
Findings of the Association for Computational Linguistics: ACL 2025, pages 7232–7251
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Towards Explainable Temporal Reasoning in Large Language Models: A
Structure-Aware Generative Framework

Zihao Jiang1∗, Ben Liu1*, Miao Peng2, Wenjie Xu1, Yao Xiao1, Zhenyan Shan1, Min Peng1†

1School of Computer Science, Wuhan University, China
2The Hong Kong University of Science and Technology (Guangzhou)

{jiangzihao,liuben123,vingerxu,y.xiao,bbcavendish,pengm}@whu.edu.cn
mpeng885@connect.hkust-gz.edu.cn

Abstract

While large language models (LLMs) show
great potential in temporal reasoning, most ex-
isting work focuses heavily on enhancing per-
formance, often neglecting the explainable rea-
soning processes underlying the results. To
address this gap, we introduce a comprehen-
sive benchmark covering a wide range of tem-
poral granularities, designed to systematically
evaluate LLMs’ capabilities in explainable tem-
poral reasoning. Furthermore, our findings re-
veal that LLMs struggle to deliver convincing
explanations when relying solely on textual
information. To address challenge, we pro-
pose GETER, a novel structure-aware genera-
tive framework that integrates Graph structures
with text for Explainable TEmporal Reasoning.
Specifically, we first leverage temporal knowl-
edge graphs to develop a temporal encoder that
captures structural information for the query.
Subsequently, we introduce a structure-text pre-
fix adapter to map graph structure features into
the text embedding space. Finally, LLMs gen-
erate explanation text by seamlessly integrat-
ing the soft graph token with instruction-tuning
prompt tokens. Experimental results indicate
that GETER achieves state-of-the-art perfor-
mance while also demonstrating its effective-
ness as well as strong generalization capabil-
ities. Our dataset and code are available at
https://github.com/carryTatum/GETER.

1 Introduction

Temporal reasoning (TR) is a fundamental cogni-
tive skill essential for understanding complex tasks
like planning and causal relation discovery (Xiong
et al., 2024). In natural language processing (NLP),
temporal reasoning refers to a model’s capability
to effectively comprehend, represent, and predict
time-sensitive contexts (Yang et al., 2024b). This
capability is critical for real-world applications that
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Query: Given the provide context, 
does the Police engage 
cooperation Citizen on 11-16？

Context: Police arrest Citzen on 
10-22. Police investigate Citzen on 
11-04. Police Make an appeal or 
reques Citizen on 11-13……………… 
Police express intent to meet or 
negotiate Citizen on 11-11. Police 
demand Lawyer on 10-31, Lawyer 
Accuse Citizen on 11-10

(a) Overlooking explanation behind the answer 

TKG

only give the answer

(c) Our methods incorporate structure information

No,  it is not plausible that Police engage 
cooperation Citizen on 11-16. Several factors 
support this prediction: 1. Police arrest 
Citzen on 10-22……there is no indication in 
the document of any intention by Police to 
enage in cooperation with Citzen……

(b) Unconvincing explanation

LLM

LLM Yes/No

Correct 
explanation

……..

Figure 1: An illustration of existing temporal reasoning
works highlights the lack of focus on explanations be-
hind the reasoning. Meanwhile, LLMs often struggle to
generate convincing answers due to hallucinations.

depend on temporal data, including search engine
recommendations (Bogina et al., 2023) and news
article aggregation (Wu et al., 2025).

Recently, large language models (LLMs) have
demonstrated remarkable performance in tackling
complex tasks (Wei et al., 2022; Huang and Chang,
2023; OpenAI, 2023; Peng et al., 2025; Liu et al.,
2025b). Building on this success, recent studies
have increasingly focused on exploring the TR ca-
pabilities of LLMs. These works primarily adopt
general approaches to evaluate and enhance the
TR capabilities of LLMs. For instance, Tan et al.
(2023) and Wei et al. (2023) design time-sensitive
queries to benchmark LLMs, while Wang and Zhao
(2024) and Chu et al. (2024) extend these efforts
by using prompting strategies like in-context learn-
ing (ICL) and Chain-of-Thought (CoT) reasoning
for comprehensive evaluation. Furthermore, Lee
et al. (2023) and Xia et al. (2024) employ ICL with
prompts containing intermediate reasoning steps to
guide models, while Liao et al. (2024) and Luo
et al. (2024) adopt fine-tuning methods, training
LLMs on reasoning process texts to enable them to
produce accurate answers.

Although existing methods have explored LLMs’
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potential in temporal reasoning, they exceedingly
focus on improving performance, often overlook-
ing the explainable reasoning processes behind the
results, as illustrated in Figure 1(a). The study
of explainable temporal reasoning is crucial, as
it promotes transparency, enhances effectiveness,
and fosters trust in understanding temporal dy-
namics. Moreover, with their impressive semantic
understanding and generation capabilities, LLMs
are uniquely positioned to address the challenges
of explainable reasoning (Wang et al., 2023; Ma
et al., 2024), as they can generate flexible, human-
readable reasoning processes. Therefore, we posit
the following research question to guide our study:
Can LLMs effectively make accurate predictions
and clearly explaining their reasoning processes in
complex temporal reasoning scenarios?

To address this challenge, we propose the ETR
benchmark, a comprehensive benchmark for ex-
plainable temporal reasoning. Specifically, ETR
consists of five datasets covering a wide range of
temporal granularities (minutes, days, and years).
Each instance is represented as a triple of <query
text, reasoning chains text, explanation text> where
the query and related reasoning chains are derived
from Temporal Knowledge Graphs (TKGs). The
explanation text is synthesized using GPT-4o (Ope-
nAI, 2023) with constrained generation prompt pro-
tocols, taking the query and reasoning chains as
input. The resulting explanation text effectively
integrates both the original gold prediction and the
underlying reasoning processes. ETR aims to chal-
lenge LLMs not only to predict future events from
the given reasoning chains text but also to generate
explanations of their reasoning processes.

Building on this benchmark, we identify that the
key to achieving explainable temporal reasoning
lies in enabling LLMs to capture structured patterns
that reflect the relationships and dynamics between
events over time. As shown in Figure 1(b), our
findings reveal that LLMs struggle to deliver con-
vincing explanations when relying solely on textual
information, a challenge (e.g. hallucinations) also
highlighted in previous analyses (He et al., 2024;
Liu et al., 2025a). To address this challenge, we
propose a novel structure-aware generative frame-
work GETER, which advances explainable tem-
poral reasoning by effectively bridging the gap be-
tween graph structures and text. Specifically, we
leverage TKGs to develop a temporal encoder that
captures structural information. Subsequently, the
encoder converts the query and reasoning chains

into a soft graph token, which is then mapped into
the LLM’s text space via a lightweight adapter.
Finally, LLM can generate explanation text by inte-
grating the soft graph token with instruction-tuning
prompt tokens, seamlessly combining structural
and contextual semantic information. Experimen-
tal results show that our proposed GETER achieves
state-of-the-art performance. In summary, the con-
tributions of this paper are as follows:

• We introduce ETR, a comprehensive bench-
mark covering a wide range of temporal gran-
ularities for systematically evaluating LLMs’
explainable temporal reasoning.

• To bridge the gap between graph struc-
tures and text, we propose GETER, a novel
structure-aware generative framework which
leverages a lightweight structure-text adapter
to enhance LLMs’ explainable temporal rea-
soning capabilities.

• Our GETER achieves state-of-the-art perfor-
mance on five datasets using widely-used
LLMs, demonstrating the superiority of our
model. Further experiments reveal the effec-
tiveness and strong generalization ability of
GETER.

2 Related Work

2.1 LLMs for Temporal Reasoning

With the rapid advancement of LLMs, research
has increasingly focused on evaluating and enhanc-
ing their temporal reasoning capabilities. Existing
studies primarily leverage the parametric knowl-
edge of LLMs to assess and improve performance.
For instance, several studies (Tan et al., 2023; Wei
et al., 2023) design time-sensitive queries to bench-
mark LLMs, while others (Wang and Zhao, 2024;
Chu et al., 2024) extend these efforts to diverse
temporal reasoning tasks using general evaluation
methods. Additionally, some methods (Lee et al.,
2023; Xia et al., 2024) utilize in-context learning by
providing prompts with demonstrations of interme-
diate reasoning steps to guide the model, whereas
fine-tuning methods (Liao et al., 2024; Luo et al.,
2024) train LLMs on reasoning texts to enable them
to generate accurate final answers. Despite these
advancements, most efforts focus on improving
performance through parametric knowledge, with
limited emphasis on explanation.

7233



2.2 Explainable Temporal Reasoning

In temporal reasoning tasks, explainability is cru-
cial for ensuring transparency, trust, and reliability.
Existing works for explainable temporal reason-
ing primary fall into two categories: logic rule-
based methods and reinforcement learning-based
methods. Logic rule-based methods (Liu et al.,
2022b; Lin et al., 2023; Mei et al., 2022) ensure
explainability through explicit rule templates but
struggle to balance generalization and explainabil-
ity in complex scenarios. Reinforcement learning-
based methods (Han et al., 2021; Sun et al., 2021)
construct reasoning paths guided by predefined re-
ward mechanisms. However, their explainability
is limited by the implicit nature of their decision-
making processes. In contrast, LLMs offer unique
advantages for explainable reasoning by leverag-
ing semantic understanding and generation capa-
bilities (Tan et al., 2023, 2024), enabling more
flexible and human-readable reasoning processes.
While Yuan et al. (2024) conduct a preliminary
exploration of LLM explainability, their work over-
looks finer-grained temporal dimensions evaluation
and fails to enhance LLMs through the integration
of temporal graph features.

3 Proposed ETR Benchmark

3.1 Problem Definition

Temporal Knowledge Graphs (TKGs) G are repre-
sented as a sequence of KGs (G0,G1, . . . ,Gt) ar-
ranged by timestamp t. Let G = (E ,R,F) be a
TKG instance, where E ,R, F represent the set of
entities, relations and facts, respectively. Each fact
can be represented as a quadruple (es, r, eo, t) ∈ F ,
where subject and object es, eo ∈ E , relation r ∈ R.
Explainable temporal reasoning aims to challenge
LLMs to predict future events based on reasoning
chains and generate explanations of their reasoning.
Formally, given reasoning chains C consisting of
facts F[tq−w,tq), the task is to predict the probabil-
ity that a query q will occur at future time tq, where
w is the window size. Based on this probability,
the model classifies q into one of three categories:
"Yes", "No", or "Unsure", and generates an expla-
nation for its prediction. The prediction and expla-
nation together form the final output A. To train
and evaluate the model, we define two types of in-
stances: training instances Ttrain and test instances
Ttest. These instances follow the extrapolation con-
dition (Jin et al., 2020), where the training time
(ttrain) strictly precedes the test time (ttest), i.e.,

ttrain < ttest. Each instance Ti consists of the fol-
lowing components: the query text Qi, the input
reasoning chains text Ci, and explanation text Ai,
formally defined as:Ti = {Qi, Ci,Ai}.

3.2 Pipeline

As illustrated in Figure 2, we present ETR, a com-
prehensive benchmark for Explainable Temporal
Reasoning. To accomplish this goal, we extract
reasoning chains for each query and generate expla-
nation text using GPT-4o. Additionally, we sample
negative and neutral examples in a similar manner
to provide a thorough evaluation of the LLMs. The
detailed construction process is outlined as follows.

3.2.1 Reasoning Chains Text Construction
To construct reasoning chains text, given a query
q = (es, r, eo, tq), we extract the graph reasoning
chains C(es, eo) associated with entities es and eo
using a breadth-first search (BFS) methods (Jiang
et al., 2023). The extraction process considers rea-
soning chains occurring within the time interval
[tq − w, tq) and is formalized as follows:

C(es, eo)←
l∧

i=1

(Ei, Ri, Ei+1, Ti), (1)

where E1 = es, El+1 = eo, l ∈ {1, 2} denotes
the path length. Here, Ei represents the entity, Ri

denotes the relation, and Ti is the corresponding
timestamp. Once these reasoning chains C(es, eo)
are extracted, they are converted into natural lan-
guage sentences to form the input text Ci.

3.2.2 Explanation Generation
Based on the query q = (es, r, eo, tq) and reason-
ing chains C(es, eo), we employ a template to gen-
erate an initial explanation text A′

i as follows:

We predict that [es] [r] [eo] will hap-
pen on [tq]. Here are the reasoning
steps: C(es, eo).

However, not all reasoning chains can adequately
justify the occurrence of the given query, and the
template-generated explanation text often exhibits
issues such as incoherence, unnatural flow, and
insufficient logical consistency, ultimately failing
to provide a clear and compelling rationale. To
address these limitations, we employ GPT-4o to
enhance the quality of the final explanations Ai,
guided by the prompt provided in Appendix A.1
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2. Explanation Generation

Temporal Knowledge Graph

Extract Reasoning 
Chains related to 

Query

1. Generate Reasoning Chains Text

TKG2NL

Query text

Reasoning 
chains text

Please revise the provided text to 
ensure that the prediction aligns 
with the reasoning steps. Expand 
the explanation of each reasoning 
step to make the text more 
coherent and readable……

LLM Polish 
& Revise

Template Explanation

3. Negative & Neutral Samples  

(Barack Obama,Consult,China,t)

Reasoning 
Chains Text

(Barack Obama,Consult,Japan,t)

(Barack Obama,Make a visit,China,t)

replace entity

replace relation
by NLI model

4. Data Control  

Q C A

Q C A

Q C A

Positive Sample

Negative Sample

Neutral Sample

Filter invalid 
answer  

Human 
annotation

ETR Benchmark

Steps 1,2

generate

neutral

contradiction 

Figure 2: The pipeline of generating ETR benchmark.

Dataset Time Granularity Type |Pos.| |Neg.| |Neu.| Total

ICEWS14 1 day
Train 5000 4800 4500 14300
Test 800 700 600 2100

ICEWS05-15 1 day
Train 4500 4400 4200 13100
Test 720 680 660 2060

ICEWS18 1 day
Train 4400 4200 4000 12600
Test 750 700 650 2100

GDELT 15 minutes
Train 4800 4600 4400 13800
Test 800 700 650 2150

WIKI 1 year
Train 2482 2504 2342 7328
Test 347 286 316 949

Table 1: Statistics of the ETR benchmark. |Pos.|,
|Neg.|, and |Neu.| denote the number of positive, neg-
ative, and neutral samples, respectively.

3.2.3 Negative and Neutral samples
To evaluate the ability of LLMs in explainable tem-
poral reasoning, particularly in inferring logical cor-
relations between the queries and historical facts,
we introduce negative and neutral samples. Nega-
tive samples are used to test the model’s ability to
reject logically inconsistent or counterfactual sce-
narios, while neutral samples assess its capacity to
infer uncertainty and ambiguity in scenarios with
insufficient evidence.

Negative Samples. Negative samples repre-
sent counterfactual queries. To achieve this goal,
we modify the positive query quadruple q =
(es, r, eo, tq) by replacing o with a different entity
o′, resulting in q′ = (es, r, e

′
o, tq), where q′ /∈ F .

This creates a hard negative sample that introduces
factual inconsistencies. Additionally, we derive
negative sample reasoning chains C(es, e′o) as de-
fined in Equation 1. Following a similar process

for positive samples, we design the corresponding
prompt for GPT-4o, detailed in Appendix A.2.

Neutral Samples. In neutral samples, LLMs are
expected to predict "unsure" for the query, as the
reasoning chain lacks sufficient evidence to support
or refute it. To construct these samples, we replace
the positive query relation q = (es, r, eo, tq) with
q′′ = (es, r

′, eo, tq), where r′ is a semantically neu-
tral relation to r and q′′ /∈ F . The neutral relation
r′ is identified using a Natural Language Inference
(NLI) model (He et al., 2023), which classifies
relationships into entailment, contradiction, and
neutral. We select r′ as neutral only if the NLI
model assigns P (neutral) > τ , where τ is a prede-
fined threshold. The reasoning chains for neutral
samples, C(es, eo), are consistent with those of pos-
itive samples. Details of the GPT-4o prompt are
provided in Appendix A.3.

3.3 Benchmark Summary and Evaluation

As summarized in Table 1, the proposed bench-
mark covers a wide range of temporal gran-
ularities. To achieve this goal, we use five
widely adopted temporal knowledge graph rea-
soning datasets: ICEWS14 (García-Durán et al.,
2018), ICEWS18 (Han et al., 2021), ICEWS05-
15 (García-Durán et al., 2018)), GDELT (Liao et al.,
2024), and WIKI (Leblay and Chekol, 2018). To
ensure the quality of the dataset, we filter out in-
valid answers and conduct human evaluation. Fur-
ther details refer to Appendix A.5.
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Large Language Models

(self Attention layers)

query

time tq

Reasoning Chains

Temporal Encoder

Temporal Knowledge Graph

Indexing

Adapter

train

<Instruction>:
Given the following document, is it plausible that 
<query description> will happen? Please answer 
yes, no, or unsure then explain your decision.

<Input>：
{Reasoning Chains text}

<Answer>：
{target explanation text}

graph embedding 

Pooling 

LLM Text Embedder

Instruct tuning 
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Lora

Target explanation tokens

graph 
token

encode

Figure 3: The overall framework of GETER. To bridge the gap between graph and text, we leverage TKGs to train
a temporal encoder that captures structural information. Subsequently, the query and reasoning chains are encoded
into a soft graph token, which is mapped into the text embedding space through a lightweight adapter. Finally, the
target explanation text is generated using the soft graph token and related instruction tuning prompt tokens.

4 Methodology

In this section, we present GETER, a novel
structure-aware generative framework that inte-
grates Graph structures with text for Explainable
TEmporal Reasoning. The overall architecture
of our proposed model is illustrated in Figure 3.
Specifically, we first leverage a temporal encoder
(Sec. 4.1) to obtain structural embeddings for both
entities and relations. Subsequently, we introduce a
structure-text prefix adapter as described in Sec. 4.2
to map graph structure features into the text embed-
ding space. Finally, we apply an instruction-tuning
strategy (Sec. 4.3) to effectively adapt the model to
the explainable temporal reasoning task.

4.1 Indexing

We aim to harness the semantic understanding and
temporal reasoning capabilities of LLMs for the ex-
plainable temporal reasoning task. However, rely-
ing solely on LLMs within a text-based prediction
framework to infer correlations between queries
and reasoning chains inevitably neglects the struc-
tural information in the TKG G. To address this,
we first employ a temporal encoder (TKG model),
such as RE-GCN (Li et al., 2021), which utilizes
the message-passing mechanism of GNNs to effec-
tively capture structural patterns, to generate the

structural representation sn:

sn = TemporalEncoder(xn|G) ∈ Rds , (2)

where xn represents the initialized embedding of
entity or relation n, and ds denotes the dimension
of the structural embedding. In this way, we get
entity embedding matrix E ∈ R|E|×ds and relation
embedding matrix R ∈ R|R|×ds , respectively.

4.2 Structure-Text Adapter
To effectively integrate structure-based embed-
dings of entities and relations with textual infor-
mation, we propose a soft prompt strategy that
combines structural and textual features in a con-
textualized manner. Specifically, given the query
q = (es, r, eo, t) and reasoning chains C(es, eo),
we compute the representation of the query and rea-
soning chains via parameter-free message passing
on the encoded structural features. The resulting
graph representation is then projected into the em-
bedding space of LLMs using a trainable projection
matrix Wp ∈ R3ds×dx , as follows:

SC(es,eo) =
∑

(e′s,r′,e′o)∈C(es,eo)
(e′s∥r′∥e′o), (3)

Sgraph = Wp ·
SC(es,eo) + Sq

|C(es, eo)|+ 1
, (4)

where ∥ denotes concatenation, Sq = (es∥r∥eo),
Sgraph is the projected graph representation, and
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dx denotes the dimension of embedding space of
LLMs. e′s ∈ R1×ds , r′ ∈ R1×ds , and e′o ∈ R1×ds

are the embeddings of the subject entity, relation,
and object entity, respectively. This straightfor-
ward linear mapping is adopted due to its proven
effectiveness in aligning graph-based and textual
representations (He et al., 2024; Liu et al., 2025a).

4.3 Instruction Tuning Strategy
The instruction tuning process is designed to adapt
the reasoning behavior of the LLM to align with
the specific constraints and requirements of the ex-
plainable temporal reasoning task. To facilitate the
generation of the target explainable text, we pro-
vide the corresponding query text Q and reasoning
chains text C(es, eo) as inputs to the LLM, which
produce their textual representations, denoted as
X = XQ +XC . Let X ∈ R|X|×dx represent the
textual content embeddings of the input, where |X|
denotes the token length of X . The final input to
the LLM is constructed by concatenating the soft
graph token embeddings Sgraph (as described in
Sec. 4.2) with the textual embedding, expressed as
X ′ = Sgraph∥X . Lastly, our optimization objec-
tive is to maximize the likelihood of generating the
target explanation text YA:

P (YA|X ′,XI) =
L∏

j=1

Pθ

(
yj
∣∣X ′,XI ,Y<j

)
,

(5)
where XI denotes the representation of instruction
tokens, L is the token length of the target expla-
nation text, and Y<j represents the prefix of the
missing explanation text sequence YA up to posi-
tion j − 1. Considering the overhead of updating
all parameters in LLMs, we adopt Low-Rank Adap-
tation (LoRA) technique (Hu et al., 2022) for its
effectiveness (Liu et al., 2022a). The example of
instruction data can be seen in Appendix A.4.

5 Experiments

5.1 Experiments Setup
Baselines. We evaluate our benchmark with four
representative LLMs: GPT-4o (OpenAI, 2023),
Llama3-8B-Instruct (Dubey et al., 2024), Qwen2.5-
7B-Instruct (Yang et al., 2024a), and Mistral-7B-
Instruct-v0.3 (Jiang et al., 2024). For our frame-
work, we adopt open-source LLMs as backbones
and use RE-GCN (Li et al., 2021) as temporal en-
coder. Implementation details refer to Appendix B.
Furthermore, performance comparisons with four

graph-based methods (RE-GCN, CEN (Li et al.,
2022), CENET (Xu et al., 2023), and SiMFy (Liu
et al., 2023)) are presented in Appendix C.1.
Metrics. We evaluate explainable temporal rea-
soning capabilities of models in two aspects: pre-
diction and explanation. For prediction, we re-
port precision, recall, and F1 scores. For ex-
planation, we employ BLEU (Papineni et al.,
2002) (4-gram), ROUGE (Lin, 2004) (ROUGE-
L), METEOR (Banerjee and Lavie, 2005), and
BertScore (Zhang et al., 2020) to measure the simi-
larity between model-generated explanations and
the ground truth in the test set.

5.2 Main results
In our experiments, we compare GETER with
two model configurations: 1) Inference-only (zero-
shot): Utilizing a frozen LLM to generate expla-
nations directly without any additional training. 2)
Tuned-only: Fine-tuning the LLM using LoRA
to enhance its performance on the task. Table 2
presents the prediction results, while Table 3 sum-
marizes the explanation results. Overall, GETER
demonstrates consistent and significant improve-
ments across most metrics on both datasets, high-
lighting the effectiveness of the proposed approach.
Further comparisons with graph-based methods are
provided in Appendix C.1.

Prediction Results. Table 2 reports the predic-
tion evaluation metrics for each LLM. The results
show that both the Tuned-only setting and GETER
methods significantly outperform Inference-only
setting methods. This performance gap arises be-
cause fine-tuning allows models to better capture
task-specific temporal patterns and improve log-
ical consistency. Notably, GETER with Mistral
demonstrates substantial improvements of 97.95%,
95.55%, and 101.58% in overall F1 scores com-
pared to the best-performing Inference-only model
GPT-4o. Furthermore, compared to Tuned-only
methods, GETER with Mistral achieves overall
F1 score improvements of 11.10%, 10.71%, and
7.54% across the three datasets. These results fur-
ther underscore that GETER can effectively lever-
age the structural information of TKGs to enhance
its explainable temporal reasoning capabilities.

Explanation Results. Table 3 presents the eval-
uation metrics for explanation generation. GETER
demonstrates remarkable improvements across all
key metrics. Specifically, compared to GPT-4o,
GETER with Mistral achieves substantial enhance-
ments in BLEU-4 scores across the three datasets,
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Models
Types

Datasets ICEWS14 GDELT ICEWS05-15
Positive Negative Neutral Overall Positive Negative Neutral Overall Positive Negative Neutral Overall

GPT-4o
zero-shot w/o chains text 53.13 20.02 12.95 30.61 19.08 43.78 25.50 29.06 55.45 26.33 15.47 33.03

zero-shot 60.10 9.54 48.56 39.95 42.74 37.16 29.21 36.83 61.63 11.89 47.16 40.58

Llama3-8B-Instruct

zero-shot w/o chains text 21.69 27.11 35.42 27.42 1.95 33.13 39.44 23.44 11.75 28.98 39.41 26.30
zero-shot 56.51 10.20 6.20 26.70 53.48 15.62 29.47 33.90 57.14 17.50 14.03 30.24

LoRA w/o chains text 62.27 36.98 48.17 49.81 61.94 7.19 69.14 46.29 65.67 38.56 68.02 57.47
LoRA 70.37 58.06 67.99 65.59 62.86 28.57 78.56 56.44 71.32 51.77 74.40 65.86

GETER 75.07 67.38 81.15 74.25 62.62 68.74 88.73 72.51 78.58 75.95 91.48 81.84
∆Improve 6.68% 16.05% 19.36% 13.20% -0.38% 140.54% 12.95% 28.49% 10.18% 46.70% 22.96% 24.26%

Qwen2.5-7B-Instruct

zero-shot w/o chains text 23.61 42.54 14.73 27.39 11.27 44.92 19.81 24.81 31.71 39.45 15.82 29.17
zero-shot 53.08 45.32 11.41 38.59 22.22 48.23 1.21 24.34 40.81 48.32 1.75 30.78

LoRA w/o chains text 62.82 58.59 71.97 64.03 31.28 52.11 12.41 32.36 55.33 68.65 85.89 69.52
LoRA 74.60 65.64 75.62 71.90 22.39 56.61 66.79 46.95 66.83 70.95 84.09 73.72

GETER 76.41 74.61 84.49 78.12 63.77 70.06 88.42 73.27 78.23 72.95 89.90 80.23
∆Improve 2.43% 13.66% 11.73% 8.65% 184.86% 23.77% 32.39% 56.04% 17.06% 2.82% 6.91% 8.83%

Mistral-7B-Instruct

zero-shot w/o chains text 3.65 39.44 46.44 27.81 5.52 40.64 23.50 22.39 7.56 33.21 46.10 28.37
zero-shot 22.04 27.64 40.76 29.26 0.99 24.93 43.23 21.55 17.73 29.80 49.69 31.96

LoRA w/o chains text 58.04 65.44 80.03 66.79 19.45 58.16 71.52 47.80 70.81 39.12 75.80 61.95
LoRA 72.96 66.49 74.28 71.18 60.56 55.09 81.29 65.05 72.53 71.95 84.18 76.07

GETER 77.45 75.73 85.15 79.08 61.29 68.92 88.59 72.02 78.94 76.48 90.38 81.80
∆Improve 6.15% 13.89% 14.63% 11.10% 1.21% 25.11% 8.98% 10.71% 8.84% 6.30% 7.36% 7.54%

Table 2: F1 scores (%) of each model on the ICEWS14, GDELT, and ICEWS05-15 test instances. "Overall"
represents the weighted average F1 score. w/o chains text refers to the absence of reasoning chain input for LLMs.
The best-performing results are highlighted in bold. ∆Improve represents the relative improvements of GETER
compared to Tuned-only methods. Additional datasets and detailed prediction results are provided in Appendix E.

Models
Types

Datasets ICEWS14 GDELT ICEWS05-15
BLEU-4 rougeL METEOR BertScore (F1) BLEU-4 rougeL METEOR BertScore (F1) BLEU-4 rougeL METEOR BertScore (F1)

GPT-4o
zero-shot w/o chains text 10.78 23.82 31.14 68.16 5.95 21.30 26.84 64.73 10.74 23.63 30.94 68.00

zero-shot 22.94 41.04 37.24 79.25 9.16 27.61 32.32 70.91 22.64 40.83 36.27 79.16

Llama3-8B-Instruct

zero-shot w/o chains text 4.35 16.32 16.71 61.35 2.38 13.41 17.03 56.98 2.27 12.88 10.53 58.28
zero-shot 9.70 30.19 26.60 70.25 5.61 27.10 25.73 67.42 10.08 31.13 27.44 70.02

LoRA w/o chains text 27.73 39.71 45.94 80.16 18.12 37.05 35.92 77.51 27.59 39.63 45.80 80.17
LoRA 39.21 50.96 54.03 84.28 34.32 54.84 51.49 83.75 42.98 54.50 56.65 85.45

GETER 40.54 52.54 53.87 84.75 34.46 55.42 51.75 83.62 45.98 57.27 58.16 86.39
∆Improve 3.39% 3.10% -0.30% 0.56% 0.41% 1.06% 0.50% -0.16% 6.98% 5.08% 2.67% 1.10%

Qwen2.5-7B-Instruct

zero-shot w/o chains text 7.43 19.73 30.82 66.03 3.76 17.90 28.25 63.15 7.81 19.87 30.27 65.94
zero-shot 11.18 28.49 27.98 72.28 7.55 26.90 25.97 70.00 10.53 28.53 26.32 72.04

LoRA w/o chains text 28.17 40.22 45.20 80.12 17.15 36.89 34.52 75.71 28.60 40.52 45.76 80.39
LoRA 39.59 51.48 53.30 84.35 26.10 47.30 43.85 79.93 43.55 55.01 56.22 85.62

GETER 39.78 51.46 55.03 84.53 33.81 54.76 50.18 83.59 44.72 56.17 57.22 86.01
∆Improve 0.48% -0.04% 3.25% 0.21% 29.54% 15.76% 14.44% 4.58% 2.69% 2.11% 1.78% 0.46%

Mistral-7B-Instruct

zero-shot w/o chains text 7.17 19.40 24.27 65.46 4.89 18.20 25.78 63.60 7.24 19.29 23.26 65.10
zero-shot 9.19 28.36 25.70 71.63 7.46 27.96 25.99 70.43 7.95 27.40 23.60 70.73

LoRA w/o chains text 28.01 39.84 45.70 80.34 18.22 38.08 35.74 76.76 28.26 40.13 45.96 80.45
LoRA 38.81 50.81 52.62 84.02 30.93 52.24 47.28 82.28 43.03 54.56 55.94 85.47

GETER 40.21 51.84 54.90 84.65 32.18 53.27 49.06 82.83 45.07 56.48 57.70 86.13
∆Improve 3.61% 2.03% 4.33% 0.75% 4.04% 1.97% 3.77% 0.67% 4.74% 3.52% 3.14% 0.77%

Table 3: The semantic similarity performance (%) of each model on the ICEWS14, GDELT, and ICEWS05-15 test
instances. w/o chains text refers to the absence of reasoning chain input for LLMs. The best-performing results are
highlighted in bold. Additional dataset explanation results are presented in Appendix E.

with gains of 75.28%, 251.31%, and 99.07%, re-
spectively. These results highlight GETER’s ability
to leverage high-quality fine-tuning datasets to en-
hance explainable temporal reasoning capabilities.

No. Model ICEWS14 GDELT ICEWS05-15

1 GETER 79.08 72.02 81.80
2 GETER w/o STA 71.18(↓7.90) 65.05(↓6.97) 76.07(↓5.73)
3 GETER w/o RCT 72.05(↓7.03) 68.89(↓3.13) 77.82(↓3.98)
4 GETER w/o (STA & RCT) 66.79(↓12.29) 47.80(↓24.22) 61.95(↓19.85)

Table 4: Ablation study of GETER with Mistral on
ICEWS14, GDELT, and ICEWS05-15 datasets using
overall F1 scores (%). STA denotes structure-text
adapter, while RCT denotes reasoning chains text.

5.3 Ablation Study

In this subsection, we conduct an ablation study
to investigate the individual contributions of dif-
ferent components in GETER. The results for var-
ious variants are presented in Table 4, indicating
that all modules are essential, as removing any of
them leads to a decline in performance. Notably,
to validate the usefulness of the structural infor-
mation provided by GETER, we directly removed
the structure-text adapter from the model (Line 2).
This ablation results in overall F1 score reductions
of 11.10%, 10.71%, and 7.53% across the three
datasets, respectively. These results demonstrate
that the soft graph token with lightweight adapter
can effective capture the structural characteristics
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for the query. Additionally, as shown in Line 3 of
Table 4, removing the reasoning chains text leads
to a significant performance decline, with F1 scores
dropping by 9.76%, 10.71%, and 5.11% across the
three datasets, respectively. This result highlights
the importance of reasoning chains text, as they
provide sequenced evidence that enriches the con-
textual background. Furthermore, we observe that
GETER scheme significantly outperforms the base
model that directly adopts instruction tuning (Line
4). This demonstrates the effectiveness of GETER,
which combine structural and contextual seman-
tic information to activate and harness the LLM’s
capability for explainable temporal reasoning.

5.4 Discussion

In this subsection, we conduct further analysis of
the impact of different temporal encoders, the influ-
ence of MLP depth, and the effect of various rea-
soning chain serialization formats on the model’s
performance. All experiments are conducted using
Mistral for its superior performance. Additionally,
we present a complexity analysis in Appendix C.2
and a case study in Appendix D to further highlight
the advantages of our proposed method.
Q1: What is the impact of different temporal
encoders on GETER’s performance? To evalu-
ate the impact of different temporal encoders, we
also integrate CEN, CENET, and SiMFy into the
our framework, as described in 5.1. The perfor-
mance comparison is illustrated in Figure 4. The
results demonstrate that GETER achieves consis-
tently high performance across two datasets when
paired with any of the three temporal encoders, sig-
nificantly outperforming methods that rely solely
on LoRA. These findings demonstrate that GETER
is robust to variations in temporal encoders. Details
about temporal encoders refer to Appendix B.1.
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Figure 4: Comparison of GETER with different tempo-
ral encoders on the ICEWS14 and GDELT datasets in
terms of overall F1 scores (%).
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Figure 5: MLP depth comparison on ICEWS14 and
GDELT datasets in terms of overall F1 scores (%).

Model Positive Negative Neutral Overall

GETER (paths order) 77.45 75.73 85.15 79.08
descending order 80.53 76.00 86.34 80.68
ascending order 77.72 77.52 86.04 80.03
random order 75.02 76.31 82.45 77.57

Table 5: Performance (F1 (%)) of GETER with different
reasoning chain formats on the ICEWS14 dataset.

Q2: How does the depth of the MLP affect
GETER’s performance? GETER uses a one-layer
MLP to map the graph structure feature into the text
embedding space. To investigate whether deeper
neural structures improves performance, we con-
duct experiments to replace the one-layer MLP
with deeper variants. The results on the ICEWS14
and GDELT datasets are presented in Figure 5. We
can observe that increasing model complexity has
minimal impact on performance. This is likely
because deeper structures fail to capture evolving
structural information more effectively.

Q3: What is the effect of different reasoning
chain text formats on GETER’s performance?
We further investigate how GETER utilizes rea-
soning chain text, which provides contextualized
background information for queries. Specifically,
we evaluate three different serialization formats
based on the timestamp of quadruples: ascending,
descending, and random. As shown in Table 5,
the model achieves the best performance with the
descending order format. Surprisingly, even with
random serialization, GETER still maintains com-
petitive performance. This is attributed to the struc-
tured adapter in GETER, which effectively couple
structure and text information in a contextualized
manner. These findings further highlight the robust-
ness and adaptability of our proposed GETER.
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6 Conclusion

We introduce a comprehensive benchmark cover-
ing a wide range of temporal granularities for sys-
tematically evaluating LLMs’ explainable tempo-
ral reasoning. To address the challenge of LLMs
struggling to deliver convincing explanations, we
propose a novel structure-aware generative frame-
work GETER, which effectively bridges the gap
between graph structures and text by through a
lightweight structure-text adapter. Extensive exper-
iments validate the effectiveness and robustness of
our proposed GETER.

Limitations

GETER can effectively activate and harness the ex-
plainable reasoning ability of LLMs by incorporate
the graph structural information into the LLMs.
However, the extremely large number of param-
eters in LLMs makes fine-tuning them resource-
intensive. At the same time, LLMs are notoriously
slow at decoding during inference. In our experi-
ment, we use DeepSpeed (Rajbhandari et al., 2020)
to accelerate training and inference. Additionally,
some reasoning chains may introduce noisy text,
which could negatively affect explainable temporal
reasoning performance.

Ethics Statement

In developing this explainable temporal reasoning
benchmark, all data used in this study are publicly
available and do not pose any privacy concerns.
Additionally, we have carefully considered ethical
issues and limitations commonly associated with
large language models. Nonetheless, we acknowl-
edge that, despite our best efforts, the benchmark
may still contain gaps or unintended biases. To
mitigate this, the source data has been meticulously
curated to ensure diversity and minimize potential
biases. Through rigorous design and testing pro-
cesses, we strive to uphold ethical AI principles
while advancing research in temporal reasoning.
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A Benchmark Details

A.1 Prompt for Generating Explanations of
Positive Samples

Prompt for Positive Samples’ Explanation

Given the following text: "we predict
that [es] [r] [eo] will happen on [tq].
Here are the reasoning steps: C(es, eo)."
Please revise the provided text to ensure
that the prediction aligns with the rea-
soning steps. Expand the explanation
of each reasoning step to make the text
more coherent and readable. If neces-
sary, add additional reasoning steps to
clarify the logic. The output should be
a single, concise paragraph without bul-
let points, ensuring clarity and logical
consistency.

A.2 Prompt for Generating Explanations of
Negative Samples

Prompt for Negative Samples’ Explanation

Given the following text: "It is plausible
that [es] [r] [e′o] will not happen on [tq].
Here are the reasoning steps: C(es, e′o)."
Please revise the provided text to ensure
that the prediction aligns with the rea-
soning steps. Expand the explanation
of each reasoning step to make the text
more coherent and readable. If neces-
sary, add additional reasoning steps to
clarify the logic. The output should be
a single, concise paragraph without bul-
let points, ensuring clarity and logical
consistency.

A.3 Prompt for Generating Explanations of
Neutral Samples

Prompt for Neutral Samples’ Explanation

Given the following text: "It is unsure
that [es] [r′] [eo] will happen on [tq].
Here are the reasoning steps: C(es, eo)."
Please revise the provided text to ensure
that the prediction aligns with the rea-
soning steps. Expand the explanation
of each reasoning step to make the text
more coherent and readable. If neces-
sary, add additional reasoning steps to
clarify the logic. The output should be
a single, concise paragraph without bul-
let points, ensuring clarity and logical
consistency.

A.4 Example Prompt for Instruction Tuning

Here is an example of an instruction tuning prompt
for the query: (Police (Australia), Make an appeal
or request, Citizen (Australia), 2014-03-12).

Example Prompt for Instruction Tuning

Instruct: Given the following document,
is it plausible that Police (Australia) will
Make an appeal or request Citizen (Aus-
tralia) on 2014-03-12? Please answer
yes, no, or unsure then explain your de-
cision.

Input: Police (Australia) Appeal for aid
Citizen (Australia) 2014-02-10. Police
(Australia) Arrest, detain, or charge with
legal action Citizen (Australia) 2014-
02-25. Police (Australia) Arrest, de-
tain, or charge with legal action Citi-
zen (Australia) 2014-03-04. ...... Po-
lice (Australia) Arrest, detain, or charge
with legal action Criminal (Australia) on
2014-02-27, Criminal (Australia) Sexu-
ally assault Citizen (Australia) on 2014-
03-08......

Output: Yes. Based on the information
provided, it is plausible that the Police in
Australia will make an appeal or request
to citizens on March 12, 2014. This pre-
diction is supported by a pattern of inter-
actions between the police and citizens
leading up to this date. The police have
previously made appeals or requests to
citizens on several occasions, including
February 23, February 26, and March
11, 2014. Additionally, the police have
been actively involved in various actions
such as arrests, detentions, and investi-
gations, indicating a heightened level of
engagement with the public. The police
have also been involved in more severe
actions, such as using conventional mili-
tary force and fighting with small arms,
which suggests a context of ongoing ten-
sion or conflict. Given this backdrop, it
is reasonable to anticipate that the po-
lice might continue their efforts to com-
municate with citizens, possibly to seek
cooperation or provide updates on on-
going situations. Therefore, considering
the frequency and nature of past interac-
tions, it is likely that the police will make
another appeal or request to citizens on
March 12, 2014.

A.5 Benchmark Summary and Evaluation

The statistical details of the source data used
to construct the benchmark are provided in Ta-
ble 6. The data consist of three sources: the Inte-
grated Crisis Early Warning System (ICEWS), the
Global Database of Events, Language, and Tone
(GDELT), and Wikipedia (WIKI). Specifically, the
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Datasets #train #valid #test #entity #relations time gap
ICEWS14 74854 8514 7371 7128 230 1 day
ICEWS18 373018 45995 49545 23033 256 1 day
ICEWS05-15 368868 46302 46159 10094 251 1 day
GDELT 79319 9957 9715 5850 238 15 minutes
WIKI 539286 67538 63110 12554 24 1 year

Table 6: Dataset statistics.

ICEWS14 dataset includes events from 2014, the
ICEWS18 dataset includes events from 2018, and
the ICEWS05-15 dataset spans events from 2005
to 2015. The GDELT dataset records events at 15-
minute intervals, while WIKI consists of Wikidata
knowledge bases that store factual information with
a time interval of one year. To ensure the quality
and reliability of our dataset, we recruited three vol-
unteers to evaluate the benchmark. Each volunteer
assessed 200 randomly selected examples from the
dataset. They were instructed to perform two key
evaluations, assigning scores on a scale of 1 to 3
based on the following criteria:

Explanation Text Quality (1-3):

• 1 - The explanation is unclear, incoherent, or
unreasonable.

• 2 - The explanation is somewhat clear and rea-
sonable but lacks coherence or completeness
in certain aspects.

• 3 - The explanation is clear, coherent, and
fully reasonable.

Overall Consistency (1-3):

• 1 - The query text, reasoning chain, and ex-
planation text are inconsistent or logically dis-
connected.

• 2 - There is partial consistency among the
query text, reasoning chain, and explanation
text, but logical gaps remain.

• 3 - The query text, reasoning chain, and expla-
nation text are fully consistent and logically
aligned.

The results of the human evaluation, as shown in
Table 7, demonstrate a high level of accuracy and
reliability in our benchmark generation process.

B Implementation Details

B.1 Baselines
Below, we provide brief introductions to the LLMs
used in our methods:

Volunteer Explanation Text Quality Overall Consistency
Volunteer 1 2.80 2.78
Volunteer 2 2.74 2.79
Volunteer 3 2.86 2.89

Table 7: Average scores for Explanation Text Quality
and Overall Consistency by Volunteers.

• GPT-4o (OpenAI, 2023) is a large language
model developed by OpenAI, representing an
advanced iteration of the GPT series. It is
known for its strong generalization capabili-
ties across a wide range of natural language
processing tasks, including reasoning, genera-
tion, and instruction-following.

• Llama-3.1-8B-Instruct (Dubey et al., 2024)
is an instruction-tuned version of the Llama3
series, with 8 billion parameters. The tuned
versions use supervised fine-tuning (SFT) and
reinforcement learning with human feedback
(RLHF) to align with human preferences for
helpfulness and safety.

• Qwen2.5-7B-Instruct (Yang et al., 2024a) is
the latest series of Qwen large language mod-
els. It focuses on optimizing performance for
instruction-based tasks.

• Mistral-7B-Instruct-v0.3 (Jiang et al., 2024) is
a 7-billion-parameter instruction-tuned model
with an extended 32,768-token vocabulary, v3
tokenizer support, and function calling capa-
bilities for improved task performance.

We also introduce the graph-based methods (tem-
poral encoders) utilized in our methods:

• RE-GCN (Li et al., 2021) proposes a recurrent
evolution module based on relational GNNs
to obtain embeddings that contain dynamic
information for entities and relations.

• CEN (Li et al., 2022) uses a length-aware Con-
volutional Neural Network(CNN) to handle
evolutional patterns of different lengths via an
easy-to-difficult curriculum learning strategy.

• CENET (Xu et al., 2023) aims to learn a robust
distribution over the entire entity set and iden-
tify significant entities by leveraging both his-
torical and non-historical dependencies within
a contrastive learning framework.

• SiMFy (Liu et al., 2023) is a straightforward
method that combines MLP and historical fre-
quency to model the temporal events.
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B.2 Hyperparameters
We set the window size w to 30 and the threshold
τ to 0.7 for constructing our benchmark. During
training, the RE-GCN module is kept frozen, and
LoRA is employed to fine-tune the model. The
structural embedding size ds is set to 512, while
the textual embedding size dx retains the original
hidden layer dimensions of each LLM. The de-
tailed hyperparameters used during training and
inference are provided in Table 8. For optimization,
we enable DeepSpeed ZeRO stage3 1. All models
are trained and evaluated on 2 Nvidia A800 GPUs,
each with 80GB of memory.

Name Value

lora r 16
lora alpha 32

lora dropout 0.05
lora target modules (q, k, v, o, down, up, gate) proj

cutoff len 2048
epochs 3

per device batch size 6
gradient accumulation steps 1

learning rate 3e− 4
weight decay 1e− 5
warm ratio 0.01

lr scheduler type cosine
num return sequences 10

projection layers 1

Table 8: Detailed hyperparameters used in our paper.

C Additional Comparative Study Results

C.1 Comparison with Graph-based Methods
To provide a comprehensive comparison, we also
evaluate four state-of-the-art graph-based meth-
ods(REGCN, CEN, CENET, and SiMFy) in com-
parison with our method on the task. Specifically,
for the query (es, r, eo, tq), we utilize an MLP to
adapt to our task, as defined below:

P = Wquery(es ∥ r ∥ eo)
where ∥ denotes the concatenation operation, P ∈
R3, es ∈ R1×ds , r ∈ R1×ds , and eo ∈ R1×ds .
Here, Wquery ∈ R3×3ds is a learnable weight ma-
trix, and ds represents the embedding dimension.

The prediction results are presented in Table 9
through Table 11. We can observe that GETER
significantly outperforms existing graph-based in
terms of prediction results. Furthermore, our ap-
proach provides human-readable inference pro-
cesses, ensuring greater interpretability. In contrast,

1https://github.com/microsoft/
Megatron-DeepSpeed

Model
ICEWS14 GDELT

Positive Negative Neutral Overall Positive Negative Neutral Overall

RE-GCN 52.76 55.00 75.38 59.97 57.62 59.39 84.18 66.22
CEN 61.25 53.01 76.24 62.79 60.29 61.42 86.93 68.71
CENT 55.03 60.82 78.27 63.60 61.34 62.71 87.98 69.84
SiMFy 53.40 63.03 78.92 63.90 63.30 60.91 88.23 70.06

GETER 77.45 75.73 85.15 79.08 61.29 68.92 88.59 72.02

Table 9: F1 scores (%) of different graph-based methods
on ICEWS14 and GDELT datasets.

Model
ICEWS05-15 ICEWS18

Positive Negative Neutral Overall Positive Negative Neutral Overall

REGCN 65.10 63.53 83.57 70.50 62.13 58.81 81.53 67.03
CENET 67.29 64.17 89.44 73.36 61.99 64.45 84.90 69.90
CEN 63.27 65.57 86.88 71.59 59.82 60.86 79.19 66.16
SiMFy 67.61 66.95 89.14 74.29 60.88 62.61 82.34 68.10

GETER 78.94 76.48 90.38 81.80 75.61 75.94 87.51 79.40

Table 10: F1 scores (%) of different graph-based meth-
ods on ICEWS05-15 and ICEWS18 datasets.

Model
WIKI

Positive Negative Neutral Overall

REGCN 75.27 70.38 77.65 74.59
CENET 76.11 77.06 83.51 78.86
CEN 74.36 76.04 82.25 77.49
SiMFy 79.03 77.39 81.53 79.40

GETER 99.28 94.49 96.19 96.81

Table 11: F1 scores (%) of different graph-based meth-
ods on the WIKI dataset.

ICEWS14 GDELT ICEWS05-15 ICEWS18 WIKI0

1

2

3

4

5

6

Tr
ai

ni
ng

 T
im

e 
(h

ou
rs

)

4.98

4.26 4.03 4.17

0.94

5.14

4.39 4.16 4.31

1.07

Lora-only
GETER

Figure 6: Comparison of training time between GETER
and the LoRA fine-tuning method. The Y-axis repre-
sents the training time (hours).

the intrinsic property of these graph-based meth-
ods is that they are black-box models, inherently
lacking explainability and unable to generate expla-
nation text. The detailed results of the prediction
experiments are summarized in Table 20.

C.2 Complexity Analysis of GETER

LLM applications often face challenges related to
high computational costs due to the large number
of model parameters. Specifically, for our method
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GETER, during the training and inference stages,
the complexity is O(|L1|2 · |L2|) for the input-
answer pair, where |L1| represents the length of
the input text and |L2| represents the length of the
answer. Considering the costs, we leverage Low-
Rank Adaptation (LoRA) and DeepSpeed to ac-
celerate both training and inference. Additionally,
for a clearer comparison, we present the training
time of GETER against LoRA fine-tuning meth-
ods across five datasets in Figure 6. The results
demonstrate that incorporating graph tokens into
LLM fine-tuning introduces minimal additional
time costs compared to simple LoRA fine-tuning.
Furthermore, given the significant performance im-
provements achieved by our method, as detailed in
Section 5.2, we consider these additional costs to
be negligible.

D Case Study

In this section, we present a case study to highlight
the differences in responses among Inference-only
method, Tuned-only method, and GETER. Specif-
ically, we analyze the following positive query:
(Police (Australia), Engage in material coopera-
tion, Citizen (Australia), 2014-11-16), where the
expected label is "Yes". As shown in Table 12,
Inference-only method fail to capture the subtle co-
operative signals embedded within the document
(highlighted in orange), instead focusing primarily
on dominant antagonistic actions, such as arrests
and accusations, which result in incorrect negative
predictions. While Tuned-only method can observe
cooperative signals and demonstrate an improved
ability to incorporate the temporal aspects of events,
they struggle to fully model the interplay between
cooperative and antagonistic actions (highlighted
in blue), leading to comparable negative predic-
tions. In contrast, GETER effectively captures the
evolving patterns of event relationships and coop-
erative signals (highlighted in red). By leveraging
explicit cues, such as requests and expressed in-
tentions to cooperate, GETER not only predicts a
positive outcome accurately but also provides the
correct explanation.

E Full Experimental Results

The prediction results for the ICEWS18 and WIKI
datasets are summarized in Table 13, while the
explanation results are detailed in Table 14. No-
tably, GETER demonstrates consistent and signif-
icant improvements across most metrics on these

two datasets, underscoring its robustness and supe-
rior performance in complex scenarios. Compared
to Tuned-only methods, GETER combined with
Mistral achieves overall F1 score improvements
of 16.42% and 10.35% on the respective datasets.
Additionally, the detailed prediction results for all
five datasets are comprehensively summarized in
Table 15 through Table 20.
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Query: Police (Australia) will Engage in material cooperation Citizen (Australia) on 2014-11-16

Instruction: Given the following document, is it plausible that Police (Australia) will Engage in material
cooperation Citizen (Australia) on 2014-11-16? Please answer yes, no, or unsure then explain your
decision.
Input: Police (Australia) Arrest, detain, or charge with legal action Citizen (Australia) 2014-11-12. Police
(Australia) Arrest, detain, or charge with legal action Citizen (Australia) 2014-11-13. Police (Australia)
Arrest, detain, or charge with legal action Citizen (Australia) 2014-11-14. Police (Australia) Accuse Citizen
(Australia) 2014-11-02. Police (Australia) Accuse Citizen (Australia) 2014-11-09. Police (Australia) Accuse
Citizen (Australia) 2014-11-10. Police (Australia) Make an appeal or request Citizen (Australia) 2014-
11-12. Police (Australia) Make an appeal or request Citizen (Australia) 2014-11-13. Police (Australia)
Make an appeal or request Citizen (Australia) 2014-11-14. Police (Australia) fight with small arms
and light weapons Citizen (Australia) 2014-11-09. Police (Australia) fight with small arms and light
weapons Citizen (Australia) 2014-11-12. Police (Australia) fight with small arms and light weapons Citizen
(Australia) 2014-11-14. Police (Australia) Use conventional military force Citizen (Australia) 2014-10-
22. Police (Australia) Use conventional military force Citizen (Australia) 2014-10-24. Police (Australia)
Use conventional military force Citizen (Australia) 2014-11-10. Police (Australia) Investigate Citizen
(Australia) 2014-11-03. Police (Australia) Investigate Citizen (Australia) 2014-11-04. Police (Australia)
Investigate Citizen (Australia) 2014-11-09. Police (Australia) Express intent to meet or negotiate Citizen
(Australia) 2014-10-24. Police (Australia) Express intent to meet or negotiate Citizen (Australia) 2014-11-
11. Police (Australia) Express intent to meet or negotiate Citizen (Australia) 2014-11-14. Police (Australia)
Criticize or denounce Citizen (Australia) 2014-10-28. Police (Australia) Criticize or denounce Citizen
(Australia) 2014-11-03. Police (Australia) Confiscate property Citizen (Australia) 2014-10-30. Police
(Australia) Investigate human rights abuses Citizen (Australia) 2014-10-30. Police (Australia) Appeal for
intelligence Citizen (Australia) 2014-11-04. Police (Australia) Reject Citizen (Australia) 2014-11-07. Police
(Australia) Abduct, hijack, or take hostage Citizen (Australia) 2014-11-09. Police (Australia) Physically
assault Citizen (Australia) 2014-11-13. Police (Australia) Impose restrictions on political freedoms Citizen
(Australia) 2014-11-14. Police (Australia) Return, release person(s) Citizen (Australia) 2014-11-14. Police
(Australia) Arrest, detain, or charge with legal action Criminal (Australia) on 2014-10-23, Criminal
(Australia) Engage in symbolic act Citizen (Australia) on 2014-11-03. Police (Australia) Arrest, detain,
or charge with legal action Criminal (Australia) on 2014-10-23, Criminal (Australia) Sexually assault
Citizen (Australia) on 2014-11-05. Police (Australia) Accuse Criminal (Australia) on 2014-10-22, Criminal
(Australia) Engage in symbolic act Citizen (Australia) on 2014-11-03. Police (Australia) Accuse Criminal
(Australia) on 2014-10-22, Criminal (Australia) Sexually assault Citizen (Australia) on 2014-11-05. Police
(Australia) Demand Lawyer/Attorney (Australia) on 2014-10-31, Lawyer/Attorney (Australia) Arrest, detain,
or charge with legal action Citizen (Australia) on 2014-11-03. Police (Australia) Demand Lawyer/Attorney
(Australia) on 2014-10-31, Lawyer/Attorney (Australia) Accuse Citizen (Australia) on 2014-11-10. Police
(Australia) Demand Lawyer/Attorney (Australia) on 2014-10-31, Lawyer/Attorney (Australia) Threaten
Citizen (Australia) on 2014-11-05. Police (Australia) Confiscate property Criminal (Australia) on 2014-
10-23, Criminal (Australia) Engage in symbolic act Citizen (Australia) on 2014-11-03. Police (Australia)
Confiscate property Criminal (Australia) on 2014-10-23, Criminal (Australia) Sexually assault Citizen
(Australia) on 2014-11-05.
Label output: Yes. Based on the information provided, it is plausible that the Police in Australia will engage
in material cooperation with Australian citizens on November 16, 2014. This prediction is supported by a
series of interactions between the police and citizens leading up to this date. The police have been actively
involved in various legal actions, such as arresting, detaining, or charging citizens on multiple occasions
from November 12 to November 14, 2014. Additionally, they have made appeals or requests to citizens
during the same period, indicating a willingness to communicate and potentially collaborate. Despite
instances of conflict, such as accusations, criticism, and even physical confrontations, there are also signs of
negotiation and intent to meet, as evidenced by the police expressing their intent to negotiate on November
11 and November 14, 2014. Furthermore, the police have returned or released individuals on November 14,
suggesting a move towards resolution and cooperation. These actions, combined with the broader context
of police investigations and appeals for intelligence, suggest a complex relationship that could lead to
material cooperation on November 16, 2014.
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Positive Query: Police (Australia) will Engage in material cooperation Citizen (Australia) on 2014-11-16 Model: Mistral

Methods Labels Output

Inference-only ✗ Based on the provided document, it is not plausible that Police (Australia) will engage in material cooperation
with the Citizen (Australia) on 2014-11-16. The document shows a series of actions by the Police (Australia)
that are generally antagonistic towards the Citizen (Australia), including arrests, detentions, charges, accusations,
confiscation of property, physical assault, and investigations into human rights abuses. These actions suggest a
conflictual relationship rather than cooperation. Furthermore, there is no indication in the document of any intention
by the Police (Australia) to engage in cooperation with the Citizen (Australia) on the specific date of 2014-11-16.

Tuned-only ✗ No. Based on the information provided, it is predicted that Police (Australia) will not engage in material cooperation
with Citizen (Australia) on 2014-11-16. This prediction is supported by a series of events leading up to this date,
which indicate a pattern of conflict and adversarial interactions between the police and citizens. In the days preceding
2014-11-16, the police have been involved in multiple actions against citizens, including arrests, detentions, and
charges on 2014-11-12, 13, and 14. Additionally, there have been accusations against citizens on 2014-11-2, 9, and
10, as well as instances of police using force and military actions against citizens on various dates. The police have
also been involved in investigations, criticisms, and confiscations, further indicating a tense relationship. Despite
some expressions of intent to negotiate or meet, the overall pattern of behavior suggests a lack of cooperative
engagement. Given this context of ongoing conflict and legal actions, it is reasonable to conclude that material
cooperation between the police and citizens is unlikely to occur on 2014-11-16.

GETER (ours) ✓ Yes. Based on the sequence of events outlined in the document, it is plausible to predict that the Police in Australia
will engage in material cooperation with Australian citizens on November 16, 2014. This prediction is supported by
a series of interactions between the police and citizens leading up to this date. From November 12 to November
14, the police were actively arresting, detaining, or charging citizens with legal actions, indicating a period of
heightened enforcement. However, alongside these actions, the police also made several appeals and requests
to citizens on the same dates, suggesting a willingness to engage in dialogue or seek assistance. Additionally,
the police expressed an intent to meet or negotiate with citizens on multiple occasions, including November 11
and November 14, which implies a shift towards more collaborative engagement. Despite the confrontational
actions, such as the use of force and accusations, the police also demonstrated a capacity for reconciliation by
returning or releasing individuals on November 14. This dual approach of enforcement and negotiation, combined
with the police’s expressed intent to meet and cooperate, supports the likelihood of material cooperation occurring
on November 16, 2014.

Table 12: Case comparisons between GETER and other methods. While Tuned-only method demonstrate an
improved ability to handle the temporal aspects of events (highlighted in blue), they still resulting in negative
predictions. In contrast, GETER leverages temporal graph structures to model the evolving patterns of event
relationships and effectively identifies cooperative signals (highlighted in red), enabling more accurate predictions.

Models
Types

Datasets ICEWS18 WIKI
Positive Negative Neutral Overall Positive Negative Neutral Overall

GPT-4o
zero-shot w/o chains text 51.64 36.61 24.79 38.32 69.5 53.45 17.77 47.45

zero-shot 60.33 23.78 40.72 42.08 61.94 37.44 40.88 47.54

Llama3-8B-Instruct

zero-shot w/o chains text 7.68 24.39 38.95 22.93 48.31 54.39 66.46 52.44
zero-shot 55.12 18.81 9.14 28.79 51.76 26.43 1.26 27.31

LoRA w/o chains text 57.47 47.14 56.30 53.66 84.08 70.67 83.36 79.80
LoRA 62.30 46.24 66.46 58.23 88.59 73.29 81.36 81.57

GETER 75.78 74.09 87.53 78.85 98.99 90.58 91.00 93.79
∆Improve 21.64% 60.24% 31.70% 35.41% 11.74% 23.59% 11.85% 14.98%

Qwen2.5-7B-Instruct

zero-shot w/o chains text 30.94 40.53 25.13 32.34 43.51 53.31 7.72 34.54
zero-shot 44.22 48.67 10.92 35.40 46.46 47.84 2.47 32.23

LoRA w/o chains text 45.82 59.83 66.27 56.82 87.16 80.29 87.00 85.04
LoRA 69.68 60.54 63.21 64.48 88.65 78.58 87.36 85.19

GETER 74.77 74.41 86.79 78.37 97.32 93.33 94.01 95.02
∆Improve 7.31% 22.91% 37.28% 21.55% 9.78% 18.77% 7.61% 11.54%

Mistral-7B-Instruct

zero-shot w/o chains text 1.06 34.23 47.64 26.53 35.81 49.71 55.40 46.52
zero-shot 4.14 33.06 41.58 25.37 62.98 44.44 41.89 50.37

LoRA w/o chains text 58.07 55.27 74.46 62.21 84.94 77.82 83.08 82.18
LoRA 64.22 64.63 76.63 68.20 89.29 86.61 87.04 87.73

GETER 75.61 75.94 87.51 79.40 99.28 94.49 96.19 96.81
∆Improve 17.74% 17.50% 14.20% 16.42% 11.19% 9.10% 10.51% 10.35%

Table 13: F1 scores (%) of each model on the ICEWS18 and WIKI test instances. "Overall" represents the weighted
average F1 score. w/o chains text refers to the absence of reasoning chain input for LLMs. The best-performing
results are highlighted in bold. ∆Improve represents the relative improvements of GETER compared to Tuned-only
methods.
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Models
Types

Datasets ICEWS18 WIKI
BLEU-4 rougeL METEOR BertScore (F1) BLEU-4 rougeL METEOR BertScore (F1)

GPT-4o
zero-shot w/o chains text 9.33 22.67 29.87 67.48 13.25 28.18 36.65 69.10

zero-shot 14.84 31.16 37.47 72.98 25.98 41.77 45.52 78.69

Llama3-8B-Instruct

zero-shot w/o chains text 4.10 15.85 16.20 61.14 9.39 25.41 27.95 66.88
zero-shot 10.01 29.52 27.19 70.01 14.67 36.67 33.43 75.85

LoRA w/o chains text 23.55 35.95 42.54 78.02 48.99 63.53 63.08 87.13
LoRA 37.33 49.18 53.05 83.58 52.09 65.27 66.67 87.99

GETER 40.39 52.12 54.85 84.60 55.52 68.06 69.16 88.77
∆Improve 8.20% 5.98% 3.39% 1.22% 6.59% 4.28% 3.73% 0.89%

Qwen2.5-7B-Instruct

zero-shot w/o chains text 7.02 19.52 30.09 65.92 7.33 21.46 34.56 66.38
zero-shot 10.46 27.97 26.80 71.77 20.21 36.19 41.52 77.61

LoRA w/o chains text 25.50 37.61 42.91 78.56 51.84 65.09 65.59 87.79
LoRA 37.49 49.61 52.07 83.60 53.57 67.19 67.23 88.59

GETER 38.99 50.70 53.79 84.17 55.0 67.49 70.00 88.99
∆Improve 4.00% 2.20% 3.30% 0.68% 2.67% 0.45% 4.12% 0.45%

Mistral-7B-Instruct

zero-shot w/o chains text 7.60 19.43 23.98 65.87 11.41 26.23 31.64 67.79
zero-shot 9.74 29.00 26.00 71.95 21.25 40.05 41.43 77.27

LoRA w/o chains text 25.46 37.62 42.91 78.67 51.58 66.32 65.29 87.96
LoRA 36.96 49.12 51.70 83.38 52.61 65.40 66.80 87.97

GETER 39.64 51.62 54.04 84.37 54.96 67.74 69.17 88.92
∆Improve 7.25% 5.09% 4.53% 1.19% 4.47% 3.58% 3.55% 1.08%

Table 14: The semantic similarity performance (%) of each model on the ICEWS18 and WIKI test instances. w/o
chains text refers to the absence of reasoning chain input for LLMs. The best-performing results are highlighted in
bold.

Models Types
Positive Negative Neutral Overall

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4o
zero-shot w/o chains text 41.89 72.62 53.13 24.63 16.86 20.02 23.08 9.00 12.95 30.76 35.86 30.61

zero-shot 58.53 61.75 60.10 33.05 5.57 9.54 37.08 70.33 48.56 43.91 45.48 39.95

Llama3-8B-Instruct

zero-shot w/o chains text 41.94 14.62 21.69 30.23 24.57 27.11 26.20 54.67 35.42 33.54 29.38 27.42
zero-shot 40.59 93.00 56.51 21.17 6.71 10.20 44.44 3.33 6.20 38.62 35.22 26.70

LoRA w/o chains text 54.16 73.25 62.27 35.28 38.86 36.98 82.59 34.00 48.17 55.99 50.57 49.81
LoRA 66.08 75.25 70.37 56.75 59.43 58.06 78.73 59.83 67.99 66.59 65.57 65.59

GETER 71.62 78.87 75.07 66.90 67.86 67.38 88.41 75.00 81.15 74.85 74.10 74.25

Qwen2.5-7B-Instruct

zero-shot w/o chains text 41.51 16.50 23.61 32.18 62.71 42.54 17.94 12.50 14.73 31.67 30.76 27.39
zero-shot 55.79 50.62 53.08 34.79 65.00 45.32 57.58 6.33 11.41 49.30 42.76 38.59

LoRA w/o chains text 66.85 59.25 62.82 51.23 68.43 58.59 83.33 63.33 71.97 66.35 63.48 64.03
LoRA 74.32 74.88 74.60 61.58 70.29 65.64 83.64 69.00 75.62 72.73 71.67 71.90

GETER 81.56 71.88 76.41 68.84 81.43 74.61 86.95 82.17 84.49 78.86 78.00 78.12

Mistral-7B-Instruct

zero-shot w/o chains text 68.18 1.87 3.65 38.38 40.57 39.44 33.63 75.00 46.44 48.38 35.67 27.81
zero-shot 55.56 13.75 22.04 27.43 27.86 27.64 30.65 60.83 40.76 39.06 31.90 29.26

LoRA w/o chains text 77.89 46.25 58.04 56.13 78.43 65.44 77.13 83.17 80.03 70.42 67.52 66.79
LoRA 72.56 73.38 72.96 60.66 73.57 66.49 87.56 64.50 74.28 72.88 70.90 71.18

GETER 83.62 72.12 77.45 69.23 83.57 75.73 87.79 82.67 85.15 80.02 78.95 79.08

Table 15: Precision (%), Recall (%), and F1 scores (%) for each model on the ICEWS14 dataset.

Models Types
Positive Negative Neutral Overall

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4o
zero-shot w/o chains text 44.70 12.12 19.08 32.97 65.14 43.78 27.82 23.54 25.50 35.78 32.84 29.06

zero-shot 49.67 37.50 42.74 32.48 43.43 37.16 30.16 28.31 29.21 38.18 36.65 36.83

Llama3-8B-Instruct

zero-shot w/o chains text 38.10 1.00 1.95 31.80 34.57 33.13 29.09 61.23 39.44 33.32 30.14 23.44
zero-shot 41.04 76.75 53.48 26.92 11.00 15.62 40.76 23.08 29.47 36.36 39.12 33.90

LoRA w/o chains text 97.75 45.33 61.94 3.86 52.94 7.19 54.46 94.65 69.14 54.09 62.72 46.29
LoRA 81.87 51.01 62.86 19.14 56.30 28.57 77.23 79.94 78.56 60.05 61.48 56.44

GETER 75.49 53.50 62.62 59.10 82.14 68.74 91.64 86.00 88.73 75.03 72.65 72.51

Qwen2.5-7B-Instruct

zero-shot w/o chains text 34.18 6.75 11.27 32.27 73.86 44.92 26.41 15.85 19.81 31.21 31.35 24.81
zero-shot 57.89 13.75 22.22 32.77 91.29 48.23 40.00 0.62 1.21 44.30 35.02 24.34

LoRA w/o chains text 22.88 49.46 31.28 90.71 36.56 52.11 6.62 100.00 12.41 40.05 60.54 32.36
LoRA 13.13 76.09 22.39 92.71 40.74 56.61 54.92 85.20 66.79 51.67 67.33 46.95

GETER 75.64 55.13 63.77 61.40 81.57 70.06 89.32 87.54 88.42 75.14 73.53 73.27

Mistral-7B-Instruct

zero-shot w/o chains text 34.29 3.00 5.52 30.40 61.29 40.64 23.17 23.85 23.50 29.66 28.28 22.39
zero-shot 44.44 0.50 0.99 34.34 19.57 24.93 29.68 79.54 43.23 36.69 30.60 21.55

LoRA w/o chains text 11.00 83.81 19.45 97.71 41.40 58.16 57.38 94.91 71.52 53.26 73.36 47.80
LoRA 64.88 56.78 60.56 55.29 54.89 55.09 73.85 90.40 81.29 64.47 66.33 65.05

GETER 76.21 51.25 61.29 58.15 84.57 68.92 92.76 84.77 88.59 75.33 72.23 72.02

Table 16: Precision (%), Recall (%), and F1 scores (%) for each model on the GDELT dataset.
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Models Types
Positive Negative Neutral Overall

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4o
zero-shot w/o chains text 46.72 68.19 55.45 25.52 27.21 26.33 25.70 11.06 15.47 32.99 36.36 33.03

zero-shot 65.32 58.33 61.63 22.45 8.09 11.89 36.86 65.45 47.16 42.05 44.03 40.58

Llama3-8B-Instruct

zero-shot w/o chains text 42.98 6.81 11.75 31.60 26.76 28.98 29.20 60.61 39.41 34.81 30.63 26.30
zero-shot 41.62 91.11 57.14 25.28 13.38 17.50 44.35 8.33 14.03 37.10 38.93 30.24

LoRA w/o chains text 51.29 91.25 65.67 51.73 30.74 38.56 93.87 53.33 68.02 65.08 59.13 57.47
LoRA 74.92 68.06 71.32 70.56 40.88 51.77 61.46 94.24 74.40 69.17 67.48 65.86

GETER 73.37 84.58 78.58 83.84 69.41 75.95 91.00 91.97 91.48 82.48 81.94 81.84

Qwen2.5-7B-Instruct

zero-shot w/o chains text 46.63 24.03 31.71 30.80 54.85 39.45 18.83 13.64 15.82 32.50 30.87 29.17
zero-shot 60.88 30.69 40.81 33.99 83.53 48.32 23.08 0.91 1.75 39.89 38.59 30.78

LoRA w/o chains text 79.27 42.50 55.33 56.24 88.09 68.65 89.49 82.58 85.89 74.95 70.39 69.52
LoRA 84.18 55.42 66.83 62.07 82.79 70.95 82.92 85.30 84.09 76.48 74.03 73.72

GETER 71.68 86.11 78.23 84.36 64.26 72.95 88.77 91.06 89.90 81.34 80.49 80.23

Mistral-7B-Instruct

zero-shot w/o chains text 61.70 4.03 7.56 34.78 31.76 33.21 33.98 71.67 46.10 43.93 34.85 28.37
zero-shot 59.52 10.42 17.73 35.97 25.44 29.80 36.13 79.55 49.69 44.25 37.52 31.96

LoRA w/o chains text 66.30 75.97 70.81 77.39 26.18 39.12 62.79 95.61 75.80 68.84 65.83 61.95
LoRA 77.44 68.19 72.53 68.77 75.44 71.95 82.94 85.45 84.18 76.34 76.12 76.07

GETER 75.67 82.50 78.94 82.85 71.03 76.48 88.29 92.58 90.38 82.08 81.94 81.80

Table 17: Precision (%), Recall (%), and F1 scores (%) for each model on the ICEWS05-15 dataset.

Models Types
Positive Negative Neutral Overall

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4o
zero-shot w/o chains text 47.43 56.67 51.64 38.20 35.14 36.61 26.79 23.08 24.79 37.96 39.10 38.32

zero-shot 53.09 69.87 60.33 34.51 18.14 23.78 38.12 43.69 40.72 42.26 44.52 42.08

Llama3-8B-Instruct

zero-shot w/o chains text 25.19 4.53 7.68 31.25 20.00 24.39 27.82 64.92 38.95 28.02 28.38 22.93
zero-shot 39.37 91.87 55.12 33.09 13.14 18.81 45.83 5.08 9.14 39.28 38.76 28.79

LoRA w/o chains text 57.20 57.73 57.47 39.31 58.86 47.14 90.17 40.92 56.30 61.44 52.90 53.66
LoRA 75.14 53.20 62.30 49.43 43.43 46.24 55.87 82.00 66.46 60.61 58.86 58.23

GETER 72.42 79.47 75.78 78.87 69.86 74.09 87.06 88.00 87.53 79.10 78.90 78.85

Qwen2.5-7B-Instruct

zero-shot w/o chains text 43.98 23.87 30.94 34.15 49.86 40.53 24.74 25.54 25.13 34.75 33.05 32.34
zero-shot 58.01 35.73 44.22 35.55 77.14 48.67 35.29 6.46 10.92 43.49 40.48 35.40

LoRA w/o chains text 72.00 33.60 45.82 45.02 89.14 59.83 92.31 51.69 66.27 69.29 57.71 56.82
LoRA 69.50 69.87 69.68 52.46 71.57 60.54 84.14 50.62 63.21 64.63 68.35 64.48

GETER 74.87 74.67 74.77 72.88 76.00 74.41 88.75 84.92 86.79 78.50 78.29 78.37

Mistral-7B-Instruct

zero-shot w/o chains text 57.14 0.53 1.06 35.71 32.86 34.23 34.51 76.92 47.64 42.99 34.95 26.53
zero-shot 69.57 2.13 4.14 35.04 31.29 33.06 30.10 67.23 41.58 45.84 32.00 25.37

LoRA w/o chains text 69.52 49.87 58.07 62.68 49.43 55.27 61.19 95.08 74.46 64.66 63.71 62.21
LoRA 73.41 57.07 64.22 62.80 66.57 64.63 70.45 84.00 76.63 68.96 68.57 68.20

GETER 75.36 75.87 75.61 73.98 78.00 75.94 90.61 84.62 87.51 79.62 79.29 79.40

Table 18: Precision (%), Recall (%), and F1 scores (%) for each model on the ICEWS18 dataset.

Models Types
Positive Negative Neutral Overall

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4o
zero-shot w/o chains text 66.93 72.33 69.53 40.85 77.27 53.45 93.94 9.81 17.77 68.07 53.00 47.45

zero-shot 52.51 75.50 61.94 33.80 41.96 37.44 88.42 26.58 40.88 58.83 49.10 47.54

Llama3-8B-Instruct

zero-shot w/o chains text 68.98 37.18 48.31 51.74 57.34 54.39 47.19 66.46 66.46 56.53 53.00 52.44
zero-shot 39.23 76.08 51.76 27.01 25.87 26.43 100.00 0.63 1.26 55.78 35.83 27.31

LoRA w/o chains text 91.35 77.89 84.08 67.83 73.76 70.67 78.48 88.89 83.36 79.98 80.31 79.80
LoRA 96.25 82.06 88.59 70.98 75.75 73.29 75.95 87.59 81.36 81.88 82.00 81.57

GETER 99.13 98.85 98.99 85.89 95.80 90.58 96.13 86.39 91.00 94.14 93.78 93.79

Qwen2.5-7B-Instruct

zero-shot w/o chains text 52.44 37.18 43.51 37.83 90.21 53.31 61.90 4.11 7.72 51.19 42.15 34.54
zero-shot 73.29 34.01 46.46 32.69 89.16 47.84 50.00 1.27 2.47 53.30 39.73 32.23

LoRA w/o chains text 91.93 82.86 87.16 76.22 84.82 80.29 85.76 88.27 87.00 85.14 85.25 85.04
LoRA 83.29 94.75 88.65 85.31 72.84 78.58 86.39 88.35 87.36 84.93 86.02 85.19

GETER 95.30 99.42 97.32 96.28 90.56 93.33 93.71 94.30 94.01 95.07 95.05 95.02

Mistral-7B-Instruct

zero-shot w/o chains text 73.87 23.63 35.81 54.85 45.45 49.71 42.26 80.38 55.40 57.62 49.10 46.52
zero-shot 75.20 54.18 62.98 38.95 51.75 44.44 41.69 42.09 41.89 53.12 49.42 50.37

LoRA w/o chains text 86.17 83.75 84.94 72.38 84.15 77.82 87.03 79.48 83.08 82.30 82.45 82.18
LoRA 93.66 85.30 89.29 82.52 91.12 86.61 86.08 88.03 87.04 87.78 87.96 87.73

GETER 98.86 99.71 99.28 99.61 89.86 94.49 92.67 100.00 96.19 97.02 96.84 96.81

Table 19: Precision (%), Recall (%), and F1 scores (%) for each model on the WIKI dataset.
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Datasets Methods
Positive Negative Neutral Overall

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ICEWS14

REGCN 58.02 48.38 52.76 48.89 62.86 55.00 80.11 71.17 75.38 61.29 59.71 59.97
CENET 70.51 45.12 55.03 53.03 71.29 60.82 75.43 81.33 78.27 66.09 64.19 63.60

CEN 60.29 62.25 61.25 56.05 50.29 53.01 73.53 79.17 76.24 62.66 63.10 62.79
SiMFy 68.84 43.63 53.40 53.43 76.86 63.03 79.86 78.00 78.92 66.85 64.52 63.90

GETER 83.62 72.12 77.45 69.23 83.57 75.73 87.79 82.67 85.15 80.02 78.95 79.08

GDELT

REGCN 61.93 53.87 57.62 55.61 63.71 59.39 84.05 84.31 84.18 66.56 66.28 66.22
CENET 65.58 57.63 61.34 59.39 66.43 62.71 87.05 88.92 87.98 70.05 69.95 69.84

CEN 64.80 56.37 60.29 57.21 66.29 61.42 87.40 86.46 86.93 69.16 68.70 68.71
SiMFy 63.11 63.50 63.30 60.39 61.43 60.91 89.42 87.08 88.23 70.18 69.95 70.06

GETER 76.21 51.25 61.29 58.15 84.57 68.92 92.76 84.77 88.59 75.33 72.23 72.02

ICEWS05-15

REGCN 66.96 63.33 65.10 65.57 61.62 63.53 79.05 88.64 83.57 70.38 70.87 70.50
CENET 65.27 69.44 67.29 65.30 63.09 64.17 91.05 87.88 89.44 73.54 73.25 73.36

CEN 67.45 59.58 63.27 61.33 70.44 65.57 88.02 85.76 86.88 72.02 71.55 71.59
SiMFy 69.03 66.25 67.61 65.45 68.53 66.95 89.35 88.94 89.14 74.36 74.27 74.29

GETER 75.67 82.50 78.94 82.85 71.03 76.48 88.29 92.58 90.38 82.08 81.94 81.80

ICEWS18

REGCN 59.34 65.20 62.13 62.82 55.29 58.81 80.91 82.15 81.53 67.18 67.14 67.03
CENET 65.38 58.93 61.99 62.58 66.43 64.45 82.97 86.92 84.90 69.89 70.10 69.90

CEN 60.60 59.07 59.82 59.38 62.43 60.86 80.25 78.15 79.19 66.28 66.10 66.16
SiMFy 64.71 57.47 60.88 61.29 64.00 62.61 79.23 85.69 82.34 68.07 68.38 68.10

GETER 75.36 75.87 75.61 73.98 78.00 75.94 90.61 84.62 87.51 79.62 79.29 79.40

WIKI

REGCN 81.76 69.74 75.27 72.32 68.53 70.38 70.94 85.76 77.65 75.31 74.71 74.59
CENET 77.95 74.35 76.11 77.19 76.92 77.06 81.38 85.76 83.51 78.86 78.93 78.86

CEN 77.50 71.47 74.36 78.44 73.78 76.04 77.22 87.97 82.25 77.69 77.66 77.49
SiMFy 78.25 79.83 79.03 82.03 73.43 77.39 78.76 84.49 81.53 79.56 79.45 79.40

GETER 98.86 99.71 99.28 99.61 89.86 94.49 92.67 100.00 96.19 97.02 96.84 96.81

Table 20: Precision (%), Recall (%), and F1 scores (%) for each graph-based model across different datasets.
"Overall" represents the weighted average F1 score.
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