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Abstract

The multi-label aspect category detection
(MACD) task has attracted great attention in
sentiment analysis. Many recent methods have
formulated the MACD task by learning robust
prototypes to represent categories with limited
support samples. However, few of them address
the noise categories in the support set that hin-
der their models from effective prototype gener-
ations. To this end, we propose a causal denois-
ing prototypical network (CDPN) for few-shot
MACD. We reveal the underlying relation be-
tween causal inference and contrastive learning,
and present causal contrastive learning (CCL)
using discrete and continuous noise as nega-
tive samples. We empirically found that CCL
can (1) prevent models from overly predicting
more categories and (2) mitigate semantic am-
biguity issues among categories. Experimental
results show that CDPN outperforms compet-
itive baselines. Our code is available online:
https://github.com/cuijin-23/CPDN.

1 Introduction

With the rapid growth of online services, multi-
label aspect category detection (MACD) that de-
tects aspect categories within a given sentence as-
signed multiple categories (Li et al., 2020; Zhang
et al., 2022b; Kamila et al., 2022), has gained con-
siderable attention. Due to the success of few-shot
learning (Wang et al., 2020; Song et al., 2023;
Zhou et al., 2023; Nookala et al., 2023) and meta-
learning (ML) (Zhang et al., 2022a; Liang et al.,
2023), Hu et al. (2021) have formulated MACD
task with a meta-task which is illustrated in Fig.
1. It aims to predict the class label of the query
set by leveraging the support set. Thereafter, Zhao
et al. (2022) and Liu et al. (2022) propose label-
driven prototype denoising models. Zhao et al.
(2023) employ sample-set operations based on ML
for MACD tasks. Peng et al. (2024) utilize an
ML-based framework with variational distribution

(1) The food was good, and the customer service was

(A) food also great.
(2) Good food and drinks also from the pool bar.
ko]
g (®) service (1) Waste of food and crappy ct}stomer ser\fice.
& (2) Clean rooms, excellent service, super friendly staff.
=
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(1) Food is ok, and restaurant was clean.
(C) restaurant (2) The waiters are arrogant and the place in itself is
pretty disorganized.

(1) Room service was very nice, only thing is food was a
little bland.

(A)B) (C) (2) I would have to really try hard to find a place in

vegas that didn't serve good food.

(&) (B)
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Figure 1: An example of a 3-way 2-shot meta-task. The
colored boxes denote the target aspect categories, and
the gray boxes refer to words that cause noisy categories.

inference, achieving state-of-the-art (SOTA) perfor-
mance in few-shot MACD. However, the aforemen-
tioned approaches ignore the fact that sentences in
the support set often mention multiple categories,
and most of these are noise which deteriorates the
overall performance. For instance, support samples
of (B) in Fig. 1 mention “food” and “room”, which
are noise categories for learning the prototype of
“service”. It indicates that not only the target cate-
gory (i.e., “service”) but also the non-target cate-
gories (i.e., “food” and “room”) in support samples
affect the learning of the prototype.

The causal interference mechanism has been
widely utilized to reduce the negative impact of
intermediate factors (e.g., noise or spurious corre-
lations) (Chen et al., 2021; Feng et al., 2021; Cao
et al., 2022; Tian et al., 2022; Tu et al., 2023). As
the casual graph shown in Fig. 2 (a), the treatment
variable X directly affects the response variable
Y and indirectly affects Y through N, where N’
refers to the undesired factor. They mitigate the im-
pact of A/ by using counterfactual intervention to
force that Y = y remains the same when changing
N from 7 to n* in (d), where y and 7 are realiza-
tions of Y and V. However, few approaches utilize
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causal interference to denoise the representations
of support samples for MACD tasks.

Several recent approaches have utilized con-
trastive learning (CL) (Zhao et al., 2022; Liu et al.,
2022) to push prototypes of various categories
away, achieving remarkable results. They regard
the representations of other categories as negative
pairs for contrast. However, they pay no attention
to integrating causal inference and CL, although
there exist underlying yet strong relations between
them, in the sense that (1) the noise-free state of
N = ny can be regarded as a positive sample for
CL; (2) the way to reinforce the cohesion between
positive pairs and diversity between negative pairs
in CL can be utilized to predict Y for causal infer-
ence (Wang et al., 2021; Cao et al., 2022).

Motivated by the observations, we propose a
causal denoising prototypical network (CDPN) for
few-shot MACD. Specifically, we integrate causal
inference with CL to effectively denoise the rep-
resentation of support samples. Different from re-
lated works that regard the representations of other
categories as negative pairs (Zhao et al., 2022; Liu
et al., 2022), our approach utilizes the noise rep-
resentations extracted from support samples for
causal contrastive learning (CCL).

Moreover, we introduce discrete and continuous
noise as negative samples for CCL. The discrete
noise is generated by a negative-label-driven at-
tention mechanism, and the continuous noise is
obtained by applying dropout at a substantial rate
on the representations of support samples. We em-
pirically found that discrete noise representation
facilitates better convergence by incorporating mul-
tiple negative labels. Conversely, the advantage of
continuous noise representation lies in its ability to
be obtained without requiring negative labels.

The main contributions of our work can be sum-
marized as follows: (1) We highlight the underlying
yet strong relations between causal inference and
contrastive learning for MACD tasks and thus pro-
pose a novel causal contrastive learning; (2) We ex-
plore discrete and continuous noise as negative sam-
ples for CCL to denoise the representations of sup-
port samples; This enables CCL to work well with-
out negative labels and perform even better with
them; (3) Extensive experiments show that CDPN
outperforms SOTA baselines in the MACD task.
We discuss its efficacy compared to some LLMs
(i.e., Llama2-7B, Llama3-8B, GPT-3.5-turbo and
GPT-40-mini). We also found that these LLMs
tend to overly infer more aspect categories, while
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Figure 2: (a) The causal graph where X directly affects
Y and indirectly affects Y through N. (b) A causal
graph with particular realizations. (c) A causal interven-
tion do(N = n*). (d) A counterfactual situation where
X = x remains the same while forcing N = n*.

CCL can prevent our CDPN from the issue.

2 Related Work
2.1 Few-Shot Learning

The few-shot learning has been widely explored
to improve sentiment analysis (Hosseini-Asl et al.,
2022; Wang et al., 2023; Liang et al., 2023). Re-
cently, Hu et al. (2021) formulate MACD tasks
with a prototypical network of meta-learning (ML)
(Snell et al., 2017; Gao et al., 2019; Chen et al.,
2023a). Thereafter, Zhao et al. (2022) and Liu et al.
(2022) propose a label-driven prototype denoising
model. Wang and Iwaihara (2023) present an ML-
based dual-attention approach. Zhao et al. (2023)
attempt to employ sample-set operations based on
ML for MACD tasks. Peng et al. (2024) present an
ML-based framework with variational distribution
inference, achieving SOTA performance in MACD.

2.2 Contrastive Learning

Contrastive learning (CL) has been extensively
explored for prototype learning, such as target-
aware prototypical graph CL-based model (Liang
et al., 2022), and ContrastNet (Chen et al., 2022)
that reduce prototype contradictions among similar
classes with CL. In MACD tasks, Liu et al. (2022)
integrate contrastive learning into their prototypi-
cal network, and Zhao et al. (2022) propose label-
weighted CL to highlight the semantic correlations
among similar aspects.

2.3 Causal Inference

The counterfactual inference has become a preva-
lent solution to address undesirable bias and con-
cerns in variable natural language understanding
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(Tian et al., 2022; Udomcharoenchaikit et al.,
2022), recommendation (Zhang et al., 2021; Li
et al., 2024), text classification (Qian et al., 2021;
Veitch et al., 2021; Wang and Culotta, 2021), and
sentiment analysis (Wang et al., 2022; Yuan et al.,
2022; Chang et al., 2024; Wu et al., 2024).

3 Preliminaries

3.1 Problem Formulation

We define the meta-task learning-based few-shot
MACD task, following (Zhao et al., 2022)’s work.
Suppose in an N-way K-shot meta-task, the sup-
port setis X = {(x}, ..., X), 2'})¥.,, where each
x; denotes a sentence corresponding to the aspect
category label z°. Each query instance in the query
set Q is defined as (xq, 24), Where z, (24 € RN,
zé € {0,1}) is the query label indicating the as-
pects in x4 out of IV classes.

3.2 Counterfactual Inference

Causal Inference. Existing methods typically use
a causal graph to capture the relationships between
variables (Mitrovic et al., 2020; Tu et al., 2023).
They exclude the impact of N by using a causal
intervention to maintain Y~ = y while changing N/
from 7 to n*:

Py|X =z,N =n)=Py|X =z,N =7%).

Specifically, they exert a causal intervention on N
with a do-operator do(N = 1*) in Fig. 2 (c), which
forcibly substitute n with n* to obtain a counterfac-
tual state Yy« = fy (X =2, N =n*) in (d).
Causal Effect. The causal effect studies the causal
influence among variables (Chen et al., 2021; Cao
et al., 2022; Xu et al., 2023). The total effect (TE)
measures the change of the response variable Y
when the treatment variable X changes from x* to
x. The TE of X = x onY is denoted as:

TE =Y., — Yo .

The TE is often regarded as the sum of natural
direct effect (NDE) and total indirect effect (TIE)
(Wang et al., 2021; Chen et al., 2023b). The NDE
of X = x onY refers to the change of Y when
changing X from z* to z and forcing N' = n*:

NDE = Yy - — Yo .

The TIE of X = z on Y denotes the change of
Y when only the N changes from 7 to n*, which
can be obtained by subtracting NDE from TE:

TIE = TE — NDE = Y,,, — Y.~

As such, through causal intervention do(N =
n*), they can maximize the TIE to emphasize the
impact of A/ (Tian et al., 2022) or minimize the
TIE to mitigate the undesirable effects of factor N’
(Wang et al., 2021; Sun et al., 2022).

4 Methodology

Fig. 3 illustrates the framework of our CDPN,
which consists of (i) prototypical representation
learning and (ii) causal representation denoising.

4.1 Prototypical Representation Learning

We utilize support samples to generate prototypical
representations of categories and estimate the dis-
tance between the query representation to identify
aspect categories. Formally, given a sentence Y;
with T" words, we define the embedding matrix as
H;, = [hi,la hz"Q, ey hi,t] S RdXt, where d refers to
the embedding size. We then obtain the representa-
tion s; of the sentence, which is given by:

s; = softmax(a;)Hj,

- 1
a; = tanh(H;(lez' +b1)), W

where a; refers to an self-attention score, H; =
% Zthl h;: represents a query vector in self-
attention, and wj and b; are trainable parameters.
Subsequently, in the N-way K-shot setting, we
obtain the embedding S = {si, s}, ..., sk, ..., s¥}
of the support samples &X'. Similarly, the cate-
gory embedding of support samples, i.e., the label
text description information, can be represented as
C = {c1, ca,...cy'}. We calculate the prototype p”
through K instances for aspect category n by:

pn _ i iansn
Ko @)

o' = softmax(cos(c", s7')),

where cos(c", sI') refers to the cosine similarity
between the sentence embedding s and category
embedding ¢", i € [1, K] andn € [1, N].

Given query embedding ¢ € Q, we compute the
probability P(z = 2"|q,S) to predict its aspect
label via negative squared Euclidean distance.

exp(—|lg — p"[|3)

1 exp(—llg —pl[3)
3)

P(z=2"]q,S) =
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Figure 3: The architecture of our causal denoising prototypical network (CDPN).

We calculate the mean square error (MSE) loss
on all query samples in Q to optimize CDPN:

‘Q|ZZ

qgeQn=1

(z = z”|q,8)—z”)2, 4)

where z" is the ground-truth label of category 2".

4.2 Causal Representation Denoising

We introduce causal intervention to denoise rep-
resentation of support sample s;, which we call
anchor representation. We define the TIE by:

TIE =Y, — Yo
= fy(z, fy(x)) — fy(z,do(N =ng)) (5)
= fY(fE, fn(fﬁ)) - fY(ﬂ%Tl(Z))a

where do(N = 1) represents a causal intervention
that forcefully assigns N\ to a reference status 7
that is free of noise, resulting in a post-intervention
prediction fy (x, do(N = 1y)).

Based on the definition, we propose a causal con-
trastive learning approach for denoising. Specifi-
cally, we define X as the anchor representation, N/
as the representation with varying levels of noise
extracted from X, and Y as the prediction with
fy(X = 2, N = n). Note that support samples
for the target category (e.g., “food”) include diverse
noises (e.g., “staff,” “service,” and “restaurant,”)
while all samples share the core representation (e.g.,
“food”). Thus, we define fy (z,n) = sim(z,n)/u

to guarantee that the model consistently focuses
on the feature of the target category (e.g., “food”)
when the A changes from f,(z) (e.g., “staff,” “ser
vice,” or “restaurant”) to 7y, making 1y converge
to the core representation of z in Fig. 3. Here, u
refers to the temperature and sim(-) refers to cosine
similarity. Further, we regard the expected noise-
free representation 7 as a positive sample sz(»Jr) and
fn(z) as a negative sample that is extracted from x.

The vanilla contrastive learning is given by:

exp(sim(si, st )/u) }
23']:1 eXp(Slm(siv i,j //‘))

Eccl = ]Esiws |:— log

J
=Es;~s |:log Z exp(sim(s, 55_7)/u)):|

Jj=1

©)

Ym,n#fY(])afn(w))
—Es;~s [sim(si,s§+))/u] .

Yy nx=Ffy (z,m9)

Through Eq. (6), we observed two issues: (1)
Yy, does not conform to fy (x, fr(x)) and (2) Yz
is affected by the number of J negative samples,
which contradicts the definition of causal effect, i.e.,
Y., and Y, should correspond to two distinct
states of Y caused by f,(x) and 7. To this end, we
provide novel definitions of positive and negative
samples. Firstly, we use a label-driven attention
technique to obtain positive samples as follows:

st =81,

K3 n (7)

Brn =softmax(tanh(ws ¢, )ws)),
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where wy and w3 denote weight matrices and
cn € R¥*d ig the embedding of the label word
(e.g., “food_drink™ is often separated by tokenizers
as “food,”_,” and “drink”), where d’ denotes the
padded dimension size.

Secondly, we generate discrete and continuous
noise representations as negative samples. For the
discrete noise representations, we merge the nega-
tive labels in the support set (e.g., “service,” “restau-
rant,” and “price”) into a single text (e.g., “service
[SEP] restaurant [SEP] price”), the representation
of which is denoted by ¢/, € R¥ <4, We obtain the
representation of negative samples by:

(=) _ B/ T

s, ' =0,

i Siy

®)

I, =softmax(tanh(wy ¢, )ws),

where w4 and ws are weight matrices. For continu-
ous noise representations, following (Wang et al.,
2024), we utilize dropout at rate r on the anchor
representation, which is given by:

s = dropout(s;, r). &)

(2

As each of the discrete and continuous represen-
tations corresponds to a negative sample (i.e., J=1),
the causal contrastive learning can be rewritten as:

Lect =Ea,ns [—mg exp(sim(si, o)/ 10 ]

S exp(sim(si, i) /p)

= Eus [sim(si, s07)/n] B [sim(si,s() /1]
~—_———— ———

Yo, n=Fy (z,fn(z)) Yy px=fy (z,n9)
=Es;~s [Ymm - Ymm*} .
TIE

10)
Analysis. The loss L. can be transformed into
the total TIE of X = x on Y, which denotes the
change of Y when only the A/ changes from 7
to nx via a causal intervention do(N = np). We
observed the underlying relations that (1) the ex-
pected noise-free state ' = 7 can be utilized as
a positive sample for CL, and (2) the way to re-
inforce cohesion in positive pairs and diversity in
negative pairs in CL can serve as the prediction of
Y in causal inference. In this way, our CCL takes
full advantage of both causal inference and CL.
The former excels at reducing the noise categories
in the support samples for generating prototypes,
preventing our model from overly predicting more
undesired categories. The latter can facilitate more
discrete and distinguishable category representa-
tions, thereby mitigating the semantic ambiguity

Dataset #cls. #inst./cls. #inst.
FewAsp (Random) 100 630 63,000
FewAsp (Multi) 100 400 40,000

Table 1: Statistics of datasets. “#cls.”, “#inst./cls.”, and
“#inst.” indicate the number of classes, instances per
class, and instances, respectively.

issue. We then obtain denoised anchor representa-
tion s; by optimizing the L.

Different from recent works that regard the repre-
sentations of other categories as negative pairs for
contrast (Zhao et al., 2022; Liu et al., 2022), our
CDPN involves extracting noise representations
from anchor representations as negative pairs. We
also found that the discrete noise representation
works better by incorporating multiple negative la-
bels, while the continuous noise representation can
be obtained without requiring negative labels.

4.3 Support-Query Alignment

Following recent work (Peng et al., 2024), we
leverage cross-attention mechanisms to emphasize
shared semantic representations s” across k in-
stances of the target aspect category as follows:

1 K
v o\ T .k
s = E (%) hi,ta
K= (11)

v = softmax(cos(sjhft,)).

We apply cross-attention to the query embed-
dings and all support samples (e.g., n X k) to obtain
the query representation ¢*. We utilize a simple
shared mapping function (i.e., a linear transforma-
tion FIN(+)) to align support and query representa-
tions, S, and §,,, which is given as follows:

50 = FN([s"]), do = FN([¢"]).  (12)

As such, we obtain the enhanced prototype p™ by
substituting the s}* with 3, in Eq. (2). Similarly, we
obtain the enhanced ¢, to substitute g in Eq. (3).

4.4 Model Optimization

The model is optimized through two objectives,
i.e., the MSE loss for the aspect category detection
task and the CCL loss for anchor representation
denoising, which is given by:

Etotal = 51£acd + 62£ccl; (13)

where d1, 0o are hyperparameters.
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Model 5-way 5-shot 5-way 10-shot 10-way 5-shot 10-way 10-shot
AUC F1 AUC F1 AUC F1 AUC F1
Non-label-driven Approach
PN (Snell et al., 2017) 88.88 6696 | 91.77 7327 | 8735 52.06 | 90.13  59.03
IMP (Allen et al., 2019) 89.95 68.96 | 9230 74.13 | 88.50  54.14 | 90.81 59.84
Proto-HATT (Gao et al., 2019) 91.54  70.26 | 93.43 7524 | 90.63 5726 | 92.86 61.51
Proto-AWATT (Hu et al., 2021) | 9335 7537 | 9528 80.16 | 92.06 65.65 | 9342  69.70
Label-driven Approach
LDF (Zhao et al., 2022) 94.65 7827 | 95.71 81.87 | 92.74 67.13 | 9424 7197
LNP (Liu et al., 2022) 96.45 8222 | 97.15 8490 | 9536 7142 | 96.55 7651
FSO (Zhao et al., 2023) 9692 8344 | 9738 8508 | 95.65 7378 | 96.28  76.58
LGP (Guan et al., 2024) 9737 8749 | 9749  87.67 | 9633 7792 | 96.69 7895
VHAF (Peng et al., 2024) 97.88  87.25 | 98.17 89.22 | 97.02 79.72 | 97.58 8241
CDPN 98.09 88.26 | 9855 9042 | 97.76 83.07 | 98.12 84.58

Table 2: Performance comparison on FewAsp (Random). Bold: Best, underline:

Second best.

Model 5-way 5-shot 5-way 10-shot 10-way 5-shot 10-way 10-shot
AUC F1 AUC F1 AUC F1 AUC F1
Non-label-driven Approach
PN (Snell et al., 2017) 89.67 67.88 | 91.60 7232 | 88.01 52.72 | 90.68  58.92
IMP (Allen et al., 2019) 90.12  68.86 | 9229  73.51 88.71 5396 | 91.10 59.86
Proto-HATT (Gao et al., 2019) 91.10  69.15 | 93.03 7391 | 90.44 5534 | 9238  60.21
Proto-AWATT (Hu et al., 2021) | 9145 71.72 | 93.89 77.19 | 89.80 5889 | 9234  66.76
Label-driven Approach
LDF (Zhao et al., 2022) 95.66 7948 | 96.55  82.81 | 9451 6728 | 95.66  71.87
LNP (Liu et al., 2022) 92.62 7338 | 9434 7881 | 90.87  62.06 | 9293  68.23
FSO (Zhao et al., 2023) 96.01  81.04 | 96.67 8222 | 9493 7026 | 95.71  72.46
LGP (Guan et al., 2024) 97.67 8522 | 97.86 86.08 | 9589  75.01 96.35  76.97
VHAF (Peng et al., 2024) 97.09 84.64 | 97.57 87.31 | 96.01 7592 | 96.78  79.43
CDPN 9773 8777 | 9791 88.62 | 96.69 80.75 | 97.69  82.26

Table 3: Performance comparison on FewAsp (Multi).

5 Experiments

5.1 Experimental Setting

Datasets and Metrics. We conducted experiments
on two public datasets: FewAsp (Random) and Fe-
wAsp (Multi). The FewAsp (Multi) dataset consists
of multi-aspect sentences, whereas the FewAsp
(Random) dataset contains single- and multi-aspect
sentences by random sampling. Both datasets con-
tain 100 aspects, with 64 aspects for training, 16
for validation, and 20 for testing. The statistics of
the datasets are shown in Table 1. We followed the
same setting as Zhao et al. (2022)’s work to process
data. We used Area Under the Curve (AUC) and
Macro-F1 score (F1) as evaluation metrics.

Implementation. Following previous works (Zhao
etal., 2022, 2023), we performed experiments with
N={5,10, 15} and K={2, 3, 5, 10}. The number
of query instances per category was 5. The param-
eters are as follows: §; and &5 were set to 1 and
0.1, respectively. The temperature p was set to 0.1,
0.05, and 0.05 when N=5, 10, and 15, respectively.
The initial learning rate was 2e-5. The weight de-
cay was set to le-3. We randomly sampled 500
meta-tasks for training, the number of meta-tasks
during the validation and testing was both set to

600, and the fixed threshold to select the positive
category predictions in the 5-way setting, 10-way
setting, and 15-way setting are set to 0.3, 0.2, 0.2,
respectively. We reported the average testing re-
sults for 5 runs, where the seeds were set to [5, 10,
15, 20, 25]. The CDPN was implemented and ex-
perimented with PyTorch on Nvidia GeForce RTX
4090 (24GB memory). We utilized the AdamW
optimizer (Loshchilov and Hutter, 2017).
Baselines. We compared CDPN with nine SOTA
baselines in two groups.

Non-label-driven methods: PN (Snell et al.,
2017), IMP (Allen et al., 2019), proto-HATT (Gao
et al., 2019), and proto-AWATT (Hu et al., 2021).

Label-driven methods: LDF (Zhao et al., 2022),
LPN (Liu et al., 2022), FSO (Zhao et al., 2023),
LGP (Guan et al., 2024), and VHAF (Peng et al.,
2024). Further details are provided in the Appendix
Al

5.2 Experimental Results

Tables 2 and 3 show the performance comparison.
The CDPN consistently outperforms all baselines
on both datasets, which indicates the effectiveness
of CDPN for few-shot MACD tasks. Specifically,
CDPN surpasses the state-of-the-art baselines, LGP
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Model 10-way 2-shot | 10—way 3-shot | 15-way 2-shot | 15-way 3-shot

AUC F1 AUC F1 AUC F1 AUC F1
LDF (Zhao et al., 2022) | 89.69 57.45 | 90.16 59.67 | 88.30 40.98 | 89.25 40.07
LNP (Liu et al., 2022) 9136 56.11 | 92.67 60.34 | 90.88 4824 | 92.21 53.38
FSO (Zhao et al., 2023) | 9397 66.41 | 9432 6828 | 93.30 59.25 | 93.69 62.85
VHAF (Peng et al., 2024) | 94.99 70.69 | 96.08 75.56 | 95.20 67.89 | 95.12 70.22
CDPN w/o CCL 95.07 70.77 | 95.83 75.54 | 9443 66.03 | 9527 69.89
Full CDPN 95.58 7348 | 96.12 7740 | 95.66 69.73 | 95.58 73.48

Table 4: Performance comparison in scenarios with more categories and fewer shots on FewAsp (Multi).

Category 5-W 5-S 5-W 10-S 10-W 5-S 10-W 10-S
CCL SQA | AUC Fl |AUC Fl |AUC Fl | AUC FI
X X 959 81.7 ] 96.1 823 | 946 694 | 959 743
X v 96.1 85.6| 973 853 | 955 763 | 962 785
v X 973 858 | 97.6 86.7 | 965 76.1 | 96.6 77.6
v v | 977 878|979 88.6| 967 80.8 | 97.7 823
Imp. (%) 1.9 75|19 77|23 163 | 19 107

Table 5: Ablation study on FewAsp (multi). “SQA”
indicates the support-query alignment. ¢/ and X denote
with and without each module, respectively.

and VHAF, with the improvement of 0.21% ~
0.76% AUC, and 0.88% ~ 4.20% F1 on FewAsp
(Random). On FewAsp (multi), CDPN leads a per-
formance boost of 0.05% ~ 0.94% and 1.50% ~
6.36% in AUC and F1, respectively. We also have
the following observations:

(1) LDF and LNP employ contrastive learning
by using other categories as negative pairs. Con-
versely, CDPN derives noise representations from
anchor representations as negative pairs, achieving
better performance. This highlights the superiority
of our CCL in this task.

(2) VHAF, which utilizes variational distribution
inference to address the distribution shift between
the support set and query set, stands out as a strong
performer among the baselines. In contrast, our
CDPN, by denoising support samples and support-
query alignment, performs better.

(3) Overall, FewAsp (multi) is more challenging
than FewAsp (Random) for MACD tasks, as evi-
denced by the lower AUC and F1 values across all
methods. One plausible reason is that samples in
the FewAsp (multi) dataset are exclusively multi-
aspect sentences, whereas sentences in the FewAsp
(Random) dataset can be either single-aspect or
multi-aspect, resulting in fewer noise categories.

5.3 Ablation Study

We conducted an ablation study to examine the
effects of each component in CDPN. As shown in
Table 5, we have the following observations:

(1) The CCL and SQA modules improve perfor-
mance by 1.9% to 2.3% in AUC and 7.5% to 10.7%

in F1, respectively. The improvement is more sig-
nificant with a higher number of ways, e.g., the
F1 improvement in 10-way 5-shot compared to 5-
way 5-shot. Overall, CCL contributes more to the
performance of CDPN than SQA.

(2) Without the CCL module (i.e., w/o CCL),
CDPN suffers from a significant performance drop
in F1 for both datasets, demonstrating that integrat-
ing causal inference and contrastive learning can
effectively denoise support samples for boosting
the prototype representations.

(3) The underperformance of CDPN without rep-
resentation alignment (i.e., without SQA) suggests
that it is important to emphasize shared semantic
representations across instances for the target as-
pect category.

5.4 Performance of CDPN with More
Categories and Fewer Shots

We compared CDPN with other baselines with
more categories and fewer support samples (N=10
and 15 and K'=2 and 3). As shown in Table 4, most
baselines suffer from a significant performance
drop as N increases to 10 and 15, whereas CDPN
achieves an improvement of 2.44% to 4.64% in F1
compared to the best baseline. The VHAF model
demonstrates impressive performance compared to
other baselines because they statistically recalibrate
the distribution of support and query samples. In
contrast, CDPN exhibits greater robustness to noise
categories with fewer support samples. This is due
to our CCL module, i.e., the result (w/o CCL) in
Table 4 shows a significant performance decrease.

5.5 Performance of Various Noise

We conducted experiments to explore how discrete
and continuous noises affect the CDPN. As shown
in Fig 4, we have two observations:

(1) The discrete noise representation works bet-
ter than the continuous noise representation, which
demonstrates that the discrete noise representation
facilitates better convergence for CDPN by incor-
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Model 5-W 2-S 10-W 2-S 5-W 2-S 10-W 2-S
AUC F1 AUC F1 AUC F1 AUC F1
FewAsp (random) FewAsp (multi)
Llama-2-7B 73.74 47.06 68.57 3542 71.25 46.67 70.76 35.31
Llama-3-8B 86.19 71.32 84.62 61.12 84.47 67.87 83.75 59.75
GPT-3.5 89.30 82.11 89.15 70.68 88.83 77.53 86.78 67.58
GPT-4 91.47 82.12 89.15 74.37 88.63 79.97 86.56 71.86
CDPN (0.2B) 97.39 85.89 96.74 76.39 96.31 83.65 95.58 73.48
16.5%) (14.6%) | (18.6%) (12.7%) | (18.8%) (14.6%) | (110.1%) (12.2%)

Table 6: Performance comparison with Llama and GPT models. Due to their unacceptable time consumption
compared with our CPDN, we only report their results with N=5 and 10, and K=2.

93

Discrete Con. (0.7) 85 Discrete Con. (0.7)
91 Con. (0.3) WM Con.(0.9) Con.(0.3) W Con. (0.9)
© Con. (0.5) ) 83 Con. (0.5)
§ 89 § 31
=87 =79
85 77
83 5-W 5-S 5-W 10-S s 10-W 5-S 10-W 10-S

Figure 4: Performance of various noise representations
on FewAsp (Multi). “Discrete” indicates discrete noise.
“ Con. (r)” refers to continuous noise at dropout rate 7.

porating multiple negative labels.

(2) For continuous noise representation, the
higher dropout rate (i.e., 0.7), produces better re-
sults than lower ones (i.e., 0.3 and 0.5), because
the representations with a lower dropout rate are
not distinguishable from the anchor representations.
Notably, the advantage of continuous noise repre-
sentation lies in its ability to be obtained without
the requirement for negative labels.

5.6 Comparison with LLMs in MACD Tasks

We compared CDPN with Llama-2-7B, Llama-3-
8B, GPT-3.5-turbo, and GPT-40-mini in Table 6.
We have the following findings:

(1) The results in Table 6 show that both Llama-
2-7B and Llama-3-8B still have challenges with
domain-specific MACD tasks. This is because each
support sample often contains multiple noisy cate-
gories, confusing them to generate irrelevant infer-
ences instead of predicting categories. In contrast,
as a small task-specific model, CDPN (i.e., 0.2B)
achieves better performance in MACD tasks.

(2) Although the Llama models (7B and 8B)
perform well in most cases due to the extensive
knowledge, they still have two challenging cases.

Case (1):
Did I mention they even had a vegan dessert?

Ground truth: “food_dessert”
Llama: “food_dessert” v “food_mealtype_lunch” x
CDPN: “food_dessert” v/

The Llama model tends to overly infer more
aspect categories, while our model, by denois-
ing prototypes, can mitigate spurious correlations.
For example, Llama models incorrectly predict
“food_mealtype_lunch” along with the correct cat-
egory “food_dessert.”“ In contrast, our model ef-
fectively mitigates these spurious correlations by
employing a prototype denoising approach.

Case (2):
We didn’t have to fight for chairs like other cheap places
I’ve been to such as hard rock or MGM grand.

Ground truth: “room_interior”
Llama: “room_overall” x “food_food” x
CDPN:" “room_interior” v'

. v

Some implicit aspect categories confuse Llama
models, causing them to produce hallucinations.
For example, Llama-3-8B incorrectly includes
“food_food” as a predicted category. When we
asked why to include “food_food”, the Llama
model explained that “it can be inferred the speaker
is comparing the food quality or service at this
location to those at Hard Rock and MGM Grand.”

(3) We compared CDPN with GPT-3.5-turbo
and GPT-40-mini. In task-specific MACD, CDPN
achieves competitive results by denoising category
prototypes. The GPT-3.5-turbo and GPT-40-mini
excel in discovering subtle associations among
words (e.g., once the name of a person appears,
they assume that “staff” is mentioned), leading
them to predict more categories. Therefore, multi-
category samples are easier to predict, while CDPN
and smaller LLMs better identify random-category
samples (a mix of single and multiple categories)
than multi-category samples.
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Case (1). Ambiguous Semantic Issue.

Case (2). Over-Prediction of Categories.

Did I mention that their section has a full service
?

The frozen makes this place worth a stop as
we ambled up & down the strip.

B Food dessert W Restaurant location O Food food

W/0 CCL W/ CCL

B Food dessert B Restaurant location [ Food food
o m B m2 e @ ©° o
g T BEo-Ewen
VHAF W/O CCL W/ CCL

Figure 5: Case study. Dashed lines indicate the predicted AC threshold, consistent with the setup in (Zhao et al.,
2022). In case (1), “Food_food” is an irrelevant category but wrongly detected. In case (2), “place” leads models to
mistakenly select “Restaurant_location”, while the reviewer intends to refer to the dessert, not the location.

W/O CCL W/ CCL

« 740 %

o x staff master food_food o x food_meat burger

o x experience wait e x parking

Figure 6: Visualization using t-SNE (van der Maaten
and Hinton, 2008). Dots (e) and crosses (x) represent
prototype and query representations, respectively.

5.7 Case Study and Visualization

Fig. 5 presents two cases of CDPN with and with-
out CCL, as well as the baseline VHAF:

Case (1). The ambiguous semantic issue is often
challenging in MACD tasks. It can be observed
that the use of CCL enables CDPN to better distin-
guish similar categories, such as “food_food” and
“food_dessert,” whereas both CDPN without CCL
and VHAF failed to make correct predictions.

Case (2). The model without CCL tends to overly
infer more categories. This may be because “place”
often appears in the same context as “Restrau-
rant_location”, leading to their over-association.
The CCL can mitigate this issue.

Visualization. We visualized category prototype
and query representations with and without CCL
in Fig. 6. We have two findings: (1) the CCL
enables CDPN to learn more distinguishable repre-
sentations among categories (i.e., “staff_master”
and “experimence_wait”, and “food_food” and
“food_meat_burger”), and (2) with CCL, the dis-
tributions of prototype and query representations
exhibit a higher degree of overlap.

6 Conclusion

We proposed a concise task-specific CDPN model
for the few-shot MACD tasks. We integrated causal
inference and contrastive learning to eliminate the
undesired impact of noise categories in the support
set. We explored discrete and continuous noise
to build negative pairs for CCL. Extensive experi-
ments have demonstrated that our CDPN achieves
SOTA performance. In future work, we intend to
(i) generate more counterfacts with LL.Ms for en-
hancing CDPN and (ii) examine our CCL aspect
sentiment triplet extraction (ASTE) (Gou et al.,
2023) and opinion aspect target sentiment quadru-
ple extraction (OATS) (Chebolu et al., 2024).

Limitations

The proposed causal contrastive learning can only
detect the aspect categories, while aspect terms,
opinions, and sentiment polarities are all important
for aspect-based sentiment analysis tasks. We will
extend our approach to a wider variety of ABSA
tasks (Gou et al., 2023; Cui et al., 2023, 2024).
Another limitation is that the CCL is primarily de-
signed for denoising tasks, which limits its general-
ization to more common applications.
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A Appendix

This section provides further implementation se-
tups and experimental results.

A.1 Baselines

We validate the effectiveness of the CDPN model
by comparing it with the following eight baselines:
- Non label-driven methods:

* Prototypical Network (PN) (Snell et al., 2017)
averages the support sample representations as
the prototype, and measures the distance be-
tween query instances and each prototype.

* Infinite Mixture Prototypes (IMP) (Allen et al.,
2019) attempts to infinite mixture prototypes to
represent each category for few-shot learning.

¢ Proto-HATT (HATT) (Gao et al., 2019) uses a
hybrid instance-level and feature-level attention
mechanism to enhance instance features.

* Proto-AWATT (AWATT) (Hu et al., 2021) uti-
lizes support-set attention and query-set atten-
tion to alleviate the noise.

- Label-driven methods:

e LDF (Zhao et al., 2022) uses a label-weighted
contrastive loss as the complementary objective
function and label-guided attention to filter out
noisy words, and generates a representative pro-
totype for each category.

e LPN (Liu et al., 2022) utilizes the descriptions
of label words as the label information, and
employs multi-head self-attention and contrast
learning to enhance prototypes.

* FSO (Zhao et al., 2023) employs a group of
sample-set operations to perform prototype de-
noising for MACD.

* LGP (Guan et al., 2024) proposes a label-guided
prompt method to obtain sentence representa-
tions and category prototypes.

* VHAF (Peng et al., 2024) introduces a varia-
tional distribution inference model to estimate
the output of query samples based on the distri-
bution of support samples.

A.2 Robustness Study

To further show the robustness of CDPN, we ob-
tained the variance (Var.) and a 10-trial T-test
on the FewAsp (Random) and FewAsp (Multi)
datasets and reported the results in Table 7. “*”
indicates that the improvement of our CDPN is
statistically significant compared with the second-
best. In all cases, the improvement compared with
the second-best baselines is statistically significant

Metric [ 5-W5-S 5-W10-S 10-W5-S  10-W 10-S
FewAsp (Random)

SOTAs 87.49 89.22 79.72 82.41
Avg. 88.26% 90.42°% 83.07* 84.58*
Var. 0.69 0.41 0.18 0.13

p-value: 4.1e-4 2.5e-7 1.1e-13 4.9e-11

FewAsp (Multi)

SOTAs 85.22 87.31 75.92 79.43
Avg. 87.77* 88.62* 80.75* 82.26%
Var. 0.23 0.33 2.1 0.17

p-value: | 4.9e-11 2.0e-5 8.0e-07 7.2e-14

Table 7: Robustness study in terms of F1 on the Fe-
wAsp (Random) and FewAsp (Multi) datasets. “SOTAs”
refers to the second-best baselines, i.e., LGP and VHAF.

(p-value < 0.05).

A.3 Visualization

We visualized distributions of prototype and query
representations learned by CDPN in Fig. 7. We
randomly selected 5, 10 and 15 aspects from the
test set of the Fewasp (multi) dataset. We have the
following findings and insights:

(1) Overall, the same colors are clustered to-
gether, indicating that the CDPN effectively iden-
tifies similar prototypes and query representations.
Additionally, it is evident that more ways and fewer
shots make the MACD more challenging.

(2) We observed that some dots or crosses in
different colors are close to each other. There are
two reasons for this: (i) the majority of sentences in
the support and query sets involve multiple aspect
categories; and (i) many categories are semanti-
cally similar, e.g., “food_dessert,”*“food_burger,”
and “food_mealtype_lunch.”

A.4 Prompt Templates for Llama models

We compared CDPN with Llama-2-7B and Llama-
3-8B on two datasets. The 5-way 2-shot results
generated by Llama models were produced using
the following template:

~

Prompt Template for Llama:

The few-shot multi-label aspect category detection task
refers to detecting aspect categories within a given
sentence assigned multiple categories with minimal
annotated examples.

Here are two examples for each aspect category
as support sentences: {support examples}

The available multiple categories include the fol-
lowing 5 selections: {aspect selections}

Given a test sentence, please perform the few-
shot multi-label aspect category detection task, and
directly return the label without other text.
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Figure 7: Visualization of various prototypes. Dots (e) and crosses (x ) represent prototype and query representations,
respectively. Different colors represent different aspect categories.

{support examples}:

“parking”:

(1) He was with our dog in the car but thanks.

(2) The MGM Grand parking is plentiful and pretty easy
to navigate.

“food_mealtype_lunch”:

(1) They continued to make sure everything was good
throughout our lunch.

(2) Pros: cheap lunch buffet, convenient location
for CMU students, good for me cons: not great for
those looking for superspicey dishes star of India
reminds me of that one summer in Pittsburgh the one
when we worked all the time and only had a weekly
break ... to come down to Craig street for the lunch buffet.

“room_bed”:

(1) With a full kitchen, washer and dryer, patio, or
balcony and TV in every bedroom.

(2) Comfortable beds, cheap prices but still feels
luxurious.

“room_smoke’’:

(1) Not unless you want a smoking room.

(2) The overpowering smell of smoke and lord knows
what else was enough to make me queasy.

“experience_wait”:

(1) In the 30 or more visits I've had, my average wait
time has been maybe 2 minutes.

(2) I can’t wait to go back.

{aspect selections}:

“parking”, “food_mealtype_lunch”, “room_bed”,

LLIT3

“room_smoke”, “‘experience_wait”
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