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Abstract

Recently, many studies have demonstrated that
exclusively incorporating OCR-derived text
and spatial layouts with large language mod-
els (LLMs) can be highly effective for doc-
ument understanding tasks. However, exist-
ing methods that integrate spatial layouts with
text have limitations, such as producing overly
long text sequences or failing to fully lever-
age the autoregressive traits of LLMs. In this
work, we introduce Interleaving Layout and
Text in a Large Language Model (LayTextLLM)
for document understanding. LayTextLLM
projects each bounding box to a single em-
bedding and interleaves it with text, efficiently
avoiding long sequence issues while leveraging
autoregressive traits of LLMs. LayTextLLM
not only streamlines the interaction of layout
and textual data but also shows enhanced per-
formance in KIE and VQA. Comprehensive
benchmark evaluations reveal significant im-
provements of LayTextLLM, with a 15.2%
increase on KIE tasks and 10.7% on VQA
tasks compared to previous SOTA OCR-based
LLMs. All resources are available at https:
//github.com/LayTextLLM/LayTextLLM.

1 Introduction

Recent research has increasingly explored the use
of Large Language Models (LLMs) or MultiModal
Large Language Models (MLLMs) (Achiam et al.,
2023; Team et al., 2023; Anthropic, 2024; Reid
et al., 2024; Feng et al., 2023a,b; Liu et al., 2024c;
Lu et al., 2024; Nourbakhsh et al., 2024; Gao et al.,
2024; Li et al., 2024a; Zhou et al., 2024; Zhu et al.,
2024; Zhao et al., 2024) for document-oriented
Visual Question Answering (VQA) and Key Infor-
mation Extraction (KIE).

A line of research utilizes off-the-shelf OCR
tools to extract text and spatial layouts, which are
then combined with LLMs to address Visually Rich

*Equal Contribution
†Corresponding author

Document Understanding (VRDU) tasks. These
approaches assume that most valuable information
for document comprehension can be derived from
the text and its spatial layouts, viewing spatial lay-
outs as “lightweight visual information” (Wang
et al., 2024a). Following this premise, several stud-
ies (Liu et al., 2024c; Perot et al., 2023; Luo et al.,
2024; Chen et al., 2023a; He et al., 2023) have
explored various approaches that integrate spatial
layouts with text for LLMs and achieves results
that are competitive with those of MLLMs.

The most natural method to incorporate layout
information is by treating spatial layouts as to-
kens, which allows for the seamless interleaving of
text and layout into a unified text sequence (Perot
et al., 2023; Chen et al., 2023a; He et al., 2023).
For example, Perot et al. (2023) employ for-
mat such as “HARRISBURG 78|09” to represent
OCR text and corresponding layout, where “HAR-
RISBURG” is OCR text and “78|09” indicates
the mean of the horizontal and vertical coordi-
nates, respectively. Similarly, He et al. (2023)
use “[x_min, y_min, x_max, y_max]” to represent
layout information. These approaches can effec-
tively take advantage of autoregressive character-
istics of LLMs and is known as the “coordinate-
as-tokens” scheme (Perot et al., 2023). In contrast,
DocLLM (Wang et al., 2024a) explores interact-
ing spatial layouts with text through a disentangled
spatial attention mechanism that captures cross-
alignment between text and layout modalities.

However, we believe that both of the previous
approaches have limitations. As shown in Fig-
ure 1, coordinate-as-tokens significantly increases
the number of tokens. Additionally, to accurately
comprehend coordinates and enhance zero-shot ca-
pabilities, this scheme often requires few-shot in-
context demonstrations and large-scale language
models, such as ChatGPT Davinci-003 (175B) (He
et al., 2023), which exacerbates issues related to
sequence length and GPU resource demands. Al-
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Figure 1: The performance against input sequence
length of different datasets across various OCR-based
methods where data is from Table 1 and 5.

though DocLLM does not increase sequence length,
its performance may be improved by more effec-
tively leveraging the autoregressive traits of LLMs.

To address these problems, this paper explores
a simple yet effective approach to enhance the in-
teraction between spatial layouts and text — In-
terleaving Layout and Text in a Large Language
Model (LayTextLLM) for document understanding.
Adhering to the common practice of interleaving
any modality with text (Huang et al., 2023; Peng
et al., 2023; Dong et al., 2024), we specifically ap-
ply this principle to spatial layouts. In particular,
we map each bounding box to a single embedding,
which is then interleaved with its corresponding
text. As shown in Figure 1, LayTextLLM signif-
icantly outperforms the 175B models, while only
slightly increasing or even reducing the sequence
length compared to DocLLM. Our contributions
can be listed as follows:

• We propose LayTextLLM for document un-
derstanding. To the best of the authors’ knowl-
edge, this is the first work to employ a unified
embedding approach (Section 3.1) that inter-
leaves spatial layouts directly with textual data
within a LLM. By representing each bounding
box with one token, LayTextLLM efficiently
addresses sequence length issues brought by
coordiante-as-tokens while fully leveraging
autoregressive traits for VRDU tasks.

• We propose three tailored pre-training tasks
(Section 3.2.1) to improve the model’s under-

standing of the interaction between layout and
text, and its ability to generate precise coor-
dinates for regions of interest. These tasks
include Line-level Layout Decoding, Text-to-
Layout Prediction, and Layout-to-Text Pre-
diction. Besides, we introduce Spatially-
Grounded KIE (Section 3.2.2) to further en-
hance the model’s performance on KIE task.

• Extensive experimental results quantitatively
demonstrate that LayTextLLM significantly
surpasses previous state-of-the-art (SOTA)
OCR-based methods. Notably, it outper-
forms DocLLM by 10.7% on VQA tasks and
15.2% on KIE tasks (Section 4). Further-
more, it achieves superior performance on
SOTA OCR-free MLLMs, such as Qwen2-
VL among most KIE datasets. Ablations and
visualizations demonstrate the utility of the
proposed component, with analysis showing
that LayTextLLM not only improves perfor-
mance but also reduces input sequence length
compared to current OCR-based models.

2 Related Work

2.1 OCR-based LLMs for VRDU

Early document understanding methods (Hwang
et al., 2020; Xu et al., 2020, 2021; Hong et al.,
2022; Tang et al., 2022) tend to solve the task in a
two-stage manner, i.e., first reading texts from input
document images using off-the-shelf OCR engines
and then understanding the extracted texts. Consid-
ering the advantages of LLMs (e.g., high general-
izability), some recent methods endeavor to com-
bine LLMs with OCR-derived results to solve docu-
ment understanding. Inspired by the coordinate-as-
tokens” approach in ICL-D3IE (Perot et al., 2023),
He et al. (2023) use numerical tokens to integrate
layout information, combining layout and text into
a unified sequence that maximizes the autoregres-
sive benefits of LLMs. To reinforce the layout
information while avoiding increasing the number
of tokens, DocLLM (Wang et al., 2024a) designs a
disentangled spatial attention mechanism to capture
cross-alignment between text and layout modalities.
Recently, LayoutLLM (Luo et al., 2024) utilizes
the pre-trained layout-aware model (Huang et al.,
2022), to insert the visual information, layout in-
formation and text information. However, these
methods struggle to leverage autoregressive prop-
erties of LLMs while avoiding the computational
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overhead of increasing token counts. Finding a way
to integrate layout information remains a challenge.

2.2 OCR-free MLLMs for VRDU

With the increasing popularity of MLLMs (Feng
et al., 2023b; Hu et al., 2024; Liu et al., 2024c;
Tang et al., 2024; Chen et al., 2024a; Dong et al.,
2024; Li et al., 2024b; Liu et al., 2024a; Lu et al.,
2025; Feng et al., 2025; Fei et al., 2025; Wang
et al., 2025), various methods are proposed to
solve VRDU through explicitly training models
on visual text understanding datasets and perform
end-to-end inference without using OCR engines.
LLaVAR (Zhang et al., 2023) and UniDoc (Feng
et al., 2023b) are notable examples that expand
upon the document-oriented VQA capabilities
of LLaVA (Liu et al., 2024b) by incorporating
document-based tasks. These models pioneer the
use of MLLMs for predicting texts and coordi-
nates from document images, enabling the develop-
ment of OCR-free document understanding meth-
ods. Additionally, DocPedia (Feng et al., 2023a)
operates document images in the frequency do-
main, allowing for higher input resolution with-
out increasing the input sequence length. Recent
advancements in this field, including mPLUG-
DocOwl (Ye et al., 2023), Qwen-VL (Bai et al.,
2023), Qwen2-VL (Wang et al., 2024b), and
TextMonkey (Liu et al., 2024c), leverage publicly
available document-related VQA datasets to fur-
ther enhance the document understanding capabil-
ity. Although these OCR-free methods have exhib-
ited their advantages, they still struggle with the
high-resolution input to reserve more text-related
details.

3 Method

In this section, we introduce LayTextLLM. We
begin by detailing the model architecture, which
features an innovative Spatial Layout Projector
(Section 3.1) that transforms four-dimensional lay-
out coordinates into a single-token embedding.
Next, we present three layout-text alignment pre-
training tasks: line-level layout decoding, text-
to-layout prediction, and layout-to-text prediction
(Section 3.2.1) to ensure a seamless integration
of layout and text understanding. Finally, we de-
scribe the incorporation of spatially-grounded key
information extraction as a auxiliary task during
supervised fine-tuning (SFT) (Section 3.2.2), to
enhance the performance in KIE tasks.

3.1 Model Architecture
The overall architecture of LayTextLLM is shown
in Figure 2. LayTextLLM is built on the Llama2-
7B-chat model (Gao et al., 2023).

Spatial Layout Projector To enable the model
to seamlessly integrate spatial layouts with text, we
propose a novel Spatial Layout Projector (SLP).
This projector employs a two-layer MLP to trans-
form layout coordinates into bounding box tokens,
facilitating the interleaving of spatial and textual
information. Concretely, each OCR-derived spatial
layout is represented by a bounding box defined
by four-dimensional coordinates [x1, y1, x2, y2],
where these coordinates denote the normalized min-
imum and maximum horizontal (x) and vertical (y)
extents of the box, respectively. The SLP maps
these coordinates into a high-dimensional embed-
ding space, enabling the LLM to process them as a
single token. This is computed as:

z = W2 · (GeLU(W1 · c+ b1)) + b2 (1)

where c ∈ R4 is the vector of bounding box coor-
dinates, W1 ∈ Rh×4 and W2 ∈ Rd×h are weight
matrices, b1 ∈ Rh×1 and b2 ∈ Rd×1 are bias vec-
tors, h is the hidden dimension of the MLP, and
d is the dimension of the final embedding. In this
study, we set h = d. The resulting bounding box
token z ∈ Rd is a high-dimensional representation
of the spatial layout. Importantly, the SLP is shared
across all bounding box tokens, which introduces a
minimal number of parameters to the model.

Large Language Model As shown in Figure 2,
the bounding box token z is interleaved with its
corresponding textual embeddings and fed into the
LLM. To introduce additional trainable parame-
ters for layout information, we integrate a Partial
Low-Rank Adaptation (P-LoRA) module proposed
in InternLM-XComposer2 (Dong et al., 2024) de-
tailed in Appendix A. Additionally, to improve
the efficiency of coordinate decoding, we intro-
duce 1,000 special tokens, i.e., “<B0>” through

“<B999>” to represent output coordinates.

3.2 Training Tasks
LayTextLLM is pre-trained using three innovative
tasks designed to align layout and text. During
the SFT phase, we introduce a novel Spatially-
Grounded Key Information Extraction task as a
auxiliary task, which significantly enhances the
model’s performance on KIE-related tasks. Fig-
ures 3 and 4 illustrate the above tasks.
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Figure 2: An overview of LayTextLLM incorporates interleaving bounding box tokens (bi) with text tokens (ti),
where the superscripts represent the sequence positions of the tokens.
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Figure 3: Illustration of layout-text alignment pre-training tasks. <box> is the placeholder for bounding box tokens.

3.2.1 Layout-text Alignment Pre-training
Line-level Layout Decoding To enhance the
model’s ability to interpret and reconstruct layout
information, we introduce the Line-level Layout
Decoding task. This task leverages the bounding
box embeddings, which encode spatial layout de-
tails, and challenges the model to decode these
embeddings back into precise coordinates. Specifi-
cally, the model is provided with word-level OCR
texts and their corresponding layout coordinates as
input. It is then prompted with the question: “What
are the textlines and corresponding coordinates?”
The model is expected to intelligently merge word-
level OCR texts into coherent line-level texts while
simultaneously generating the coordinates that rep-

resent the layout of these line-level texts. The
output consists of two components: (1) the recon-
structed line-level texts and (2) the corresponding
combined coordinates, which are derived by aggre-
gating the word-level bounding boxes to reflect the
spatial arrangement of the line-level OCR. Through
this task, the model is expected to demonstrate
two key abilities: (1) the ability to logically group
word-level texts into line-level texts using layout
information, and (2) the ability to accurately de-
code bounding box embeddings back into spatial
coordinates. By doing so, the model demonstrates
a deeper understanding of both textual content and
its spatial organization within a document.
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Figure 4: Illustration of Spatially-Grounded KIE task. <box> is the placeholder for bounding box tokens.

Text-to-layout Prediction To enhance the
model’s ability to comprehend and predict doc-
ument layouts, we introduce the Text-to-Layout
Prediction task. In this task, the model predicts
spatial coordinates for text segments based on
word-level OCR inputs and their corresponding
layout information. Specifically, given a prompt
such as “What are the bounding boxes of the
words: {word1} \n {word2} \n {word3}...?”, where
{word} represents line-level text randomly selected
from the input (number of selected words limited
to 5), the model is required to generate precise
spatial coordinates for each of the specified words.

Layout-to-text Prediction We also propose the
Layout-to-Text Prediction task. In this task, the
model predicts textual content based on spatial
layout information and bounding box coordinates.
Given a prompt such as “What are the words lo-
cated within: {bbox1} \n {bbox2} \n {bbox3}...?”,
where {bbox} is the placeholder of bounding box
embedding representing the spatial coordinates of
text regions (with the number of bounding boxes
limited to 5), the model generates the correspond-
ing textual content for each specified region. The
Text-to-Layout Prediction and Layout-to-Text Pre-
diction tasks offer complementary advantages to
advance document layout understanding. All word-
level and line-level OCR results can be easily ob-
tained using off-the-shelf OCR tools, making it
easy to scale up for large-scale pre-training.

3.2.2 Supervised Fine-tuning
During the SFT phase, we fine-tuned the pre-
trained model with the Document Dense De-
scription (DDD) and Layout-aware SFT datasets
from Luo et al. (2024). Additionally, we introduce
Spatially-Grounded Key Information Extraction
(SG-KIE) task, which requires the model to not
only answer questions (i.e., extract specific values)

but also provide the coordinates of these answers
by responding to the prompt “Please provide the
coordinates for your answer.” as a auxiliary task
to further improve the model performance on KIE
tasks.

In the literature, KIE tasks are classified into two
types: Entity Linking (EL) and Semantic Entity
Recognition (SER). EL is an open-set KIE task in
which both the key and its corresponding value are
present in the input. In contrast, SER is a closed-set
KIE task where the key has a predefined meaning,
and the value must be extracted from the document.

For the EL task, SG-KIE requires the model
to output the answer in the following format:

“{key}{key_bbox}’s value is {value}{value_bbox}”,
where {key} and {value} represent the respective
key and value, and {key_bbox} and {value_bbox}
denotes the spatial layout information of the cor-
responding textual content. For the SER task,
the answer format is: “{value}{value_bbox}”,
where {value} refers to the extracted value, and
{value_bbox} represents the spatial layout of the
extracted text in the document. The illustrations of
SG-KIE for these tasks are presented in Figure 4.

4 Experiments

4.1 Datasets
Layout-text Alignment Pre-training Data In
training process, we exclusively used open-source
data to facilitate replication. We subsampled data
from two datasets for layout-text alignment pre-
training: (1) DocILE (Šimsa et al., 2023) and (2)
RVL_CDIP (Harley et al., 2015).
SFT data We selected KVP10k (Naparstek
et al., 2024) and SIBR (Yang et al., 2023) datasets
to create training examples of SG-KIE tasks.
For document-oriented VQA, we selected Doc-
ument Dense Description (DDD) and Layout-
aware SFT data used in Luo et al. (2024), which
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are two synthetic datasets generated by GPT-4.
Besides, DocVQA (Mathew et al., 2021), In-
foVQA (Mathew et al., 2022), ChartQA (Masry
et al., 2022), VisualMRC (Tanaka et al., 2021) is
included following (Liu et al., 2024c). For KIE
task, we selected SROIE (Huang et al., 2019),
CORD (Park et al., 2019), FUNSD (Jaume et al.,
2019) datasets following Wang et al. (2024a); Luo
et al. (2024); Liu et al. (2024c). The dataset statis-
tics are provided in Appendix C.

4.2 Implementation Detail
The LLM component of LayTextLLM is initial-
ized from the Llama2-7B-chat (Touvron et al.,
2023), consistent with previous OCR-based meth-
ods like DocLLM (Wang et al., 2024a), which
also use Llama2-7B. We also replicated the re-
sults of the coor-as-tokens scheme using Llama2-
7B for consistency. Noting the LayoutLLM (Luo
et al., 2024) utilizes Llama2-7B and Vicuna 1.5
7B, which is fine-tuned from Llama2-7B. Thus, for
the majority of our comparisons, the models are
based on the same or similar LLM backbones, al-
lowing for a fair comparison between approaches.
Other MLLM baselines use backbones like Qwen-
VL (Bai et al., 2023), Qwen2-VL (Wang et al.,
2024b), InternVL (Chen et al., 2024b), and Vi-
cuna (Chen et al., 2024a), all with at least 7B pa-
rameters, excluding the visual encoder. This also
makes the comparison fair.

In this study, we developed two versions of Lay-
TextLLM to facilitate a comparative analysis under
different training configurations. Following the ter-
minology established by Luo et al. (2024), the term
“zero-shot” denotes models that are trained without
exposure to data from downstream test datasets.
For the first version, LayTextLLMzero, we uti-
lized DDD, Layout-aware SFT data, KVP10k,
and SIBR for training. The second version,
LayTextLLMall, extends this training regimen
by incorporating a broader array of VQA and
KIE datasets, including DocVQA, InfoVQA, Vi-
sualMRC, ChartQA, FUNSD, CORD, and SROIE.
Both versions are initialized with the same pre-
trained LayTextLLM weights, with the key dif-
ference being that LayTextLLMall benefits from
the inclusion of additional downstream training
datasets. We used word-level and line-level OCR
provided by the respective datasets for a fair com-
parison, with the exception of the ChartQA dataset,
which does not provide OCR. Detailed setup can
be found in Appendix D.

4.3 Baselines

OCR-based baselines For OCR-based base-
line models, we implemented a basic approach
using only OCR-derived text as input. This was
done using two versions: Llama2-7B-base and
Llama2-7B-chat. We also adapted the coordinate-
as-tokens scheme from He et al. (2023) for these
models, resulting in two new variants: Llama2-7B-
basecoor and Llama2-7B-chatcoor. Additionally,
we included results from a stronger baseline us-
ing the ChatGPT Davinci-003 (175B) model (He
et al., 2023), termed Davinci-003-175Bcoor. One
other recent SOTA OCR-based approach, Do-
cLLM (Wang et al., 2024a) is also included.
OCR-free baselines These baselines include
UniDoc (Feng et al., 2023b), DocPedia (Feng et al.,
2023a), Monkey (Li et al., 2023), InternVL (Chen
et al., 2023b), InternLM-XComposer2 (Dong
et al., 2024), TextMonkey, TextMonkey+ (Liu
et al., 2024c), Qwen2-VL (Wang et al., 2024b). We
selected the above models as baselines due to their
superior performance in both document-oriented
VQA and KIE tasks.
Visual+OCR baselines We selected
LayoutLLMLlama2CoT (Luo et al., 2024)
and the most recent SOTA method
DocLayLLMLlama2CoT (Liao et al., 2024),
which integrates visual cues, text and layout, as
stronger baselines.

4.4 Evaluation Metrics

To ensure a fair comparison with other OCR-based
methods, we conducted additional evaluations us-
ing original metrics specific to certain datasets,
such as F1 score (Wang et al., 2024a; He et al.,
2023), ANLS (Gao et al., 2019; Wang et al., 2024a;
Luo et al., 2024) and CIDEr (Vedantam et al., 2015;
Wang et al., 2024a). To ensure a fair comparison
with OCR-free methods, we adopted the accuracy
metric (Liu et al., 2024c; Feng et al., 2023b), where
a response from the model is considered correct if
it fully captures the ground truth.

4.5 Quantitative Results

Comparison with SOTA OCR-based Methods
For the primary comparison in our work, we evalu-
ate against other SOTA pure OCR-based methods.
The experimental results, as presented in Table 1,
demonstrate significant performance improvements
achieved by the LayTextLLM models compared
to DocLLM (Wang et al., 2024a). Specifically,
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Document-Oriented VQA KIE
DocVQA VisualMRC Avg FUNSD CORD SROIE Avg

Metric ANLS % / CIDEr F-score %

Text
Llama2-7B-base 34.0 182.7 108.3 25.6 51.9 43.4 40.3
Llama2-7B-chat 20.5 6.3 13.4 23.4 51.8 58.6 44.6

Text + Coordinates
Llama2-7B-basecoor (He et al., 2023) 8.4 3.8 6.1 6.0 46.4 34.7 29.0
Llama2-7B-chatcoor (He et al., 2023) 12.3 28.0 20.1 14.4 38.1 50.6 34.3
Davinci-003-175Bcoor (He et al., 2023) - - - - 92.6 95.8 -
DocLLM (Wang et al., 2024a) 69.5∗ 264.1∗ 166.8 51.8∗ 67.4∗ 91.9∗ 70.4

LayTextLLMzero (Ours) 66.6 229.1 147.9 57.6 87.3 89.4 78.1
LayTextLLMall (Ours) 75.6∗ 279.4∗ 177.5 63.3∗ 97.3∗ 96.0∗ 85.6

Table 1: Comparison with SOTA OCR-based methods. The asterisk(*) indicates that the model was trained using
the training set associated with the evaluation set.

Document-Oriented VQA KIE
DocVQA InfoVQA Avg FUNSD SROIE POIE CORD Avg

Metric Accuracy %

OCR-free
UniDoc (Feng et al., 2023b) 7.7 14.7 11.2 1.0 2.9 5.1 - -
DocPedia (Feng et al., 2023a) 47.1∗ 15.2∗ 31.2 29.9 21.4 39.9 - -
Monkey (Li et al., 2023) 50.1∗ 25.8∗ 38.0 24.1 41.9 19.9 - -
InternVL (Chen et al., 2023b) 28.7∗ 23.6∗ 26.2 6.5 26.4 25.9 - -
InternLM-XComposer2 (Dong et al., 2024) 39.7 28.6 34.2 15.3 34.2 49.3 - -
TextMonkey (Liu et al., 2024c) 64.3∗ 28.2∗ 46.3 32.3 47.0 27.9 - -
TextMonkey+ (Liu et al., 2024c) 66.7∗ 28.6∗ 47.7 42.9 46.2 32.0 - -
Qwen2-VL (Wang et al., 2024b) 81.4∗ 45.2∗ 63.3 53.2 71.3 85.7 78.8 72.2

Text + Coordinates
LayTextLLMzero (Ours) 70.4 29.8 50.1 54.9 88.3 65.1 86.9 73.8
LayTextLLMall (Ours) 77.7∗ 40.1∗ 59.0 60.1∗ 95.5∗ 68.1 96.7∗ 80.1

Table 2: Comparison with SOTA OCR-free MLLMs.

LayTextLLMzero exhibits notably superior perfor-
mance, with its zero-shot capabilities even rivaling
SFT approaches. For instance, in the KIE task,
LayTextLLMzero achieves an overall performance
of 78.1%, significantly outperforming DocLLM’s
score of 70.4%. Furthermore, under the same train-
ing conditions, LayTextLLMall surpasses the pre-
vious OCR-based SOTA by a substantial margin,
achieving an overall improvement of 10.7% in the
VQA task and 15.2% in the KIE tasks. Besides, we
found that the spatial information can be decoded
back into coordinates even without visual infor-
mation, as discussed in Appendix I, which is not
exhibited in DocLLM. Similarly, when contrasting
with coordinate-as-tokens employed in Llama2-7B,
LayTextLLMzero again outperforms significantly.
More qualitative results are shown in Appendix B.
More discussion of subperformance of DocLLM
and coordinate-as-tokens can be seen Appendix F.
Comparison with SOTA OCR-free Methods
We also compare LayTextLLM with other OCR-
free methods, and the results in Table 2 highlight
its exceptional performance across various tasks.
Due to fairness concerns, results for ChartQA are
reported separately in Appendix G, as the dataset
lacks OCR-derived outputs, and we employed in-
house OCR tools instead.

LayTextLLMzero significantly outperforms most
OCR-free methods except for Qwen2-VL. No-
tably, even without exposure to the dataset’s
training set, LayTextLLMzero achieves compet-
itive VQA performance, rivaling models like
TextMonkey+, which were trained on correspond-
ing datasets. When fine-tuned with relevant data,
LayTextLLMall exhibits even greater performance
improvements. Compared to the SOTA MLLM
Qwen2-VL, LayTextLLM sub-performs on VQA
tasks which is further discussed in Limitation (Sec-
tion 5). However, it outperforms Qwen2-VL in
terms of KIE tasks. Notably, LayTextLLMzero ex-
ceeds Qwen2-VL on three out of four KIE bench-
marks, with significant improvements of 1.7% on
FUNSD, 17% on SROIE, and 8.1% on CORD.
Comparison with SOTA Visual+OCR Methods
As shown in Table 3, in zero-shot scenarios, our ap-
proach outperforms LayoutLLM and DocLayLLM
on most KIE datasets, with improvements of 12.4%
and 5.4%, respectively. This is noteworthy given
that both LayoutLLM and DocLayLLM utilize vi-
sual, OCR text, and layout information as inputs
and inference with Chain-of-thought, highlighting
our ability to effectively leverage OCR-based re-
sults. However, similar to the comparison results
with MLLMs, LayTextLLM exhibits limitations in
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Document-Oriented VQA KIE
DocVQA VisualMRC Avg FUNSD− CORD− SROIE− Avg

Metric ANLS %

Visual + Text + Coordinates
LayoutLLMLlama2CoT (Luo et al., 2024) 74.2 55.7 64.9 78.6 62.2 70.9 70.6
DocLayLLMLlama2CoT (Liao et al., 2024) 72.8 55.0 63.9 78.7 70.8 83.2 77.6

Text + Coordinates
LayTextLLMzero (Ours) 66.6 37.9 52.3 79.0 79.8 90.2 83.0
LayTextLLMall (Ours) 75.6∗ 42.3∗ 59.0 83.4∗ 83.1∗ 95.6∗ 87.4

Table 3: Comparison with LayoutLLM. The superscript minus(−) indicates that the cleaned test set used in Luo
et al. (2024).

Document-Oriented VQA KIE

SLP L-T PT SG-KIE P-LoRA DocVQA InfoVQA VisualMRC Avg FUNSD CORD SROIE Avg

× ✓ ✓ ✓ 65.8 25.3 28.7 39.9 49.3 65.8 61.9 59.0
✓ × ✓ ✓ 78.2 39.7 28.3 48.7 52.1 76.5 86.8 71.8
✓ ✓ × ✓ 69.1 28.7 29.3 42.3 52.3 82.4 84.0 72.9
✓ ✓ ✓ × 74.6 36.6 32.6 47.9 54.8 86.0 91.3 77.4
✓ ✓ ✓ ✓ 70.4 29.8 31.7 44.0 54.9 86.9 88.3 76.7

Table 4: Ablations on each component of LayTextLLM (Accuracy).

document-oriented VQA tasks, particularly when
addressing questions that heavily depend on visual
information. A more detailed analysis of these
challenges is provided in Limitations (Section 5).

4.6 Analysis

Ablations To better assess the utility of each
component in LayTextLLM, an ablation study was
conducted, the results of which are presented in Ta-
ble 4. Detailed information on the training setup for
all variants is provided in Appendix D. The results
clearly show that incorporating interleaved spatial
layouts and texts significantly enhances the perfor-
mance, evidenced by a 4.1% improvement in VQA
and a 17.7% increase in KIE (the first row vs. the
fourth row), indicating that SLP is a critical com-
ponent. Interestingly, using next-token-prediction
as the pre-training task (i.e., the second row) gener-
ally outperforms layout-text alignment pre-training
across almost all VQA tasks. However, for KIE
tasks, layout-text alignment pre-training remains
more effective. We hypothesize that layout-text
alignment pre-training helps the model learn the
relationship between layout and text, which is par-
ticularly useful for layout-aware tasks like KIE.
In contrast, next-token-prediction focuses on re-
constructing the entire document, which is more
beneficial for semantic-rich tasks like VQA. Fur-
thermore, including SG-KIE results in a modest
performance increase of 1.7% in VQA (the third
row vs. the fourth row) but a significant improve-
ment in KIE tasks (i.e., 3.8%), which is as expected.
Intriguingly, excluding P-LoRA improves perfor-
mance on VQA and KIE tasks, suggesting it adds

unnecessary complexity or interference, which fur-
ther highlights the benefits of interleaving texts and
layouts.
Sequence Length Table 5 presents statistics
on the average input sequence length across dif-
ferent datasets. Intriguingly, despite interleav-
ing bounding box tokens, LayTextLLM consis-
tently exhibits the shortest sequence length in
three out of four datasets, even surpassing Do-
cLLM, which is counterintuitive. We attribute
this to the tokenizer mechanism. For example, us-
ing tokenizer.encode(), a single word from the
OCR engine, like “International” is encoded into a
single ID [4623]. Conversely, when the entire OCR
output is processed as one sequence, such as “...
CPC,International,Inc...”, the word “International”
is split into two IDs [17579, 1288], corresponding
to “Intern” and “ational” respectively. This type
of case occurs frequently, we provide further dis-
cussion in Appendix E.

Dataset LayTextLLM DocLLM Coor-as-tokens

DocVQA 664.3 827.5 4085.7
CORD 137.9 153.2 607.3

FUNSD 701.9 847.5 4183.4
SROIE 529.2 505.1 1357.7

Table 5: Average sequence length.

5 Conclusion

We propose LayTextLLM, interleaving spatial lay-
outs and text to improve predictions through an
innovative SLP, the Layout-text Alignment pre-
training and the SG-KIE tasks. Extensive experi-
ments show the effectiveness of LayTextLLM.
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Limitations

Although LayTextLLM has shown significant ca-
pabilities in text-rich VQA and KIE tasks, this
alone does not suffice for all real-world applica-
tions. There are some instances where reasoning
must be based solely on visual cues (e.g. size, color,
objects)—a challenge that remains unmet. Ques-
tions such as “What is the difference between the
highest and the lowest green bar?” and “What is
written on the card on the palm?” illustrate this
gap. Two bad cases, detailed in Figures 6 and 7,
also underscore these limitations. Addressing these
challenges underscores the need for future advance-
ments that incorporate visual cues into the capabil-
ities of LayTextLLM. Since the integration with
MLLMs is not the primary focus of this work, the
preliminary experiments exploring this approach
are discussed in Appendix J.
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Štěpán Šimsa, Milan Šulc, Michal Uřičář, Yash Patel,
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Pre-trained
Weights

Bbox Token Text Token

Figure 5: The illustration of P-LoRA, adapted
from Dong et al. (2024).

A Layout Partial Low-Rank Adaptation

After using the SLP to generate bounding box to-
kens and a tokenizer to produce text tokens, these
two modalities are then interacted using a Lay-
out Partial Low-Rank Adaptation (P-LoRA) mod-
ule in LLMs. P-LoRA, introduced in InternLM-
XComposer2 (Dong et al., 2024), is originally used
to adapt LLMs to the visual modality. It applies
plug-in low-rank modules specified to the visual
tokens, which adds minimal parameters while pre-
serving the LLMs inherent knowledge.

Formally, for a linear layer in the LLM, the orig-
inal weights WO ∈ RCout×Cin and bias BO ∈
RCout are specified for input and output dimensions
Cin and Cout. P-LoRA modifies this setup by incor-
porating two additional matrices, WA ∈ RCr×Cin

and WB ∈ RCout×Cr . These matrices are lower-
rank, with Cr being considerably smaller than both
Cin and Cout, and are specifically designed to inter-
act with new modality tokens, which in our case are
bounding box tokens. For example, given an input
x = [xb, xt] comprising of bounding box tokens
(xb) and textual tokens (xt) is fed into the system,
the forward process is as follows, where x̂t, x̂b and
x̂ are outputs:

x̂t = W0xt +B0

x̂b = W0xb +WBWAxb +B0

x̂ = [x̂b, x̂t]

(2)

B Qualitative Examples

Qualitative examples of document-oriented VQA
(upper row) and KIE (bottom row) are shown in
Figure 8. The results indicate that LayTextLLM is
highly effective in utilizing spatial layout informa-
tion to make more accurate predictions for these
challenging examples. For example, in the upper
right figure, many numeric texts in the receipt act
as noise for the baseline method. In contrast, Lay-
TextLLM integrates layout information to accu-
rately predict the total price, as demonstrated by
the other examples, underscoring the utility of Lay-
TextLLM.

C Dataset Statistics

Table 6 and 7 show the statistics of datasets used in
layout-text alignment pre-training and SFT, respec-
tively. In layout-text alignment pre-training, for
training efficiency, we randomly selected around
50,000 documents from each of the DocILE and
RVL_CDIP datasets. For every document, we gen-
erated two tasks: line-level layout decoding and
either a text-to-layout or layout-to-text prediction
task, which yields a total of around 200,000 pre-
training examples. We also tested the model on a
KIE dataset POIE (Kuang et al., 2023).

Dataset DocILE RVL_CDIP

Num Documents 55,719 59444
Num Examples 111,438 118,888

Num Tokens 75,952,078 67,340,246

Table 6: Dataset statistics for layout-text alignment pre-
training (using Llama-2 Tokenizer).

D Implementation Detail

All training and inference procedures are conducted
on eight NVIDIA A100 GPUs.

Training LayTextLLM is initialized with
Llama2-7b-chat model, the pre-training, SFT,
and other model hyper-parameters can be seen
in Table 8. Additional parameters including SLP
and P-LoRA are randomly initialized. During
pre-training and SFT, all parameters are trainable.
Please note that all variants of LayTextLLM,
including those utilized in ablation studies, are
trained in accordance with the same settings.
Specifically, for all variants in ablation study,
we train with the same setting and dataset in
accordance with LayTextLLMzero. For the variant
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Question: What is the difference between
the highest and the lowest green bar?

GroundTruth: 6

Our Prediction: 40

Figure 6: A failure case of LayTextLLM on ChartQA.

What is written on the card on the palm?

GroundTruth: Trabon

Our Prediction: put your lubrication 
problems in good hands

Figure 7: A failure case of LayTextLLM on DocVQA.

without SLP, we replace the bounding box token
placeholder “<box>” with “\n”. For the variant
without layout-text alignment pre-training, we
pre-train the model on the same dataset using a
conventional next-token prediction task, excluding
the loss computation for the bounding box token.
After pre-training, we fine-tune the model on the
SFT datasets. For the variant without SG-KIE
tasks, we remove the SG-KIE data from the SFT
datasets while retaining the original SER and EL
tasks in KVP10k and SIBR to ensure the total
number of training examples remains unchanged.
For the variant without P-LoRA, we replace
all P-LoRA modules with linear layers, as was
previously done.

All baseline results are sourced from Liu et al.
(2024c) or respective original papers, with the

exception of the Llama2-7B series, the Llama2-
7Bcoor series, and Qwen2-VL, these results were
re-implemented by authors.

Inference For the document-oriented VQA test
set, we use the original question-answer pairs as
the prompt and ground truth, respectively. For
KIE tasks, we reformat the key-value pairs into
a question-answer format, as described in Wang
et al. (2024a); Luo et al. (2024); Liu et al. (2024c).
Additionally, for the FUNSD dataset, we focus
our testing on the entity linking annotations as de-
scribed in Luo et al. (2024). Note that for KIE
tasks, we report the result of directly generating
the answer texts, instead of generating the answer
with the coordinates (SG-KIE). The discussion re-
garding inference with SG-KIE can be found in
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Dataset DDD Layout-aware SFT KVP10k SIBR DocVQA InfoVQA ChartQA VisualMRC FUNSD CORD SROIE

Num Documents 115,955 50,409 4,249 600 10,192 4,405 3,699 7,012 147 794 626
Num Examples 115,955 280,073 50,661 12,978 39,459 23,945 7,398 7,013 2,375 8,932 2,503

Num Tokens 71,067,212 101,209,393 27,018,563 8,045,694 17,621,621 1,024,236 1,052,752 1,622,387 11,543,711 1,140,437 1,066,930

Table 7: Dataset statistics for SFT (using Llama-2 Tokenizer).

Backbone Plora rank Batch size Max length Precision Train params Fix params

Lay-Text Pretrain Llama2-7B-base 256 128 4096 bf16 7.4 B 0B
SFT Llama2-7B-base 256 128 4096 bf16 7.4 B 0B

Learning rate Weight decay Scheduler Adam betas Adam epsilon Warm up Epoch

Lay-Text Pretrain 5.0e-05 0.01 cosine [0.9, 0.999] 1.0e-08 0.005 4
SFT 1.0e-05 0.01 cosine [0.9, 0.999] 1.0e-08 0.005 4

Table 8: LayTextLLM trainng Hyper-parameters.

Appendix H.
To eliminate the impact of randomness on evalu-

ation, no sampling methods are employed during
testing for any of the models. Instead, beam search
with a beam size of 1 is used for generation across
all models. Additionally, the maximum number
of new tokens is set to 512, while the maximum
number of input tokens is set to 4096.

E Discussion of Input Sequence Length

As mentioned in Section 4.6, it is intriguing that
LayTextLLM has fewer input sequences than Do-
cLLM, which is counterintuitive given that Lay-
TextLLM interleaves bounding box tokens, typ-
ically resulting in longer sequence lengths. We
attribute this to the Byte Pair Encoding (BPE) tok-
enizers (Sennrich et al., 2016) prevalently used in
modern LLMs such as Llama2.

BPE operates by building a vocabulary of com-
monly occurring subwords (or token pieces) de-
rived from the training data. Initially, it tokenizes
the text at the character level and then progres-
sively merges the most frequent adjacent pairs of
characters or sequences. The objective is to strike
a balance between minimizing vocabulary size and
maximizing encoding efficiency.

Thus, when tokenizing a single word like “Inter-
national” on its own, the tokenizer might identify it
as a common sequence in the training data and en-
code it as a single token. This is especially likely if

“International” frequently appears as a standalone
word in the training contexts. However, when the
word “International” is part of a larger sequence of
words such as including in a long sequence of OCR-
derived texts like “...335 CPC,International,Inc...”,
the context changes. The tokenizer might split

“International” into sub-tokens like “Intern” and

“ational” because, in various contexts within the
training data, these subwords might appear more
frequently in different combinations or are more
useful for the model to understand variations in
meaning or syntax.

When using LayTextLLM, we input word-level
OCR results into the tokenizer, typically resulting
in the former situation, where words are encoded as
single tokens. Conversely, with DocLLM, the en-
tire OCR output is processed as one large sequence,
leading to the latter situation and a longer sequence
length than in LayTextLLM. This difference under-
scores the utility of LayTextLLM in achieving both
accuracy and inference efficiency due to its shorter
sequence length.

F Discussion on Advantage of
Interleaving Layout and Text

Discussion on DocLLM We visualize the atten-
tion patterns between input and output tokens in
Figure 9. The attention pattern is insightful with
the specific question, “What is the quantity of -
TICKET CP?<0x0A>”

As shown in Figure 9(a), when the model begins
predicting the answer “Final”, “<0x0A>”(newline
symbol) is heavily focusing on layout information,
as seen by the significant attention on the bound-
ing box embedding “<unk>” token before “(Qty”.
This highlights the model’s effort to orient itself
spatially and understand the structural context of
the tokens. At this stage, the model is develop-
ing a cognitive understanding of how the elements
are laid out on the page. We extract and visual-
ize the attention scores that “<0x0A>” assigns
to each bounding box in Figure 9(c). The visu-
alization shows that the model focuses most on

“Qty”, followed by “-TICKET” and “2.00”, which
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reflects the layout information essential for mak-
ing the prediction. In the final layer (Figure 9(b)),
the model’s attention shifts dramatically towards
the “Qty” token, which holds the semantic mean-
ing necessary to answer the question. This shift
from layout-based cognition to content-based rea-
soning illustrates how the bounding box tokens act
as spatial anchors that help the model pinpoint and
organize the relevant information (such as “Qty”)
to make the correct prediction.

The attention of LayTextLLM exhibits a distinct
pattern compared to models like DocLLM, which
uses block infilling to predict missing blocks from
both preceding and succeeding context. In con-
trast, LayTextLLM adheres to an auto-regressive
approach, focusing its attention solely on preceding
information. Furthermore, interleaving bounding
box and text embeddings creates strong attention
connections between textual and spatial representa-
tions, as shown in Figure 9. In contrast, DocLLM
integrates spatial information into the calculation
of attention score which is implicitly. As shown in
Table 1, LayTextLLM significantly outperforms
DocLLM, again underscoring the advantage of
interleaving bounding box and text embeddings.
Also, we found that the spatial information can be
decoded back into coordinates even without input-
ing visual information, as discussed in Appendix I,
which is not exhibited in DocLLM.

We also conduct a fairer experiment by re-
implementing DocLLM using the identical training
settings as LayTextLLMzero. In order to ensure a
more intuitive and fair comparison between the two
layout adaptation methods (i.e., SLP versus disen-
tangled spatial attention), we exclude the use of P-
LoRA in LayTextLLMzero. Table 9 demonstrates
that SLP is a more effective method for incorpo-
rating layout information, as evidenced by a 6.7%
improvement in VQA and an 8.4% improvement
in KIE. Additionally, while DocLLM introduces a
suite of attention weights for layout information, it
significantly increases the number of parameters in
LLaMA-2 from 6.73B to 8.37B. In contrast, Lay-
TextLLM introduces a much smaller increase in
parameters.

Discussion on coordinate-as-tokens The sub-
performance of coordinate-as-tokens methods can
be attributed to the following three reasons: (1) The
coordinate-as-tokens approach tends to introduce
an excessive number of tokens, often exceeding the
pre-defined maximum length of Llama2-7B (i.e.,

4096). Consequently, this leads to a lack of crucial
OCR information, resulting in hallucination and
subpar performance. (2) When re-implementing
the coordinate-as-tokens method with Llama2-7B,
we did not introduce the ICL strategy, as it would
contribute additional length to the input sequence.
(3) The coordinate-as-tokens approach necessitates
a considerably larger-sized LLM to comprehend
the numerical tokens effectively.

G Results of ChartQA

As shown in Figure 6, the question-answer pairs in
ChartQA (Masry et al., 2022) tend to involve the
visual cues for reasoning. However, with only text
and layout information as input, the proposed Lay-
TextLLM inevitably have difficulties in reasoning
visual-related information. Thus, on the ChartQA
dataset, LayTextLLM can hardly achieve better
performance than previous methods that include
visual inputs. Although the visual information is
not used in LayTextLLM, it can still exhibit better
zero-shot ability than UniDoc (Feng et al., 2023b).
After incorporating the training set of ChartQA,
the performance of LayTextLLM can be boosted
to 42.2%. Considering the importance of visual
cues in ChartQA-like tasks, we will try to involve
the visual information into LayTextLLM in future
work. A preliminary discussion can be seen in
Appendix J.

H Inference with SG-KIE

As discussed in Section 4.6, incorporating SG-KIE
as an auxiliary task in SFT has been shown to en-
hance the performance of KIE tasks. In this section,
we investigate the effectiveness of using SG-KIE
as a direct inference task for KIE. The results are
shown in Table 11. We can observe that, for the
FUNSD− and CORD− datasets, SG-KIE inference
demonstrates improved performance. However, for
the SROIE− dataset, there is a slight decrease in
performance. We manually reviewed the problem-
atic cases of SG-KIE and identified two main rea-
sons for the performance drop: (1) incorrect format,
which leads to parsing errors such as “432.60[ SR
@ 6%[ <B-1013><B453> <B><B478> ]”, and
(2) ambiguous key types in the SROIE− dataset.
For instance, the key “total” can refer to “grand
total” and if the model has not been trained with
the dataset, SG-KIE may mistakenly localize it to
the wrong value. A notable instance of this issue
is shown in Figure 10. These types of errors occur
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Document-Oriented VQA KIE Num Params

Methods DocVQA InfoVQA VisualMRC Avg FUNSD CORD SROIE Avg

DocLLM 66.6 28.3 28.6 41.2 51.3 71.8 83.9 69.0 8.37B
LayTextLLM 74.6 36.6 32.6 47.9 54.8 86.0 91.3 77.4 6.76B

Table 9: Comparison of two layout adaptation methods, i.e., SLP in LayTextLLM and Disentangled Spatial Attention
in DocLLM.

ChartQA

OCR-free
UniDoc (Feng et al., 2023b) 10.9
DocPedia (Feng et al., 2023a) 46.9∗

Monkey (Li et al., 2023) 54.0∗

InternVL (Chen et al., 2023b) 45.6∗

InternLM-XComposer2 (Dong et al., 2024) 51.6∗

TextMonkey (Liu et al., 2024c) 58.2∗

TextMonkey+ (Liu et al., 2024c) 59.9∗

Qwen2-VL (Wang et al., 2024b) 61.9∗

Text + Coordinates
LayTextLLMzero (Ours) 30.2
LayTextLLMall (Ours) 42.6∗

Table 10: Comparison with SOTA OCR-free MLLMs
on ChartQA (accuracy). ∗ denotes the use of the
dataset’s training set.

frequently in the dataset.
For improvement, we observed that SG-KIE per-

forms better when processing complex answers
that require the aggregation of multiple consecutive
word-level OCR results, leading to more accurate
and complete outputs, as illustrated in Figure 11.

Dataset FUNSD− CORD− SROIE−

LayTextLLMzero 79.6 81.3 87.0
LayTextLLMzero−sg 80.0 81.9 86.0

Table 11: Inference with SG-KIE vs. without SG-KIE
(accuracy).

I Decoding Bounding Box Coordinates

We also evaluate the model’s ability to decode
bounding box embeddings into coordinates. Since
the SG-KIE task requires the model to generate
precise coordinates for answers, this task can be
used to assess the performance in accurately pre-
dicting bounding boxes. Specifically, we select
the examples with correct predictions for textual
answer and compute the Intersection over Union
(IoU) score (Rezatofighi et al., 2019) between the
predicted and ground truth coordinates. We tested
the on three datasets: FUNSD, which is not used to
train LayTextLLMzero. If the IoU exceeds 0.5, we
consider the bounding box prediction to be correct.

Accuracy is used as the metric to evaluate this capa-
bility, we compute accuracy for the coordinates for
both key and value. Results show that about 77.5%
bounding box is correctly predicted, cases are vi-
sualized in Figure 12. Also, we visualize the coor-
dinates prediction for the pre-training task—line-
level layout decoding—in Figure 13. Moreover,
SG-KIE produces coordinates, which is obviously
interpretable, and providing coordinates seems to
be more valuable for certain downstream tasks.

FUNSD LayTextLLMzero

Accuracy 77.5

Table 12: Coordinate prediction accuracy.

J Combination with MLLMs

As discussed in Limitation (Section 5), Lay-
TextLLM faces challenges with VQA tasks that
require the comprehension of visual elements such
as font, size, shape, objects, color, and other visual
attributes. To address this limitation, we conducted
a preliminary experiment combining LayTextLLM
with a MLLM to explore the potential of leveraging
visual information while preserving the strengths
of LayTextLLM.

Specifically, we upgrade the multimodal ver-
sion of LayTextLLM by building upon Qwen2-VL
and incorporating a SLP. For simplicity, neither
P-LoRA nor special tokens are introduced. we
layout-text alignment pre-trained and SFT the mod-
ified Qwen2-VL on the same datasets used for
LayTextLLMzero, resulting a Qwen2-VL-LayText
model. We also trained a counterpart of Qwen2-
VL-LayText by incorporating only OCR text, ex-
cluding layout information. This model, which
is identical in training settings to Qwen2-VL-
LayText, was named Qwen2-VL-Text and serves
as a baseline. The model performance can be seen
in Table 13. Although it shows a slight drop in
performance on VQA tasks, Qwen2-VL-LayText
achieves significant improvements in KIE tasks,
with an overall accuracy of 76.4% compared to

7268



67.7%. This further demonstrates the effectiveness
of interleaving layouts and text. Interestingly, sim-
ply adding OCR text (i.e., Qwen2-VL-Text) also
results in a notable improvement in KIE tasks when
paired with Qwen2-VL. We believe this is because
datasets with poor performance, such as CORD
and SROIE, primarily consist of text with small or
blurred fonts. In these cases, off-the-shelf OCR en-
gines still outperform MLLMs in text recognition.
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Document-Oriented VQA KIE
DocVQA InfoVQA Avg FUNSD CORD SROIE Avg

Metric ANLS %

Visual + Text + Coordinates
Qwen2-VL (Wang et al., 2024b) 81.4 45.2 63.3 53.2 71.3 78.8 67.7
Qwen2-VLtext 77.0 43.5 60.2 46.0 90.2 83.5 73.2
Qwen2-VLLayText 81.4 42.7 62.1 54.2 91.2 83.7 76.4

Table 13: Comparison with Qwen2-VL-LayText with other baselines (accuracy).

What is the date in this receipt?

2003

Anwsered  by LayTextLLM (Ours)

Anwsered  by Llama-7B-base

29 JUN 18

What is the total price in this receipt?

100.00

Anwsered  by LayTextLLM (Ours)

Anwsered  by Llama-7B-base

79.50✓

✖

✓

✖

what is the 10th service provided
under the 'services provided by
child welfare staff'?

Anwsered  by LayTextLLM (Ours)

Anwsered  by Llama-7B-base

✖

10th service provided under the 'services
provided by child welfare staff' is 'Licenses
children's institutions, agencies and day

✓
licenses independent full time and day
care homes

Which is the last financial year
(FY) listed under sub-heading
"Funding"?

1977

Anwsered  by LayTextLLM (Ours)

Anwsered  by Llama-7B-base

 FY 1978 ✓

✖

Figure 8: Qualitative comparison with the baseline method.
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(b) Attention map of the last layer.
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(c) Attention score visualization of
bounding box tokens.

Figure 9: Visualization of attention maps of LayTextLLM. Best viewed in color and with zoom. “<unk>” is the
placeholder for the bounding box token.

What is the "total" in the given document?

GroundTruth: 37.90

Our Prediction: 15.57[<B742> <B694> <B841> 
<B712> ]

Figure 10: A failure case of SG-KIE in SROIE−. The red box indicates the ground truth and the green box is the
prediction.

What is the content in the "application of 
shields:" field?

Normal Prediction: The displays are easily assembled 
and durable. Some questions have been raised conceming
the inability to be flush with the counter and / or 
against the register.

SG-KIE Prediction: application of 
shields:[<B110><B601><B260><B615> ]'s value is:\nThe
displays are easily assembled and durable. Some 
questions have been raised conceming the inability to be 
flush with the counter and / or against the register. As 
well as the ability to place this or the Back Bar if the 
settlement goes through[<B107><B594><B762><B720> ]

Figure 11: A good case of SG-KIE in FUNSD−. The red box indicates the ground truth value and the green box is
the key.
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(a) Question: what is the content in the "Date:" field?
Answer: December 9, 1999

(b) Question: what is the content in the "Pages (Including
Cover)" field?
Answer: 4

Figure 12: Illustration of coordinates prediction for entity linking task. The red box indicates the key text region and
the green box indicates the value text region.
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(a) FUNSD (b) FUNSD

(c) POIE

Figure 13: Illustration of coordinates prediction line-level layout decoding. Documents are subsampled from OOD
dataset. Red boxes are coordinates for line-level text regions.

7273


