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Abstract

Recent years have witnessed rapid advance-
ments in text-to-music generation using large
language models, yielding notable outputs. A
critical challenge is understanding users with
diverse musical expertise and generating mu-
sic that meets their expectations, an area that
remains underexplored. To address this gap,
we introduce the novel task of Professional and
Amateur Description-to-Song Generation. This
task focuses on aligning generated content with
human expressions from varying musical profi-
ciency levels, aiming to produce songs that ac-
curately meet auditory expectations and adhere
to musical structural conventions. We utilized
the MuChin dataset, which contains annota-
tions from both professionals and amateurs for
identical songs, as the source for these distinct
description types. We also collected a pre-train
dataset of over 1.5 million songs; lyrics were
included for some, while for others, lyrics were
generated using Automatic Speech Recognition
(ASR) models. Furthermore, we propose Mu-
DiT/MuSiT, a single-stage framework designed
to enhance human-machine alignment in song
generation. This framework employs Chinese
MuLan (ChinMu) for cross-modal comprehen-
sion between natural language descriptions and
auditory musical attributes, thereby aligning
generated songs with user-defined outcomes.
Concurrently, a DiT/SiT model facilitates end-
to-end generation of complete songs audio, en-
compassing both vocals and instrumentation.
We proposed metrics to evaluate semantic and
auditory discrepancies between generated con-
tent and target music. Experimental results
demonstrate that MuDiT/MuSiT outperforms
baseline models and exhibits superior align-
ment with both professional and amateur song
descriptions.

1 Introduction

Music is a universal language that transcends cul-
tural barriers, yet the automated creation of music

that aligns with human thoughts is a complex en-
deavor. In recent years, large language models for
text-to-music generation have advanced rapidly, re-
sulting in notable systems. A key challenge for
these models is aligning generated music with the
diverse expectations of users with varying musical
expertise. However, this issue remains underex-
plored.

To address this gap, we introduce the "Profes-
sional and Amateur Description-to-Song Genera-
tion" task, which prioritizes the alignment of AI-
generated music with both professional and am-
ateur human expressions. We propose MuDiT/-
MuSiT, a single-stage framework based on two
commonly used diffusion-transformer-like mod-
els (Peebles and Xie, 2023; Ma et al., 2024) for
music generation. To address the limited cov-
erage of Chinese colloquial phrases in existing
text-to-audio pre-trained models, we trained a Chi-
nese MuLan (ChinMu) cross-modal encoder based
on CLAP (Wu et al., 2023b) and MuLan (Huang
et al., 2022) architectures. The MuDiT/MuSiT
framework integrates cross-modal understanding
via ChinMu to generate music that aligns with
user auditory expectations and musical conven-
tions. During inference, ChinMu converts user
colloquial descriptions into vectors. These vectors,
concatenated with random noise, serve as condi-
tional inputs to DiT/SiT modules. Operating in
the VAE (Kingma and Welling, 2013) latent space,
DiT and SiT then generate songs corresponding to
these descriptions. LLM-generated lyrics can also
be incorporated as conditions via a cross-attention
mechanism.

MuDiT/MuSiT underwent a three-stage training
process: module preparation, large-scale data pre-
training, and annotated data fine-tuning. For fine-
tuning, we utilized the MuChin dataset (Wang et al.,
2024b). Unlike datasets often limited to expert-
only annotations or those with semantic gaps from
automated Music Information Retrieval (MIR) tag-
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ging, MuChin provides paired professional and am-
ateur annotations for identical songs. This unique
characteristic, previously validated for its richness
with models like MERT (Li et al., 2023) and Juke-
box (Dhariwal et al., 2020), makes it highly suitable
for training our model to align with these varied
user expressions.

Models were evaluated using subjective and ob-
jective metrics, focusing particularly on their abil-
ity to understand meanings conveyed by users with
varying musical expertise (amateur or professional)
and to generate music meeting user expectations.
In addition to Fréchet Audio Distance (FAD) for
assessing generation quality, we introduced SST
and ASOA—novel metrics for semantic and audi-
tory alignment with input descriptions. Given that
music generation lacks standard references, unlike
text annotation, we supplemented with human eval-
uation as subjective metrics.

For experimental comparison of alignment per-
formance, we selected AudioLDM (Liu et al.,
2023a), StableAudio (Evans et al., 2024), and
MusicGen (Copet et al., 2024) as baseline mod-
els. Results indicate that MuDiT/MuSiT surpasses
baseline models in aligning with professional and
amateur colloquial expressions, marking a signifi-
cant step in human-AI collaborative music creation.
This research, by introducing the "Professional and
Amateur Description-to-Song Generation" task, is
the first to explicitly address the challenge of gen-
erating music that resonates with the everyday lan-
guage of the general public. It tackles a critical gap
in aligning AI-generated music with non-expert
colloquial expressions and paves the way for more
nuanced human-AI interaction in artistic expres-
sion.

Code implementation1.

2 Background

2.1 Text-to-Song Generation

In recent years, advancements in artificial intelli-
gence have propelled the development of automatic
music composition (Sheng et al., 2021; Hsiao et al.,
2021; Mao et al., 2023; Yu et al., 2022; Wang et al.,
2024a; Agostinelli et al., 2023; Wu et al., 2023a;
Wang et al., 2024c; Copet et al., 2024), but the
alignment 2 of AI-generated music with the ev-
eryday expressions of non-professionals remains

1https://github.com/CarlWangChina/MuDiT-MuSiT
2https://en.wikipedia.org/wiki/AI_alignment

largely underexplored. This oversight is signifi-
cant, as it impacts the ability of AI to understand
and meet the diverse musical expectations of the
general public.

Early research primarily focused on specific
aspects of song generation, such as text-to-
instrumental music (Schneider et al., 2023; Huang
et al., 2023; Agostinelli et al., 2023; Copet et al.,
2024), lyrics-to-melody (Sheng et al., 2021; Yu
et al., 2024b), and music score-to-song genera-
tion (Zhiqing et al., 2024). However, these mod-
els are unable to generate complete songs that in-
clude both vocals and accompaniment in a sin-
gle stage. For descriptive text-to-instrumental mu-
sic generation, models like MusicLM (Agostinelli
et al., 2023) and MusicGen (Copet et al., 2024)
use quantization-based audio codecs (Zeghidour
et al., 2021; Défossez et al., 2022) to obtain resid-
ual codebooks and utilize large language models
to generate high-quality audio music. Whereas Au-
dioLDM v1 (Liu et al., 2023a) and v2 (Liu et al.,
2024) rely on latent diffusion models, focusing on
modeling in latent space for generation. For mu-
sic score and descriptive text-to-song generation,
Melodist (Zhiqing et al., 2024) adopts a two-stage
approach, first generating vocals based on melody,
lyrics, and descriptive text, and then creating ac-
companiment based on the vocals and descriptive
text.

Recent advancements have made it possible to
generate complete songs including both vocals and
accompaniment (Lei et al., 2024; Yuan et al., 2025).
Text-to-song generation platforms from industry,
such as Suno 3 (Yu et al., 2024a), SkyMusic 4,
Udio 5, Stable Audio 6, and SeedMusic (Bai et al.,
2024) have received widespread attention for their
powerful capabilities.

2.2 Transformer-Based Diffusion Models

Traditional diffusion models typically employ U-
Net architectures, which are limited by the in-
ductive biases of Convolutional Neural Networks
(CNNs), making it difficult to effectively model
the spatial correlations of signals and are not sen-
sitive to scaling laws (Li et al., 2024). However,
Transformer-based diffusion models (DiT) (Pee-
bles and Xie, 2023) have successfully overcome
these limitations and have demonstrated significant

3https://www.suno.ai
4https://www.tiangong.cn
5https://www.udio.com
6https://www.stableaudio.com
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advantages in areas such as speech generation (Liu
et al., 2023b), image generation (Bao et al., 2022;
Peebles and Xie, 2023; Chen et al., 2024), and
video generation (Brooks et al., 2024). Meanwhile,
Scalable Interpolant Transformers (SiT) (Ma et al.,
2024), built upon a DiT backbone, use a flexible in-
terpolation framework to connect two distributions
more effectively than standard diffusion models,
achieving significant results in terms of efficiency
and performance.

2.3 Music Datasets and Benchmarks with
Descriptive Annotations

In recent years, music datasets have developed
rapidly (Bertin-Mahieux et al., 2011; Bogdanov
et al., 2019; Wang et al., 2022; Melechovsky et al.,
2023; Lu et al., 2023; Schneider et al., 2023; Zhu
et al., 2023). AudioSparx 7 and Mustango (Mele-
chovsky et al., 2023) apply Music Information
Retrieval (MIR) tools to extract features such as
instruments, style, vocals, and BPM from sym-
bolic music or audio music, and utilize large lan-
guage models to integrate these features into tex-
tual descriptions. MuLaMCap (Huang et al., 2023)
uses language models to generate descriptive texts
and utilizes MuLan (Huang et al., 2022) to match
these texts with music in the datasets. However,
a huge semantic gap still exists between descrip-
tive datasets based on automatic annotation and
complex human descriptions.

MusicLM (Agostinelli et al., 2023) provides a
dataset named MusicCaps, which contains music
descriptions annotated by professional musicians.
Existing manually annotated datasets are typically
limited to annotations by professional musicians
and a restricted range of descriptions, which signif-
icantly differs from the amateur descriptions pro-
vided by the general public (Amer et al., 2013;
Mikutta et al., 2014).

Furthermore, although frameworks like AIR-
Bench (Yang et al., 2024) and Stable Audio Metrics
provide multi-dimensional evaluation, they primar-
ily assess audio quality rather than the consistency
between the generated music and user expectations.
Recent research, such as MusicEval (Liu et al.,
2025), has introduced datasets with expert ratings
for generative evaluation, but overlooks the dif-
ferences in listeners’ varying musical proficiency
levels, which may affect their expectations.

7https://www.audiosparx.com/

3 Method

This study adopts supervised learning techniques,
complemented by the dual perspectives of profes-
sional and amateur annotators, and constructs the
training process using an end-to-end single-stage
approach. This ensures that the AI-generated songs
align with human expectations, while also enabling
the AI model to understand and incorporate the
standard structure of human songs.

3.1 Training Process of MuDiT/MuSiT

As shown in Figure 1, the training process of Mu-
DiT/MuSiT includes three stages. In the first stage,
we prepare three modules for MuDiT/MuSiT train-
ing: a fine-tuned lyric large language model (LLM),
a ChinMu cross-modal encoder, and a VAE (en-
coder and decoder). In the second stage, within the
MuDiT/MuSiT framework, we pre-train DiT/SiT
using raw lyrics and audio from MuChin and an
additional 1.5 million songs with untagged descrip-
tions. In the third stage, we fine-tune DiT/SiT
using a combination of structured lyrics, audio,
and professional and amateur descriptions from the
MuChin dataset.

3.1.1 Chinese MuLan (ChinMu) Cross-Modal
Encoder.

Text-audio contrastive pre-training models are cru-
cial for AI to understand colloquial descriptions
and cannot be replaced by other text encoders
trained on professional vocabulary. To address the
insufficient coverage of Chinese colloquial phrases
in existing text-audio contrastive pre-training mod-
els, we trained a Chinese MuLan (ChinMu) cross-
modal encoder using MuChin, based on the ar-
chitectures of CLAP (Wu et al., 2023b) and Mu-
Lan (Huang et al., 2022). Subsequently, we utilize
ChinMu to process the colloquial description into a
vector and concatenate it with random noise before
inputting it into DiT/SiT as a condition, as shown
in Figure 1. This step ensures that the input text
description is transformed into a dense vector rep-
resentation capable of capturing semantic nuances.
During the training of the ChinMu model, we seg-
mented descriptions and audio of varying lengths
from MuChin, enabling effective text-audio con-
trastive pre-training. This allows ChinMu to adapt
to inputs with different text and audio lengths.
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Figure 1: Training details of MuDiT/MuSiT. It includes three stages: module preparation, pre-training, and fine-
tuning. In the module preparation stage, we fine-tune a lyric large language model (LLM) using structured lyrics,
train a ChinMu cross-modal encoder using audio along with professional and amateur descriptions, and train VAE
encoder and decoder using audio. In the pre-training stage, we utilize raw lyrics and audio to pre-train DiT or SiT.
During the fine-tuning stage, we optimize the pre-trained DiT or SiT, treating professional and amateur descriptions
as well as structured lyrics as conditioning factors.

3.1.2 Fine-tuned Lyric Large Language
Model (LLM).

We utilize QLoRA (Dettmers et al., 2024) as a
parameter-efficient fine-tuning (PEFT) method to
optimize the Qwen-14B model (Bai et al., 2023) for
generating lyrics based on colloquial descriptions,
incorporating musical sections and rhyming struc-
tures. Due to parameter constraints, and consid-
ering its effectiveness in Chinese lyric processing,
we selected the Qwen-14B-Chat-Int4 model (Bai
et al., 2023). Our training data includes themes
extracted from lyrics, along with manually anno-
tated musical sections and rhyming structures. This
dataset is used to fine-tune the model to generate
lyrics that include musical structures (as shown
in Figure 1), with outputs including tags such as
<verse>, <chorus>, and <bridge>. The DiT model
generates songs consistent with these tagged struc-
tures. Additionally, we convert Chinese characters
into Pinyin as input for the DiT model.

3.1.3 DiT/SiT.
During the training process of DiT/SiT, we employ
DDPM with random timesteps, while during in-
ference, we use DDIM with sequential timesteps

(progressing from t to 0).
1) Pre-training Phase. We conducted super-

vised pre-training on DiT/SiT using a collection of
1.5 million de-duplicated songs, as shown in Fig-
ure 1. An internal automatic speech recognition
(ASR) tool extracts lyric texts from the song audio,
creating a dataset of "lyric text-song audio" pairs.
The lyric text serves as a supervision signal through
a cross-attention mechanism, while the song audio,
in the form of VAE latent vectors, serves as training
data.

During training, lyric timestamps can align au-
dio windows with corresponding lyrics. However,
during inference, lyrics provided by users or LLMs
often lack precise timestamps, making it difficult
for the model to accurately match lyric lengths
with audio windows. Compared to speech, the vari-
ability in singing speed exacerbates this challenge,
complicating the prediction of time ranges based
on word counts.

Therefore, we chose not to use common window-
based audio generation methods. Instead, we gen-
erate the entire song at once, using the full audio
without random segmentation during training. To
accommodate variable lengths, we add padding to
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Figure 2: Detailed architecture of MuDiT/MuSiT. (a) MuDiT/MuSiT uses ChinMu to convert text into vectors,
combines them with noise for DiT input, and uses a fine-tuned LLM to generate lyrics. It outputs complete songs in
the form of VAE latent variables, which are then decoded into WAV files. (b) The diffusion process of DiT/SiT starts
from noise at t=N, iteratively subtracting the predicted noise from the sample until t=0, outputting the final song as
VAE latent variables. (c) In each diffusion timestep, DiT/SiT denoises the sample, processing variable-length lyrics
and structures via cross-attention, while fixed-length description embeddings are processed via self-attention; finally
outputting noise predictions.

the end of each audio segment for standardization.
This approach resolves the problem of segment-

ing lyrics into windows and offers two additional
benefits: 1) Compared to window-based genera-
tion, it enables the DiT/SiT model to better capture
the overall musical structure of the song. 2) Times-
tamped lyric data (.LRC) is not required during the
training phase; regular lyric data (.TXT) suffices.

2) Fine-tuning Phase. Finally, for the task of
colloquial description to song generation, we fine-
tuned the DiT/SiT model based on MuChin, as
shown in Figure 1. In fine-tuning, the model uses
type labels as conditions to process professional
and amateur inputs. This fine-tuning enables the
model to generate songs that meet human require-
ments based on user-provided colloquial descrip-
tions and structured lyrics.

To maintain consistency between training and
inference, we addressed the issue of varying in-
put lengths, from single words to full paragraphs.
During training, we randomly segmented the de-
scription annotations in MuChin into fragments
of different lengths. Each fragment—whether a
word, phrase, or sentence—is converted into a vec-
tor via ChinMu and concatenated along the length
dimension, while keeping the hidden dimension un-
changed. This method allows the DiT/SiT model
to efficiently process text inputs of varying lengths
during inference.

3.2 MuDiT/MuSiT Architecture

3.2.1 Architecture Overview.
We propose an end-to-end single-stage generation
model named MuDiT/MuSiT, as shown in Fig-
ure 2(a). The model’s primary input is colloquial
descriptions; ChinMu converts these descriptions
into embedding vectors, which are then concate-
nated with random noise to be learned via self-
attention mechanisms in the DiT/SiT model. The
DiT (Peebles and Xie, 2023) and SiT (Ma et al.,
2024) models generate songs consistent with user
descriptions, outputting VAE latent vectors. A
VAE decoder decodes these latent vectors into high-
quality WAV files, ensuring audio fidelity and rich-
ness.

For songs that require lyrics, structured lyrics
can be generated from the same colloquial de-
scriptions by a fine-tuned Large Language Model
(LLM), or provided by the user. These lyrics, when
available, can then serve as an additional condi-
tional input to the DiT/SiT model, typically pro-
cessed through its cross-attention modules.

3.2.2 Transforming Noise to VAE Space.
In original audio data, each point represents mean-
ingful musical content. We aim to simplify this
complex, high-dimensional, irregular space into a
regular, normal distribution-like space, which re-
quires a spatial transformation. We first perform
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unsupervised VAE pre-training on a vast dataset,
converting audio into VAE latent vectors. These
vectors index audio content in a VAE space that
resembles a normal distribution. The VAE space is
discontinuous, with noise distributed in meaning-
less positions between discrete points. During the
DiT/SiT inference process shown in Figure 2(b),
we iteratively reduce noise to gradually approach
a meaningful point in the VAE space, which the
decoder then converts into a waveform. This means
we need to make the DiT training data a subset of
the VAE data.

3.2.3 Control Conditions for DiT/SiT.
We apply DiT/SiT to the song generation task,
adopting this new standardized architecture to open
up more possibilities for cross-domain research.
Application of Self-Attention Mechanism.
1) Professional and amateur text descriptions.
ChinMu converts text into embedding vectors.
These vectors, after normalization, are concate-
nated with noisy samples to form noised latent
vectors. These latent vectors are processed by the
multi-head self-attention mechanism in DiT/SiT,
thereby capturing the dependencies between text
descriptions and audio content. 2) Reference au-
dio. The noisy sample in Figure 2(c) is divided
into prompt and target parts. The audio prompt
can include user-provided reference tracks for style
or content control. Source separation technology
is employed to extract vocals, drums, chords, and
bass as pre-training data for DiT/SiT, thereby en-
abling the aforementioned control. We found that
even non-musical sounds can be integrated. Appli-
cation of Cross-Attention Mechanism. 1) Lyrics
and musical segment structure. The cross-attention
mechanism treats variable-length lyrics and audio
as parallel streams to find correlations, and maps
musical segment labels as tokens to maintain tem-
poral relationships.

3.2.4 Differential Benefits of SiT over DiT
DiT and SiT, open-sourced by Meta, use similar
neural network structures. SiT enhances the in-
terpolation and sampling processes (interpolation
involves the data transformation from raw data to
Gaussian noise), providing a more nuanced explo-
ration of the diffusion process. DiT uses discrete
timesteps, assuming a constant distribution conver-
sion rate, which lacks flexibility. SiT uses continu-
ous time, allowing for more adaptive connections
between data and Gaussian noise through better

interpolation functions. This aligns better with the
continuity of music. Additionally, DiT uses deter-
ministic sampling, while SiT introduces random-
ness, separating inference and training diffusion
coefficients. This reduces overfitting and improves
generalization capability. We introduce a new con-
tinuous interpolation function based on the Bezier
curve. Specifically, for the original data x∗ ∼ p(x),
the transformation xt at an arbitrary time t can be
expressed as:

xt = Bt(x
∗,Q, ϵ) = (1−t)2x∗+2(1−t)tQ+t2ϵ,

(1)
where ϵ ∼ N (0, 1) represents random noise, and
Q is a control point which can be defined as:

Q = cos

(
πt̃

2

)
x∗, (2)

where t̃ is a hyperparameter. SiT uses reverse-time
stochastic differential equations to relate the veloc-
ity field and the score function, allowing for the
estimation of complex score functions via simpler
velocity fields, thereby enhancing flexibility in mu-
sic generation.

4 Experiments

4.1 Implementation Details
For the training of the ChinMu cross-modal en-
coder, the ChinMu vector is set to 512 dimensions.
Training was conducted on a machine equipped
with 80GB of VRAM and eight A800 GPUs con-
nected via NVLink. The total effective training
duration was approximately 14 days. For the pre-
training of the VAE encoder and decoder, the VAE
latent variable was set to 96 dimensions. We used a
de-duplicated dataset of 1.5 million songs com-
bined with MuChin as the training audio data.
Training was performed on a cluster of machines
equipped with A100 GPUs, totaling 64 GPUs, and
took 22 days. Notably, each machine was equipped
with 80GB of VRAM, featuring eight GPUs con-
nected via NVLink, and these eight machines were
interconnected via an InfiniBand (IB) network. For
the pre-training of DiT or SiT, the model param-
eter size is 380MB, the input dimension is set to
96 dimensions, and the RoPE method is used for
positional embedding. We used the same data and
machine cluster as for the VAE pre-training. The to-
tal effective training duration was approximately 35
days. For the fine-tuning of DiT or SiT, the param-
eters and machine cluster remained consistent with
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Objective Open Source Ours

StableAudio MusicGen Melodist A-LDMv1 A-LDMv2 MuDiT MuSiT

Quality
(FAD)

MS-Clap↓ 649.37 595.88 303.43 956.30 502.89 210.18 199.31
Laion-Clap↓ 0.85 1.16 0.78 1.32 1.07 0.55 0.48

Encodec↓ 28.60 73.84 41.34 63.62 68.22 26.43 24.83
MERT↓ 7.33 23.87 20.59 25.01 19.48 5.12 4.92

Alignment
SST↑ 0.30 0.10 0.27 0.14 0.08 0.44 0.49

ASOA↑ 0.31 0.33 0.35 0.33 0.32 0.57 0.46

Table 1: Objective results. Underlined values indicate best performance.

Subjective Open Source Ours

StableAudio MusicGen Melodist A-LDMv1 A-LDMv2 MuDiT MuSiT

Quality

Vocal↑ 2.16 2.23 3.98 3.23 3.37 3.96 3.95
Accompaniment↑ 3.23 3.14 3.36 3.10 3.12 4.03 4.01

Structure↑ 2.63 3.15 3.31 3.40 3.41 3.48 3.51
Coherence↑ 3.05 3.22 3.82 3.63 3.32 3.99 4.01

Alignment
(Comprehension)

Lyric↑ 2.74 2.61 3.25 3.08 3.43 4.26 4.35
Genre↑ 2.69 2.53 2.98 3.34 3.85 4.08 4.01

Emotion↑ 2.87 3.61 2.76 3.27 3.35 3.91 3.97
Instrument↑ 2.74 3.44 3.19 3.32 3.41 3.74 3.85

Table 2: Subjective results. Underlined values indicate best performance. (All subjective metrics exhibit statistically
significant differences, p < 0.03.)

those used in the pre-training phase. We used the
MuChin dataset, which was randomly segmented
to form 300,000 text-audio paired fragments. The
total effective training duration was approximately
10 days.

4.2 Main Experiment: MuDiT/MuSiT
Evaluation

In this experiment, we created 50 songs using our
models and baseline models. The MuDiT/MuSiT
model distinguishes between professional and am-
ateur descriptions through label control. Test data
including amateur and professional descriptions,
is randomly sampled from unseen data, ensuring
no overlap between the ground truth song audio
in the test and training sets to guarantee fairness.
Each description was randomly segmented into
120-character prompts and paired with the corre-
sponding ground truth audio.

Using these prompts, we generated songs with
MuDiT, MuSiT, and several baseline models, in-
cluding AudioLDM v1 (Liu et al., 2023a) and
v2 (Liu et al., 2024), Stable-Audio-Open-1.08,
Melodist (Zhiqing et al., 2024), and Music-
Gen (Copet et al., 2024). Notably, the Stable-
Audio-Open-1.0 model performs poorly on non-
English inputs, so we first translated the Chinese
prompts into English.

8https://www.stableaudio.com

Due to page limitations, presenting four separate
tables for objective professional/objective amateur/-
subjective professional/subjective amateur scores
would be too verbose. This experiment averages
the scores from professional descriptions and ama-
teur descriptions to serve as the final score for each
metric of the models/systems.

4.2.1 Evaluation Metrics.
Objective Evaluation Metrics.

For objective evaluation, we use Fréchet Au-
dio Distance (FAD) to assess the sound quality
of the generated audio, and Semantic Similarity
(SST) and Acoustic Similarity (ASOA) to evalu-
ate semantic alignment. FAD, adapted from the
Fréchet Inception Distance (FID) in the image do-
main, has become a key metric for audio quality
assessment, utilizing four embedding models: MS-
CLAP, Laion-CLAP, Encodec, and MERT. FAD
reflects the objective quality of generated audio
by comparing it with a reference set. We selected
1,000 existing songs as benchmark audio to provide
a comprehensive quality assessment.

1) MS-CLAP (Elizalde et al., 2023): Assesses
overall audio quality by capturing various acous-
tic features. 2) Laion-CLAP 9: Provides a com-
prehensive evaluation of audio characteristics. 3)

9https://huggingface.co/laion/larger_clap_
music
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Training Data Laion-Clap ChinMu-Batch ChinMu-MiniBatch

Test Data S-M-L M-L Short S-M-L M-L Long

Short
Top-5↑ 16.07% 14.56% 13.81% 17.87% 21.32% 21.77% 24.02%

Top-10↑ 26.13% 26.58% 22.07% 30.78% 37.69% 37.09% 38.29%
Top-15↑ 35.14% 33.78% 22.83% 39.94% 50.00% 48.20% 50.75%

Medium
Top-5↑ 20.12% 18.92% 15.02% 17.12% 24.17% 26.58% 27.93%

Top-10↑ 32.88% 31.08% 27.03% 29.58% 39.79% 41.59% 40.39%
Top-15↑ 41.44% 43.99% 37.24% 39.64% 53.00% 50.90% 53.15%

Long
Top-5↑ 17.12% 13.36% 13.81% 13.66% 18.92% 20.42% 20.72%

Top-10↑ 24.92% 24.62% 22.67% 22.52% 28.53% 33.78% 32.59%
Top-15↑ 31.53% 31.53% 30.48% 28.83% 38.14% 41.29% 41.30%

S-M-L
Top-5↑ 17.77% 15.61% 14.21% 16.22% 21.47% 22.92% 24.22%

Top-10↑ 27.98% 27.43% 23.92% 27.63% 35.34% 37.49% 37.09%
Top-15↑ 36.04% 36.43% 30.18% 36.14% 47.05% 46.80% 48.4%

Table 3: Objective evaluation results of ChinMu with different settings. S refers to word-level annotations, such as
labels and tags. M refers to short phrase descriptions. L refers to long sentence descriptions. We conduct tests on
different test dataset settings to evaluate ChinMu’s performance, with K values for Top-K ranking set at 5, 10, and
15. For each test setting, the best result is highlighted in bold.

Encodec (Défossez et al., 2022): Focuses on re-
flecting acoustic distortions and low-pass filtering
effects. 4) MERT (Li et al., 2023): Filters out
samples composed of synthetic tones with minimal
temporal or spectral variation.

Furthermore, to evaluate the alignment of the
generated audio, we used two methods:

1) Semantic Similarity (SST): This method
uses the Laion-CLAP model to evaluate the align-
ment between the generated audio and the input
text. The model maps both modalities to a shared
embedding space. The Semantic Similarity score
is calculated by measuring the cosine similarity be-
tween the input text vector and the corresponding
audio embedding. 2) Acoustic Similarity (ASOA):
This method evaluates the alignment between the
generated audio and the ground truth audio. We
use the MERT-v1-95M model (Li et al., 2023) to
obtain embeddings for both the generated audio
and the reference audio. The Acoustic Similarity
score is derived from the cosine similarity between
these embeddings.
Subjective Evaluation Metrics and Participants.

For subjective evaluation, we designed a survey
questionnaire and invited 32 participants from di-
verse backgrounds, including 17 professional users
and 15 amateur users. Songs generated by our
models and baseline models were shuffled and dis-
tributed to the participants, who evaluated the qual-
ity of the music and its conformance to the input
text requirements based on eight metrics. To val-
idate these assessments, we employed t-tests for

statistical data comparison. For music generation
quality, we adopted four metrics:

1) Vocal. The sound quality of the vocals, as
well as melodic and rhythmic features. 2) Ac-
companiment. Arrangement structure, instrument
usage, and degree of fusion with the melody. 3)
Structure. Musical segmentation, structural repeti-
tion, and hierarchical progression. 4) Impression.
Impression of sound quality and coherence.

For description comprehension, we used the fol-
lowing metrics to measure whether the model met
the input requirements:

1) Lyrics. Alignment of lyrics with the input.
2) Genre. Consistency of style with the input. 3)
Emotion. Emotional resonance with the input. 4)
Instrument. Consistency of instruments with the
specified input.

4.2.2 Results
Objective Evaluation Results.

MuSiT and MuDiT were compared with base-
line music generation models. As shown in Table 1,
MuSiT and MuDiT outperform these baselines
on key metrics such as FAD. Furthermore, Mu-
DiT/MuSiT achieved the highest alignment scores.
While Tables 1 and 2 average scores for brevity,
MuDiT/MuSiT demonstrated strong individual per-
formance on both professional and amateur descrip-
tions when evaluated separately, confirming its effi-
cacy across diverse user types.

Notably, MuSiT excels in balancing generation
quality and alignment, adeptly handling descrip-
tive music generation tasks. These findings support
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the hypothesis that the SiT architecture, tailored
for temporal data, is more effective for music gen-
eration—especially for continuous and dynamic
elements—than the DiT-based MuDiT. Although
MuDiT also aligns well with user prompts, MuSiT
emerges as the superior choice for tasks demanding
high fidelity and precise alignment with colloquial
musical descriptions.
Subjective Evaluation Results.

The subjective evaluation results in Table 2 cor-
roborate the objective findings. In music genera-
tion quality, MuSiT and MuDiT slightly outper-
form other baseline models. For understanding and
aligning with professional and amateur colloquial
descriptions, MuDiT and MuDiT far surpass other
baseline models. Although MuDiT’s performance
in understanding colloquial descriptions is com-
parable to MuSiT’s, given MuSiT’s advantage in
music generation quality, "our model" specifically
refers to MuSiT in subsequent experiments.

4.3 Method Analysis: ChinMu Cross-Modal
Encoder

By comparing the performance differences of
ChinMu with training data of different length levels
and under different training strategies, we aim to
explore the optimal performance of ChinMu. We
divide the text descriptions in MuChin into three
annotation length levels: Short annotations, includ-
ing word-level labels and tags; Medium annota-
tions, consisting of short phrase descriptions; and
Long annotations, providing more detailed long
sentence descriptions. In addition to using descrip-
tions of different lengths to train our model, we
also experimented with training strategies includ-
ing MiniBatch and Batch. Batch training updates
parameters using the entire dataset, while Mini-
Batch training uses subsets of the dataset for each
update.

4.3.1 Evaluation Metrics.
We designed a retrieval-based metric similar to (Xu
et al., 2018). Given a description, we calculate the
top-K retrieval accuracy from a pool of N candi-
date audios. The process begins by constructing
a pool of N candidate audios, obtained by apply-
ing the ChinMu model to the audio data in the test
set. Subsequently, we compute and rank the cosine
similarity between the given description and each
of the N candidate audio samples. If the ground
truth audio GT is ranked in the top-K positions, we
consider the retrieval successful. Given M distinct

descriptions, the retrieval accuracy RA is defined
as:

fn =

{
1, GT in top-K positions
0, GT not in top-K positions

(3)

RA =
1

M
·

M∑

i=1

fn(i) (4)

where fn(i) indicates whether the i-th description
was successfully retrieved.

4.3.2 Results.
ChinMu’s performance was evaluated across dif-
ferent configurations and test datasets using Top-
K retrieval accuracy (K values of 5, 10, and 15).
Table 3 shows that ChinMu outperforms existing
pre-trained models (like Laion-CLAP) on unseen
colloquial description-audio test sets. This sug-
gests ChinMu has a stronger understanding of col-
loquial descriptions, potentially enabling MuDiT
and MuSiT to better comprehend user requests.

ChinMu-MiniBatch consistently outperformed
ChinMu-Batch across various evaluation metrics.
This can be attributed to more frequent parame-
ter updates in MiniBatch training, allowing for a
more nuanced adaptation to the dynamic nature of
colloquial descriptions. MiniBatch training also
introduces more randomness and accelerates con-
vergence, leading to better generalization across
different input styles.

Finally, ChinMu demonstrates superior perfor-
mance on long descriptions compared to medium
and short ones, and on the S-M-L dataset mixing
all three types. This is likely due to the richer se-
mantic information in long descriptions providing
more contextual clues for better alignment. The ad-
ditional detail enables ChinMu to generate outputs
more accurately aligned with the given descrip-
tions, whereas shorter inputs may lack necessary
context for precise mapping.

5 Conclusion

Our work represents a significant advancement in
the field of human-AI collaborative music genera-
tion. The MuDiT/MuSiT framework has demon-
strated the potential to combine AI-generated mu-
sic with professional and amateur colloquial ex-
pressions, paving the way for more inclusive and
nuanced AI-generated artistic creations. Future
work will explore expanding datasets and applying
our methods to other creative domains.
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Limitations

While our MuDiT/MuSiT framework represents
a notable advancement in aligning generative mu-
sic models with user expectations, particularly for
Chinese colloquial descriptions, we acknowledge
several limitations that warrant consideration for
future research.

First, our framework, MuDiT/MuSiT, is cur-
rently tailored to Chinese language and musical
contexts. Key components like our ChinMu cross-
modal encoder (built upon architectures such as
CLAP (Wu et al., 2023b) and MuLan (Huang
et al., 2022)) and our fine-tuned lyric LLM (Qwen-
14B (Bai et al., 2023)) were trained primarily using
the MuChin dataset (Wang et al., 2024b). While
effective for this domain, extending MuDiT/MuSiT
to other languages and musical cultures would re-
quire significant new datasets and retraining efforts.

Second, our lyric generation and integration pro-
cess offers room for improvement. Our use of Auto-
matic Speech Recognition (ASR) for some training
data lyrics may introduce errors that could affect
model learning. Additionally, while our system
incorporates structured lyrics, for instance, from
our fine-tuned LLM (Qwen-14B (Bai et al., 2023)),
ensuring seamless and expressive synchronization
with complex musical elements remains a chal-
lenge.

Third, our decision to generate entire songs
at once, rather than using window-based meth-
ods, aids in capturing overall musical structure.
However, this approach may face scalability and
coherence issues for very long songs. The im-
pact of padding, used by us to standardize audio
lengths, on such pieces—especially regarding com-
putational efficiency and sustained musical inter-
est—requires further study.

Finally, while MuDiT/MuSiT demonstrates en-
hanced alignment with user descriptions and sup-
ports reference audio, improving nuanced musical
controllability is an avenue for future work. For ex-
ample, playing a specific instrument at a particular
position, responding to harmonic developments, or
achieving deeply nuanced emotional delivery in vo-
cals—to allow for more sophisticated and detailed
user guidance, remains a key challenge.
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