimization efficiency due
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Model
FiQA NFCorpus Robust04

NDCG@10 F1(M) NDCG@10 F1(M) NDCG@10 F1(M)
NV-Embed-v2 0.652 0.643 0.449 0.381 0.405 0.469
Spice 0.63 0.623 0.544 0.478 0.407 0.345
MiniLM 0.188 0.212 0.231 0.2 0.178 0.143
BM25 0.253 0.391 0.342 0.344 0.343 0.228

Table 1: The evaluation of different ranking models on four datasets with ranking and truncation metrics.

Method
FiQA NFCorpus Robust04

F1(T/M) F1(T/O) F1(T/M) F1(T/O) F1(T/M) F1(T/O)
Spice

Greedy(s) 56.34 98.60 53.97 92.81 64.35 95.28
Greedy(k) 58.91 89.95 54.18 95.57 63.48 95.22
AttnCut 64.52 – 55.65 – 60.87 –
Cosine Adapter 59.23 99.73 60.25 97.30 56.81 93.33
TMP Adapter 64.04 99.75 65.27 99.36 66.67 97.87

NV-Embed-v2
Greedy(s) 52.41 89.63 58.53 96.96 68.44 96.69
Greedy(k) 69.21 100 56.17 100 68.23 97.86
AttnCut 67.19 – 55.91 – 68.66 –
Cosine Adapter 67.19 98.18 62.99 97.96 67.59 95.48
TMP Adapter 71.54 99.14 66.40 99.61 74.63 99.72

Table 2: The results of ranked list truncation on three datasets and two encoder model for baselines and our approach.
Metric F1(T/M) shows percentage ratio F1(T ) to F1(M) and reveal the calibration quality. Metric F1(T/O)
shows percentage ratio F1(T ) to F1(O) and reveal the threshold consistency. Dashes in the table indicate the
absence of oracle value for AttnCut method, making it impossible to compute threshold consistency.

to counteracting the main pairwise loss function.
Consequently, the optimal threshold margin cannot
be reliably determined using a fixed grid search
approach but must be dynamic. These results are
supported by heatmap shown in Figure 2.

Figure 2: Performance of TMP Adapter with various
fixed margin center and margin size parameters com-
puted on FiQA dataset for NV-Embed-v2 model.

5 Conclusion

In this paper, we introduce Threshold Margin
Penalty Adapter, a novel approach designed to cali-
brate ranking model relevance scores for ranked list
truncation. Proposed TMP Adapter extends the im-
proved adapter model by integrating the Threshold
Margin Penalty as an additive loss function. This
innovation enhances the model’s ability to maintain
threshold consistency and improves the separation
between positive and negative pairs, which is criti-
cal for effective ranking list truncation. We evaluate
TMP Adapter’s performance on four datasets and
observe a consistent and stable improvement in the
F1-score, highlighting the model’s effectiveness for
score separation. Additionally, we observe a signif-
icant enhancement in threshold consistency, which
underscores the model’s in-domain robustness to
maintain reliable decision boundaries. These find-
ings show that TMP Adapter is a promising ad-
vancement in calibration methods, offering both
theoretical and practical benefits for ranked list
truncation.
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Limitations

While the proposed method improves in-domain
threshold consistency and training stability, it has
limitations. First of all, it struggles with out-of-
domain generalization, performing poorly outside
its training domain. This restricts its applicability
in diverse real world applications. Furthermore,
requiring a sufficient number of training pairs for
effective score calibration, similar to the Cosine
Adapter, makes this approach challenging in train-
ing with small amount of data, despite enhancing
training stability. These limitations highlight the
need for further research into domain adaptation,
data-efficient calibration, and computational opti-
mization to enhance its real-world applicability.
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A Architecture Modification

To determine the optimal architecture with suffi-
cient capacity, we conduct an ablation study. The
results for various adapter architectures are pre-
sented in Table 3. Training values are reported
on the dataset split used for model training, while
test metrics evaluate the model’s performance on a
previously unseen dataset split.

#Layers
Residual
Connection

Activation
Function

F1(T)
Train Test

3 False ReLU 0.499 0.432
4 False ReLU 0.511 0.430
4 True ReLU 0.530 0.446
4 True GeLU 0.535 0.450
5 False ReLU 0.502 0.402
5 True ReLU 0.525 0.420
5 True GeLU 0.528 0.422

Table 3: Evaluation of various adapter architectures with
NV-Embed-v2 model modification on FiQA dataset.
The table includes number of additional fully-connected
layers, the use of residual connections, activation func-
tion between layers, train and test metrics.

B Dataset Description

We use question answering and information re-
trieval datasets, commonly used to evaluate trun-
cation methods and included both in BEIR and
MTEB benchmarks. Their characteristics are
shown in Table 4.

Dataset FiQA NFCorpus Robust04
Domain Finance Medicine News
#Docs 57.6K 3.6K 528K
#Queries 6.6K 3.2K 250
#Positives 3 43 70
#Train Set 5.5K 2.6K 150
#Val Set 500 324 50
#Test Set 648 323 50
#Labels 2 4 3
Doc Length 136 221 605

Table 4: Overview of Datasets used in research includ-
ing their domains, sizes, query counts, label distribu-
tions, and document lengths in words. Used datasets
significantly vary in domains and scope, with Robust04
having the most number of relevant documents, while
FiQA having the most queries.

C TMP Adapter Training Setup

We train the TMP Adapter without tuning the en-
coder models, utilizing a modified Cosine Adapter
pipeline and the proposed TMP Adapter model
trained with the parameters specified in Table 5.

Spice
Dataset FiQA NFCorpus Robust04
#Epochs 40 25 25

Batch Size 128 128 32
Optimizer AdamW AdamW AdamW
Adapter lr 0.001 0.002 0.0005
Margin lr 0.008 0.005 0.01
wpos 0.109 0.198 0.212
wneg 0.1 0.1 0.104
wm 0.25 0.19 0.25

NV-Embed-v2
#Epochs 50 25 20

Batch Size 128 128 32
Optimizer AdamW AdamW AdamW
Adapter lr 0.001 0.001 0.0005
Margin lr 0.01 0.005 0.01
wpos 0.102 0.202 0.209
wneg 0.1 0.093 0.106
wm 0.2 0.18 0.26

Table 5: TMP Adapter Training parameters for Spice
and NV-Embed-v2 models used in research.

D Absolute F1 Values

In addition to the relative results of the TMP
Adapter described in the paper, we report abso-
lute values of tuned F1 and oracle F1 metrics for
more comprehensive and complete description in
Table 6.

E Threshold Shifting

To provide a clearer demonstration of the threshold
shifting during training, that is observed for all
adapter models, we report a curve of the validation
F1 metric values, recorded every five epochs in
Figure 3.
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Method
FiQA NFCorpus Robust04

F1(T) F1(O) F1(T) F1(O) F1(T) F1(O)
Spice

Greedy(s) 0.351 0.356 0.258 0.278 0.222 0.233
Greedy(k) 0.367 0.408 0.259 0.271 0.219 0.230
AttnCut 0.402 – 0.266 – 0.210 –
Cosine Adapter 0.369 0.370 0.288 0.296 0.196 0.210
TMP Adapter 0.399 0.400 0.312 0.314 0.230 0.235

NV-Embed-v2
Greedy(s) 0.337 0.376 0.223 0.230 0.321 0.332
Greedy(k) 0.445 0.445 0.214 0.214 0.320 0.327
AttnCut 0.432 – 0.213 – 0.322 –
Cosine Adapter 0.432 0.440 0.240 0.245 0.317 0.332
TMP Adapter 0.460 0.464 0.253 0.254 0.350 0.351

Table 6: The results of ranked list truncation on three datasets and two encoder model for baselines and our approach
in absolute values.

Figure 3: Validation F1 curve Cosine Adapter on FiQA dataset for NV-Embed-v2 model.
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