
Findings of the Association for Computational Linguistics: ACL 2025, pages 6634–6663
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Learning Task Representations from In-Context Learning

Baturay Saglam*, Xinyang Hu, Zhuoran Yang,
Dionysis Kalogerias, Amin Karbasi

Yale University

Abstract

Large language models (LLMs) have demon-
strated remarkable proficiency in in-context
learning (ICL), where models adapt to new
tasks through example-based prompts without
requiring parameter updates. However, under-
standing how tasks are internally encoded and
generalized remains a challenge. To address
some of the empirical and technical gaps in
the literature, we introduce an automated for-
mulation for encoding task information in ICL
prompts as a function of attention heads within
the transformer architecture. This approach
computes a single task vector as a weighted
sum of attention heads, with the weights opti-
mized causally via gradient descent. Our find-
ings show that existing methods fail to general-
ize effectively to modalities beyond text. In re-
sponse, we also design a benchmark to evaluate
whether a task vector can preserve task fidelity
in functional regression tasks. The proposed
method successfully extracts task-specific in-
formation from in-context demonstrations and
excels in both text and regression tasks, demon-
strating its generalizability across modalities.

1 Introduction

Large language models (LLMs) based on the trans-
former architecture (Vaswani et al., 2017) have seen
dramatic improvements in recent years. A notable
feature of these models, such as GPT-3 (Brown
et al., 2020), is their capability for in-context learn-
ing (ICL). This process involves the model receiv-
ing a prompt that includes demonstrations of a task
in the form of input-output pairs. When presented
with a new query input, the model can generate the
appropriate output by extrapolating from the pro-
vided examples. For instance, after being prompted
with a few examples, these models are capable of
producing the antonyms of given input words. A

*Corresponding author: baturay.saglam@yale.edu

concrete example is

vanish → appear, short → tall,︸ ︷︷ ︸
examples

increase →︸ ︷︷ ︸
query

decrease︸ ︷︷ ︸
completion

,

(1)
where the blue text is the prompt and the red text is
the completion provided by the model. Not limited
to linguistic tasks, transformers can also in-context
learn a general class of functions F (Garg et al.,
2023). Specifically, for any function f ∈ F , the
model is capable of approximating f(xquery) for
a new query input xquery. This class may include
linear or nonlinear relationships, which can be rep-
resented by various machine learning models such
as linear regression, multi-layer ReLU networks,
and decision trees.

The ICL capability is particularly intriguing as
it allows models to adapt to a wide range of down-
stream tasks on-the-fly—i.e., without requiring
any parameter updates post-training (Brown et al.,
2020). This indicates that models can extract ab-
stract task information (the relationship between
input-output pairs) from the prompt and use it to
generate accurate responses for query inputs. How-
ever, due to the complex nature of the transformer
architecture, the computational mechanisms that
facilitate how models internally extract and encode
task information are not well understood.

Task vectors have been identified as key mech-
anisms for encoding task information during ICL
(Todd et al., 2024; Li et al., 2024; Hendel et al.,
2023; Liu et al., 2024). These vectors capture how
models process prompts and embed the abstract in-
context task as a numerical representation. While
the effectiveness of these vectors is empirically
well-supported, the precise computation of a task
vector within the transformer architecture remains
debated. Early findings suggest that layer or atten-
tion activations significantly influence ICL perfor-
mance (Hendel et al., 2023; Liu et al., 2024; Todd
et al., 2024).

6634

However, there is no consensus on the optimal
way to conceptualize or compute these vectors, re-
sulting in varied methodologies that often excel in
linguistics but fail to generalize to other tasks, such
as functional regression. Since these methods rely
on the internal components of transformers and ar-
chitectural differences due to output modality (e.g.,
language head or numeric outputs) do not change
their operation, any meaningful task representation
should, in principle, be agnostic to output modality.
Poor non-language performance therefore suggests
that they may be capturing modality-specific pat-
terns rather than a generalizable task representation.
Additionally, these methods require adaptation to
individual transformer architectures. For example,
the layers over which the task vector is computed
must be explicitly identified for each model (Li
et al., 2024; Todd et al., 2024; Hendel et al., 2023).

These limitations raise questions about the gen-
eralizability and practical utility of existing task
vector formulations. To pursue a more standard-
ized and automated pipeline for task encodings, we
build on the recent finding that attention heads are
the primary driver for vectorizing ICL tasks and
hypothesize that:

In-context learning tasks can be effectively
represented as a weighted sum of all attention

heads in a transformer, with the weights
learned causally through gradient descent.

1.1 Contributions and Findings
The key contributions and findings of our study are
outlined as follows.

An Automated Task Formulation Independent
of Modality and Architecture We propose a
framework that approximates the internal weights
transformers implicitly use to represent ICL tasks.
By optimizing these weights through causal gra-
dient descent, the framework effectively captures
the model’s inherent task representations, support-
ing our hypothesis. Unlike existing methods that
require prior model analysis—such as manually
selecting hidden layers to perturb—our approach
is fully automated. Given any dataset and autore-
gressive model, it seamlessly computes the task
formulation without model-specific adjustments.

A New Benchmark for Regression Tasks While
prior work has explored where in-context tasks are
represented, most studies focus solely on language,

with limited attention to other modalities like func-
tional regression. We introduce a new benchmark
to assess task encodings in regression. This setup
provides an intuitive framework for analyzing task
encodings and ICL capabilities in regression by
leveraging an out-of-distribution condition.

Performance Gains Our method shows effective
task encoding on the proposed regression bench-
mark and language datasets. Ablation studies in-
dicate that this performance stems from aligning
the distribution of the last hidden state with that
of an optimally in-context-learned model, offering
insights into how task steering is achieved.

For reproducibility, we provide the code in our
GitHub repository1.

2 Related Work

Here, we discuss studies that specifically focus
on learning task representations in ICL. A more
comprehensive review of related works is available
in Appendix A.

Initial studies on developing task representations
for transformers are documented by Lampinen and
McClelland (2020); Shao et al. (2023); Mu et al.
(2023); Panigrahi et al. (2023); Ilharco et al. (2023).
These works proposed methods to create composi-
tional task encodings through model perturbations
in the parameter space: “soft” prompts, codebooks,
and meta-mappings. Notably, the term task vectors
was first introduced by Ilharco et al. (2023). In
contrast, through the application of causal media-
tion analysis (Pearl, 2001; Vig et al., 2020; Meng
et al., 2022; Wang et al., 2023a; Geva et al., 2023),
function vectors were discovered to exist inher-
ently within the transformer architecture and to
exhibit strong causal effects (Todd et al., 2024).
This finding aligns with research on RNNs, where
it was demonstrated that RNN hidden states can
be grouped based on task similarities (Lake and
Baroni, 2018; Hill et al., 2019).

Efforts to represent ICL tasks often derive a task
vector from the layer activations associated with
the dummy token following the input query (Hen-
del et al., 2023). This approach was later refined by
averaging the layer activations of dummy tokens
across a few-shot prompt and optimizing them (Li
et al., 2024). However, these methods were primar-
ily designed for language tasks, where input-output
pairs are explicitly separated by specific tokens

1https://github.com/baturaysaglam/
ICL-task-repr

6635

https://github.com/baturaysaglam/ICL-task-repr
https://github.com/baturaysaglam/ICL-task-repr

(e.g., “→”). This limitation restricts their appli-
cability to broader domains, such as regression
tasks. Another approach leverages the first princi-
pal component of the difference in layer activations
to guide the ICL task, resulting in In-Context Vec-
tors (ICVs) (Liu et al., 2024). Notably, attention
heads have been argued to play a critical role in
transferring information between token positions
(Vaswani et al., 2017; Elhage et al., 2021b). Simi-
larly, Todd et al. (2024) found that attention heads
are primarily responsible for encoding ICL behav-
ior. Their proposed formulation, Function Vector
(FV), is computed as the sum of activations from
a specific subset of attention heads, selected based
on an indirect metric derived from causal infer-
ence literature (Pearl, 2001). In this study, we aim
to develop a structured and automated method for
extracting function vectors from transformer archi-
tectures, expanding on the approach of Todd et al.
(2024).

3 Technical Preliminaries

We focus on decoder-only autoregressive trans-
former architectures.

3.1 Transformer Architecture

The transformer architecture uses self-attention
mechanisms to process sequences of data. Initially,
input data is tokenized into a sequence, where each
token represents data units such as segments of
words. In this work, we consider autoregressive
transformers denoted by Mθ and parameterized by
θ. The model predicts the next element in a se-
quence based on previous outputs. It consists of
L layers, each transforming encoded token vectors
of dimension d through linear and nonlinear opera-
tions. Our focus is on the computation at the last
token position within these layers, where each layer
ℓ ≤ L generates a vector representation hℓ ∈ Rd

from its preceding layer’s output.
Self-attention in the transformer architecture em-

ploys multi-head attention at each layer:

MultiHeadℓ(Qℓ,Kℓ, Vℓ) = Concat(headℓ,1,

. . . ,headℓ,J)W
O
ℓ ,

where Rq ∋ headℓ,j := Attnℓ,j =
softmax

(
Qℓ,jK

⊤
ℓ,j/
√
dk)Vℓ,j . Here WO

ℓ ∈
RJq×d is the output projection matrix, and Qℓ,j ,
Kℓ,j , and Vℓ,j are the query, key, and value matri-
ces for each attention head j ≤ J at layer ℓ. The

term
√
dk normalizes the softmax operation for sta-

bility, where dk is the dimension of the key matrix.
This multi-head approach allows the model to dy-
namically adjust its focus across different parts of
the input based on the context.

Note that each head at layer ℓ operates in a low-
dimensional space q < d, distinct from the main
hidden state residual stream of the transformer.
As observed by Elhage et al. (2021a), the origi-
nal transformer formulation (Vaswani et al., 2017)
can be seen as dividing the matrix into a block
form [Wℓ,1, . . . ,Wℓ,J], followed by directly pro-
jecting each head ℓ, j into the residual space. Con-
sequently, the attention head output aℓ, j can be
defined using Vaswani et al.’s (2017) and Elhage
et al.’s (2021a) notations as:

aℓ,j = headℓ,j(Qℓ,j ,Kℓ,j , Vℓ,j)W
O
ℓ,j ∈ Rd.

3.2 In-Context Learning
A prompt pt, corresponding to task t, comprises a
sequence of tokens including T input-output exem-
plar pairs {(xi, yi)}Ti=0. We may refer to the length
of prompts by the number of demonstrations they
contain. Each pair demonstrates the execution of
the same underlying task t. This set defines a func-
tional mapping between each input xi and its corre-
sponding output yi. In addition to these exemplar
pairs, each prompt includes a specific query input
xquery that follows the demonstrations. The LM
predicts the target response yquery by extrapolating
from the demonstrations. In our study, we investi-
gate the in-context learning of two distinct modali-
ties: functional regression and language tasks.

Functional Regression Tasks Regression tasks
refer to a function class F that is learned through
ICL. We closely follow the formulation proposed
in (Garg et al., 2023) for training and testing mod-
els on regression data. For each prompt, a random
function f from F is sampled according to a dis-
tribution DF , and a set of random inputs xi ∈ Rm

for i = 1, . . . , T is drawn from DX . These in-
puts are then evaluated by f to produce the prompt
pf = {x1, f(x1), . . . , xT , f(xT), xquery}. We de-
note the model’s output as Mθ(p

f).
A function class F can be either linear or non-

linear. For linear functions, inputs are drawn from
an isotropic Gaussian distribution N (0, Im), and a
random function is defined by sampling a weight
vector w from N (0, Im), setting f(x) = w⊤x.
Here, the task is characterized by the weight vector
w ∈ Rm. For nonlinear functions, possible forms

6636

Transformer Trans. +FV Trans. +ICV

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

(a) Linear

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

(b) Sparse linear

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

(c) 2-layer NN

Figure 1: Squared error on the query input as a function
of the number of demonstrations in the prompts, where
lower error (f(xquery)−Mθ(xquery | pf))2 indicates bet-
ter ICL performance. We evaluate three different func-
tion classes: (a) linear functions f(xquery) = w⊤xquery,
(b) sparse linear functions f(xquery) = w⊤

s x, and
(c) 2-layer ReLU neural networks (NNs) f(xquery) =
W2 ReLU(W1xquery). Results are averaged over a batch
of 256 tasks randomly selected from the same function
class. The shaded area represents the 95% confidence
interval over the sampled prompts. The dashed line in-
dicates the maximum sequence length used during the
positional encoding training, Ttrain.

of f include multi-layer ReLU networks or deci-
sion trees. We employ the models pre-trained by
Garg et al. (2023), with the training procedure and
additional details provided in Appendix C.2.2.

Language Tasks We focus on straightforward
NLP applications such as antonym generation, with
an example shown in (1). The model Mθ processes
each prompt pt and produces a next-token distri-
bution Mθ(· | pt) over the vocabulary V . In our
evaluation of task representations, we follow Todd
et al. (2024), who corrupted prompts p̃ti by shuf-
fling labels within each prompt. This shuffling
disrupts the connection between inputs xi,k and
outputs ỹi,k, rendering the examples uninformative
about the task and effectively “blocking” ICL.

4 Learning Task Representations

4.1 Motivational Observations

Our study begins by noting that existing ICL task
formulations are either inapplicable (Li et al., 2024;
Hendel et al., 2023) (see Appendix C.2.6) or fail
to generalize to regression tasks (Liu et al., 2024;
Todd et al., 2024). To demonstrate this limitation,
we design a new benchmark for functional regres-
sion.

The motivation for this benchmark is straight-
forward and follows standard practices from prior
work on language tasks (see Section 3.2). We first

prevent the model from extracting task understand-
ing from in-context examples. If ICL performance
is restored when the task vector is integrated into
the model, it suggests that the task vector encodes
the task information. However, techniques like
shuffling labels or probing are unsuitable for re-
gression tasks due to fundamental differences in
how input-output relationships are represented and
learned (see Appendices B.1 and B.2).

To suppress task-relevant information in regres-
sion prompts, we introduce an out-of-distribution
(OOD) case. The model is initialized and pre-
trained to handle sequences up to a maximum
length Tmax, ensuring it can process longer se-
quences. However, during pre-training, the model
is exposed only to sequences of length up to
Ttrain < Tmax, leaving positional encodings for po-
sitions beyond Ttrain untrained.

At test time, we evaluate the model on sequences
longer than Ttrain but within Tmax. The focus is not
on downstream accuracy but on robustness under
OOD conditions. Since positional encodings be-
yond Ttrain are untrained, the model cannot infer
where the input and outputs are located within the
prompt, and thus cannot extract the desired input-
output relationship any further—the importance of
positional information in ICL has also been consid-
ered by Wibisono and Wang (2024). However, if a
representation contains task-relevant information
(specific to the ideal function f), it should maintain
functional task behavior and generalize to prompts
longer than Ttrain.

The results, shown in Figure 1, reveal that the
tested approaches fail to generalize across the evalu-
ated class of functions, despite decent performance
in the language domain. Because these methods
rely on the internal components of transformers
and are unaffected by architectural differences re-
lated to output modality (e.g., language heads or
numeric outputs), any meaningful task representa-
tion should, in principle, remain consistent across
output modalities.

As our investigation deepens, we articulate the
following central research questions:

(i) How can we develop a task representation
in a principled manner that generalizes across
modalities such as language and mathematical
functions?

(ii) How can this representation be leveraged to
preserve task fidelity on downstream tasks?

6637

Figure 2: Illustration of the operation. Additional and output operations may include residual connections,
normalization, feedforward, or prediction layers, depending on the architecture. LTV is added sequentially to each
layer, allowing the effects of the integrated LTV to be progressively observed across subsequent layers.

4.2 Learnable Task Vector

Our approach addresses key limitations of previous
methods, such as Function Vectors, by automati-
cally computing task formulations without the need
for prior model analysis or manual adjustments.

Variability in Contributions of Attention Heads
The FV encoding is based on strong causal evi-
dence that attention heads are the main carriers
of in-context task information (Todd et al., 2024).
This formulation assumes equal contributions from
all attention heads to the task representation by
summing their activations. However, we argue that
the influence of each head varies—some contribute
significantly to task encoding, while others have
a lesser impact. Constraining weights to unity is
therefore impractical, and focusing exclusively on
a subset of attention heads risks overlooking subtle
contributions from others. To address this, atten-
tion heads should be weighted in the summation to
accurately capture their varying contributions.

Layer-Specific Task Vectors Previous work typ-
ically integrates task encodings into models by
adding vectors to the outputs of specific hidden lay-
ers through simple vector summation (Todd et al.,
2024; Hendel et al., 2023; Li et al., 2024). However,
this approach assumes uniform applicability across
layers, ignoring that transformers’ hidden states
represent progressively refined representations of
the input. To overcome this limitation, we compute
task vectors uniquely for each hidden layer, align-
ing them with the evolving representations. While
initializing a unique set of attention head weights
for each of the L layers is an option, it would be
computationally expensive. Instead, we compute

layer-specific task vectors as a weighted sum of the
attention heads within each layer:

vtℓ =
J∑

j=0

ωℓ,j · āℓ,j , (2)

where ωℓ,j ∈ R represents the weight parameters
assigned to attention heads, organized in the pa-
rameter vector Φ ∈ RLJ , and ā is the attention
activations averaged on a separate sample set of
prompts demonstrating task t. This method en-
sures that each layer-wise FV is composed solely
of the J heads within that specific layer, avoiding
the aggregation of attention across all L× J heads.

Although excluding attention heads from lay-
ers ℓ′ ̸= ℓ in the latter modification might seem
contradictory, this is counterbalanced by the trans-
former’s feedforward design. Including attention
from earlier layers could introduce redundancy and
complicate learning, as the hidden state at layer ℓ
already encapsulates all transformed information
in layers ℓ′ < ℓ. Furthermore, integrating atten-
tion heads from future layers would conflict with
the transformer’s sequential processing that avoids
forward-looking capabilities.

We refer to the resulting formulation as Learn-
able Task Vector (LTV) and illustrate its operation
during inference in Figure 2. Next, we describe the
methodology for learning the weights Φ of LTV.

4.3 How to Learn Task Representations
We optimize LTV weights through gradient steps
to approximate the “true” weights the model uses
to represent ICL tasks, aiming to validate this for-
mulation as a proof-of-concept. Consequently, this

6638

Algorithm 1 Optimizing Learnable Task Vector (LTV)

Input: Model Mθ, task t, and number of samples N
Initialize and freeze: Model parameters θ (no updates)

1: Collect N prompts {pti}Ni=1 demonstrating task t
2: repeat
3: for each pti in {pti}Ni=1 do
4: Compute LTV: vt

Φ = {vtℓ}Lℓ=1, where vtℓ =
∑J

j=0 ωℓ,j · āℓ,j
5: Obtain the LTV-integrated model output: ŷquery,i ←Mθ(p

t
i | vt

Φ)
6: Compute the loss: L(yquery,i, ŷquery,i) based on (3) or (4)
7: Compute gradients and update ωℓ,j (model parameters θ remain frozen)
8: end for
9: until convergence

approach is not intended to directly address issues
like length generalization shown in Figure 1. In-
stead, LTV serves as a mechanistic probe into the
model’s internal structure, demonstrating that trans-
former architectures admit d-dimensional vector-
ization of task information that can be manipulated
to steer behavior.

An effective strategy for learning the parame-
ters Φ involves optimizing the LTV in scenarios
where the model (with frozen parameters) fails to
perform ICL, isolating the causal contribution of
Φ to the task performance. This approach ensures
our method is both data-driven and causal, as it
directly attributes improvements to |Φ| = L × J
parameters, facilitating application to downstream
tasks. The overall pipeline for training an LTV is
summarized in Algorithm 1.

Regression Tasks The LTV is computed over
prompts longer than the maximum length encoun-
tered during pre-training (Tv > Ttrain). Its integra-
tion into the model modifies the transformer’s out-
put. Subsequently, backpropagation is performed
over Φ through the transformer to minimize the
loss on the query input xquery:

min
Φ

Ef∼DF ,x∼DX

[(
M̃θ

(
pf | vf

Φ

)
−f(xquery)

)2
]
,

(3)
where vf

Φ = {vfℓ }Lℓ=1 represents the set of layer-
wise LTVs computed for function f , M̃θ(· | vf

Φ)
denotes the transformer output modified by inte-
grating vf

Φ into the corresponding hidden layers,
and the regression prompt pf is in the structure:

pf = {x1, f(x1), . . . , xTv , f(xTv), xquery}.
Language Tasks Given the true query output
yquery, the LTV is trained in a supervised man-
ner to minimize the cross-entropy loss on shuffled

prompts:

min
Φ

Ep̃t∼P̃ t

[
− log

(
M̃θ

(
yquery | p̃t;vt

Φ

))]
, (4)

where M̃θ(yquery | p̃t;vt
Φ) denotes the probabil-

ity predicted by the model for the true class yquery
given the shuffled prompt p̃t.

5 Experiments

Models We employ decoder-only autoregressive
transformers: GPT-2 (Radford et al., 2019) for re-
gression tasks and GPT-J (Wang and Komatsuzaki,
2021) for tasks in the language domain, using
the default configurations described by Garg et al.
(2023) and Todd et al. (2024), respectively. GPT-2
is configured with 9.5M parameters (256 hidden
dimension) across 12 layers and 8 attention heads
per layer, while GPT-J features 6B parameters, 28
layers, and 16 attention heads per layer. The GPT-2
models pre-trained on functional regression data
follow the training procedure outlined by Garg et al.
(2023).

Benchmarking For the regression data, we evalu-
ate performance on sequences longer than the maxi-
mum length seen during pre-training but within the
model’s capacity: Ttrain < Tv ≤ Tmax, as described
in Section 4.1. This setup provides a controlled
environment to assess the functional restoration of
task behavior through causal interventions. In the
language domain, we adopt the approach of shuf-
fling labels of in-context examples to diminish ICL
(Todd et al., 2024), ensuring fair comparisons with
Todd et al. (2024); Hendel et al. (2023); Li et al.
(2024).

Tasks For regression data, as illustrated in Figure
1, we evaluate the models on classes of linear func-
tions, sparse linear functions, and 2-layer ReLU

6639

Transformer Trans. +LoRA Trans. +FV (optimized) Trans. +ICV (tuned) Trans. +LTV

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 56

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 71

(a) Linear functions (Ttrain = 41)

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 56

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 71

(b) Sparse linear functions (Ttrain=41)

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 126

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 151

(c) 2-layer ReLU NN (Ttrain = 101)

Figure 3: Squared error on the query input, averaged over a batch of 256 tasks randomly selected from the same
function class. The shaded area represents the 95% confidence interval over the sampled prompts. The dashed line
indicates the number of examples the transformer was trained with, and Tv denotes the prompt length used in LTV
training. Complete results for different Tv values are provided in Figures 5, 6, and 7 in Appendix D.1.

networks (Garg et al., 2023). While decision trees
have also been explored as a function class, they ex-
hibit less sensitivity to positional encodings, which
we discuss in Appendix C.2.3.

For NLP tasks, we focus on single-token gen-
eration, as considered in previous work (Hendel
et al., 2023; Todd et al., 2024). The tasks are de-
rived from widely studied natural language corpora,
including SST-2 (Socher et al., 2013a) and CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003).
Further details are provided in Appendix C.3.1.

Baseline Methods For functional regression, we
include FV (Todd et al., 2024) and ICV (Liu et al.,
2024) as baselines for comparison. The other meth-
ods discussed in Appendix A were primarily de-
signed for language tasks and are not applicable to
regression tasks (see Appendix C.2.6 for details).
Although FV and ICV were originally proposed for
linguistic applications, we adapted them for regres-
sion tasks with several optimizations. Additionally,
we consider Low-Rank Optimization (LoRA) (Hu
et al., 2022) for further discussion. For language
tasks, we also include Task Vector (TV) (Hendel
et al., 2023) and State Vector (SV) with inner opti-
mization (Li et al., 2024) alongside FV and ICV.

Learnable Task Vector For each task, we cu-
rated a dataset of 10,000 samples to demonstrate
the underlying task. LTVs were trained for approx-
imately 2,000 iterations on regression tasks and
120,000 iterations on language tasks, using a lower
learning rate for the latter. Each iteration involved
sampling a batch of 256 input prompts and per-
forming gradient descent based on the objectives
in (3) and (4) for regression and language tasks,
respectively.

Details of our experimental setup are provided
in Appendix C. The full set of results is avail-

able in Appendix D, including: (i) LTV trained
with various Tv, optimized and tested on chain-
of-thought (CoT) prompts, and evaluations under
distributional shift; (ii) accuracy scores on 15 NLP
benchmarks; and (iii) complete ablation results.

5.1 Evaluation on Regression Tasks
The loss curves for ICL inference are shown in
Figure 3. While FV offers some benefits in lin-
ear regression, ICV negatively impacts the vanilla
model’s performance. Despite extensive optimiza-
tions, these results indicate that task encoding for-
mulations, originally crafted for language, do not
generalize well to other modalities.

LTV preserves task information in the OOD
case. LTV shows minimal performance differ-
ence when trained with prompt lengths close
to Ttrain. However, as Tv increases, LTV’s im-
pact becomes more prominent, achieving opti-
mal performance comparable to the vanilla model
at T = Ttrain (see Appendix D.1 for detailed
plots). While this might raise concerns about
the validity of the results, as LTV is causally op-
timized in the OOD cases (T > Ttrain), train-
ing LTV with prompt lengths slightly exceeding
Ttrain—specifically, Tv = 1.37 × Ttrain for lin-
ear functions and Tv = 1.25 × Ttrain for 2-layer
ReLU networks—proves sufficient to maintain per-
formance. Extending Tv further offers no signif-
icant improvements, indicating that only a small
portion of the OOD case is needed for LTV to
generalize. This suggests that the attention head
weights naturally converge to their optimal values
with sufficient training data.

Benefits of LTV come from effective task en-
coding, not fine-tuning. The effects of LTV in
regression tasks may resemble those of parameter-

6640

Dataset Prompt Transformer +LoRA +FV +ICV +SV +TV +LTV (ours)
A

bs
tr

ac
tiv

e AG News
Zero-shot 0.0 ± 0.0 9.1 ± 0.2 30.1 ± 5.7 33.6 ± 5.6 31.7 ± 5.7 34.5 ± 5.0 46.9 ± 6.2
Few-shot 67.2 ± 5.8 69.3 ± 3.8 66.0 ± 5.8 64.7 ± 5.4 66.1 ± 4.5 57.9 ± 5.8 71.1 ± 5.6

CommonsenseQA
Zero-shot 10.2 ± 3.7 24.8 ± 4.1 23.0 ± 5.2 28.9 ± 5.2 21.7 ± 1.1 22.0 ± 4.0 41.0 ± 6.1
Few-shot 18.0 ± 4.7 18.6 ± 5.5 20.3 ± 5.0 20.0 ± 4.6 20.3 ± 2.1 19.5 ± 3.4 21.1 ± 5.0

Sentiment Analysis
Zero-shot 0.0 ± 0.0 0.7 ± 0.6 0.0 ± 0.0 4.8 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 10.9 ± 3.8
Few-shot 74.6 ± 5.4 75.9 ± 4.1 69.5 ± 5.7 72.5 ± 3.2 74.2 ± 2.5 77.1 ± 3.4 94.5 ± 2.8

E
xt

ra
ct

iv
e NER-person

Zero-shot 5.5 ± 2.8 15.7 ± 1.1 48.8 ± 6.2 49.9 ± 5.8 46.3 ± 1.3 47.8 ± 5.3 58.2 ± 6.1
Few-shot 11.7 ± 4.0 12.1 ± 1.6 56.2 ± 6.1 65.9 ± 5.2 53.7 ± 3.3 62.6 ± 3.9 79.3 ± 5.0

NER-location
Zero-shot 6.6 ± 3.1 6.5 ± 2.4 37.9 ± 6.0 26.4 ± 5.1 34.6 ± 3.9 27.2 ± 4.7 27.3 ± 5.5
Few-shot 23.4 ± 5.2 29.5 ± 5.5 43.4 ± 6.1 47.4 ± 5.9 43.5 ± 4.4 41.9 ± 5.6 57.4 ± 6.1

NER-organization
Zero-shot 21.9 ± 5.1 21.9 ± 6.6 48.8 ± 6.2 52.5 ± 6.0 46.1 ± 1.2 46.6 ± 4.3 64.1 ± 5.9
Few-shot 16.8 ± 4.6 19.2 ± 3.8 50.8 ± 6.2 54.1 ± 5.0 53.5 ± 2.6 51.1 ± 4.1 75.0 ± 5.3

Table 1: Accuracy scores (%) for zero-shot and few-shot (5-shot) predictions, averaged across 256 random seeds.
± represents the margin of error at a 95% confidence level. The highest accuracy is marked in boldface, and the
statistically best-performing method is highlighted. The complete results are provided in Table 2 in Appendix D.4,
along with references to the benchmark datasets.

efficient fine-tuning (PEFT) methods, as only a
small number of parameters (|Φ| = L × J) are
trained to adapt the model to previously unlearned
scenarios. To evaluate this, we compare LTV with
LoRA (rank 8). While LoRA fine-tunes approxi-
mately 196K of the 9.5M GPT-2 parameters, LTV
optimizes only 96. Despite LoRA fine-tuning a
significantly larger number of parameters on se-
quences with a maximum length Tmax, no no-
table performance improvement is observed. Since
LoRA depends on the pre-trained model’s exist-
ing positional representations, it cannot address
untrained positional encodings. This observation
indicates that the task fidelity achieved by LTV is
not a result of sole fine-tuning but rather of effec-
tive task encoding that can steer the behavior of the
model.

Interpretation of the Learned LTV Weights
No regularization, optimization techniques,
dropout, or specific weight initialization were
applied to learn the LTV weights. The weights
are unbounded and sampled from the standard
Gaussian distribution. Visualizing the learned
weights as heatmaps revealed they consistently lie
within the interval [-3, 3] across tasks. However,
no meaningful patterns were observed though,
suggesting that any underlying structure may be
subtle and challenging to detect visually. Notably,
some weights converge to near-zero, supporting the
idea that only a subset of attention heads encodes
task information. Our method thus provides a
principled way to identify and weigh this subset,
rather than assuming uniform importance or
selecting it manually.

5.2 Evaluation on Language Tasks

The accuracy scores are reported in Tables 1 and 2.
While Todd et al. (2024) primarily considered “fil-
tered” accuracies, which take into account only the
test queries where at least one model responds cor-
rectly, we present unfiltered accuracies as a fairer
metric, counting all samples regardless of model
performance.

LTV is also superior in the language domain.
In 29 out of 30 evaluations (15 tasks with zero-
and few-shot prompts), LTV achieves the highest
accuracy and ranks among the statistically best-
performing methods (see Table 2 in Appendix D.4
for complete results). Furthermore, in 19 out of
30 evaluations, LTV’s performance is statistically
superior to all other techniques. We also observe a
notable performance by ICV, particularly when the
vanilla transformer performs poorly in the zero-
shot setting. This effectiveness is attributed to
ICV’s approach of crafting unique task vectors for
each layer, similar to our method. Lastly, while
evaluating LTV with higher shot counts may reveal
diminishing gains, we expect the gains to remain
nonzero and notable, as the vanilla model may not
achieve further contextualization beyond a satu-
ration point. Overall, these findings confirm that
LTV excels in both regression and challenging lin-
guistic tasks, supporting our hypothesis about how
ICL tasks are formulated within the transformer
architecture.

5.3 Ablation Studies

We aim to understand how LTVs sustain task behav-
ior when ICL is not performed. To investigate this,

6641

we use the regression data benchmark and analyze
the last hidden states of an LTV-integrated model
and a vanilla model at T = Ttrain (the optimal-
performing model). We measure the distributional
similarities of the last hidden states using KL di-
vergence to assess how closely the LTV-integrated
model aligns with the vanilla model.

The KL divergence scores are reported in Table
3 in Appendix D.5. From the baselines, we only
include FV, as it is the only method that does not
degrade the vanilla transformer. The corresponding
probability densities of the last hidden state dis-
tributions, visualized through histograms, are also
included in Appendix D.5. Additionally, a detailed
description of our experimental methods, along
with a figure illustrating the pipeline, is provided
in Appendix C.6.

LTV maintains the last hidden state distribution
with that of the optimal-performing model. We
observe that the divergence between the last hid-
den state distributions of the LTV-integrated model
and the optimal-performing model is generally low
and significantly decreases when the LTV training
length matches or exceeds the middle length. This
suggests that LTV’s effectiveness primarily stems
from its ability to dominate the last hidden state and
align it with that of the optimal-performing model,
thereby facilitating task steering. This observation
further implies that task steering may generally be
achieved through this mechanism, not exclusively
by our method. However, a deeper analysis is re-
quired to fully understand this process, which is
beyond the scope of this study.

6 Conclusion

We investigated the internal representation of in-
context learning (ICL) tasks in large language mod-
els (LLMs). We propose the Learnable Task Vec-
tor (LTV) framework, which encodes ICL tasks
as a weighted sum of attention head activations
optimized through causal gradient descent. LTV
generalizes across both text and regression tasks,
addressing the limitations of existing representa-
tions. Through empirical validation using a novel
benchmark designed to analyze task encodings,
we demonstrate that LTV preserves task fidelity
when models fail to extract task information from
demonstrations. Our findings further suggest that
this preservation is achieved by maintaining the
last hidden state distribution similar to that of an
optimally in-context-learned model, bringing us

closer to understanding how task steering works in
general.

Limitations

Although not explicitly stated in the main body, our
study assumes access to the models’ hidden states,
limiting the scope to open- or white-box models.
Additionally, we acknowledge that optimizing LTV
can be time- and resource-intensive, e.g., requiring
120K iterations over 10K samples for regression.
LTV training serves only to learn a fixed task rep-
resentation vector while keeping model weights
frozen, and it is not intended to replace ICL or few-
shot prompting. A dataset for LTV training must
first be generated or collected. For functional re-
gression, this is relatively straightforward, as data
and regression coefficients can be sampled from
distributions (e.g., zero-mean Gaussian). However,
for language data, it must be collected or gener-
ated using a generative AI tool. As a reminder, we
utilized data collected by Todd et al. (2024) based
on widely studied datasets such as SST-2 (Socher
et al., 2013a) and CoNLL-2003 (Tjong Kim Sang
and De Meulder, 2003). Finally, because hidden
layer access is required, deploying an open-source
model on GPUs may demand significant computa-
tional resources.

Ethical Considerations

We do not identify any direct application of our
study for unethical purposes.

References
Ekin Akyürek, Dale Schuurmans, Jacob Andreas,

Tengyu Ma, and Denny Zhou. 2023. What learn-
ing algorithm is in-context learning? investigations
with linear models. In The Eleventh International
Conference on Learning Representations.

Adrien Bibal, Rémi Cardon, David Alfter, Rodrigo
Wilkens, Xiaoou Wang, Thomas François, and
Patrick Watrin. 2022. Is attention explanation? an
introduction to the debate. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3889–3900, Dublin, Ireland. Association for Compu-
tational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,

6642

https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://doi.org/10.18653/v1/2022.acl-long.269
https://doi.org/10.18653/v1/2022.acl-long.269

Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming
Ma, Zhifang Sui, and Furu Wei. 2023. Why can GPT
learn in-context? language models secretly perform
gradient descent as meta-optimizers. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 4005–4019, Toronto, Canada. Associa-
tion for Computational Linguistics.

N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph,
B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly,
et al. 2021a. A mathematical framework for trans-
former circuits. https://transformer-circuits.
pub/2021/framework/index.html. Transformer
Circuits Thread.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021b. A
mathematical framework for transformer circuits.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gre-
gory Valiant. 2023. What can transformers learn
in-context? a case study of simple function classes.
Preprint, arXiv:2208.01066.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual associa-
tions in auto-regressive language models. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 12216–12235,
Singapore. Association for Computational Linguis-
tics.

Danny Halawi, Jean-Stanislas Denain, and Jacob Stein-
hardt. 2024. Overthinking the truth: Understanding
how language models process false demonstrations.
In The Twelfth International Conference on Learning
Representations.

Roee Hendel, Mor Geva, and Amir Globerson. 2023.
In-context learning creates task vectors. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 9318–9333, Singapore.
Association for Computational Linguistics.

Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin
Meng, Martin Wattenberg, Jacob Andreas, Yonatan
Belinkov, and David Bau. 2024. Linearity of rela-
tion decoding in transformer language models. In
The Twelfth International Conference on Learning
Representations.

Felix Hill, Adam Santoro, David Barrett, Ari Morcos,
and Timothy Lillicrap. 2019. Learning to make analo-
gies by contrasting abstract relational structure. In
International Conference on Learning Representa-
tions.

Or Honovich, Uri Shaham, Samuel R. Bowman, and
Omer Levy. 2023. Instruction induction: From few
examples to natural language task descriptions. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1935–1952, Toronto, Canada.
Association for Computational Linguistics.

Phu Mon Htut, Jason Phang, Shikha Bordia, and
Samuel R. Bowman. 2019. Do attention heads
in bert track syntactic dependencies? Preprint,
arXiv:1911.12246.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543–3556, Minneapolis, Minnesota.
Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2020. Attention is not only a weight:
Analyzing transformers with vector norms. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7057–7075, Online. Association for Computa-
tional Linguistics.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages

6643

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2208.01066
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://openreview.net/forum?id=Tigr1kMDZy
https://openreview.net/forum?id=Tigr1kMDZy
https://doi.org/10.18653/v1/2023.findings-emnlp.624
https://openreview.net/forum?id=w7LU2s14kE
https://openreview.net/forum?id=w7LU2s14kE
https://openreview.net/forum?id=SylLYsCcFm
https://openreview.net/forum?id=SylLYsCcFm
https://doi.org/10.18653/v1/2023.acl-long.108
https://doi.org/10.18653/v1/2023.acl-long.108
https://arxiv.org/abs/1911.12246
https://arxiv.org/abs/1911.12246
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=6t0Kwf8-jrj
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D19-1445

4365–4374, Hong Kong, China. Association for Com-
putational Linguistics.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Pro-
ceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2873–2882. PMLR.

Andrew K. Lampinen and James L. McClelland. 2020.
Transforming task representations to perform novel
tasks. Proceedings of the National Academy of Sci-
ences, 117(52):32970–32981.

Guillaume Lample, Alexis Conneau, Marc’Aurelio Ran-
zato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Interna-
tional Conference on Learning Representations.

Dongfang Li, zhenyu liu, Xinshuo Hu, Zetian Sun, Bao-
tian Hu, and Min Zhang. 2024. In-context learning
state vector with inner and momentum optimization.
In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2023a. Inference-
time intervention: Eliciting truthful answers from a
language model. In Thirty-seventh Conference on
Neural Information Processing Systems.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Pa-
pailiopoulos, and Samet Oymak. 2023b. Transform-
ers as algorithms: Generalization and stability in
in-context learning. In Proceedings of the 40th Inter-
national Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research,
pages 19565–19594. PMLR.

Yingcong Li, Kartik Sreenivasan, Angeliki Giannou,
Dimitris Papailiopoulos, and Samet Oymak. 2023c.
Dissecting chain-of-thought: A study on composi-
tional in-context learning of mlps. arXiv preprint
arXiv:2305.18869.

Yongjie Lin, Yi Chern Tan, and Robert Frank. 2019.
Open sesame: Getting inside BERT’s linguistic
knowledge. In Proceedings of the 2019 ACL Work-
shop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 241–253, Florence, Italy.
Association for Computational Linguistics.

Sheng Liu, Haotian Ye, Lei Xing, and James Zou. 2024.
In-context vectors: Making in context learning more
effective and controllable through latent space steer-
ing. Preprint, arXiv:2311.06668.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in gpt. In Advances in Neural Information
Processing Systems, volume 35, pages 17359–17372.
Curran Associates, Inc.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2024.
Language models implement simple word2vec-style
vector arithmetic. Preprint, arXiv:2305.16130.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? pages 11048–
11064.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023.
Learning to compress prompts with gist tokens. In
Thirty-seventh Conference on Neural Information
Processing Systems.

Kim Anh Nguyen, Sabine Schulte im Walde, and
Ngoc Thang Vu. 2017. Distinguishing antonyms
and synonyms in a pattern-based neural network. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 76–85, Valen-
cia, Spain. Association for Computational Linguis-
tics.

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen.
2023. What in-context learning “learns” in-context:
Disentangling task recognition and task learning.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 8298–8319, Toronto,
Canada. Association for Computational Linguistics.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and
Sanjeev Arora. 2023. Task-specific skill localization
in fine-tuned language models. In Proceedings of the
40th International Conference on Machine Learning,
ICML’23. JMLR.org.

Judea Pearl. 2001. Direct and indirect effects. In
Proceedings of the Seventeenth Conference on Un-
certainty in Artificial Intelligence, UAI’01, page
411–420, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B
Viegas, Andy Coenen, Adam Pearce, and Been Kim.
2019. Visualizing and measuring the geometry of
bert. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong,
Evan Hubinger, and Alexander Matt Turner. 2024.
Steering llama 2 via contrastive activation addition.
Preprint, arXiv:2312.06681.

Nan Shao, Zefan Cai, Hanwei xu, Chonghua Liao,
Yanan Zheng, and Zhilin Yang. 2023. Compositional
task representations for large language models. In
The Eleventh International Conference on Learning
Representations.

Suzanna Sia, David Mueller, and Kevin Duh. 2024.
Where does in-context learning \\ happen in large
language models? In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems.

6644

https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://doi.org/10.1073/pnas.2008852117
https://doi.org/10.1073/pnas.2008852117
https://openreview.net/forum?id=H196sainb
https://openreview.net/forum?id=gnnmB7y0Xx
https://openreview.net/forum?id=gnnmB7y0Xx
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://proceedings.mlr.press/v202/li23l.html
https://proceedings.mlr.press/v202/li23l.html
https://proceedings.mlr.press/v202/li23l.html
https://doi.org/10.18653/v1/W19-4825
https://doi.org/10.18653/v1/W19-4825
https://arxiv.org/abs/2311.06668
https://arxiv.org/abs/2311.06668
https://arxiv.org/abs/2311.06668
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://arxiv.org/abs/2305.16130
https://arxiv.org/abs/2305.16130
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://openreview.net/forum?id=2DtxPCL3T5
https://aclanthology.org/E17-1008
https://aclanthology.org/E17-1008
https://doi.org/10.18653/v1/2023.findings-acl.527
https://doi.org/10.18653/v1/2023.findings-acl.527
https://proceedings.neurips.cc/paper_files/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf
https://arxiv.org/abs/2312.06681
https://openreview.net/forum?id=6axIMJA7ME3
https://openreview.net/forum?id=6axIMJA7ME3
https://openreview.net/forum?id=LLuSjg59an
https://openreview.net/forum?id=LLuSjg59an

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013a. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013b. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Nishant Subramani, Nivedita Suresh, and Matthew Pe-
ters. 2022. Extracting latent steering vectors from
pretrained language models. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2022,
pages 566–581, Dublin, Ireland. Association for
Computational Linguistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron
Mueller, Byron C Wallace, and David Bau. 2024.
LLMs represent contextual tasks as compact function
vectors. In The Twelfth International Conference on
Learning Representations.

Alexander Matt Turner, Lisa Thiergart, David Udell,
Gavin Leech, Ulisse Mini, and Monte MacDiarmid.
2023. Activation addition: Steering language models
without optimization. Preprint, arXiv:2308.10248.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art Shieber. 2020. Investigating gender bias in lan-
guage models using causal mediation analysis. In
Advances in Neural Information Processing Systems,
volume 33, pages 12388–12401. Curran Associates,
Inc.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, An-
tônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272.

Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan
Titov. 2018. Context-aware neural machine trans-
lation learns anaphora resolution. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1264–1274, Melbourne, Australia. Association
for Computational Linguistics.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Johannes Von Oswald, Eyvind Niklasson, Ettore Ran-
dazzo, Joao Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. 2023.
Transformers learn in-context by gradient descent.
In Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 35151–35174.
PMLR.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-
j-6b: A 6 billion parameter autoregressive lan-
guage model. https://github.com/kingoflolz/
mesh-transformer-jax.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023a. Label
words are anchors: An information flow perspective
for understanding in-context learning. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 9840–9855,
Singapore. Association for Computational Linguis-
tics.

Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou,
Zhiyuan Liu, and Juanzi Li. 2022. Finding skill
neurons in pre-trained transformer-based language
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 11132–11152, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark
Steyvers, and William Yang Wang. 2023b. Large lan-
guage models are implicitly topic models: Explaining

6645

https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://aclanthology.org/W03-0419/
https://aclanthology.org/W03-0419/
https://openreview.net/forum?id=AwyxtyMwaG
https://openreview.net/forum?id=AwyxtyMwaG
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2308.10248
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.18653/v1/P18-1117
https://doi.org/10.18653/v1/P18-1117
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://proceedings.mlr.press/v202/von-oswald23a.html
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2022.emnlp-main.765
https://doi.org/10.18653/v1/2022.emnlp-main.765
https://doi.org/10.18653/v1/2022.emnlp-main.765
https://openreview.net/forum?id=HCkI1b6ksc
https://openreview.net/forum?id=HCkI1b6ksc

and finding good demonstrations for in-context learn-
ing. In Workshop on Efficient Systems for Foundation
Models @ ICML2023.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert
Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, and Tengyu Ma. 2023.
Larger language models do in-context learning dif-
ferently. Preprint, arXiv:2303.03846.

Kevin Christian Wibisono and Yixin Wang. 2024. From
unstructured data to in-context learning: Exploring
what tasks can be learned and when. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not
not explanation. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 11–20, Hong Kong, China. Association for
Computational Linguistics.

Noam Wies, Yoav Levine, and Amnon Shashua. 2023.
The learnability of in-context learning. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. In Interna-
tional Conference on Learning Representations.

Kang Min Yoo, Junyeob Kim, Hyuhng Joon Kim, Hyun-
soo Cho, Hwiyeol Jo, Sang-Woo Lee, Sang-goo Lee,
and Taeuk Kim. 2022. Ground-truth labels matter: A
deeper look into input-label demonstrations. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2422–
2437, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and
Zhaoran Wang. 2023. What and how does in-
context learning learn? bayesian model averag-
ing, parameterization, and generalization. Preprint,
arXiv:2305.19420.

A Extended Related Work

A substantial body of research on ICL has been
ongoing since its discovery. We review previ-
ous studies through different facets of ICL. While
our study shares similarities with others, it most
closely aligns with the studies described in Section
2, where complementary details are provided in the
final paragraph of this section.

In-Context Learning The ICL capabilities of
LLMs were first identified by Brown et al. (2020).
Since then, ICL has been extensively studied from
various angles. Min et al. (2022); Yoo et al. (2022)
have examined the effects of different ICL prompts
styles. ICL during inference time has also been
explored through meta-learning analyses (Akyürek
et al., 2023; Dai et al., 2023; Von Oswald et al.,
2023; Li et al., 2023b; Garg et al., 2023). In addi-
tion, investigations into ICL task inference from
a Bayesian perspective have been conducted (Xie
et al., 2022; Wang et al., 2023b; Wies et al., 2023;
Zhang et al., 2023). Lastly, the scalability of ICL
across different model sizes has been examined by
Wei et al. (2023); Wang et al. (2023b); Pan et al.
(2023). While these studies primarily focus on the
externally observable behaviors of models during
inference and ICL, our study delves into the in-
ternal mechanisms of transformers to encode ICL
tasks.

The Role of Attention Mechanism in Explain-
ing Model Behavior Past analyses of the atten-
tion mechanism (Voita et al., 2018; Clark et al.,
2019; Voita et al., 2019; Kovaleva et al., 2019; Reif
et al., 2019; Lin et al., 2019; Htut et al., 2019;
Kobayashi et al., 2020) have revealed that attention
weights often align with linguistic structures. How-
ever, these studies primarily focused on explaining
the behavior of bidirectional architectures. More-
over, attention scores alone have not been found
to fully explain the model’s outputs (Jain and Wal-
lace, 2019; Wiegreffe and Pinter, 2019; Bibal et al.,
2022). In our work, we aim to deepen the under-
standing of the role of multi-head self-attention
in ICL. Specifically, we investigate the contribu-
tion of each attention head to the model’s internal
representation of the ICL task.

Mechanisms to Explain Task Performance in
In-Context Learning The components of trans-
formers during ICL inference have been investi-
gated to identify the origins of incorrect predic-
tions and false statements (Merullo et al., 2024;

6646

https://openreview.net/forum?id=HCkI1b6ksc
https://openreview.net/forum?id=HCkI1b6ksc
https://arxiv.org/abs/2303.03846
https://arxiv.org/abs/2303.03846
https://openreview.net/forum?id=x9eFgahVBI
https://openreview.net/forum?id=x9eFgahVBI
https://openreview.net/forum?id=x9eFgahVBI
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D19-1002
https://openreview.net/forum?id=f3JNQd7CHM
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://doi.org/10.18653/v1/2022.emnlp-main.155
https://doi.org/10.18653/v1/2022.emnlp-main.155
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://arxiv.org/abs/2305.19420
https://arxiv.org/abs/2305.19420
https://arxiv.org/abs/2305.19420

Halawi et al., 2024). Similarly, numerous studies
have adjusted attention mechanisms or activations
of hidden layers during inference to steer model
behavior (Li et al., 2023a; Subramani et al., 2022;
Turner et al., 2023; Rimsky et al., 2024; Liu et al.,
2024). It was observed that tokens representing
labels in an ICL prompt might hold the semantic
information crucial for the language model’s final
prediction (Wang et al., 2023a). Moreover, it was
suggested that certain neurons within pre-trained
transformers are highly predictive of task labels
and empirically demonstrate that these neurons en-
code task-specific skills (Wang et al., 2022). A
similar effort has been made to identify the crit-
ical layers where task information is stored (Sia
et al., 2024). It has been shown that critical layers
vary across tasks and can even differ within the
same task, such as between subtasks like English-
to-French and French-to-English translation. In
contrast, our work aims to develop a principled
conceptualization—such as a function of the trans-
former’s components—that can effectively repre-
sent and automatically differentiate across a wide
range of tasks, regardless of task modality. We
further leverage this conceptualization to guide the
language model’s behavior across diverse tasks,
aligning with prior works discussed next.

Tasks Representations in In-Context Learning
Efforts to represent ICL tasks typically start by
deriving a task vector from the layer activations
(Hendel et al., 2023), referred to as the state, at the
position of a dummy query’s separator token. This
token separates inputs and outputs in the in-context
examples using specific symbols such as “→”. The
dummy query is strategically placed immediately
before the actual query to ensure that the task vec-
tor remains independent of the query itself. This
method was further refined by averaging the states
at each of the N separator tokens in an N -shot
prompt, followed by optimization using inner and
momentum techniques (Li et al., 2024). However,
these approaches are limited to ICL prompts that in-
corporate a separator token (e.g., “→”), restricting
their broader applicability. Moreover, it has been
shown that the principal direction of layer activa-
tion differences can effectively guide the ICL task
(Liu et al., 2024), leading to the task representation
known as In-Context Vectors (ICVs). Nonetheless,
it has been recently argued that the focus should
be on attention heads (Todd et al., 2024), as these
are crucial for transferring information between to-

ken positions (Vaswani et al., 2017; Elhage et al.,
2021b).

Deriving from this finding, the Function Vector
(FV) is computed as the sum of the outputs from a
selectively chosen subset of attention heads based
on an indirect metric (Todd et al., 2024), derived
from causal inference literature (Pearl, 2001). To
the best of our knowledge and based on our prelim-
inary analyses, the most effective empirical repre-
sentation of tasks in ICL are FVs. Therefore, our
approach starts by deriving from Todd et al. (2024),
in contrast to methods the outlined by Hendel et al.
(2023); Liu et al. (2024). Instead of merely using
raw activations, we optimize weights assigned to
these heads to enhance transformer performance
in scenarios where ICL cannot be performed. Ulti-
mately, this leads to a more formalized conceptual-
ization that can be adapted to various models and
tasks, whether functional regression or linguistic.

B Discussions of Alternative Approaches
to Assess Task Representations

Section B.1 explains why shuffling labels in regres-
sion tasks does not prevent the model from extract-
ing task information. Section B.2 discusses why
probing is ineffective for assessing the precision of
task representations.

B.1 Why Shuffling Labels is not a Valid
Approach for Functional Regression

We analyze the effect of label shuffling on in-
context learning performance for two example
tasks: linguistic antonym generation and linear re-
gression. While label shuffling disrupts the model’s
ability to infer relationships in the linguistic task,
its impact on the numeric task differs fundamen-
tally due to the task’s nature and the model’s pre-
training, particularly if the model was pre-trained
on similar functional regression tasks (Garg et al.,
2023).

B.1.1 Linguistic Antonym Generation
In the linguistic task, the model is provided with
prompts such as:

cold→ hot, happy→ sad, fast→ ?

The model’s goal is to generate the antonym of
“slow” based on in-context examples. Since LMs
are pre-trained on vast text corpora without specific
emphasis on antonym pairs, they rely heavily on
these examples to infer the relationship. Shuffling

6647

the labels in the examples disrupts the pattern, pre-
venting the model from identifying the intended
relationship (antonymy) and generating the correct
output. Any potential performance degradation in
this case is directly linked to the blockage of ICL
caused by label shuffling.

B.1.2 Numeric Linear Regression
In numeric tasks, the model processes sequences
where each scalar output yi is generated from a
vector input xi through a linear relationship yi =
w⊤xi:

[x1,1, x1,2, . . . , x1,m]→ y1,

[x2,1, x2,2, . . . , x2,m]→ y2 ,

...

[xT,1, xT,2, . . . , xT,m]→ ?,

where the m-dimensional input vector is flattened
before being fed into the model, following our
setup. The model’s goal is to infer the coefficient
vector w from the examples to predict the missing
output. Pre-training embeds a strong bias toward
linear mappings in the model’s parameters, giv-
ing it a default assumption of linearity. In-context
examples refine the exact coefficients but are not
the sole source of understanding this relationship.
Consequently, shuffling the labels conflicts with
the model’s pre-trained understanding of input-
output relationships (i.e., its inherent linear bias),
leading to confusion rather than simply blocking
ICL. In such cases, the shuffled prompt would still
need to define a linear relationship, which is non-
trivial. In contrast, for language tasks, the model
retains an understanding of individual word seman-
tics even when labels are shuffled, aligning with its
pre-trained understanding of language.

B.2 Why Probing Would be Ineffective to
Assess Task Representations

We outline a potential approach for probing ex-
periments. One method is to assess whether the
LTV encodes task information by using it to predict
task-relevant quantities—in this case, quantities in
regression tasks or correct labels in language tasks.
This prediction is performed by training a linear
predictor or a two-layer neural network.

However, we argue that even if the probe
achieves high accuracy, this does not demonstrate
that the LTV (or any input used for probing) truly
encodes task information. Probing offers only indi-
rect evidence; it shows that a mapping exists from

the input to the target quantity, not that the input
itself is a meaningful representation of the task.
It simply indicates that the input contains enough
information to predict the output.

In an extreme case, we could apply an arbitrary
invertible transformation to the prompt and use
that as input to the probe. The probe would likely
achieve good performance because the prompt
contains sufficient information to predict the task-
relevant output. However, this input would clearly
not be a meaningful representation, as it is too
coarse.

In our case, the LTV is a representation specific
to the LLM architecture. Moreover, we are not
concerned with whether it can directly predict the
task-relevant output—this is not how these vectors
are intended to be used. Instead, they are applied to
latent layers of the LLM to steer output generation,
which is exactly how we evaluate their effective-
ness.

C Experimental Details

C.1 Implementation

For all models, we use the huggingface imple-
mentations (Wolf et al., 2020). For regression tasks
and GPT-2 pre-training, we rely on the code pro-
vided by the authors on GitHub2. Additionally, we
use the authors’ code3 to include FV into our ex-
periments. The remaining baseline methods—ICV,
TV, and SV—were implemented by us.

C.2 Experiments on Regression Tasks

We closely follow the experimental setup estab-
lished by Garg et al. (2023). For completeness, we
provide the relevant details here, with additional
information available in the cited reference.

C.2.1 Model
The GPT-2 model processes sequences of vec-
tors in the embedding space and outputs a se-
quence in the same space. However, the tasks
we examine involve functions mapping a lower-
dimensional vector space (e.g., 20 dimensions) to
a scalar value. To construct a prompt such as
p = {x1, f(x1), x2, f(x2), . . . , xquery}, we must
map xi and f(xi) into the embedding space. This
mapping involves first converting the scalar values
f(xi) into vectors of the same dimension as xi by
appending zeros, followed by applying a learnable

2https://github.com/dtsip/in-context-learning
3https://github.com/ericwtodd/function_vectors

6648

https://github.com/dtsip/in-context-learning
https://github.com/ericwtodd/function_vectors

linear transformation to all these vectors into the
embedding space. The model’s output vector is
then transformed into a scalar value through a dot
product with a learnable vector.

We consider the model’s prediction at the po-
sition corresponding to xi (i.e., the absolute po-
sition 2i − 1) as the prediction of f(xi). Due to
the model’s structure, this prediction relies solely
on the pairs {xj , f(xj)} for j < i and xi itself.
We disregard the model predictions at positions
corresponding to f(xi).

The GPT-2 models use absolute, learnable posi-
tional encodings and were trained to accommodate
up to 101 examples for linear and sparse linear func-
tions, and up to 201 examples for 2-layer ReLU
neural networks in a prompt. While it is possible
to feed the model prompts with more examples by
adjusting the initialization, this would exceed our
computational resources. We also did not want to
alter the nature of their experimental process.

C.2.2 Training
We train a model from scratch (i.e., no pre-
trained weights are loaded) to predict f(xi) for
a given xi, using the set of examples as ref-
erence. Each training prompt is generated by
randomly sampling a function f from the func-
tion class of interest, followed by sampling in-
puts xi from an isotropic Gaussian distribution
N(0, Im). The prompt is constructed as p =
{x1, f(x1), . . . , xk, f(xk)}. For each input i ≤
k within a prompt, the model predictions ŷi =
Mθ(xi | pf = {x1, f(x1), . . . , xi−1, f(xi−1)})
are obtained, and the loss is computed across all
prompt prefixes:

min
θ

Ef∼DF ,x∼DX

[
1

T + 1

T∑

i=0

(
Mθ

(
pf,i

)
− f(xi+1)

)2
]
,

where L is the loss function, typically chosen to be
mean squared error, and we have xT+1 = xquery.

During training, we average the loss across a
batch of randomly generated prompts, each with
different functions and inputs, and update the
model parameters. The Adam optimizer (Kingma
and Ba, 2015) is employed and trained for a total
of 500,000 steps with a batch size of 64, using a
learning rate of 10−4 for all function classes and
models.

Curriculum Learning The training procedure
is accelerated through curriculum learning. The
model starts by observing prompt inputs xi within

a smaller dimensional subspace and with fewer
inputs per prompt. Both the subspace dimension
and the number of examples are increased grad-
ually. Specifically, all of the coordinates except
the first Tmax, cur of xi are zeroed out by sampling
prompts of size Tcur. For the function classes of
linear and sparse linear functions, Tmax, cur = 5
and Tcur = 11 are used initially, and Tmax, cur and
Tcur are increased by 1 and 2, respectively, every
2000 steps until reaching Tmax, cur = Tmax and
Tcur = 2m + 1. A different schedule is applied
for 2-layer neural networks to accommodate the
need for more inputs; starting from Tmax, cur = 5
and Tcur = 26, Tmax, cur and Tcur are incremented
by 1 and 5 respectively, every 2000 steps until
Tmax, cur = Tmax and Tcur = 5m+ 1.

Consequently, in the curriculum-based training
approach, a training prompt

pf = {x1, f(x1), . . . , xTcur , f(xTcur)}

is generated by sampling a random function f from
the function class and drawing inputs xi by sam-
pling i.i.d. from N (0, Im), with all but the first
Tmax, cur coordinates zeroed out. Given the model
predictions ŷi, the loss is computed as

1

Tcur

Tcur∑

i=1

(
ŷi − f(xi)

)2
.

C.2.3 Sampling the Functions
For the class of linear functions, we sample the
random function f(x) = w⊤x by drawing w ∼
N (0, Im). In the case of sparse linear functions, w
is also sampled from N (0, Im), but we then ran-
domly zero out the first Tcur coordinates within
the first Tmax, cur coordinates. For these linear
functions, we set m = 20 for all experiments,
with a sparsity level of 3. For 2-layer neural net-
works, we sample W1 from N (0, Im) and W2

from N (0, 2/r), where f(x) = W2ReLU(W1x).
Here, we set the dimensions m = 20 and the ratio
r = 100.

We also experimented with decision trees as a
function class, as done by Garg et al. (2023). How-
ever, we found that decision trees exhibit less sensi-
tivity to positional encodings. This is because their
feature-based reasoning relies on discrete hierarchi-
cal rules rather than point-by-point mappings. By
grouping multiple inputs under the same label, de-
cision trees largely bypass positional dependencies
and are minimally influenced by untrained posi-
tional encodings.

6649

C.2.4 Evaluation
To assess performance, we sample a prompt with
a maximum length of Tmax, which is equal to 101
for linear and sparse linear functions and 201 for
2-layer networks. We then trim the prompt to
Ti ≤ Tmax demonstrations and track the prediction
errors for each i ≤ Tmax. Consequently, each point
in our error curves corresponds to the error at a spe-
cific prompt length i. This analysis is conducted
over batches of 256 prompts, with the average error
reported. We have determined that batches larger
than 256 prompts do not significantly alter the re-
sults, confirming that 256 prompts are sufficient to
produce generalized results.

C.2.5 Optimizing the Baseline Methods
Function Vector (FV) and In-Context Vector (ICV)
were originally designed for language data. Prelim-
inary results showed that FV had a notable impact
on regression data, with potential for further im-
provement through fine-tuning. In contrast, ICV
slightly underperformed the vanilla model on re-
gression tasks when using the default scaling pa-
rameter λ = 0.1 from language experiments. This
parameter, dominated by activation magnitudes,
required tuning for regression data.

Our approach extends the original by integrat-
ing FV across multiple GPT-2 layers, leading to
improved performance. To minimize output disrup-
tion and reinforce tasks, we added dummy exam-
ples (e.g., {0, 0} pairs) at specific prompt positions.
Increasing the number of attention heads for FV
computation from 10 to 35 further enhanced per-
formance. In contrast, ICV already integrates the
task vector at every token position and computes
a distinct task vector for each layer, similar to our
method. Thus, the only optimization for ICV was
tuning the scaling parameter. We found that FV
required no scaling (i.e., 1.0). However, ICV often
degraded the vanilla model’s performance, with a
scale of 1.5 being the best option to mitigate this
issue. Key baseline optimizations are summarized
below:

1. Function Vector added to multiple layers:
Distributing FV across multiple layers normal-
ized its impact on activations. Layers 6, 7, and
8 of GPT-2 were the most effective.

2. Dummy tokens: Placing dummy tokens at
0.1, 0.25, 0.5, 0.75, and 0.9 fractions of the
prompt length optimized performance for FV.

3. Number of attention heads for FV compu-
tation: Increasing to 35 attention heads maxi-
mized GPT-2 performance, with diminishing
returns beyond this point.

4. Scaling: FV performed best with a scaling
factor of 1.0, aligning with Todd et al. (2024)
for language tasks. ICV required scaling (e.g.,
1.5) to counterbalance the dominance of hid-
den state activations and prevent degradation
of the vanilla model’s performance.

C.2.6 Other Baseline Methods

As explained in Appendix A, Hendel et al.’s (2023)
and Li et al.’s (2024) methods cannot be included
in our experiments because they require in-context
prompts to include a separator token (e.g., “→”)
in each example. This requirement makes them in-
compatible with our functional regression dataset,
as these tasks explicitly avoid tokenization and op-
erate directly on raw floating-point numbers (see
Appendix C.2 for details). Introducing separator to-
kens fundamentally changes the task by imposing
a symbolic or tokenized representation of input-
output relationships, contradicting Garg et al.’s
(2023) setup. Moreover, such methods rely on the
tokenized format, bypassing the challenge of in-
ferring functional relationships from raw numeric
data, which renders the comparison invalid.

C.3 Experiments on Language Tasks

We closely adhere to the experimental methods de-
scribed by Todd et al. (2024), providing all relevant
details to ensure our report is self-sufficient.

C.3.1 Datasets and Tasks

We provide a detailed overview of the natural lan-
guage tasks used to evaluate the task formulations.
References to the original data sources for each
task are included, along with details on how they
were refined and transformed into word pairs by
Todd et al. (2024). The final datasets used in our
evaluations are provided in the authors’ GitHub
repository3.

AG News This text classification dataset consists
of news headlines and the first few sentences of
articles as inputs, with labels indicating the arti-
cle’s category. Categories include Business, Sci-
ence/Technology, Sports, and World (Zhang et al.,
2015).

6650

Antonym and Synonym The dataset is Nguyen
et al.’s (2017) and was further refined by Todd
et al. (2024). Initially, all adjective, noun, and verb
pairs from the dataset splits were combined, with
duplicate entries removed. The dataset was then
modified to include only word pairs where both
words are tokenized as single tokens. This process
resulted in 2,398 antonym pairs and 2,881 synonym
pairs, with a vocabulary size of |V| = 50, 400.

These datasets originally included multiple out-
puts for single inputs, e.g., “increase”→ “decrease”
and “increase” → “reduce.” However, handling
such cases would require a more powerful model
(Todd et al., 2024). Therefore, the dataset has been
simplified to ensure a one-to-one mapping between
terms.

CommonsenseQA This question-answering
dataset requires a model to select the correct
answer from five options, each labeled with a letter.
The model generates the letter corresponding
to the correct answer. For instance, given the
question “Where is a business restaurant likely to
be located?” and the options “A) town, B) hotel,
C) mall, D) business sector, E) yellow pages,” the
model should generate “D” (Talmor et al., 2019).

Landmark-Country The Landmark-Country
dataset contains entries pairing the name of a land-
mark with its corresponding country. The data pairs
are sourced from Hernandez et al. (2024).

Person-Instrument The Person-Instrument
dataset contains entries pairing the name of a
professional musician with the instrument they
play. The data pairs are sourced from Hernandez
et al. (2024).

Person-Occupation The Person-Occupation
dataset, sourced from Hernandez et al. (2024),
contains entries pairing the names of well-known
individuals with their respective occupations.

Person-Sport The Person-Sport dataset, sourced
from Hernandez et al. (2024), contains entries pair-
ing the names of professional athletes with the
sports they play.

Product-Company The Product-Company
dataset, curated from Hernandez et al. (2024),
contains entries pairing the names of commercial
products with the companies that sell them.

Sentiment Analysis The sentiment analysis task
is based on the Stanford Sentiment Treebank (SST-

2) dataset (Socher et al., 2013b), which consists
of movie review sentences labeled as either “posi-
tive” or “negative.” For example, an entry from this
dataset might be: “An extremely unpleasant film.
→ negative.” We use the subset of SST-2 curated
by Honovich et al. (2023), which excludes incom-
plete sentences and those with more than 10 words,
resulting in 1,167 entries. For further details, see
Honovich et al.’s (2023) study.

Translation The language translation dataset
was constructed using data from Lample et al.
(2018), which pairs English words with their trans-
lations in French and Spanish. The train and test
splits were merged into a single dataset and the
cognates were filtered out. This process results in
4,705 pairs for English-French and 5,200 pairs for
English-Spanish. The original datasets included
multiple translations for some input words. These
duplicates were filtered using GPT-4, following the
method used for Antonym and Synonym.

The tasks described so far are Abstractive NLP
tasks, where the information to be generated is
not present in the prompt. We also evaluate the
opposite case: Extractive tasks, where the answer
exists within the prompt, and the goal is to retrieve
it.

CoNLL-2003 Our extractive tasks are based on
a subset of the CoNLL-2003 English named entity
recognition (NER) dataset (Tjong Kim Sang and
De Meulder, 2003), a widely used NLP benchmark
for evaluating NER models. The NER task involves
extracting the correct entity from a given sentence
based on a specific property. For our study, we
use three tasks derived by Todd et al. (2024) from
CoNLL-2003: NER-person, NER-location, and
NER-organization, where the labels correspond to
the name of a person, location, or organization, re-
spectively. Each dataset is constructed by merging
the CoNLL-2003 “train” and “validation” splits
into a single dataset and filtering sentences to in-
clude only those with a single instance of the spec-
ified class. This reduces task ambiguity, as sen-
tences with multiple instances of the same class
could have more than one correct answer.

C.3.2 Prompting
The default template for prompting the GPT-J
model with T demonstrations is structured as fol-
lows:

Q:{x1}\nA:{y1}\n\n . . . Q:{xquery}\nA:
6651

In our experiments with shuffled prompts, we ran-
domly shuffle the labels {yi}Ti=1 among each other.
For zero-shot prompts, which contain no demon-
strations, prompts consists solely of the query:
“Q:{xquery}\nA:”. When testing Task Vector (Hen-
del et al., 2023) and State Vector (Li et al., 2024),
which require a separator token between inputs and
outputs, we treat “\n” as the separator token.

C.3.3 Evaluation
We uniformly sample in-context examples (for few-
shot) and a query input N = 256 times, assessing
performance as the accuracy if the first token gen-
erated by the model matches the first token of the
query label (if the label consists of more than one
token). To compute the margin of error (denoted
after ± in Tables 1 and 2), we first calculate the
standard error of the mean (SEM) as follows:

SEM =
standard deviation√

N
.

Next, the t-critical value is determined using the
t-distribution with a 95% confidence level and de-
grees of freedom (N − 1). The margin of error is
then calculated as:

Margin of error = tcritical × SEM.

For example, if the mean accuracy is 39.1 and the
margin of error is 5.2, the true mean lies between
33.9 and 44.3 with a 95% confidence. Thus, if the
confidence intervals of different methods overlap
with the maximum mean accuracy, it indicates that
the differences in performance are not statistically
significant despite the highest accuracy.

C.4 Training Learnable Task Vector
The LTV parameters are initialized by sampling
from the standard Gaussian distribution, totaling
L×J learnable parameters. We did not employ ad-
ditional techniques such as dropout, activation func-
tions, or gradient clipping in learning the weights,
which are neither clipped nor bounded. The Adam
optimizer, with a learning rate of 5 × 10−5, was
used in all experiments. Training is terminated if
the validation loss does not decrease for 50 consec-
utive gradient steps. The transformer parameters
always remain frozen.

C.4.1 Learning from Regression Data
We optimize the LTV weights using mini-batch
gradient descent on a dataset we compiled, consist-
ing of 100× 256 = 25, 600 function samples (100

times the batch size). Prompts of length Tv > Ttrain
are constructed for these functions. We reserve the
20% of the dataset as a validation set for monitor-
ing loss. For each mini-batch of prompts {pfii }Ni=1

sampled from the dataset, the gradient descent step
is defined as

L(Φ) = 1

N

N∑

i=1

(
M̃θ

(
pfii | v

fi
Φ

)
− fi(xi,query)

)2
,

Φ← Φ− η · ∇L(Φ),

where pfii represents a prompt corresponding to a
unique function fi and η is the learning rate. This
method and dataset compilation are applied uni-
formly across all three function classes.

We recognize that generating distinct functions
and prompts at each gradient step could potentially
provide an infinite variety of data and functions.
This raises concerns about whether LTV overfits to
the function classes. Although it was argued that
the likelihood of the model encountering a training-
similar prompt is extremely low (Garg et al., 2023),
we opted for a static dataset approach. Our ex-
periments were conducted using this dataset, with
evaluations performed on the prompts constructed
from different weight vectors during inference.

C.4.2 Learning from Language Data
Given the dataset P t for task t, each gradient step
involves sampling 100 prompts with replacement,
each containing 5 demonstrations. These prompts
are processed by the transformer to collect attention
activations, and the mean of these activations across
the sampled prompts is computed. This mean is
then passed through the LTV layer to compute the
corresponding LTV, as illustrated in (2).

For training, we sample a batch of 32 prompts,
each with 5 demonstrations, but with all labels
shuffled, rendering the input-output pairs non-
informative. The LTV weights are updated to max-
imize the probability of the correct label for the
query input:

L(Φ) = − 1

N

N∑

i=1

log
(
M̃θ

(
yquery | p̃ti;vt

Φ

))
.

C.5 Training LoRA
We use LoRA (Low-Rank Adaptation) with a rank
of 8, applied to the key (K), query (Q), value (V),
and output projection matrices in the self-attention
mechanism of the GPT-2 model (12 layers, 8 atten-
tion heads per layer, and 256 hidden dimensions).

6652

The GPT-2 model is fine-tuned with LoRA on the
same static dataset and over the same number of
iterations (2000) used for training LTV.

Each of these matrices originally has dimensions
256× 256. LoRA introduces two low-rank matri-
ces, A ∈ R256×8 and B ∈ R8×256, replacing the
trainable weight matrix with their product. This
setup results in 4096 trainable parameters per ma-
trix, calculated as 2× 256× 8.

Since our task is relatively simple and the model
is extremely lightweight, we apply LoRA to all lay-
ers for comprehensive coverage. This adds 16,384
trainable parameters per layer (4×4096), as LoRA
operates on four matrices (K, Q, V , and output) in
each transformer layer. With 12 transformer layers
in total, the model fine-tunes 196,608 parameters
(12 × 16384). This parameter-efficient approach
significantly reduces the training cost compared to
updating all model parameters.

C.6 Detailed Ablation Studies
Our argument is based on the premise that while
earlier layers build foundational representations,
the most refined and actionable insights for pre-
dictions are concentrated in the outputs of the last
layer. The motivation for these studies is to exam-
ine the model’s resilience to variations in prompt
length.

To this end, we freeze all transformer and LTV
parameters to analyze the stability of last hidden
state distributions across varying prompt lengths,
rendering stationary distribution. We generate a
dataset of 25,600 prompts (100 times the batch
size) with a maximum length Tmax. Prompts were
trimmed to Ttrain for the vanilla transformer and ex-
tended beyond Ttrain for the FV- and LTV-integrated
transformers. The last hidden states from these
configurations were compiled into two datasets, X1

and X2, corresponding to the vanilla transformer
and the FV- and LTV-integrated transformers, re-
spectively. The samples within each dataset are
independent and identically distributed, allowing
us to estimate their probability distributions.

We estimate the probability distributions using
Kernel Density Estimation (KDE), employing the
standard KDE implementation from scipy (Virta-
nen et al., 2020) with default settings. However,
directly estimating a probability distribution in a
high-dimensional space often leads to the curse of
dimensionality, where the volume of data required
to effectively estimate the distribution grows ex-
ponentially with the number of dimensions. A

practical solution to this challenge is to employ
SVD for dimensionality reduction. This involves
decomposing the data matrices Xi ∈ RM×d as:

X1 = U1Σ1V
⊤
1 ,

X2 = U2Σ2V
⊤
2 ,

where M is the number of collected sam-
ples and Ui contains the principal components
ui,1, ui,2, . . . , ui,n as column vectors. These prin-
cipal components (PCs) form the column space of
Xi:

span(ui,1, ui,2, . . . , ui,n) = colspace(Xi),

where each ui,k is orthogonal to ui,k′ ̸=k and or-
dered by decreasing variance that they explain.
Specifically, the first n principal components rep-
resent the directions along which the data varies
the most, capturing the most significant patterns
in the data. These components are likely more in-
formative and relevant for distinguishing different
behaviors or properties of the data.

Rather than estimating the distribution under-
lying the entire datasets Xi as multivariate distri-
butions, we employ Gaussian KDE4 to estimate
each PC as a unimodal distribution. This approach
is advantageous since KDE performs better with
univariate data. However, transitioning from mul-
tivariate to univariate requires the assumption that
the PCs are uncorrelated. We validate this assump-
tion by observing that the nondiagonal entries of
the correlation matrices of Ui are on the order of
10−2, with diagonal entries being approximately 1,
effectively an identity function, confirming that the
PCs are indeed uncorrelated.

We use KL divergence between the KDE-
estimated distributions of the column pairs to quan-
titatively assess distributional similarities. How-
ever, we find that these divergence values are negli-
gibly small, except for the first one, which accounts
for the most variance within the dataset. The neg-
ligible divergence scores for higher-order compo-
nents suggest that these vectors contribute mini-
mally to differentiating the datasets. Thus, focusing
on the first component, which shows substantial di-
vergence, is statistically justified and highlights the
critical variations relevant to model generalization.

This experimentation process is depicted in Fig-
ure 4. Additionally, histograms illustrating the

4https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.gaussian_kde.html

6653

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html

Figure 4: The diagram illustrates our pipeline for ab-
lation studies. We start by collecting M = 25, 600
prompts corresponding to a selected task f . Subse-
quently, the first principal component of the column
space of these datasets is extracted using SVD. Fi-
nally, we report the KL divergence between the KDE-
estimated distributions of these components.

KDE-estimated distributions of the first principal
components are provided in Appendix D.5 to offer
a clear view of their similarity.

C.7 Computational Resources
The computational experiments were conducted on
a high-performance system with an AMD Ryzen
Threadripper PRO 3995WX processor and 515
GB of RAM. For GPU acceleration, two NVIDIA
RTX A6000 GPUs were used, each with 49 GB
of memory. This setup efficiently supported the
transformer models used in our research.

D Complete Set of Results

We present the complete set of results that could not
be included in the main body due to page limitation.
Specifically, this section includes:

1. Regression Tasks: Evaluations with different
LTV training lengths Tv

2. Regression Tasks: Evaluations with chain-of-
thought prompting based on the findings of Li
et al. (2023c)

3. Regression Tasks: Evaluations under distri-
butional shifts

4. NLP Tasks: Accuracy scores (with zero- and
few-shot prompting) across 15 NLP bench-
marks

5. Ablation Studies: Complete ablation results,
including KL divergence scores across dif-
ferent Tv and the corresponding histograms
illustrating the distributions of the optimally
in-context-learned and LTV-integrated models

D.1 Evaluations on Regression Tasks

The loss curves are shown in Figures 5, 6, and 7.
As expected, no performance improvement is ob-
served for Tv = Ttrain, as the transformer already
achieves optimal performance. For visual compar-
ison, the LTV trained with the maximum number
of examples is included, though it does not provide
insights into generalizability, as it is exposed to all
Tmax examples.

D.2 Chain-of-Thought Prompting

Li et al. (2023c) investigate how CoT enhances
ICL for compositional functions, formalizing it as
a two-phase process: filtering relevant data and
applying ICL on the filtered input. During filter-
ing, the model focuses on the relevant tokens in
the prompt based on a given instruction. It then
processes the filtered prompt to generate an inter-
mediate output before proceeding to the next step
in the sequence.

Multi-layer networks can be viewed as compo-
sitional functions since the output depends on the
hidden layers, which are functions of the input.
Accordingly, Li et al. (2023c) specifically study
2-layer ReLU networks, as in our work. In this
context, the relevant tokens at the k-th step corre-
spond to the output of the k-th hidden layer. For
instance, let zk represent the k-th intermediate step.
During inference, the relevant tokens for zk are
{zik−1, z

i
k}Ti=1, where T is the number of examples

in the prompt.
Building on this, we demonstrate that LTV

can generalize to capture latent representations at
intermediate steps, enabling task fidelity in our
length generalization benchmark using Li et al.’s
(2023c)’s proposed CoT method. This provides a
more flexible and scalable framework for composi-
tional reasoning.

D.2.1 Experimental Details
Model Training As in Appendix C.2.2,
we pre-train a custom GPT-2 model (with
the same configuration) separately for the
two variants of Li et al. (2023c)’s method:
CoT-I and CoT-I/O. The task involves 2-
layer ReLU network regression, i.e., f(x) =

6654

Transformer Transformer + LoRA Transformer + FV (optimized)

Transformer + ICV (tuned) Transformer + LTV

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 41

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 42

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 56

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 71

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 86

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 101

Figure 5: Evaluation on the class of linear functions, with the transformer pre-trained on up to Ttrain = 41 examples
per prompt. Results are averaged over a batch of 256 randomly selected tasks. The shaded area represents the 95%
confidence interval over the sampled prompts. Tv denotes the prompt length used during LTV training.

Transformer Transformer + LoRA Transformer + FV (optimized)

Transformer + ICV (tuned) Transformer + LTV

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 41

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 42

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 56

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 71

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 86

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 101

Figure 6: Evaluation on the class of sparse linear functions, with the transformer pre-trained on up to Ttrain = 41
examples per prompt. Results are averaged over a batch of 256 randomly selected tasks. The shaded area represents
the 95% confidence interval over the sampled prompts. Tv denotes the prompt length used during LTV training.

W2ReLU(W1x). The prompt is structured as pf = {x1, g(x1), f(x1), . . . , xT , g(xT), f(xT)},

6655

Transformer Transformer + LoRA Transformer + FV (optimized)

Transformer + ICV (tuned) Transformer + LTV

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 101

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 102

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 126

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 151

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 176

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 201

Figure 7: Evaluation on the class of 2-layer ReLU neural networks, with the transformer pre-trained on up to
Ttrain = 101 examples per prompt. Results are averaged over a batch of 256 randomly selected tasks. The shaded
area represents the 95% confidence interval over the sampled prompts. Tv denotes the prompt length used during
LTV training.

Transformer Transformer + LTV Transformer + CoT-I

Transformer + CoT-I/O Transformer + CoT-I + LTV Transformer + CoT-I/O + LTV

0 50 100 150 200
in-context examples

0
5

10
15
20

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 126

0 50 100 150 200
in-context examples

0
5

10
15
20

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 151

0 50 100 150 200
in-context examples

0
5

10
15
20

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 176

Figure 8: Evaluation on the class of 2-layer ReLU neural networks, with the transformer pre-trained on up to
Ttrain = 101 chain-of-thought examples per prompt. Results are averaged over a batch of 256 randomly selected
tasks. The shaded area represents the 95% confidence interval over the sampled prompts. Tv denotes the prompt
length used during LTV training.

where g(x) = ReLU(W1x) represents an
intermediate computation.

For each i ≤ T , CoT-I/O performs iterative two-

step predictions:

ŝ
(1)
i = Mθ

(
pCoT(i)

)
,

ŷi = ŝ
(2)
i = Mθ

(
{pCoT(i), ŝ

(1)
i }

)
. (5)

In contrast, CoT-I directly predicts the final output

6656

in a single step:

ŷi = Mθ

(
pCoT(i)

)
.

The objective functions for pre-training the GPT-2
model are expressed for CoT-I/O and CoT-I respec-
tively as:

min
θ

Ef∼DF ,x∼DX

[
1

T + 1

T∑

i=0

(
ŝ
(1)
i+1 − g(xi+1)

)2

+
(
ŝ
(2)
i+1 − f(xi+1)

)2
]
,

min
θ

Ef∼DF ,x∼DX

[
1

T + 1

T∑

i=0

(
ŷi+1 − f(xi+1)

)2
]
.

Optimizing the Learnable Task Vector In CoT-
I/O, we train the LTV for each intermediate step.
The objective functions for training LTVs for g(x)
and f(x) are, respectively,

min
Φ

Ef∼DF ,x∼DX

[(
M̃θ

(
pCoT(Tv + 1) | vgΦ

)

−g(xquery)

)2]
,

min
Φ

Ef∼DF ,x∼DX

[(
M̃θ

(
{pCoT(Tv + 1), g(xquery)}

| vfΦ
)
− f(xquery)

)2]
.

Here, pCoT(Tv+1) consists of Tv support examples
and a new query:

{x1, g(x1), f(x1), . . . , xTv , g(xTv), f(xTv), xquery}.

The LTVs, vgΦ = {vgi }Li=1 and vfΦ = {vfi }Li=1, are
applied at corresponding layers and steps, mod-
ifying transformer outputs as M̃θ(· | vgΦ) and
M̃θ(· | vfΦ).

In CoT-I, a single LTV is trained directly for the
final step:

min
Φ

Ef∼DF ,x∼DX

[(
M̃θ

(
pCoT(Tv + 1) | vfΦ

)

−f(xquery)

)2]
.

This formulation allows CoT-I to bypass intermedi-
ate step modeling, focusing solely on final output
prediction.

We construct the pre-training and LTV datasets
following the same setting as in Appendix C.4.1,
sampling N i.i.d. tasks from an isotropic Gaussian
with Ttrain = 101 and N = 100× 256 = 25, 600.

D.2.2 Results
Results are provided in Figure 8. For simplicity,
we do not include the baselines (i.e., FV and ICV).
First, we observe that CoT-I/O (both with and with-
out LTV) performs poorly. This is expected be-
cause the final prediction depends on the interme-
diate step prediction, i.e., ŝ(1)i in (5). If the interme-
diate step introduces noise, it propagates into the
final prediction, leading to degraded performance.
Consequently, a more direct approach, i.e., CoT-I,
achieves better and more effective prediction per-
formance.

The latter case is particularly notable, as the
model’s in-context solving abilities improve up to
T = Ttrain, showing stable and lower error lev-
els. However, CoT-I still struggles to maintain task
fidelity when T > Ttrain on our benchmark.

For LTV, we observe that whether CoT is used
or not, LTV alone can sustain task behavior. This
indicates that CoT, when combined with LTV, per-
forms well primarily due to LTV, with minimal
contribution to preserving task fidelity. This sug-
gests that our method does not require additional
ICL enhancements to maintain task fidelity.

D.3 Distributional Shift

We identify two scenarios from Garg et al. (2023)
where the transformer model’s performance no-
tably degrades during ICL inference: noisy linear
regression and skewed covariance matrix.

Noisy linear regression Noise is added to the
output of each example in the form of a standard
Gaussian distribution. Specifically, the i-th output
is defined as w⊤xi+ϵi, where ϵi ∼ N (0, 1). While
the transformer and LTV are trained on standard
linear regression, the data during the ICL inference
phase is modified by this additive noise. In Figure
9, we observe that while the performance of FV de-
grades significantly, LTV is only slightly affected.
Specifically, LTV requires training on more exam-
ples to maintain the same performance as in the
noise-free setting. For instance, the performance of
LTV at Tv = 71 is comparable to its performance
in a noise-free environment at around Tv = 56.

Skewed covariance The inputs for the prompts
are sampled from a zero-mean skewed Gaussian
distribution: x ∼ N (0, Σ̃), where the eigenbasis
of the skewed covariance matrix Σ̃ is chosen uni-
formly at random. Each i-th eigenvalue of this
matrix is proportional to 1/i2. The results, shown

6657

Transformer Transformer + FV (optimized)

Transformer + ICV (tuned) Transformer + LTV

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 41

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 42

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 56

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 71

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 86

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 101

Figure 9: Evaluation on the class of linear functions on prompts with noisy labels, with the transformer pre-trained
on up to Ttrain = 41 examples per prompt. Results are averaged over a batch of 256 randomly selected tasks. The
shaded area represents the 95% confidence interval over the sampled prompts. Tv denotes the prompt length used in
LTV training.

Transformer Transformer + FV (optimized)

Transformer + ICV (tuned) Transformer + LTV

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 41

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 42

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 56

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 71

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 86

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 101

Figure 10: Evaluation on the class of linear functions under skewed covariance, with the transformer pre-trained
on up to Ttrain = 41 examples per prompt. Results are averaged over a batch of 256 randomly selected tasks. The
shaded area represents the 95% confidence interval over the sampled prompts. Tv denotes the prompt length used in
LTV training.

6658

in Figures 10, 11, and 12, align with the findings
of Garg et al. (2023), with error curves being more
unstable and oscillatory compared to the isotropic
Gaussian case. While LTV exhibits some sensitiv-
ity to this instability, it maintains a low mean error
and preserves performance to a certain extent.

D.4 Natural Language Processing
The complete set of accuracy scores on NLP bench-
marks is reported in Table 2. Detailed descriptions
of these benchmarks can be found in Appendix
C.3.1.

D.5 Ablation Studies
The KL divergence scores are reported in Table 3.
Additionally, the histograms in Figures 13, 14, and
15 illustrate the (unnormalized) probability density
functions of the last hidden states, based on 25,600
collected samples.

The plots correspond well with the computed KL
divergence scores. As the KL divergence values
decrease, the histograms show greater alignment.
Specifically, as the training prompt length for the
LTV configurations increases, their density pro-
files become narrower, more closely resembling
the shape of the vanilla transformer’s distribution
at Ttrain. From a different perspective, this visual
alignment supports our hypothesis once again: An
optimized LTV with sufficiently long prompts per-
forms near-optimally, as it effectively maintains
the last hidden state distribution close to that of the
model performing under T = Ttrain.

6659

Dataset Prompt Transformer + FV + ICV + SV + TV + LTV (ours)

A
bs

tr
ac

tiv
e

AG News (Zhang et al., 2015)
Zero-shot 0.0 ± 0.0 30.1 ± 5.7 33.6 ± 5.6 31.7 ± 5.7 34.5 ± 5.0 46.9 ± 6.2
Few-shot 67.2 ± 5.8 66.0 ± 5.8 64.7 ± 5.4 66.1 ± 4.5 57.9 ± 5.8 71.1 ± 5.6

Antonym (Nguyen et al., 2017)
Zero-shot 2.3 ± 1.9 35.2 ± 5.9 46.4 ± 5.6 35.2 ± 6.1 29.6 ± 6.0 53.5 ± 6.2
Few-shot 37.5 ± 6.0 64.5 ± 5.9 61.8 ± 5.7 64.8 ± 5.9 64.9 ± 5.2 65.6 ± 5.9

CommonsenseQA (Talmor et al., 2019)
Zero-shot 10.2 ± 3.7 23.0 ± 5.2 28.9 ± 5.2 21.7 ± 1.1 22.0 ± 4.0 41.0 ± 6.1
Few-shot 18.0 ± 4.7 20.3 ± 5.0 20.0 ± 4.6 20.3 ± 2.1 19.5 ± 3.4 21.1 ± 5.0

English-French (Lample et al., 2018)
Zero-shot 0.0 ± 0.0 23.4 ± 5.2 40.2 ± 5.3 24.4 ± 2.7 25.4 ± 5.1 53.5 ± 6.2
Few-shot 52.0 ± 6.2 71.9 ± 5.5 68.0 ± 5.0 74.4 ± 4.2 75.0 ± 5.3 75.4 ± 5.3

English-Spanish (Lample et al., 2018)
Zero-shot 0.0 ± 0.0 9.0 ± 3.5 16.5 ± 4.3 9.7 ± 3.5 9.4 ± 2.9 20.7 ± 5.0
Few-shot 36.7 ± 5.9 50.4 ± 6.2 49.4 ± 5.9 50.8 ± 4.2 50.6 ± 4.9 53.9 ± 6.1

Landmark-Country (Hernandez et al., 2024)
Zero-shot 0.0 ± 0.0 60.9 ± 6.0 62.7 ± 5.1 62.9 ± 5.6 69.9 ± 6.0 71.1 ± 5.6
Few-shot 66.8 ± 5.8 68.0 ± 5.8 68.4 ± 5.0 65.6 ± 5.3 66.3 ± 5.6 76.2 ± 5.3

Person-Instrument (Hernandez et al., 2024)
Zero-shot 0.0 ± 0.0 11.3 ± 3.9 17.1 ± 4.9 13.1 ± 2.2 30.1 ± 3.5 33.2 ± 5.8
Few-shot 52.7 ± 6.2 48.4 ± 6.2 53.2 ± 5.9 47.9 ± 6.1 43.6 ± 6.2 60.5 ± 6.0

Person-Occupation (Hernandez et al., 2024)
Zero-shot 0.0 ± 0.0 4.3 ± 2.5 17.2 ± 3.9 9.0 ± 2.9 8.1 ± 5.8 36.3 ± 5.9
Few-shot 30.9 ± 5.7 30.1 ± 5.7 37.6 ± 5.6 29.2 ± 5.2 28.8 ± 5.7 49.6 ± 6.2

Person-Sport (Hernandez et al., 2024)
Zero-shot 0.0 ± 0.0 2.7 ± 2.0 12.9 ± 3.5 12.5 ± 3.1 12.6 ± 3.0 16.0 ± 4.5
Few-shot 85.5 ± 4.3 86.3 ± 4.2 83.3 ± 3.5 88.3 ± 4.1 86.5 ± 4.0 89.5 ± 3.8

Product-Company (Hernandez et al., 2024)
Zero-shot 0.0 ± 0.0 29.3 ± 5.6 43.0 ± 5.3 28.2 ± 4.9 28.7 ± 5.6 66.4 ± 5.8
Few-shot 57.4 ± 6.1 62.5 ± 6.0 66.6 ± 5.8 68.0 ± 5.6 65.0 ± 4.7 74.2 ± 5.4

Sentiment Analysis (Socher et al., 2013b)
Zero-shot 0.0 ± 0.0 0.0 ± 0.0 4.8 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 10.9 ± 3.8
Few-shot 74.6 ± 5.4 69.5 ± 5.7 72.5 ± 3.2 74.2 ± 2.5 77.1 ± 3.4 94.5 ± 2.8

Synonym (Nguyen et al., 2017)
Zero-shot 1.2 ± 1.3 2.7 ± 2.0 14.2 ± 3.6 2.6 ± 4.6 2.5 ± 3.3 18.8 ± 4.8
Few-shot 6.2 ± 3.0 10.5 ± 3.8 14.6 ± 4.5 10.5 ± 4.2 10.1 ± 3.0 40.6 ± 6.1

E
xt

ra
ct

iv
e NER-person (Tjong Kim Sang and De Meulder, 2003)

Zero-shot 5.5 ± 2.8 48.8 ± 6.2 49.9 ± 5.8 46.3 ± 1.3 47.8 ± 5.3 58.2 ± 6.1
Few-shot 11.7 ± 4.0 56.2 ± 6.1 65.9 ± 5.2 53.7 ± 3.3 62.6 ± 3.9 79.3 ± 5.0

NER-location (Tjong Kim Sang and De Meulder, 2003)
Zero-shot 6.6 ± 3.1 37.9 ± 6.0 26.4 ± 5.1 34.6 ± 3.9 27.2 ± 4.7 27.3 ± 5.5
Few-shot 23.4 ± 5.2 43.4 ± 6.1 47.4 ± 5.9 43.5 ± 4.4 41.9 ± 5.6 57.4 ± 6.1

NER-organization (Tjong Kim Sang and De Meulder, 2003)
Zero-shot 21.9 ± 5.1 48.8 ± 6.2 52.5 ± 6.0 46.1 ± 1.2 46.6 ± 4.3 64.1 ± 5.9
Few-shot 16.8 ± 4.6 50.8 ± 6.2 54.1 ± 5.0 53.5 ± 2.6 51.1 ± 4.1 75.0 ± 5.3

Table 2: Complete set of accuracy scores (%) for zero-shot and few-shot (5-shot) predictions, averaged across 256
random seeds. ± represents the margin of error at a 95% confidence level. The highest accuracy is marked in
boldface, and the statistically best-performing method is highlighted.

Configuration at Tmax Linear regression Sparse linear regression 2-layer ReLU NN

Transformer 1.098 1.110 0.103
+ Function Vector 0.646 0.572 0.223
+ LTV (Tv = {41, 41, 101}) 1.000 1.056 0.095
+ LTV (Tv = {42, 42, 102}) 0.952 0.984 0.037
+ LTV (Tv = {56, 56, 126}) 0.532 0.260 0.016
+ LTV (Tv = {71, 71, 151}) 0.460 0.203 0.017
+ LTV (Tv = {86, 86, 176}) 0.344 0.199 0.013
+ LTV (Tv = {101, 101, 201}) 0.300 0.096 0.038

Table 3: KL divergence values are computed between the distributions of the last hidden states of the vanilla
transformer at T = Ttrain and the listed configurations at T = Tmax, where Tmax = 101 for linear functions and
Tmax = 201 for neural networks. Kernel density estimation (KDE) is used to estimate the probability densities over
a dataset of 25,600 samples. The lowest KL divergence score (i.e., the most aligned configuration) is marked in
boldface.

6660

Transformer Transformer + FV (optimized)

Transformer + ICV (tuned) Transformer + LTV

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 41

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 42

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 56

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 71

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 86

0 25 50 75 100
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 101

Figure 11: Evaluation on the class of sparse linear functions under skewed covariance, with the transformer pre-
trained on up to Ttrain = 41 examples per prompt. Results are averaged over a batch of 256 randomly selected tasks.
The shaded area represents the 95% confidence interval over the sampled prompts. Tv denotes the prompt length
used in LTV training.

Transformer Transformer + FV (optimized)

Transformer + ICV (tuned) Transformer + LTV

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 101

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 102

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 126

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 151

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 176

0 50 100 150 200
in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n
sq

ua
re

d
er

ro
r

Tv = 201

Figure 12: Evaluation on the class of 2-layer ReLU neural networks under skewed covariance, with the transformer
pre-trained on up to Ttrain = 101 examples per prompt. Results are averaged over a batch of 256 randomly selected
tasks. The shaded area represents the 95% confidence interval over the sampled prompts. Tv denotes the prompt
length used in LTV training.

6661

Vanilla transformer at Ttrain Configuration at Tmax

-6.79 -5.68 -4.58 -3.47 -2.37
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y
(1

e2
)

Transformer
DKL = 1.098

-6.62 -5.96 -5.30 -4.65 -3.99
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y
(1

e2
)

Function Vector
DKL = 0.646

-6.76 -5.63 -4.50 -3.36 -2.23
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 41)
DKL = 1.000

-6.85 -5.64 -4.43 -3.22 -2.01
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 42)
DKL = 0.952

-6.66 -5.77 -4.88 -3.99 -3.10
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 56)
DKL = 0.532

-6.62 -6.00 -5.37 -4.75 -4.13
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 71)
DKL = 0.460

-6.57 -5.96 -5.35 -4.74 -4.13
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 86)
DKL = 0.344

-6.58 -5.96 -5.35 -4.74 -4.13
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 101)
DKL = 0.300

Figure 13: Histograms of the empirical distribution of the last hidden states for the vanilla transformer collected at
Ttrain and the tested configuration at the maximum length Tmax = 101 under linear functions. These histograms are
generated using a dataset of 25,600 samples and correspond to the KL divergence scores reported in Table 3.

Vanilla transformer at Ttrain Configuration at Tmax

-6.60 -5.21 -3.82 -2.43 -1.04
Value (1e-3)

0.00

7.82

15.64

23.47

31.29

39.11

Fr
eq

ue
nc

y
(1

e2
)

Transformer
DKL = 1.110

-6.49 -5.88 -5.27 -4.66 -4.05
Value (1e-3)

0.00

7.82

15.64

23.47

31.29

39.11

Fr
eq

ue
nc

y
(1

e2
)

Function Vector
DKL = 0.572

-6.58 -5.18 -3.79 -2.39 -0.99
Value (1e-3)

0.00

7.82

15.64

23.47

31.29

39.11

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 41)
DKL = 1.056

-6.57 -5.24 -3.92 -2.59 -1.27
Value (1e-3)

0.00

7.82

15.64

23.47

31.29

39.11

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 42)
DKL = 0.984

-6.48 -5.87 -5.27 -4.66 -4.05
Value (1e-3)

0.00

7.82

15.64

23.47

31.29

39.11

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 56)
DKL = 0.260

-6.49 -5.90 -5.32 -4.74 -4.15
Value (1e-3)

0.00

7.82

15.64

23.47

31.29

39.11

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 71)
DKL = 0.203

-6.48 -5.90 -5.32 -4.74 -4.15
Value (1e-3)

0.00

7.82

15.64

23.47

31.29

39.11

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 86)
DKL = 0.199

-6.44 -5.87 -5.30 -4.72 -4.15
Value (1e-3)

0.00

7.82

15.64

23.47

31.29

39.11

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 101)
DKL = 0.096

Figure 14: Histograms of the empirical distribution of the last hidden states for the vanilla transformer collected
at Ttrain and the tested configuration at the maximum length Tmax = 101 under sparse linear functions. These
histograms are generated using a dataset of 25,600 samples and correspond to the KL divergence scores reported in
Table 3.

6662

Vanilla transformer at Ttrain Configuration at Tmax

2.40 3.46 4.52 5.58 6.64
Value (1e-3)

0.00

4.78

9.56

14.34

19.12

23.90

Fr
eq

ue
nc

y
(1

e2
)

Transformer
DKL = 0.103

3.51 4.29 5.07 5.86 6.64
Value (1e-3)

0.00

3.77

7.54

11.32

15.09

18.86

Fr
eq

ue
nc

y
(1

e2
)

Function Vector
DKL = 0.223

2.43 3.48 4.53 5.59 6.64
Value (1e-3)

0.00

4.96

9.92

14.89

19.85

24.81

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 101)
DKL = 0.095

2.65 3.65 4.65 5.65 6.65
Value (1e-3)

0.00

4.27

8.53

12.80

17.06

21.33

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 102)
DKL = 0.037

2.91 3.85 4.80 5.74 6.69
Value (1e-3)

0.00

3.56

7.12

10.68

14.24

17.80

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 126)
DKL = 0.016

2.84 3.80 4.77 5.73 6.70
Value (1e-3)

0.00

3.06

6.12

9.17

12.23

15.29

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 151)
DKL = 0.017

3.01 3.94 4.86 5.78 6.71
Value (1e-3)

0.00

2.83

5.65

8.48

11.30

14.13

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 176)
DKL = 0.013

3.03 3.96 4.90 5.83 6.76
Value (1e-3)

0.00

2.67

5.33

8.00

10.66

13.33

Fr
eq

ue
nc

y
(1

e2
)

LTV (Tv = 201)
DKL = 0.038

Figure 15: Histograms of the empirical distribution of the last hidden states for the vanilla transformer collected at
Ttrain and the tested configuration at the maximum length Tmax = 201 under 2-layer ReLU neural networks. These
histograms are generated using a dataset of 25,600 samples and correspond to the KL divergence scores reported in
Table 3.

6663

