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Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities across numer-
ous tasks, yet they often rely on external con-
text to handle complex tasks. While retrieval-
augmented frameworks traditionally focus on
selecting top-ranked documents in a single pass,
many real-world scenarios demand composi-
tional retrieval, where multiple sources must
be combined in a coordinated manner. In this
work, we propose a tri-encoder sequential re-
triever that models this process as a Markov De-
cision Process (MDP), decomposing the prob-
ability of retrieving a set of elements into a
sequence of conditional probabilities and al-
lowing each retrieval step to be conditioned
on previously selected examples. We train the
retriever in two stages: first, we efficiently con-
struct supervised sequential data for initial pol-
icy training; we then refine the policy to align
with the LLM’s preferences using a reward
grounded in the structural correspondence of
generated programs. Experimental results show
that our method consistently and significantly
outperforms baselines, underscoring the impor-
tance of explicitly modeling inter-example de-
pendencies. These findings highlight the poten-
tial of compositional retrieval for tasks requir-
ing multiple pieces of evidence or examples1.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable progress in recent years, mas-
tering text generation and diverse problem-solving.
Context often plays a critical role in grounding
these models in task-relevant information: it helps
incorporate domain-specific knowledge, clarify
ambiguous queries, and provide demonstrative
examples. This leads to the common adoption
of retrieval-augmented frameworks (Lewis et al.,

*Equal contribution.
1Codes of this work are available at https://github.

com/ruyue0001/Step-by-Step-Retrieval

Figure 1: When generating the target semantic program
of a query (parsing the query into the logical form),
relying on single or repetitive demonstrative context
cannot cover the ground-truth program local structure
and lead to poor context augmentation quality. In order
to capture the whole retrieval results’ collective effect
to facilitate better local structure coverage and program
generalization, we solve this compositional retrieval
problem by modeling it as a Markov Decision Process.

2020; Izacard et al., 2022b; Liu et al., 2022), which
introduce a “retrieve” step to extract relevant con-
text segments such as documents or examples to
enrich the LLM’s input, improving both the accu-
racy and reliability of its outputs.

However, many complex tasks demand combin-
ing multiple pieces of evidence or examples of
diverse semantics or structures. For instance, multi-
hop queries often require several documents to ac-
cumulate all necessary insights. Another scenario,
as illustrated in Figure 1, involves translating a
query into a logical forms, where an LLM needs
to assemble symbols or sub-trees from multiple
demonstrative examples to construct the target pro-
gram accurately. In this case, relying on a single
retrieved example can only provide partial hints,
while repetitive or redundant examples provide lit-
tle additional information. Consequently, this com-
positional retrieval setting necessitates coordinated
selection of examples to maximize collective utility
of chosen composition.
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To address these complexities, conventional top-
k retrieval is insufficient, as it operates in a single-
turn manner and fails to capture how newly selected
items condition subsequent choices. Therefore, we
propose a compositional retrieval paradigm that
conducts retrieval in multiple steps, with each step
adapting to the evolving context formed by previ-
ously retrieved items. This approach ensures that
newly selected examples complement previously
chosen ones, improving the overall coverage of re-
trieved content (Figure 1). Although recent works
have explored sequential retrieval for selecting ex-
emplary contexts (Liu et al., 2024a,b), they typi-
cally rely on a large scoring language model for
constructing training sequences, incurring signifi-
cant computational overhead.

To maximize the collective utility of the re-
trieved examples instead of selecting multiple high-
scoring yet potentially redundant elements from a
single global ranking, we formulate compositional
retrieval as a Markov Decision Process (MDP),
wherein each state reflects both the query and the
previously chosen items. We adopt a tri-encoder
architecture as the policy model, mapping each
query and partial retrieval sequence to a probability
distribution over candidate examples. To initial-
ize this policy, we construct supervised fine-tuning
data in a more efficient manner by maximizing
sub-structure coverage without scoring models. In
the second stage, we perform reinforcement learn-
ing (RL) and adopt a grouped policy optimization
(Shao et al., 2024; DeepSeek-AI et al., 2025), re-
inforcing the policy using a task-specific reward
based on local structure coverage of the generated
logical form. This design captures the LLM’s com-
positional needs and progressively enhances the
quality of the assembled context.

We evaluate our method Reinforcing
Compositional Retrieval (RCR) on compositional
generalization semantic parsing benchmarks which
requires generating new combinations of familiar
structures and symbols, making it an ideal initial
scenario to examine how context compositions
impact program generation capabilities. Results
show our method consistently outperforms top-k
and sequential retrieval baselines. The observed
improvements stem from our tri-encoder retriever’s
ability to model inter-example dependencies,
enabling more effective context composition and
enhancing program generation quality within
the LLM. Our analysis further underscores the
effectiveness of leveraging RL in refining retrieval

strategies. We systematically evaluate different
RL setups and advantage estimation methods,
providing a comprehensive evaluation and insights
into both its benefits and limitations in retrieval
tasks. In summary, our key contributions are:

• We formalize a compositional retrieval pro-
cess that explicitly accounts for coordinated
selection of contexts via sequential condi-
tional probabilities.

• We develop a tri-encoder retriever, modeling
retrieval as a Markov Decision Process and
factoring each selection step upon previously
chosen examples.

• We introduce an efficient supervised fine-
tuning step for data construction and subse-
quently refine the retriever through reinforce-
ment learning, aligning it with the LLM’s
downstream performance.

2 Problem Formulation

In this work, we depart from conventional top-
ranked retrieval which treat each candidate inde-
pendently. Instead, we propose a compositional
retrieval problem that aims to optimize the selec-
tion of the most influential context group, and each
element within this group will contribute together
to lead to a correct prediction.

2.1 Compositional Retrieval
The common retrieval-augmented framework
mainly contains two components, a dense retriever
to retrieve relevant contexts and a Large Language
Model (LLM) to accept retrieved contexts for gen-
erating responses. Given a set of retrieved elements
Z , LLMs will condition on the combination of con-
text Z and query x to generate the output y by
prepending all k retrieved elements to x:

P(y | x) ≈
∑

Z
PLM(y | Z, x)P(Z | x), (1)

where Z = [z1, · · · , zk], and [·] denotes text con-
catenation. In order to retrieve k elements, in stan-
dard dense retrieval, the likelihood of retrieving a
single candidate z is computed as:

P(z | x) ≈ exp(sim(x, z))∑
z′∈C

exp(sim(x, z′))
, (2)

where sim(·, ·) is a similarity function, which is
often computed via inner product, sim(x, z) =
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Figure 2: Tri-encoder model to retrieve step-by-step.

Ec(z)
⊤Eq(x). The final context Z is obtained

by selecting the top-k candidates based by Eq. (2).
However, such top-k selection treats candidates

independently,2 disregarding the compositional
quality of the retrieved set and failing to assess the
joint utility of retrieved elements, which is crucial
for tasks where multiple documents must interact
to form an informative context. To address this,
we define compositional retrieval as computing the
probability of retrieving a set of candidates as a
sequence of conditional probabilities:

P(Z |x) = P(z1|x)
k∏

i=2

P(zi|x, z1, . . . , zi−1).

(3)
We explicitly model dependencies among re-

trieved elements, where each selection influences
subsequent choices. Unlike traditional methods
that independently select top ranked elements in
a single turn and unable to estimate the composi-
tional retrieval probability, this approach optimizes
the overall composition by accounting for both in-
dividual relevance and inter-example interactions,
leading to more collective context selection.

2.2 Overview of the MDP Modeling

We further formalize the proposed step-by-step
retrieval process as a Markov Decision Process
(MDP). In compositional program generalization
(an example in Figure 1), prior works (Levy et al.,
2023; An et al., 2023) show that increasing struc-
tural coverage (i.e., sub-trees of the program tree)
of the expected program within the demonstrative

2The selection of each element from a probability distri-
bution is not necessarily independent when considering rank
dependence, i.e. once choosing one element, the remaining
elements are selected from a constrained set without replace-
ment using re-normalization. However, once considering rank
dependence, it inherently become a sequential selection.

context improves in-context learning (ICL) per-
formance, since high-coverage contexts enhance
generalization by exposing the model to essential
program symbols (e.g., predicates and logical op-
erators). Thus, the goal of our decision process
is to select program examples that provide more
expected symbols and larger structures coverage
within the whole context, while minimizing redun-
dant selections with limited utility.

State At each step t, state is defined as st =
[x, z1, · · · , zt−1], representing the partial retrieval
sequence, where x is the input, and zi is i-th se-
lected program example.

Policy To compute the conditional probability
in Eq. (3), we avoid using a single encoder to
process the concatenated input [x, z1, · · · , zt−1],
which may weaken the signal input x. Instead,
we employ a query encoder Ex and a context en-
coder Ez to separately encode x and each selected
example zi (Figure 2). Given a candidate pool
C = {cj}Nj=1, we introduce a third encoder Ec to
encode candidate examples, the selection logit for
candidate cj at step t are computed as:

q(x,Zt−1, cj) = Ec(cj)
⊤(Ex(x)+λ

t−1∑

i=1

Ez(zi)),

(4)
where λ is a weighting factor, and Zt−1 =
[z1, · · · , zt−1] represents selected list at time step
t − 1. The policy distribution is then given by:
πθ(·|x, zi<t) = softmax(q(x,Zt−1, ·)/τ), τ is a
scaling temperature.

Action At step t, an action involves selecting an
example zt from C by sampling from πθ(·|x, zi<t).
Once selected, an action is removed from the can-
didate pool to prevent duplicate selection.

Reward After k retrieval steps, the selected ex-
amples serve as context for prompting an LLM in
an ICL manner to generate a response ŷ:

ŷi ∼ PLLM(ŷi|[z1, z2, · · · , zk︸ ︷︷ ︸
context

, x], ŷ1:i−1). (5)

We define a reward based on local structural sim-
ilarity between the generated and reference pro-
grams. Following Levy et al. (2023), we first
anonymize programs by replacing values (e.g.,
strings, numbers) with constants, as these are typi-
cally irrelevant for structural coverage. Each pro-
gram is then represented as a tree, where nodes
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Figure 3: Local structures when size l = 4. Following
Levy et al. (2023), we exclude more distant familial ties.

correspond to program symbols and edges capture
parent-child relationships between functions and
their arguments. A local structure is defined as a
subgraph where all leaf nodes share a sibling re-
lationship, meaning it includes only parent-child
and sibling connections while excluding cousin or
uncle relations. The size of a local structure l is
defined as the number of nodes in this sub-graph
(see Figure 3). Additional details are provided in
Appendix B, with examples in Table 4.

We extract local structures of size ≤ l from both
the generated program ŷ and the ground-truth pro-
gram y, and then collect all the extracted structures
into a set. We denote such extraction as a func-
tion LSl(·). The reward is then computed as the
Jaccard similarity between their local structures:

r(o) =
|LSl(ŷ) ∩ LSl(y)|
|LSl(ŷ) ∪ LSl(y)| , (6)

where o = [x, z1, · · · , zk] is the final observation.
This formulation naturally penalizes the generation
of overly lengthy programs.

3 Reinforcing Compositional Retrieval

The training of our propose tri-encoder sequen-
tial retriever contains two stages, supervised fine-
tuning (SFT) and reinforcement learning (RL).

3.1 Stage 1: SFT

To construct sequential training data and establish
a strong initial policy, we propose an intuitive and
efficient data construction method. Given an input
x and a candidate pool C, we first construct the
training data for step 1. A high-quality program
example should maximize local structure coverage,
as broader coverage reduces the model’s need to
generate new structures and provides insights into
structural fusion. Therefore, we greedily sample
the candidate in the pool C that maximizes local
structure coverage relative to the ground-truth y.

For subsequent steps, intuitively, an optimal
composition should introduce diverse symbols and

Algorithm 1 Data construction for SFT

Input: data instance (x, y), example pool C, to-
tal step k, maximum local structure size l, lo-
cal structure extractor LSl(·), uncovered local
structure set S, selected examples list Zt at
step t.

1: S ← LSl(y)
2: Z0 ← []
3: for t = 1, · · · , k do
4: ct ← argmaxc |LSl(c) ∩ S|, c ∈ C
5: Append (x,Zt−1, ct) to DSFT

6: zt ← ct
7: Zt ← Zt−1+[zt]
8: S ← S − LSl(zt)
9: end for

Output: Training Data DSFT for (x, y).

local structures to enhance generalization. There-
fore, retrieval should prioritize covering unseen
structures. More specifically, as shown in Figure
1, after expanding the set of retrieved examples
(encode by Ez in Figure 2), the retriever should
select examples that can cover previously un-
covered structures in y. We iteratively sample
candidates from C that maximize coverage of these
remaining structures. Algorithm 1 presents the data
construction procedure for SFT stage.

Unlike existing data construction methods that
rely on a scoring LLM (often distinct from the in-
ference model) to encode selected examples and
rank training data based on similarity scores (Liu
et al., 2024a,b), our approach eliminates the com-
putational overhead of LLM forward passes while
maintaining a more interpretable selection process.

After constructing the training data, each in-
stance (x,Zt−1, ct) ∈ DSFT is used to train the
tri-encoder retriever. The objective is to maximize
the selection logit of the candidate ct, treating it
as the positive example given input x and previ-
ously retrieved examples Zt−1. For negative sam-
plesN , we incorporate both in-batch negatives and
hard negatives. Hard negatives are selected using
a two-step process: 1) retrieve top-H most similar
example to x using BM25 (Robertson et al., 2009),
2) rank these H candidates by their local structure
coverage relative to the ground-truth y and select
the bottom-B (high-similarity but low-coverage)
candidates as hard negatives. The tri-encoder is
trained using the InfoNCE loss (Oord et al., 2018;
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Figure 4: Group Relative Policy Optimization (GRPO) process for optimizing the sequential retriever.

Chen et al., 2020):

L(x,Zt−1, ct,N ) =

− log
exp (q(x,Zt−1, ct))∑

cj∈{N
⋃

ct} exp (q(x,Zt−1, cj))
, (7)

Where q(x,Zt−1, cj) is computed by Eq. (4).

3.2 Stage 2: RL

Although the learned initial policy ensures high
coverage of the expected output program, it does
not guarantee correct generation by the inference
LLM. The retriever should also capture the LLM’s
preferences and align accordingly. With a sequen-
tial retriever, we collect a chain of retrieved ex-
amples over k steps and then feed the concatena-
tion of the prompt and test utterance [Zk, x] to a
LLM (Eq. (5)). After generating the full response
(Eq. (6)), we obtain a reward. This reward signal
eliminates the need for pairwise preference data, al-
lowing reinforcement learning to optimize retrieval
based on aggregated evaluations across multiple
example chains.

To achieve this, we adopt Group Relative Policy
Optimization (GRPO) (Shao et al., 2024) , which
enables efficient policy alignment with the LLM
without requiring a separately trained value model.
For each query x, we sample a group of outputs
{o1, · · · , oG} using the tri-encoder with the old
policy πθold and obtain a corresponding group of re-
wards {r1, · · · , rG}. The policy is then optimized
by maximizing the following objective:

J (θ) = 1

G

G∑

i=1

(
min

(
rθ(oi)Ai, clip

(
rθ(oi),

1− ϵ, 1 + ϵ
)
Ai

)
− βDKL(πθ ∥ πref )

)
, (8)

where rθ(oi) is the probability ratio between the
new and old policy, rθ(oi) =

πθ(oi|x)
πθold

(oi|x) . The clip-
ping function clip truncates the ratio between the

range [1− ϵ, 1+ ϵ], stabilizing updates. The advan-
tage function Ai computed using normalized group
rewards:

Ai =
ri −mean({r1, · · · , rG})

std({r1, · · · , rG})
. (9)

To prevent policy drift, a KL-divergence reg-
ularization term constrains the updated policy to
remain close to the initial policy from Stage 1:

DKL(πθ||πref ) =
πref (oi|x)
πθ(oi|x)

−log πref (oi|x)
πθ(oi|x)

−1.
(10)

After reinforcement learning, we encode the en-
tire candidate pool C using the trained candidate
encoder Ec. For a test input xtest, retrieval follows
a greedy decoding strategy, where at each step t,
we select the candidate with the highest probability
under the learned policy πθ(·|xtest, zi<t). We find
that beam search provides only marginal improve-
ments for sequential retrieval, a similar observation
noted in Liu et al. (2024a). The retrieval process
continues until k examples are collected, forming
the context for LLM inference. Evaluation is then
performed on the LLM’s final generated program.

4 Experiments

4.1 Datasets
We conduct our experiments on several Composi-
tional Generalization tasks for generating semantic
parsing program. This task inherently involves gen-
erating new combinations of familiar structures and
symbols, explicitly highlighting the compositional
nature. This explicitness makes it an ideal initial
scenario to examine how context compositions im-
pact model generation capabilities.

GeoQuery. GeoQuery (Zelle and Mooney, 1996;
Tang and Mooney, 2001) is a corpus of 880 ques-
tions related to U.S. geography. We follow the
splits introduced by Shaw et al. (2021), which
include: 1) Template split: Target programs are
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GeoQuery COVR-10

i.i.d. Template 1 Template 2 Template 3 TMCD 1 TMCD 2 TMCD 3 Length avg.

Cover-LS (Levy et al., 2023) 70.97 64.05 46.67 59.88 59.57 52.89 65.05 49.24 66.72

Top-k Retrieval

Random 11.43 9.34 8.46 7.88 9.09 8.48 6.67 3.03 24.56
BM25 72.14 40.36 26.89 44.85 46.67 42.42 48.79 27.88 1.74
BERT 77.50 43.97 26.28 45.75 55.45 41.81 54.24 29.09 25.14
Contriever 69.28 41.86 27.79 30.30 50.30 40.61 53.33 30.91 28.17
EPR (Rubin et al., 2022) 67.50 44.28 26.89 35.76 45.45 40.91 53.03 27.88 27.82

Sequential Retrieval

se2 (Liu et al., 2024a) 74.28 30.42 26.28 41.21 49.69 42.12 54.54 31.51 29.46
se2+ tri-encoder 77.50 54.81 26.58 43.03 50.61 43.03 55.15 31.52 30.44
RCR w/o SFT (Ours) 72.86 39.76 25.68 30.91 46.97 39.39 53.64 28.79 26.72
RCR w/o RL (Ours) 77.85 58.73 28.39 45.76 50.61 43.94 57.58 32.12 33.64
RCR (Ours) 78.21 59.64 33.83 48.48 51.52 44.24 59.09 33.03 36.18

Table 1: Exact-match accuracy on GeoQuery and COVR-10. Results highlight the advantages of a tri-encoder
design and compositional retrieval via a Markov Decision Process.

anonymized into templates, then randomly parti-
tioned into training and test sets (Finegan-Dollak
et al., 2018). 2) TMCD split: The distribution of
compounds in the training data is made maximally
different from that of the test data (Keysers et al.,
2020). 3) Length split: The test set contains longer
program sequences than the training set.

COVR-10. COVR-10 (Bogin et al., 2022) is a
synthetic dataset featuring a variable-free func-
tional language. It comprises 10 compositional
grammar splits, each of which includes distinct lo-
cal structures in the test set that do not appear in
training. Following prior setups (Levy et al., 2023),
we aggregate results by averaging across the 10
splits. More details are provided in Appendix A.

4.2 Experiment Setup

Models We initialize all three encoders in
our proposed retriever with bert-base-uncased
embeddings (Devlin et al., 2019). To com-
pare with previous results, however, Codex
(code-davinci-002) (Chen et al., 2021; Ouyang
et al., 2022) has been deprecated. As rec-
ommended by OpenAI, we replace it with
gpt-3.5-turbo-instruct for our experiments.

Evaluation Following prior work, we use exact
match accuracy as the main metric for evaluation.
Results are averaged over 3 random seeds unless
stated otherwise.

Model setup In our experiments, we set the total
number of steps to k = 4, which represents the
number of examples within the context. For cov-
erage calculation, we consider a maximum local

structure size of l = 4. In the proposed tri-encoder
used in RCR, we set λ = 0.1 in Eq. (4). The scal-
ing temperature τ for computing the RL policy is
set to 0.2. The clip ratio ϵ in GRPO is set to 0.2,
and the coefficient β of the KL divergence is set to
0.04 (Eq. (8)).

Training details In the SFT stage, we construct
the hard negatives set by retrieving the top-50 ex-
amples using BM25 and selecting the five examples
with the lowest coverage for the instance (x,Zt−1).
From these five examples, one hard negative is ran-
domly sampled. We use a batch size of 64 for SFT
and train for 120 epochs with a learning rate of
1 × 10−5, employing a linear learning rate decay
scheduler. In the RL stage, we train the model with
a batch size of 16 and a group size of 32 in GRPO.
The model is trained for 8 epochs with a learning
rate of 1× 10−6.

4.3 Baselines

We evaluate our method against a variety of base-
lines using the same inference LLM but different
retrieval strategies. Both learning-free and learning-
based retrievers are considered, including top-k and
sequential approaches.

Cover-LS. Cover-LS (Levy et al., 2023) is an or-
acle setting in which the gold program is assumed
to be accessible at test time. A BM25 retriever
(Robertson et al., 2009) then scores and selects ex-
amples covering the symbols of the gold program.

Top-k methods. Random imply samples k ex-
amples from the candidate pool C. BM25 (Robert-
son et al., 2009) is a sparse retriever that scores can-
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didate matches based on lexical overlaps with the
query. BERT uses a bert-base-uncased encoder
(Devlin et al., 2019) to embed both the query and
candidate examples, retrieving the top-k by simi-
larity (Eq. 2). Contriever (Izacard et al., 2022a)
follows a similar setup to BERT but replaces the
encoder with a pre-trained “facebook/contriever”
model that is trained in an unsupervised manner.
EPR (Rubin et al., 2022) is a learned retriever
specifically for in-context example selection, where
positive and negative pairs are sampled from a
ranked candidate set (scored by a scoring LM’s
log-likelihood of the ground-truth output).

Sequential retrieval methods se2 (Liu et al.,
2024a) is a bi-encoder retriever that sequentially
selects in-context examples, leveraging a large scor-
ing LM to rank candidates. Unlike EPR, it con-
structs training data by iteratively extending the
context sequence. We also adapt this method to
our tri-encoder architecture (denoted as “se2+tri-
encoder”), while keeping all other se2 settings un-
changed. Reinforcing Compositional Retrieval
(RCR) is our proposed method, trained via two
stages (SFT and RL). We also report ablations:
“RCR w/o SFT” and “RCR w/o RL”.

RL variations We compare different advantage
estimations Ai in Eq. (8). NB denotes reinforce
without baseline, directly uses the reward r(i) for
training (Ai = ri). Remax (Li et al., 2024) esti-
mates a baseline by greedily sampling a sequence
o′ ∈ argmaxπθ(·|x) and calculating the associ-
ated reward value, the advantage is Ai = ri−r(o′).
RLOO (Ahmadian et al., 2024) computes an unbi-
ased return estimate by removing the contribution
of each sampled sequence from the group, the ad-
vantage is calculated by Ai = ri − 1

k−1

∑
j ̸=i rj .

GRPO applies the group advantage formulation
from Eq. (9). While GRPO directly includes a
KL-divergence term in its objective (Eq. 4), we
implement the other variants adding KL penalty to
the reward (Ouyang et al., 2022).

4.4 Results and Analysis
Main results and ablation studies. Table 1
presents our main experimental results. Overall,
our proposed RCR method consistently outper-
forms both top-k and sequential baselines on most
splits, underscoring the importance of explicitly
modeling inter-example dependencies through a se-
quential selection framework. We further analyze
the contribution of our two-stage training pipeline

Dataset w/o RL NB Remax RLOO GRPO

i.i.d. 77.85 68.57 72.14 75.71 78.21
Template 1 58.73 10.84 30.12 55.72 59.64
Template 2 28.39 6.04 19.63 26.58 33.83
Template 3 45.76 28.48 29.39 48.18 48.48
TMCD 1 50.61 44.54 47.57 50.30 51.52
TMCD 2 43.94 37.87 43.63 42.12 44.24
TMCD 3 57.58 51.51 55.75 58.18 59.09
Length 32.12 29.09 28.48 28.78 33.03

Table 2: Comparison of various RL advantage esti-
mators on the GeoQuery dataset. GRPO consistently
achieves the highest accuracy across all splits.
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Figure 5: Performance over various numbers of training
samples in GRPO. Results are evaluated in GeoQuery-
Template2.

via two ablations: 1) “RCR w/o RL” omits the RL
phase, relying solely on SFT. Although this set-
ting already surpasses many baselines, adding RL
yields a significant performance boost, highlighting
the impact of task-specific rewards in refining the
policy and aligning the retriever with the LLM’s
preferences. 2) “RCR w/o SFT”. Here, we elimi-
nate SFT and directly train with RL. Although com-
petitive with certain baselines, its weaker results
suggest that sequential retrieval benefits substan-
tially from a well-initialized policy.

Tri-encoder architecture brings notable gains.
We also compare “se2+ tri-encoder” with se2 to
assess the impact of our tri-encoder architecture.
Adopting the tri-encoder in se2 markedly improves
results, suggesting that separating the encoding of
query and retrieved examples is beneficial, espe-
cially for program parsing, where appending re-
trieved programs directly to the query can obscure
the original query signal and promote repetitive
selection (e.g., selecting items that mirror already
retrieved examples due to the addition to the con-
text of original query). Moreover, while se2 re-
lies on GPT-Neo-2.7B (Black et al., 2022) to rank
candidates, our approach leverages an efficient
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Figure 6: Performance over various group size in GRPO.
Results are evaluated in GeoQuery-Template2.

data construction strategy based on maximizing
sub-structure coverage, forgoing the computational
overhead of scoring-based systems. As evidenced
by the comparison of “RCR w/o RL” versus “se2+
tri-encoder”, our method achieves higher accuracy
under a more efficient training paradigm.

Normalized advantage yields greater stability.
Table 2 compares different advantage-estimation
strategies for reinforcement learning. We observe
that GRPO consistently provides the highest accu-
racy across all GeoQuery splits, indicating that its
group-based advantage formulation is more stable
and robust compared to alternative methods. By
contrast, NB uses raw rewards without a baseline,
yields noticeably lower scores, particularly on the
more challenging Template 1 and 2 splits.

Impact of training sample size in RL stage Fig-
ure 5 shows how accuracy varies with the number
of training samples in our RL stage. Initially, a
significant improvement is observed as the number
of training samples increases from 10 to 40, demon-
strating the strong impact of additional data in the
early stages. performance gains become more in-
cremental, with accuracy stabilizing between 60
and 100 samples, where additional data contributes
less noticeably. Further increasing the training size
to 100 and 110 samples still leads to continued
progress. This pattern indicates that the RL stage
will continue to benefit from additional training
data, albeit at a diminishing rate.

Impact of group size in GRPO The experiment
results in Figure 6 show that in GRPO, accuracy
improves with larger group sizes up to a threshold,
after which gains diminish. Smaller groups per-
form worse, while moderate sizes yield significant
improvements. Beyond an optimal size, further
increases offer little benefit and may introduce inef-
ficiencies. Balancing group size for both accuracy
and computational efficiency is key to maximizing

GRPO performance in our experiments.

5 Related Work

Early example selection methods retrieve semanti-
cally similar demonstrations (Liu et al., 2022), but
semantic proximity alone does not always yield
optimal exemplars. To improve selection, Rubin
et al. (2022) propose training a dense retriever
with a scoring LM, ranking candidates by the log-
likelihood of the ground-truth output. Extensions
further refine this retriever across multiple tasks
(Li et al., 2023; Wang et al., 2024). Other studies
highlight the importance of diversity in retrieval,
such as structure or label diversity (An et al., 2023;
Long et al., 2024; Levy et al., 2023; Ye et al., 2023).
However, many of these approaches treat each can-
didate independently, overlooking inter-example
dependencies that influence ICL effectiveness.

Recent empirical studies (An et al., 2023; Long
et al., 2024) reveal that diversity (e.g., structure
diversity, label diversity) also play an important
role in demonstration selection. Levy et al. (2023)
select diverse demonstrations that aims to collec-
tively cover all of the required structures in the se-
mantic parsing program. Ye et al. (2023) learns to
select diverse example set based on the conditional
determinantal point process. However, previous
works (Rubin et al., 2022; Wang et al., 2024) over-
look the interplay between in-context examples as
they treat each candidate example independently.
This may be suboptimal as the in-context exam-
ples can influence each other, previous work indi-
cate that ICL is sensitive to the order of in-context
examples (Lu et al., 2022). To capture the exem-
plar dependency, recent works (Liu et al., 2024b)
and (Liu et al., 2024a) propose a data construc-
tion method by sequentially select and extend the
in-context sequence from a LLM, the constructed
dependency-aware data will be leverage to train a
retriever via contrastive loss.

Different from indirect method that learning de-
pendency via constructed training data, Zhang et al.
(2022) directly frame ICL problem as a decision
making problem and use offline Q-learning to ac-
tively select examples from unlabeled set to label.
However, this method does not learn a retriever to
acquire effective examples for each test instance,
during the inference, this method will traverse the
entire training set to greedly choose an action based
on the Q-value which is produced by a scoring LM
as well. Therefore, this method is costly when
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action space (i.e., training dataset) is large and it
lacks diversity. Although our method is also deci-
sion making, our method presents key differences
with Zhang et al. (2022), as our method is retrieval-
based, allowing sample and inference efficiency
and to explore diversity. A similar work framing
retrieval as MDP is proposed by Chen et al. (2024),
their reward is primarily likelihood-oriented (white-
box), whereas ours focuses on response-oriented
(black-box). Besides, our reward design focus heav-
ily on structural features which is crucial for pro-
gram generation.

A comprehensive comparison of related methods
and their properties is provided in Appendix C,
with a detailed summary in Table 5.

6 Conclusion

In this work, we introduce compositional retrieval,
a retrieval paradigm that models the selection of
multiple interdependent examples. To achieve this,
we propose a tri-encoder sequential retriever, for-
mulating retrieval as a MDP and training it in two
stages SFT via efficient data construction and RL
for policy refinement. Experiments highlight the
potential of compositional retrieval for tasks requir-
ing multiple sources of evidence and offer insights
into the benefits and limitations of RL in retrieval.

7 Limitations

While our approach effectively models composi-
tional retrieval, it has several limitations. First,
similar to generative retrieval, our retriever cannot
dynamically incorporate new entries after training.
Second, as retrieval steps increase, computational
costs grow, and learning stability decreases due
to compounding errors in sequential selection. To
mitigate this, we focus on retrieval with a small
number of steps, balancing efficiency and effective-
ness. Future work could explore scalable retrieval
mechanisms that maintain stability over longer se-
quences.
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A Dataset details

Dataset Split Train Development Test

GeoQuery

Standard 600 - 280
Template1 438 110 332
Template2 439 110 331
Template3 440 110 330
TMCD1 440 110 330
TMCD2 440 110 330
TMCD3 440 110 330
Length 440 110 330

COVR-10 Each split 3000 - 500

Table 3: Dataset sizes

GeoQuery. GeoQuery (Zelle and Mooney, 1996; Tang and Mooney, 2001) is a widely used semantic
parsing dataset containing 880 natural language questions about U.S. geography. Each query is labeled
with a corresponding logical form that captures the precise meaning of the question. Following Shaw et al.
(2021), we adopt three different data splits designed to test various aspects of compositional generalization:

• Template Split: In this split, target logical forms are anonymized into templates, and then these
templates are randomly partitioned between the training and test sets (Finegan-Dollak et al., 2018).
This procedure ensures that the model cannot simply memorize specific entity names and must
instead learn the underlying template patterns.

• TMCD Split: The TMCD split (Keysers et al., 2020) is constructed so that the distribution of
compounds (sub-expressions in the logical forms) in the training set differs significantly from that in
the test set. This presents a more challenging scenario, as the model must generalize to unseen or
underrepresented logical substructures that do not appear (or rarely appear) in the training examples.

• Length Split: Here, test set queries and their corresponding logical forms are systematically longer
than those in the training set. By ensuring a length discrepancy, this split evaluates whether the
model can generalize to deeper or more complex logical forms that exceed the length of any training
example.

While some previous works average performance results across multiple runs or across different
TMCD/template variants, we present individual split results to show precisely how our model behaves in
each compositional scenario.

COVR-10. COVR (Bogin et al., 2022) is a synthetic dataset designed for testing compositional general-
ization in a variable-free functional language. Unlike GeoQuery, which focuses on a real-world domain
(U.S. geography) with a relatively small set of queries, COVR generates a more diverse and systematically
controlled set of expressions.

In particular, COVR-10 consists of 10 different compositional grammar splits, each crafted such that
the test set includes certain local structures (sub-functional forms) that never appear during training. This
forces a model to extrapolate beyond the specific structures seen in training and handle previously unseen
or novel combinations of language constructs. Across these splits, the dataset’s design systematically
varies the presence or arrangement of operations like largest, filter, or logical connectives in the target
expressions. Each split highlights a different angle of compositional difficulty. By evaluating on all
10 splits individually, we can observe how robustly our approach adapts to a range of compositional
challenges.

Statistics are provided in Table. 3.
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We use 110 samples for the GRPO training stage across all benchmarks for a fair comparison. Specifi-
cally, we split the training dataset into two subsets: 110 samples for the GRPO stage and the remaining
samples as retrieval candidate pool. Due to the limited number of total samples in the GeoQuery dataset
(e.g., only 440 samples in GeoQuery Template 3, TMCD, and Length tasks as indicated in Table. 3),
increasing the GRPO training sample size would significantly reduce the candidate set, adversely impact-
ing retrieval performance. Therefore, we maintained 110 GRPO training samples to ensure sufficient
candidates remain available for effective retrieval.

B Local Structure

Table 4 demonstrates several sample local structures with size ≤ 4 extracted from a program. We collect
all such structures (from size 1 to 4) into a set, denoted by LS4(x).

Formally, following Bogin et al. (2022); Levy et al. (2023), we define local structures as small,
connected subgraphs of its parse tree. Given a target program y, we first convert it into a tree T = (V, E),
where each node v ∈ V is labeled with a program symbol (e.g., a function, operator, or constant). The
edge set E encodes parent-child relationships, corresponding to function–argument links in y. Next,
following Levy et al. (2023), we introduce sibling relations to form a graph G = (V, E ∪Esib). Concretely,
for each parent node p in T with children (cp1, . . . , c

p
Np

), we connect consecutive children with edges
(cpi , c

p
i+1), thus collecting them in Esib. This step reflects the intuition that sibling nodes often appear as

parallel arguments for the same function or operator.
A local structure of size n is then any connected subgraph GLS ⊆ G with exactly n nodes, satisfying

the condition that any pair of nodes (x, y) in GLS is connected by a sibling edge in Esib if and only if both
x and y are leaf nodes within GLS. In simpler terms, these subgraphs capture hierarchical (parent-child)
and lateral (sibling) relationships while excluding more distant familial ties (e.g., “cousins” or “uncles” in
the broader tree).

C Comparison to Related Works

Table 5 summarizes key differences between our approach and several existing in-context learning (ICL)
methods across multiple dimensions: whether the retriever is learned, whether a separate scoring LM is
required, whether the method optimizes the entire composition of in-context examples, whether it uses
reward modeling, whether it supports few-shot training, how it handles exemplar dependency, and whether
it considers diversity in retrieval.

Early example selection strategies often rely on semantic similarity between the query and candidate
examples (Liu et al., 2022). However, semantic proximity alone may overlook other factors crucial
for downstream performance (e.g., structural coverage in logic-based tasks). To address this, Rubin
et al. (2022) propose training a dense retriever guided by a scoring LM, where the log-likelihood of the
ground-truth output ranks each candidate example.

Other research emphasizes diversity in retrieval. Levy et al. (2023) cover essential symbols in a
semantic parsing program by selecting demonstration examples collectively, while Ye et al. (2023)
adopt a conditional determinantal point process to learn a diverse example set. Nonetheless, these
methods primarily treat each candidate independently, so interactions among selected examples are often
overlooked.

Recent work addresses this exemplar dependency by constructing sequential training data that captures
how each newly selected example influences future choices. For instance, Liu et al. (2024b) and Liu et al.
(2024a) iteratively extend in-context examples based on a large LM’s feedback, then train a retriever with
contrastive loss on this data. Although this approach integrates exemplar interdependence into the training
set, it still relies on a scoring LM at construction time and does not formulate retrieval as a direct decision
process.

Our proposed method directly models compositional retrieval as a MDP, yielding a fully learned retriever
that is both efficient and capable of inter-example conditioning. We do not require an external scoring
LM, relying instead on a tri-encoder architecture and a reward signal based on local structure coverage.
This design allows us to optimize over the entire in-context composition (instead of independently scoring
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Dataset COVR-10
Utterance What is the number of black mouse that is playing with dog ?
Program count ( with_relation ( filter ( black , find ( mouse ) ) , playing with ,

find ( dog ) ) )
Anonymized Program count ( with_relation ( filter ( ANON_TYPE_VALUE , find ( ANON_ENTITY ) ) ,

ANON_RELATION , find ( ANON_ENTITY ) ) )

Size Local structures

1

count
with_relation
filter
black
find
mouse
playing
with
dog

2

<root> → count
count → with_relation
filter → black
filter → find
find → dog
find → mouse
playing → with
with_relation → filter
with_relation → find
with_relation → playing
black ↔ find
filter ↔ playing
playing ↔ find

3

<root> → count → with_relation
count → with_relation → filter
count → with_relation → find
count → with_relation → playing
filter → find → mouse
filter → black ↔ find
with_relation → filter → black
with_relation → filter → find
with_relation → find → dog
with_relation → playing → with
with_relation ↔ filter ↔ playing
with_relation → playing ↔ find
filter ↔ playing ↔ find

4

<root> → count → with_relation → filter
<root> → count → with_relation → find
<root> → count → with_relation → playing
count → with_relation → filter → black
count → with_relation → filter → find
count → with_relation → find → dog
count → with_relation → playing → with
count → with_relation → filter ↔ playing
count → with_relation → playing ↔ find
with_relation → filter → find → mouse
with_relation → filter → black ↔ find
with_relation → filter ↔ playing ↔ find

Table 4: Local structures of different sizes for a specific example (→ denotes parent-child relations,↔ denotes
sibling relations)

each example) and supports training with few data samples. Furthermore, unlike prior work that treats
example dependency indirectly through data construction alone, our method explicitly captures it in both
the model architecture and the training objective. Finally, our approach naturally promotes diversity by
sequentially selecting items to maximize coverage, thereby improving ICL effectiveness without incurring
the computational overhead of large scoring LMs.
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Methods Scoring
LM

Black-box
LM

Compositional
Optimization

Reward
Modeling

Few-Shot
Training

Exemplar
Dependency Diversity

CSL-Aug (Qiu et al., 2022) ✗ ✗ ✓ ✗ ✗ ✗ ✗
EPR (Rubin et al., 2022) ✓ ✗ ✗ ✗ ✗ ✗ ✗
Active-RL (Zhang et al., 2022) ✓ ✗ ✓ ✗ ✓ ✓ ✗
Cover-LS (Levy et al., 2023) ✗ ✗ ✓ ✗ ✗ ✗ ✓
CEIL (Ye et al., 2023) ✓ ✗ ✓ ✗ ✗ ✗ ✓
LLM-R (Wang et al., 2024) ✓ ✗ ✗ ✓ ✗ ✗ ✗
Se2 (Liu et al., 2024a) ✓ ✗ ✗ ✗ ✗ ✓ ✓
ITERR (Chen et al., 2024) ✓ ✗ ✓ ✓ ✓ ✓ ✓

RCR (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5: Comparison of different in-context learning (ICL) methods in terms of several desirable properties. Scoring-
LM means whether the in-context examples are ranked by a language model (LM) to obtain the training signal.
Black-box LM means whether the in-context examples are ranked by a language model (LM) without accessing
the model probability. Compo Optim, compositional optimizing method, which scores and optimizes over the
entire in-context examples set and can generalize well according to compositionality. Reward Modeling trains a
reward model to capture the differences of in-context examples and provide fine-grained LM preference. Few-Shot
Training means the example selection model is trained with only few data samples. Exemplar Dependency means
that selection of in-context examples is based on the conditional probability of already selected examples. Diversity
represents the method considers increasing the diversity of selected set of examples. For detailed differences
compared to previous works, see Section 5 and Appendix B for more discussion.

A similar work is proposed by Chen et al. (2024), while both works share the perspective of framing
retrieval as MDP, our approaches differ in key aspects: First, Chen et al. (2024) use a GRU-based retriever,
while we adopt a tri-encoder architecture designed for better control of state and candidate representations
during sequential retrieval. Second, their reward is primarily likelihood-oriented (white-box), whereas
ours focuses on task-specific structural correctness (black-box), our black-box setting is more general
than white-box setting. Besides, our reward design focus heavily on structural features which is crucial
for program generation. Third, we adopt SFT and GRPO (a customized policy optimization), which
complements their approach and reflects different priorities in training efficiency and stability.

D Example Cases of Tasks

In Table 4, we provide prompts example in few-shot ICL manner for each task, We add special prefixes
“source:” and “target:” for retrieved source-target pairs and separate them with break lines.

E Case Study

Table 7 presents various methods for retrieving program examples. BM25 and EPR are top-k retrieval
methods designed to find the most similar examples. However, a key limitation of these methods is that
they may retrieve examples containing the same program, leading to a lack of diversity and potentially
failing to cover the gold program. se2 employs sequential retrieval, selecting examples one by one, which
introduces some level of diversity. Nevertheless, it still primarily focuses on retrieving similar examples
and does not provide sufficient diversity to fully cover the gold program. In contrast, our proposed method,
RCR, leverages coverage-aware learning using SFT and RL to retrieve a more diverse set of examples,
effectively improving coverage of the gold program.
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Table 6: Prompts examples for LLM inference.

Datasets: Geoquery

Utterance: what is the highest point in states bordering georgia
Gold Program: answer(highest(place(loc_2(state(next_to_2(stateid(’value’)))))))

Source: which capitals are in the states that border texas
Target: (capital(loc_2(state(next_to_2(stateid(’value’))))))
Source: what is the largest city in states that border california
Target: answer(largest(city(loc_2(state(next_to_2(stateid(’value’)))))))
Source: what are the capitals of the states that border texas
Target: answer(capital(loc_2(state(next_to_2(stateid(’value’))))))
Source: which state has the lowest point that borders idaho
Target: answer(state(loc_1(lowest(place(loc_2(next_to_2(stateid(’value’))))))))
Source: what is the highest point in states bordering georgia
Target:

Datasets: COVR-10

Utterance: Either there is round animal or the color of mouse that is looking at cat is equal to round
Gold Program: or ( exists ( filter ( round , find ( animal ) ) ) , eq ( query_attr [ color ] (
with_relation ( find ( mouse ) , looking at , find ( cat ) ) ) , round ) )

Source: Either the shape of animal is equal to triangle or the shape of square cat that is looking at animal is equal to
brown
Target: or ( eq ( query_attr [ shape ] ( find ( animal ) ) , triangle ) , eq ( query_attr [ shape ]
( with_relation ( filter ( square , find ( cat ) ) , looking at , find ( animal ) ) ) , brown ) )

Source: Either the color of square triangle animal that is looking at brown animal that is looking at gray mouse is equal
to triangle or the shape of black gray cat is equal to square
Target: or ( eq ( query_attr [ color ] ( with_relation ( filter ( square , filter ( triangle , find
( animal ) ) ) , looking at , with_relation ( filter ( brown , find ( animal ) ) , looking at ,
filter ( gray , find ( mouse ) ) ) ) ) , triangle ) , eq ( query_attr [ shape ] ( filter ( black ,
filter ( gray , find ( cat ) ) ) ) , square ) )

Source: Either the color of white mouse is equal to square or the shape of white dog that is looking at triangle dog is
equal to the color of square triangle mouse
Target: or ( eq ( query_attr [ color ] ( filter ( white , find ( mouse ) ) ) , square ) , eq (
query_attr [ shape ] ( with_relation ( filter ( white , find ( dog ) ) , looking at , filter (
triangle , find ( dog ) ) ) ) , query_attr [ color ] ( filter ( square , filter ( triangle , find
( mouse ) ) ) ) ) )

Source: Either the color of black cat is equal to gray or none of round black dog are looking at mouse that is looking at cat
Target: or ( eq ( query_attr [ color ] ( filter ( black , find ( cat ) ) ) , gray ) , none ( filter (
round , filter ( black , find ( dog ) ) ) , with_relation ( scene ( ) , looking at , with_relation
( find ( mouse ) , looking at , find ( cat ) ) ) ) )

Source: Either there is round animal or the color of mouse that is looking at cat is equal to round
Target:

7648



Dataset GeoQuery
Utterance what is the highest point in states bordering georgia

Gold Program answer(highest(place( loc_2(state(next_to_2(stateid(’value’)))))))

BM25

source: what is the highest point in the us
target: answer(highest(place(loc_2(countryid(’value’)))))

source: what is the highest point in the usa
target: answer(highest(place(loc_2(countryid(’value’)))))

source: what states have no bordering state
target: answer(exclude(state(all), next_to_2(state(all))))
source: what is the highest point in the united states
target: answer(highest(place(loc_2(countryid(’value’)))))

source: what is the highest point in states bordering georgia
target:

EPR

source: what is the highest point in montana
target: answer(highest(place(loc_2(stateid(’value’)))))

source: what is the highest point in new mexico
target: answer(highest(place(loc_2(stateid(’value’)))))

source: what is the highest point in rhode island
target: answer(highest(place(loc_2(stateid(’value’)))))

source: what is the highest point in virginia
target: answer(highest(place(loc_2(stateid(’value’)))))

source: what is the highest point in states bordering georgia
target:

se2

source: what state that borders texas is the largest
target: answer(largest( state(next_to_2(stateid(’value’)))))

source: what states border states that border mississippi
target: answer(state(next_to_2( state(next_to_2(stateid(’value’)))))))

source: what states border states that border states that border florida
target: answer(state(next_to_2(state(next_to_2( state(next_to_2(stateid(’value’)))))))))

source: what are the capitals of the states that border texas
target: answer(capital( loc_2(state(next_to_2(stateid(’value’)))))))

source: what is the highest point in states bordering georgia
target:

RCR

source: which capitals are in the states that border texas
target: answer(capital( loc_2(state(next_to_2(stateid(’value’))))))

source: what is the highest point in the us
target: answer(highest(place( (loc_2(countryid(’value’)))))

source: what is the largest city in states that border california
target: answer(largest(city( loc_2(state(next_to_2(stateid(’value’)))))))

source: what are the capitals of the states that border texas
target: answer(capital( loc_2(state(next_to_2(stateid(’value’))))))

source: what is the highest point in states bordering georgia
target:

Table 7: Program examples produced with various retrieval methods for a specific test example. Each prompt
contains k = 4 examples.
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F Additional Results

F.1 GRPO Training Data Size

To analyze the effect of more GRPO training data, we ran experiments on the COVR-10 dataset. The
results below show a trend where increasing the number of GRPO training samples improves performance
initially and then gradually plateaus. This suggests that our method is capable of scaling with more
training samples, but the marginal gains diminish after a certain point, indicating a convergence behavior.
We believe this pattern aligns with typical reinforcement learning settings, where policy improvement
benefits from more examples, but only up to the point where the additional data becomes less informative
or redundant.
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Figure 7: Performance over various numbers of training samples in GRPO. Results are evaluated in COVR-10.

F.2 Correctness-based Reward

Program generation task enables the use of a continuous and informative reward (local structure coverage,
Eq. (6)), significantly benefiting RL training and analysis. Although our main focus is Compositional
Generalization tasks for generating semantic parsing program, we conduct additional experiments using a
simpler, binary reward formulation r ∈ {0, 1}, reflecting correctness of the model’s final output. This
discrete reward design aligns with use cases such as multi-hop question answering or classification tasks.

GeoQuery

i.i.d. Template 1 Template 2 Template 3 TMCD 1 TMCD 2 TMCD 3 Length

Coverage reward 78.21 59.64 33.83 48.48 51.52 44.24 59.09 33.03
Correctness reward 77.85 59.03 36.85 47.87 50.60 45.15 58.48 32.42

Table 8: Exact-match accuracy on GeoQuery using different rewards.

Results in Table 8 demonstrate our method’s robust performance, even with a binary correctness reward
that is less informative than our original continuous reward, underscoring the broader applicability and
generalization potential of our approach.

F.3 Many-shot Setting for Compositional Generalization

As larger context sizes enable LLMs to process extensive information directly, potentially reducing explicit
retrieval needs. To evaluate if the parsing program generation task can be solved by more in-context
examples and longer contexts, we compare our retrieval-based approach against a many-shot setting in
our ICL scenario. The results are summarized below:

Table 9 demonstrates that while increasing the number of in-context examples does improve perfor-
mance up to a certain point (10→ 100 examples), further addition can negatively impact performance
due to redundancy or repetitive information (as performance drops slightly from 63.21% at 100 examples
to 62.50% at 150 examples). This observation aligns with our discussion in the main text where we
note that repetitive or redundant examples may provide limited additional information or even degrade
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#examples 10 20 100 150 4 (our trained RCR)

i.i.d. split 21.42 35.71 63.21 62.50 78.21

Table 9: Exact-match accuracy on GeoQuery i.i.d. split using different number of examples k (affecting testing
only).

model performance in program generation. Our retrieval-based method, by carefully selecting fewer but
more informative examples (4 steps), significantly outperforms the many-shot long-context approach,
highlighting the efficiency and effectiveness of explicit compositional retrieval.

F.4 Trade-off Between Retrieval Accuracy and Efficiency
We conducted a detailed analysis of how the number of retrieval steps impacts both performance and
computational efficiency. Figure 8 demonstrates our method’s performance across varying numbers of
retrieval steps, as well as the time spent when evaluating the model on the entire test split:
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Figure 8: Exact-match accuracy on GeoQuery i.i.d. split using different number of steps k (affecting both training
and testing), we report the time spent when evaluating the model on the entire test split.

As illustrated in Figure 8, our method achieves optimal performance with just 4 retrieval steps, which
significantly reduces the computational overhead compared to longer sequences. Fewer steps directly
translate to less computational time and lower costs.

Additionally, the specific design of our tri-encoder architecture further mitigates computational concerns.
Notably, during sequential retrieval, as we seperately encode the input and retrieved candidates using two
different encoder and add two embeddings at the top of the encoders, embeddings for the query need to be
computed only once since the query remains unchanged throughout the retrieval process. Specifically:

• At step 0, we compute the query embedding.

• At each subsequent step t > 0, only embeddings for newly retrieved candidates at step t − 1 are
computed.

Therefore, the complexity of our retriever scales linearly as O(n), where n is the number of retrieval steps.
This linear scaling ensures efficiency even when extending to more steps. In summary, our approach
balances retrieval accuracy with computational efficiency by achieving optimal performance within very
few steps. We appreciate the reviewer’s feedback, which allowed us to better highlight and clarify these
important points.
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