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Abstract

Large language models (LLMs) are trained on
extensive datasets that encapsulate substantial
world knowledge. However, their outputs often
include confidently stated inaccuracies. Earlier
works suggest that LLMs encode truthfulness
as a distinct linear feature, termed the “truth
direction”, which can classify truthfulness reli-
ably. We address several open questions about
the truth direction: (i) whether LLMs univer-
sally exhibit consistent truth directions; (ii)
whether sophisticated probing techniques are
necessary to identify truth directions; and (iii)
how the truth direction generalizes across di-
verse contexts. Our findings reveal that not
all LLMs exhibit consistent truth directions,
with stronger representations observed in more
capable models, particularly in the context of
logical negation. Additionally, we demonstrate
that truthfulness probes trained on declarative
atomic statements can generalize effectively
to logical transformations, question-answering
tasks, in-context learning, and external knowl-
edge sources. Finally, we explore the practical
application of truthfulness probes in selective
question-answering, illustrating their potential
to improve user trust in LLM outputs. These re-
sults advance our understanding of truth direc-
tions and provide new insights into the internal
representations of LLM beliefs.!

1 Introduction

Large language models (LLMs) possess extensive
knowledge, as they are trained on immense cor-
pora that encompass a significant portion of world
knowledge. However their outputs are not always
reliable and are prone to confidently presenting
falsehoods (Bender et al., 2021; Evans et al., 2021;
Lin et al., 2022; Liu et al., 2023). This unreliabil-
ity raises critical concerns about the use of LLMs
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'Our code is public at https://github.com/
colored-dye/truthfulness_probe_generalization

in applications where accuracy is paramount. A
growing body of work (Burns et al., 2022; Azaria
and Mitchell, 2023; Marks and Tegmark, 2023;
Mallen and Belrose, 2023; Biirger et al., 2024) aims
to elicit accurate information from LLMs despite
untruthful outputs. These studies use lightweight
classifiers, often referred to as probes, to analyze
patterns in the model’s internal representation that
reliably indicate truthfulness. Specifically, given
a model and a piece of text, an ideal truthfulness
probe is able to tell whether the model believes
the text conveys truthful content. By achieving
empirical success with linear probes, these works
generally believe that truthfulness is internally rep-
resented as a salient linear feature and manifests as
a “truth direction”.

The goal of this work is to conduct a more in-
depth study of the truth direction as an inherent
property of LLMs. Although previous works un-
doubtedly help us understand truth directions, they
fail to answer the following questions: (RQ1) Do
LLMs universally represent truthfulness as a lin-
ear feature? (RQ2) Are simple probing techniques
sufficiently expressive to identify truth directions?
(RQ3) If and when a “truth direction” exists, in
what ways does it generalize? We challenge con-
clusions from prior works based on empirical ev-
idence, provide preliminary answers to the ques-
tions above and present novel observations.

In response to RQ1, we find that not all LLMs
exhibit a consistent “truth direction’, and that this
property is closely related to a model’s capabil-
ity. While prior works often assume the univer-
sal existence of truth directions, we challenge this
assumption. Our evidence suggests that truthful-
ness is more consistently represented across logical
negations in more capable LLMs. Based on this
finding, we question the conclusion of Levinstein
and Herrmann (2024), which attributes the gener-
alization failure to limitations in previous probing
techniques. Instead, we argue that the inconsis-
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tency lies within the LLM itself and that in answer
to RQ2, simple supervised probes are sufficiently
expressive to identify the truth direction when it is
distinctly represented within the model.

In addressing RQ3, we aim to explore the gen-
eralization capability of the truth direction, as it il-
luminates whether an LLM consistently represents
truthfulness across different knowledge domains,
logical transformations, syntax forms and ground-
ing knowledge source. Previous studies on truth
directions have extensively explored the former two
aspects of generalization. Regarding syntax forms,
they focus either on declarative statements or on
(Q, A) pairs; we bridge this gap by testing whether
truthfulness probes trained on simple statements
generalize to question answering (QA) tasks. Ad-
ditionally, we examine several variations of QA,
including zero- and few-shot QA, with and without
provided answer options, and grounded either in
parametric knowledge or in question contexts. Our
experimental results show that truthfulness probes
demonstrate a high degree of generalization.

Furthermore, based on our observation that truth-
fulness probes are calibrated on certain QA tasks,
we introduce their use in selective QA. In this appli-
cation, we select the subset of answers evaluated as
correct by the truthfulness probe from those gener-
ated by the LLM. Through this demonstration, we
aim to show how truthfulness probes can enhance
user trust in real-world LLM-based applications.

Our contributions are as follows:

1. We summarize truthfulness probes from prior
works, introduce a new instantiation, and con-
duct extensive experiments.

2. We study truth directions following three re-
search questions. In addressing RQ1, we ex-
plore whether the truth direction is common
among LLMs. For RQ2, we test if sophisti-
cated probing techniques are required to iden-
tify truth directions. In answer to RQ3, we
assess the generalization capabilities of truth
directions.

3. We demonstrate a practical application of
truthfulness probes for selective question an-
swering, improving generation quality by fil-
tering out unreliable answers.

2 Related Work

Eliciting latent knowledge (ELK). The field of
scalable oversight (Christiano et al., 2021) seeks
to address the information asymmetry between su-

perhuman Al systems and human evaluators. It is
assumed that although the Al possesses significant
knowledge, its behavior is untrustworthy because
it is not trained with an objective that explicitly
incentivizes outputs to align with the truth (Mallen
and Belrose, 2023). ELK is an approach within
scalable oversight that aims to identify patterns
in an AI’s activations that correspond to the truth.
The primary challenge lies in identifying patterns
that generalize reliably to questions where human
evaluators are unable to verify the answers (Mallen
and Belrose, 2023). Our work demonstrates that
probing techniques can achieve reasonable gener-
alization with limited supervision, suggesting that
probes may offer a promising approach for ELK.

Probing for truthfulness. Several studies have
used probing techniques to uncover truthfulness
by examining an LLM’s internal states, indepen-
dent of its inputs or outputs (Lee et al., 2023;
Joshi et al., 2024). Regarding the geometry of
the representation of truthfulness, most studies
agree that this representation is likely linear, as
demonstrated by the use of linear probes in stud-
ies such as CCS (Burns et al., 2022), mass-mean
(Marks and Tegmark, 2023; Li et al., 2023), TTPD
(Biirger et al., 2024) and the commonly used base-
line: logistic regression. Notably, CCS is an un-
supervised approach and targets yes/no guestion-
answering tasks, while others are supervised and
target factual statements. In contrast, some works
are geometry-agnostic. Azaria and Mitchell (2023)
propose SAPLMA which is based on MLP archi-
tecture, while He et al. (2024) introduce the LLM
Factoscope, which leverages a Convolutional Neu-
ral Network architecture.

The aforementioned studies examine truthful-
ness grounded in a model’s parametric knowl-
edge, whereas Sky et al. (2024) detect hallucination
with probes in the setting of in-context generation,
where knowledge is grounded in the context.

3 Summary of Probes and Data

In this section, we formally define the task of prob-
ing binary features from a model’s internal repre-
sentations and describe the specific probe architec-
tures used in this study. Furthermore, we detail
the labeled datasets used to train and evaluate the
truthfulness probes.
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Figure 1: Illustration of truthfulness probes. A truthfulness probe is established using the LLM’s internal states
when processing labeled statements. The probe is then able to tell if the LLM believes an unseen statement or a
given response to a question is true or false leveraging only the LLM’s internal states.

3.1 Formulation of Binary Probes

Our target model is the transformer language model
(Vaswani, 2017), which processes token sequences
through a series of layers. A sequence of n input
tokens, t = (t1,t2,...,ty), is first converted into
embeddings, hO) — (hgo), hgo), ey hﬁ?)), by the
initial embedding layer. The embeddings are then
passed through L layers, where each layer gener-
ates representations based on the preceding layer’s
output. The representation of a single token is a
vector: hlw e R? and (0<j<L/1<i<n).
Finally, the LLM produces predictions using R,

Suppose we have prior knowledge that the model
internally represents a binary feature. Our goal is
to establish a probe ®, that uses only the model’s
representations to classify the target attribute. The
probe outputs either binary labels —1/1, or proba-
bilistic predictions such as P[® = 1].

For autoregressive models, which are the pri-
mary focus of this paper, we utilize the represen-
tation at the final token position of the [-th layer,
h(_l)1 This approach aligns with prior work (Burns
et al., 2022; Azaria and Mitchell, 2023; Marks and
Tegmark, 2023), where the final token position at-
tends to all previous tokens due to the causal atten-
tion mechanism. We also assume we have a labeled
dataset, D = {(z,v:)}M,, where x; represents a
token sequence and y; is the label for the target
attribute. Processing these sequences through the

model yields Drep = {((h"));, y:)},. which we

use to build our classifier.

To maximize classification accuracy, we de-
fine a cost function to quantify the classifica-
tion error of the probe, J(®,h,y). The mech-
anistic objective is to minimize the expected
classification error over the data distribution:

arg;ninﬁ SMI(@, ki)

3.2 Instantiations of Binary Probes

We classify the probes into two categories:
geometry-oriented and statistics-based. Geometry-
oriented probes leverage knowledge of the geo-
metric structure of the representation. Under the
“truth direction” hypothesis, true/false representa-
tions can be separated by a hyperplane, and the
normal vector of this hyperplace corresponds to
the “truth direction”. In contrast, statistics-based
probes are geometry-agnostic and aim to maximize
the probability of observing the correct labels given
the input data. Our implementations are based on
the scikit-learn (Pedregosa et al., 2011) library.

Geometry-oriented Probes. For geometry-
oriented probes, we introduce two instantiations:
linear support vector machine (SVM) (Cortes and
Vapnik, 1995) and mass-mean (MM) (Marks and
Tegmark, 2023) instantiation. The rationale for
selecting linear SVM is its ability to maximize the
margin, which aligns with the goal of identifying a
separating hyperplane. As SVM does not directly
provide probability predictions, we fit a post-hoc
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probability distribution using Platt scaling through
cross-validation on the training data (Platt, 1999).

Statistics-based Probes. For statistics-based
probes, we present logistic regression (LR) and
multi-layer perceptron (MLP). LR is commonly
used as a baseline, while MLP is termed SAPLMA
by Azaria and Mitchell (2023).

3.3 Data for Probing Truthfulness

The binary probes introduced above are applied
to the truthfulness classification task, assuming
the availability of truthfulness-specific data. We
use the factual statements curated by Biirger et al.
(2024), drawing from datasets by Azaria and
Mitchell (2023) and Marks and Tegmark (2023).
These datasets cover a variety of topics, including
animal_class, cities, element_symb, facts,
inventors, sp_en_trans, as well as variations
incorporating logical negations, conjunctions and
disjunctions. Each statement is labeled as “true”
or “false”, indicating its factuality. Statements can
be atomic or compound. Atomic statements make
individual claims, either affirmative or negative.
Negative statements correspond to their affirma-
tive counterparts, with syntax-level negation and
inverted labels. Compound statements are created
by logically combining atomic statements of the
same topic through conjunction or disjunction.

4 [Experiments

4.1 Preliminary Experiment: Layer Selection

Identifying the optimal layer for detecting truthful-
ness is crucial for probe performance. Marks and
Tegmark (2023) observed that the truth direction
“emerges rapidly in early-middle layers”’; however,
this observation does not indicate which specific
layer provides the most effective representations.
To address this, we adopt the technique used by
Biirger et al. (2024) and MacDiarmid et al. (2024),
which evaluates the difficulty of separating true/-
false statements across layers by analyzing vari-
ance. The ideal layer maximizes the separation
between true and false representations, quantified
by the “between-class variance”, relative to the in-
ternal variance within each class, referred to as
“within-class variance”. By plotting the ratio of
between-class to within-class variance across de-
coder layers for a range of topic-specific datasets,
we identify the optimal layer as the one with the
highest ratio.
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Figure 2: Ratio of between-class variance to within-
class variance across layers. The layer indices (starting
from 0) for the greatest ratios are annotated at the sum-
mit of each curve. The solid curves are mean values,
and the surrounding shades denote standard error.

We present the ratio of between-class variance
to within-class variance across layers for Llama-
2-7B (Touvron et al., 2023) and Llama-3.1-8B
(Dubey et al., 2024) in Figure 2, with results for
additional models in the Appendix. Each curve
represents statements involving affirmations, nega-
tions, conjunctions and disjunctions of the same
topic. For Llama-3.1-8B, the 12th layer (zero-
indexed) emerges as the optimal layer. In con-
trast, for Llama-2-7B, a peak occurs only for the
sp_en_trans topic, with minimal separation ob-
served for other topics. This suggests that, while
Llama-2-7B may internally represent truthfulness
as a feature, it does so in a domain-specific man-
ner, with limited consistency across knowledge do-
mains. Additionally, this feature appears to lack
salience in the early-middle layers.

4.2 Probing a Randomized Model

This section investigates whether the truth direction
is an inherent structure within a pretrained LLM
or an artifact constructed by the truthfulness probe.
To address this, we randomly initialize the weights
of Llama-3.1-8B, extract activations from its 12th
layer using the animal_class dataset, and train
probes on a 70% split while testing them on the
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Figure 3: AUROC (in percentage) of probes trained on affirmative statements and tested on negative ones. AUROC >
0.5 indicates success of generalization. MO-M7 refer to models from Llama-2-7B to Llama-3.1-70B-Instruct.

remaining 30%. Results show that the AUROCs
are 0.50, 0.52, 0.58, 0.50 for the LR, MLP, MM
and SVM probes, respectively. In contrast, when
using the pretrained weights, the AUROCSs achieve
1.0 across all probes. These findings demonstrate
that the simple probes introduced in Section 3.2
cannot independently construct a truth direction,
confirming that truth direction is a product of the
pretraining process.

4.3 Consistency of Truth Directions

Levinstein and Herrmann (2024) claim that probes
such as MLP fail to generalize across negation.
However, we question this conclusion and hypothe-
size that the generalization performance of truthful-
ness probes is influenced more by the targeted LLM
than by the probe itself. To test this hypothesis, we
examine whether the truth direction identified for
affirmative statements is consistent with that identi-
fied for negative statements of the same topic.

4.3.1 Experimental Setup

Data. For each of the six topics introduced in
Section 3.3, we train probes on affirmative state-
ments and test them on corresponding negative
ones. For example, we train probes on affirmative
statements of the animal_class topic, and test
them on neg_animal_class. Note that the train-
ing and test data contain the same set of knowledge,
differing only in syntax.

Models. We select a series of LLMs with increas-
ing levels of general capability, including both foun-
dational models and instruction-tuned ones (Ac-
cording to the evaluation results on a range of stan-
dard benchmarks?): Llama-2-7B(-Chat), Llama-2-
13B(-Chat), Llama-3.1-8B(-Instruct), Llama-3.1-
70B(-Instruct). Their optimal layers are 12(13),
13(13), 12(13), 33(33), respectively.

Methods. We employ the four probe instantia-
tions introduced in Section 3.2.

2https ://github.com/meta-1lama/llama-models/
blob/main/models

Metrics. The metric used is AUROC (Area
Under Receiver Operating Characteristic Curve)
which is commonly used to assess classifier perfor-
mance. A probe is considered to generalize suc-
cessfully on a topic if its test AUROC exceeds 0.5,
indicating performance better than chance. Results
are averaged across three trials, with randomness
introduced through probe initialization and data
splits for cross-validation of Platt scaling, while the
training data remains constant.

4.3.2 Results

The results are presented in Figure 3. We observe
a positive correlation between the performance of
truthfulness probes and the general capability of
the target models. For Llama-2-7B(-Chat), the
probes fail to generalize on all six topics. For
Llama-2-13B(-Chat) and Llama-3.1-8B(-Instruct),
the probes generalize on four topics; for Llama-3.1-
70B they generalize on five topics; and for Llama-
3.1-70B-Instruct, they generalize on all six topics.

Regarding whether the truthfulness probe is a
faithful reflection of the actual truth direction, we
borrow the Weak-to-Strong Explanation from Zhou
et al. (2024): if weak classifiers can successfully
distinguish the representations, it indicates that
LLMs have implicitly converted inputs to differ-
ent representations. For the most capable model,
Llama-3.1-70B-Instruct, all the simple probes we
use are able to generalize across logical negation
on all six topics. This suggests that Llama-3.1-70B-
Instruct consistently represents truthfulness in its
internals for both affirmative and negative state-
ments. Therefore the results suggest a potential
correlation between the degree of generalization of
its truth direction and the model’s capability (e.g.,
knowledge capacity and natural language under-
standing ability). Additionally, the differences in
performance between probes become negligible
starting with Llama-2-13B-Chat and onward. This
indicates that, for more capable LLMs, probe per-
formance is more influenced by the target model
itself than by the design of the probes.
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Figure 4: AUROC (in percentage) of probes trained on
atomic factual statements and tested on logical conjunc-
tions/disjunctions for Llama-3.1-8B. AUROC > 0.5
indicates the success of generalization.

4.4 Binary Logical Transformation

In Section 4.3, we tested the ability of truthfulness
probes to generalize across logical negation. In this
experiment, we extend the analysis to more com-
plex binary logical transformations, specifically
logical conjunction and disjunction. This requires
the LLM to perform several implicit tasks: identify
the truthfulness of both atomic statements, inter-
pret binary logical operators from natural language
to abstract concepts, and apply the operators to
compute the joint truthfulness.

4.4.1 Experimental Setup

Data. The training data consists of all atomic
statements. The test data comprises logical con-
junctions and disjunctions of atomic affirmative
statements for each topic. The knowledge of the
test data is covered by the training data.

Models. We use Llama-3.1-8B as the primary
model for demonstration.

Methods. We apply the four probe instantiations
introduced in Section 3.2.

Metrics. For this experiment, we use AUROC as
a measure of probe performance. A probe is consid-
ered to generalize successfully on a topic if its test
AUROC exceeds 0.5. Results are averaged across
three trials, with randomness introduced through
probe initialization and training data splits.

4.4.2 Results

According to Figure 4, all probes successfully gen-
eralize to both logical conjunctions and disjunc-
tions. However, performance is notably stronger
for logical conjunctions compared to disjunc-
tions across animal_class, element_symb, and
sp_en_trans topics. This discrepancy may sug-
gest that disjunctions pose a greater challenge for
Llama-3.1-8B to interpret truthfulness.

4.5 Question Answering

We hypothesize that if truthfulness is consistently
represented in an LLM’s internal states, this rep-
resentation should depend solely on the semantics
of a sentence, rather than its syntax form. Ad-
ditionally, question answering is more common
than statements in real-world human-Al interac-
tions. Motivated by these considerations, we exam-
ine if truthfulness probes, trained on atomic factual
statements, can generalize to the QA setting.

We test on a multiple-choice task and a short-
form QA task. We also investigate the in-context
learning scenario, a popular prompting technique
for teaching LLMs new tasks at inference time.
While in-context examples can be beneficial, they
may include incorrect or misleading examples,
which raises questions about how probes handle
false examples. Therefore, we pay special atten-
tion to the behavior of the probes when incorrect
examples are present.

4.5.1 Experimental Setup

Data. The training data consists of all atomic
statements.  The test data includes MMLU
(Hendrycks et al., 2020) and TriviaQA (Joshi et al.,
2017). For MMLU, we sample 50 questions from
the test set for each of the 57 sub-tasks. As itis a
multiple-choice dataset, for each question we se-
lect the correct answer and an incorrect answer. For
TriviaQA, we sample 20 answers per question from
the model at unit temperature.

Models. We use Llama-3.1-8B, as it is a high-
capability LLM with ~10B parameters.

Methods. We apply the four probe instantiations
introduced in Section 3.2.

Metrics. In addition to classification accuracy,
we evaluate calibration, as it is crucial for assessing
the reliability of predictions. Specifically, we eval-
uate AUROC, Expected Calibration Error (ECE)
and Brier Score (BS). ECE measures calibration,
while BS reflects both accuracy and calibration.
Lower values are preferred for both ECE and BS.
For ECE we use a binned approach with 10 bins,
where each bin contains an equal number of sam-
ples, and report the mean absolute error between
the accuracy and confidence within each bin. The
random baseline for BS is 0.25, corresponding to
a uniform prediction of 0.5. Results are averaged
across three trials, with randomness introduced via
probe initialization and training data splits.
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Prompt setups. We test three prompt settings
for MMLU: (1) “zero-shot”: a zero-shot prompt;
(2) “TTTTT”: a five-shot prompt with all correct
exemplars; (3) “TTFFF”: a five-shot prompt where
the first two examples are correct and the following
three are incorrect. For TriviaQA, we test 5-shot
and 20-shot prompts.

Although it is true that the correctness of few-
shot examples could be verified in practice, our
motivation to study incorrect in-context examples
includes: (1) It helps understand how truthfulness
probes handle context that contains mixed truthful
and untruthful information; (2) It provides insights
into how robust truthfulness probes are to poten-
tially conflicting information.

4.5.2 Results
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Figure 5: AUROC1/ECE|/BS/ of truthfulness probes
for Llama-3.1-8B on MMLU and TriviaQA. The dashed
gray line corresponds to random results, and error bars
denote standard error.

The results, shown in Figure 5, reveal that across
all probes, accuracy generally improves when few-
shot exemplars are provided. This suggests that
providing more task-related context in the prompt
typically aids the LLM in the implicit truthfulness
classification task, and that truthfulness probes not
only generalize from factual statements to both
multiple-choice QA and short-form QA, but also
generalize from fundamental commonsense knowl-
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Figure 6: AUROC1/ECEJ/BS/ of in-domain probes for
Llama-3.1-8B trained and tested on MMLU.

edge to both expert knowledge (MMLU) and trivia
knowledge (TriviaQA). Notably, according to the
results on MMLU, the effect of imperfect few-shot
prompts is near identical to entirely correct few-
shot prompts. This indicates that the performance
of truthfulness probes is not significantly influ-
enced by the truthfulness of the few-shot examples
— the probes express the truthfulness of the final
(Q, A) pair, treating prior exemplars as context. In-
terestingly, this finding aligns with Halawi et al.
(2023)’s observation that early layers of the LLM
are insensitive to false in-context demonstrations.
However, few-shot prompting does not always
improve calibration, and a positive case is only ob-
served for the SVM probe on the TriviaQA dataset.
Among all probes, the SVM probe performs best
in terms of both classification accuracy and cali-
bration, likely because of its ability to accurately
identify the geometry of the truth direction and the
benefits of the additional Platt scaling procedure.

4.5.3 Additional Experiments

Beyond the generalization of probes trained on fac-
tual statements, we are interested in how these
probes differ from in-domain probes, which are
trained and tested on data of the same domain.
Therefore we perform follow-up experiments by
training and testing probes on MMLU using the
Llama-3.1-8B model, using the same data and
prompt setup as above. Specifically, we train on a
random 70% split and test on the rest 30%.

We present results averaged over three random
trials in Figure 6. Comparing the results with those
of Figure 5, we observe that in-domain probes gen-
erally under-performs truthfulness probes trained
on atomic factual statements in terms of AUROC.
This finding indicates that truthfulness probes un-
der the current setup perform better than those un-
der the in-domain QA setup.

688



4.6 Contextual Knowledge

When training truthfulness probes using factual
statements, we are targeting the factual aspect
of truthfulness, where the grounding knowledge
resides in the LLM’s parameters. However, in-
context knowledge also plays a vital role in genera-
tion. In this section, we investigate if truthfulness
probes can also capture this additional aspect of
truthfulness, where the grounding knowledge is
provided as contextual information in the prompt.
Notably, context grounding is fundamentally dif-
ferent from factual correctness, since faithfully fol-
lowing false context is acceptable for the former
but not for the latter. We conduct experiments on
two tasks: in-context QA and abstractive summa-
rization.

4.6.1 Experimental Setup

Data. The training data consists of all the atomic
statements. For the in-context QA task we use the
SciQ (Welbl et al., 2017) and BoolQ (Clark et al.,
2019) datasets. For SciQ, we randomly select 1000
questions, pairing each question with the lettered
choice for both the true and a randomly selected
false answer. The answers of BoolQ are binary
“yes/no”, therefore we flip the answers to balance
true and false (@, A) pairs. For the abstractive sum-
marization task, we use the XSum dataset (Narayan
et al., 2018) and XSum Hallucination Annotations
(Maynez et al., 2020). For each article, we pair true
summaries from the former dataset with false ones
from the latter one.

Models. We use Llama-3.1-8B.

Methods. We apply the four probe instantiations
introduced in Section 3.2.

Metrics. We report AUROC, ECE and BS. The
results are averaged over three trials, with random-
ness introduced via initialization and data splits.

Prompt setups. For SciQ dataset which is a
multiple-choice task, we implement four settings:
(1) “zero-shot”: zero-shot prompt; (2) “TTT”:
three-shot prompt where all exemplars are correct;
(3) “TTF”: three-shot prompt, where the first two
examples are correct and the third is incorrect; (4)
“FFT”: three-shot prompt, where the first two ex-
amples are incorrect and the third is incorrect. For
BoolQ, we implement four settings: “no options”,
“with options”, and one-shot “T”/“F” (with possible
options). For XSum, no options are provided in
the prompt as it is not a multiple-choice task. We

implement the following prompt configurations:
zero-shot, “T”, “TT”, and “TTT".

4.6.2 Results

The results are shown in Figure 7. Across all
datasets and most probes, possible answer options
and few-shot exemplars generally improve classi-
fication accuracy. This indicates that truthfulness
probes generalize from factual statements to both
in-context multiple-choice QA tasks and abstrac-
tive summarization tasks.

Among the probes, statistics-based probes (LR
and MLP) display greater standard error in terms
of all three metrics than geometric-oriented ones
(MM and SVM), likely due to their optimization
instability, and the SVM probe performs best from
the perspective of BS. Additionally, discrepancies
are observed for LR probe on the SciQ and BoolQ
datasets, MLP probe on the BoolQ dataset, and
MM probe on the XSum dataset, where accuracy
improves in response to in-context exemplars but
calibration worsens. We assume that these discrep-
ancies could be explained with the overconfidence
of the probes’ predictions.

4.7 Selective Question Answering

Based on the findings of Section 4.5, we observe
that truthfulness probes trained on atomic state-
ments are capable of generating calibrated proba-
bilistic predictions for QA tasks while achieving
reasonable accuracy. Building upon these observa-
tions, this section investigates whether truthfulness
probes can be leveraged to selectively identify cor-
rect answers from a set of candidate responses sam-
pled from an LLM. This setup is inspired by the
work of Kadavath et al. (2022), who demonstrated
that an LLM can evaluate the correctness of its
own answers through verbal feedback. While our
selective QA experiment shares similarities with
Kadavath et al. (2022), our approach differs fun-
damentally as we leverage internal representations
rather than model-generated feedback.

For this experiment, we use the TriviaQA test
data from Section 4.5, where we sample 20 answers
from the Llama-3.1-8B model using a 20-shot
prompt with unit temperature. To perform selective
QA, we select the subset of (), A) pairs for which
the truthfulness probe predicts P[® = 1] > 0.5
and report the accuracy on this subset. We use the
SVM probe, as it performs best in terms of both
classification accuracy and calibration.

The aggregated accuracy across all sampled
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Figure 7: AUROC1/ECE|/BS] of truthfulness probes for Llama-3.1-8B on tasks where grounding knowledge is
provided in the prompt. The dashed gray line corresponds to random results, and error bars denote standard error.

(Q, A) pairs is 55.29%. Among these, the truth-
fulness probe classifies 80.26% as true, and the
accuracy of this subset is 64.06%. This demon-
strates that truthfulness probes can be used to filter
out false answers sampled from LLMs.

5 Conclusions

In this work, we provide preliminary evidence sup-
porting our hypothesis that consistent truth direc-
tions only emerge in capable LLMs and not in
weaker ones, and they could be effectively identi-
fied with simple linear probes. We also investigate
the generalization properties of truth directions.
Empirical results show that truthfulness probes
trained only on atomic statements generalize well
to logical transformations, (few-shot) question an-
swering and contextual truthfulness. These findings
underscore the potential of truthfulness probes to
identify truth directions using simple anchor data,
thereby facilitating the elicitation of latent knowl-
edge within LLMs.

6 Limitations

This study has several limitations that warrant dis-
cussion. First, the term "truth" as used in this pa-
per represents an idealized concept, but it may not
be what the truthfulness probes actually measure.
Drawing on Kadavath et al. (2022) and Marks and
Tegmark (2023), the pretraining of language mod-
els largely involves imitating human-generated text.
Consequently, truthfulness probes are likely cap-
turing an overlap between widely accepted human
beliefs and factual, objective truths about the phys-
ical world. This raises interesting questions about
how such probes might perform in the context of
scalable oversight, particularly with hypothetical
Al systems that surpass human intelligence.

Second, our investigation into the generalization
of truthfulness probes is limited to short-form QA.
Extending this analysis to more complex scenar-
ios, such as long-form QA or instruction-following
tasks, may yield novel insights and uncover more
practical applications of truthfulness probes.

Third, the causality of truthfulness probes is un-
clear. Our approach relies on classic classification
techniques, consistent with prior work on prob-
ing truthfulness. Meanwhile, we do not discuss
the causal effects of truth directions, i.e., whether
LLMs utilize the implicit truthfulness classifica-
tion results for predictions. Marks and Tegmark
(2023) conducted causal intervention experiments
using the mass-mean probe and showed that mass-
mean directions are highly causal. However, as
highlighted by Kumar et al. (2022), probes often
capture spuriously-correlated features rather than
exclusively isolating the target feature. Future re-
search on the causal implications of truth directions
could provide valuable insights into guiding LLMs
to produce more truthful responses, as in Li et al.
(2023).

Finally, our experiments are constrained by com-
putational resources, with the largest model eval-
uated being Llama-3.1-70B. As a result, our hy-
pothesis that highly capable LL.Ms will eventually
establish a consistent internal concept of truthful-
ness remains untested on more advanced models
such as GPT-4 (Achiam et al., 2023).
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A Truth-related concepts

In this section, we distinguish the term “truthful-
ness” from several related concepts. Truthfulness
refers to the alignment of a statement or (@, A)
with either world knowledge or contextual sources.
The former, following Mahaut et al. (2024), is
termed “factuality”. Contextual truthfulness, by
contrast, may include fictional information that de-
viates from real-world facts, such as solving math
problems in a hypothetical scenario.

Untruth lies at the negative end of the truth-
fulness spectrum and differs from hallucination,
which refers to generations that are nonsensical or
unfaithful to the provided source content (Ji et al.,
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2023). A key distinction between untruth and hal-
lucination is that truthfulness requires a sentence
to be both sensical and unambiguous. Additionally,
we differentiate untruth from lies. According to
Pacchiardi et al. (2023), an answer is considered a
lie only if the speaker knows the correct answer. In
this view, a lie is a subset of untruths.

B Explanation on Choice of Probes

In this work we summarize LR, MLP, SVM and
MM instantiations and use them for experiments.
We do not use the TTPD probe introduced by the
recent work, Biirger et al. (2024), for two reasons.
First, the design of the TTPD probe is based on
their finding that the “affirmative truth direction’
and the “general truth direction” are not aligned.
However, according to our findings in Section 4.3,
the “affirmative truth direction” and the “general
truth direction” become more consistent as the tar-
get model’s general capability increases. There-
fore, for models with relatively high capability, the
TTPD probe is not expected to distinguish itself
among other probe instantiations.

Second, we find empirical evidence that the
TTPD probe is not the most effective probe. We
replicate the experiment on the BoolQ dataset in
Section 4.6, and plot the output distribution and cal-
ibration curves of all probes targeting Llama-3.1-
8B under the “with options” setting. The results
are shown in Figure 9 and Figure 8. The output
distribution of the TTPD probe resembles that of
the MM probe, so does the calibration curve. This
observation is not restricted to this setting and the
BoolQ test set but is also noticed in a number of
other settings and test sets. These findings sug-
gest that judging by the functional behaviors of the
TTPD probe, its performance is not representative
enough to be reported.

B

C Details of Factual Datasets

We mentioned in Section 3.3 about the factual
statements covering six topics which are used for
training and testing truthfulness probes. We sum-
marize each topic-specific dataset in Table 1, ac-
cording to the data curators Azaria and Mitchell
(2023), Marks and Tegmark (2023) and Biirger et al.
(2024).

Instead of directly using the statements from
Biirger et al. (2024), we perform minor modifica-
tions on the inventors topic and on logical dis-
junctions. We notice that the original inventors
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Figure 8: Calibration graph of LR, MLP, SVM, MM
and TTPD probes on the BoolQ dataset under the “with
options” setting. The target LLM is Llama-3.1-8B.

dataset has potential ambiguity due to duplication
of name. Thus we specify that the person men-
tioned in a statement was an inventor, e.g. from
“Thomas Edison lived in the U.S.” to “The inven-
tor Thomas Edison lived in the U.S.”. Another
tweak is that the original logical disjunctions com-
posed by Biirger et al. (2024) are not consistent
with conjunctions, as the subjects are written in
full for conjunctions while the subjects are written
in pronouns for disjunctions. To align these two
logical transformations, we recover the subjects for
disjunctions.

D Probe Implementation Details

Our implementation of the LR, SVM and MLP
probes is based on the scikit-learn (Pedregosa
et al., 2011) library. For the LR probe, we em-
ploy the L-BFGS optimization algorithm (Liu and
Nocedal, 1989). For SVM, we utilize the NuSVC
implementation. We set v = 0.5, a choice later
validated by experiment results. Platt scaling is
applied using five-fold cross-validation with the
help of the scikit-learn library. For the MLP
probe we configure a decreasing sequence of hid-
den units (512,128,64) with tanh activation, and
we use the Adam optimizer (Kingma, 2014) to train
it till convergence. Finally, we use the MM probe
implementation provided by Marks and Tegmark
(2023).

When establishing probes on atomic statements,
we use a random 70% split for training and hold
out the rest as the development set.
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Topic

Description

Example statement

animal_class

The class of a specific animal species.

The salmon is a fish.

cities

Locations of world cities.

The city of Krasnodar is in Russia.

element_symb

Chemical elements and
their abbreviations.

Thallium has the symbol TI.

The Earth’s atmosphere protects

facts Diverse scientific facts. us from harmful radiation
from the sun.

. . ) The inventor Edwin

inventors Home countries of inventors.

Herbert Hall lived in the U.S.

sp_en_trans

Translations of Spanish words to English.

The Spanish word ’con’
means ’to speak’.

Table 1: Summary of topic-specific factual statement datasets.

E Metric Details

E.1 Expected Calibration Error (ECE)

For ECE, we first sort the probabilities predicted
by a probe and split them into N equal-sized bins.
In this paper we let N = 10, which is common in
literature evaluating calibration. For each bin, we
calculate the mean probability (z;) and the fraction
of truthful predictions (y;). ECE is then computed
following the formula below:

| N
ECE:NZ;|?J¢—$¢\- (1)
1=

E.2 Brier Score (BS)

The Brier Score measures the difference between
the actual correctness and the confidence score
through point-wise mean squared error. Its for-
mulation is as follows:

N
. 1
Brier Score = N Z(pz - yi)27

=1

2

where p; is the confidence reported by the probe
and y; € {0, 1} is the ground truth label. When
a predictor is always making inconfident random

predictions, i.e. p; = 0.5(i = 1,2,...N), it results
in a chance Brier score of 0.25.

F Experiment Details and More Results

In this section, we elaborate on the detailed setups
of the experiments in Section 4. Furthermore, as
we only use the Llama family of models in the body
of the paper, in this section we also demonstrate
results on a model of the Mistral family, Mistral-
7B-v0.1 (Jiang et al., 2023).

F.1 Computational and Storage Resources

All of our experiments are completed on three
A6000 (48GB) GPUs. For most LLMs except
Llama-3.1-70B(-Instruct), only one GPU will suf-
fice. However, the storage for activations across all
datasets and models would take ~1TB disk space.
Therefore we recommend modifying the code and
only keep the necessary activations on disk. Fur-
thermore, in order to accommodate large LLMs
such as Llama-3.1-70B(-Instruct) into our GPUs
when gathering hidden activations, we use float8
quantization with the optimum-quanto? library.

3https://github.com/huggingface/
optimum-quanto
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F.2 Selecting Layer

In Section 4.1 we discuss the selection of decoder
layer residual stream to extract truth direction from.
We present a criteria based on the ratio of between-
class variance to within-class variance. However,
due to limitation of space we only present results
for Llama-2-7B and Llama-3.1-8B in Section 4.1.
Here we replicate these approaches on more mod-
els.

The data used for plotting is the collection of
both affirmative and negative atomic statements
covering all the six topics, as well as their logical
conjunctions and disjunctions. The curve for each
topic consists of the four variations of statements,
which results in six curves for each model.

We summarize the plots in Figure 10, which
covers eight models: Llama-2-7B(-Chat), Llama-
2-13B(-Chat), Llama-3.1-8B(-Instruct), Llama-3.1-
70B(-Instruct), Mistral-7B(-Instruct)-v0.1. Their
optimal layers are 12(13), 13(13), 12(13), 33(33),
13(13), respectively.

F.3 Consistency of Truth Direction

We present results on Mistral-7B-v0.1 in Figure 11.
It is evident that the truthfulness probes generalize
across negation on four topics, barely generaliz-
ing on facts topic. Comparing these results with
those of Figure 3, we notice that the performance of
probes for Mistral-7B-v0.1 is comparable to that of
probes for Llama-2-13B-Chat and Llama-3.1-8B.
This aligns with the observation that the general
capability of Mistral-7B-vO0.1 lies between that of
Llama-2-13B-Chat and Llama-3.1-8B.

F.4 Logical Conjunction/Disjunction

Full results on logical conjunctions and disjunc-
tions are shown in Figure 12 and Figure 13 respec-
tively. A similar scaling trend could be observed
as in Figure 3, where the classification accuracy of
the probes is positively correlated with the target
LLM’s general capability.

The results for Mistral-7B-v0.1 is shown in Fig-
ure 14. The truthfulness probes generalize from
atomic factual statements to both logical conjunc-
tions and disjunctions.

F.5 Question Answering

F.5.1 Details on Experiment Setup

MMLU. We arrange three setups for the QA
task, and we demonstrate the prompt template for
zero-shot setting using an actual example from the

MMLU dataset. The few-shot prompts are trivially
extended from the zero-shot prompt, with exem-
plars separated by two newlines ("\n\n"). Few-
shot exemplars are randomly selected from the de-
velopment split.
Question: What was GDP per capita in the
United States in 1850 when
adjusting for inflation and PPP in
2011 prices?
Options:
A. About $300
B. About $3k
C. About $8k

D. About $15k
Answer: B

TriviaQA. For TriviaQA (Joshi et al., 2017) we
only use few-shot prompting — 5-shot and 20-shot
— to ensure that the LLM always generates short-
form answers. We use normalized answers in the
exemplars.

Question: Where in England was Dame Judi

Dench born?
Answer: york

F.5.2 More results

The results for Mistral-7B-v0.1 is shown in Figure
15. The general behavior of truthfulness probes is
similar to that in Figure 5. The classification accu-
racy improves in response to few-shot prompting
and improves when more in-context exemplars are
provided in the prompt. Meanwhile, calibration
only improves in the case of the SVM probe on
TriviaQA dataset.

F.6 Contextual Knowledge

F.6.1 Details on Experiment Setup

SciQ. For the SciQ (Welbl et al., 2017) bench-
mark, we arrange three setups, including ‘““zero-
shot”, “TTT” and “TTF”. We only demonstrate
the zero-shot prompt as the few-shot prompts can
be trivially extended from it. In the in-context se-
tups, the exemplars are randomly selected from the
training split.

Context: <context>

Question: Compounds that are capable of
accepting electrons, such as o 2 or
f2, are called what?

Options:

A. Oxygen

B. residues

C. antioxidants

D. oxidants

Answer: D
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Figure 11: AUROC (in percentage) of probes trained
on affirmative statements and tested on negative ones.
AUROC exceeding 0.5 indicates generalization success.
MO refers to the Mistral-7B-v0.1 model.

BoolQ. For the BoolQ (Clark et al., 2019) bench-

mark, we arrange four setups, including “no op-

tions”, “with options”, “T” and “F”’. We only

demonstrate the prompt for “with options”. In the

in-context setups, the exemplars are randomly se-

lected from the training split.

Passage: <passage>

Question: does ethanol take more energy
make that produces?

Options:

- Yes

- No

Answer: No

XSum. For this task, we arrange four setups, in-
cluding “zero-shot”, “T”, “TT” and “TTT”. We
only demonstrate the zero-shot prompt as the one-
shot and few-shot prompts can be trivially extended
from it. In the in-context setups, the exemplars
are randomly selected from the training split of
XSum (Narayan et al., 2018) dataset, and they are
all deemed correct. False examples come from the
XSum Hallucination Annotations (Maynez et al.,
2020) dataset with 500 examples, which is paired
with examples from the test split of XSum. Fur-
thermore, we filter for examples no longer than the
LLM’s context window. For Llama-3.1-8B with a
context length of 8192, we obtain the final test set
of 998 examples whose labels are balanced.
Summarize this document: <doc>
Summary: Rory McIlroy moved to within a
shot of joint leaders Victor
Dubuisson and Jaco van Zyl after the

third round of the Turkish Airlines
Open.

F.6.2 More results

We present results for Mistral-7B-v0.1 in Figure
16. Accuracy improves as in-context exemplars are
provided, but calibration only displays the same
trend on SciQ dataset. Another abnormality could
be observed for the BoolQ dataset from “no op-
tions” setting to “with options” setting, and for

the XSum task from zero-shot to one-shot. In
these cases, both accuracy and calibration wors-
ens, which does not align with the results in Figure
7. We assume this is attributed to the weakness of
the target model, where Mistral-7B-v0.1 finds it
difficult to interpret answer options and in-context
exemplars for the abstractive summarization task.

G License

The implementation of the probes is based on
the scikit-learn (Pedregosa et al., 2011) library,
which is licensed under BSD 3-Clause License.
The factual statements we use is curated by Biirger
et al. (2024), licensed under MIT License. The
MMLU (Hendrycks et al., 2020) dataset is licensed
under MIT License, the TriviaQA (Joshi et al.,
2017) dataset is licensed under Apache 2.0 License,
the SciQ (Welbl et al., 2017) dataset under Cre-
ative Commons Attribution-NonCommercial 3.0
Unported License, the BoolQ (Clark et al., 2019)
under Creative Commons Share-Alike 3.0 License,
the XSum (Narayan et al., 2018) dataset under MIT
License and the XSum Hallucination Annotations
(Maynez et al., 2020) dataset under Creative Com-
mons Attribution 4.0 International License. Llama-
2 series of models are licensed under Llama 2 Com-
munity License Agreement, Llama-3 herd of mod-
els are licensed under Llama 3 Community License
Agreement and Mistral models are licensed under
MIT License.
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Figure 12: AUROC (in percentage) of probes trained on all the atomic factual statements and tested on logical
conjunctions. AUROC > 0.5 indicates the success of generalization.
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Figure 13: AUROC (in percentage) of probes trained on all the atomic factual statements and tested on logical
disjunctions. AUROC > 0.5 indicates the success of generalization.
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Figure 14: AUROC (in percentage) of probes trained on
atomic factual statements and tested on logical conjunc-
tions/disjunctions for Mistral-7B-v0.1. AUROC > 0.5
indicates the success of generalization.
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Figure 15: AUROCT/ECE|/BS| of truthfulness probes
for Mistral-7B-v0.1 on MMLU and TriviaQA. The
dashed gray line corresponds to random results, and
error bars denote standard error.
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Figure 16: AUROCT/ECE]/BS| of truthfulness probes for Mistral-7B-v0.1 on tasks where grounding knowledge is
provided in the prompt. The dashed gray line corresponds to random results, and error bars denote standard error.
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