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Abstract

The improvement of LLMs’ instruction-
following capabilities depends critically on the
availability of high-quality instruction-response
pairs. While existing automatic data synthetic
methods alleviate the burden of manual cura-
tion, they often rely heavily on either the quality
of seed data or strong assumptions about the
structure and content of web documents. To
tackle these challenges, we propose Web Re-
construction (WebR), a fully automated frame-
work for synthesizing high-quality instruction-
tuning (IT) data directly from raw web doc-
uments with minimal assumptions. Leverag-
ing the inherent diversity of raw web con-
tent, we conceptualize web reconstruction as
an instruction-tuning data synthesis task via a
novel dual-perspective paradigm—Web as In-
struction and Web as Response—where each
web document is designated as either an in-
struction or a response to trigger the recon-
struction process. Comprehensive experiments
show that datasets generated by WebR outper-
form state-of-the-art baselines by up to 16.65%
across four instruction-following benchmarks.
Notably, WebR demonstrates superior compati-
bility, data efficiency, and scalability, enabling
enhanced domain adaptation with minimal ef-
fort.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Achiam et al., 2023; Dubey et al., 2024) have
become integral across a myriad of applications,
demonstrating exceptional performance on diverse
tasks by effectively following instructions (Ope-
nAl, 2022; Achiam et al., 2023). Their remarkable
performance largely stems from supervised fine-
tuning (SFT) (Wei et al., 2022; Mishra et al., 2022)
on instruction-response pairs. This process empow-
ers LLMs to produce customized outputs when pro-

* Work done during the internship at Huawei Noah’s Ark
Lab. Data and code: https://github.com/YJiangcm/WebR.
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Figure 1: Our proposed Web Reconstruction method
surpasses previous techniques by being (1) fully auto-
mated, eliminating the need for manual intervention or
seed data; (2) minimally reliant on assumptions about
the structure and content of web documents; and (3)
capable of generating high-quality IT data.

vided with specific instructions, facilitating their
adaptation to novel tasks without prior exposure.
A fundamental challenge in advancing the
instruction-following capabilities of LLMs lies in
the collection of high-quality instruction-tuning
(IT) data. Early approaches primarily rely on hu-
man experts to manually generate and curate IT
data (Wang et al., 2022; Conover et al., 2023),
which is both time-intensive and resource-heavy.
To mitigate these limitations, Semi-Automated
Synthetic Methods (Wang et al., 2023; Taori et al.,
2023; Xu et al., 2024a) leverage LLMs to expand
small, human-annotated seed datasets using few-
shot prompting techniques. While effective, the
performance of these methods is highly sensitive
to prompt engineering and the careful selection of
seed examples (Xu et al., 2024b). More recently,
Fully Automated Synthetic Methods, such as We-
bInstruct (Yue et al., 2024) and instruction back-
translation (Li et al., 2024d), have emerged as scal-
able alternatives that eliminate human involvement
by synthesizing IT data based on web-scraped doc-
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uments. These methods, however, often operate
under strong assumptions about the structure and
content of raw web data, such as the availability
of explicit question-answer pairs or minimal irrele-
vant content. Consequently, they can only handle a
limited scope of web documents, restricting their
diversity and leading to suboptimal performance
across various tasks.

To overcome these limitations, we propose Web
Reconstruction (WebR)—a novel framework that
synthesizes high-quality IT data from raw web
documents with minimal assumptions on web
and no reliance on human annotations, enabling
broader adaptability and improved performance.
Unlike backtranslation (Li et al., 2024d), which
directly treats web content as a response, or Webln-
struct (Yue et al., 2024), which extracts QA pairs,
WebR introduces a novel paradigm by conceptu-
alizing web reconstruction as an instruction-
tuning data synthesis task. At its core, WebR
aims to transform raw, noisy web documents into
human-preferred, response-like outputs through a
dual-perspective paradigm. Each web document is
designated as either an instruction or a response,
triggering the reconstruction process: (1) Web
as Instruction introduces a first-of-its-kind web
rewriting approach in IT data synthesis, where raw
web document is concatenated with a synthesized
rewrite request to serve as a complete instruction;
(2) Web as Response enhances backtranslation by
introducing a novel rollout and refinement process,
mitigating reliance on strong web content assump-
tions. Crucially, we show that these two perspec-
tives are complementary (refer to Table 3): Web as
Instruction enhances reasoning and understanding
tasks, while Web as Response improves instruction-
following and question-answering tasks.

We apply WebR to the Llama3-70B-Instruct and
GPT-40-mini models, creating two 100k-sample IT
datasets: WebR-Basic and WebR-Pro. To validate
their effectiveness, we train various LLMs, includ-
ing Llama3-8B-base and Qwen2.5-1.5/3/7/14B-
base, and evaluate them on over ten widely used
benchmarks. Our experiments provide key contri-
butions and insights into IT data synthesis:

* Efficacy: WebR is the first web-based IT syn-
thetic method to consistently surpass current
IT datasets with human annotations;

* Compatibility: Merging WebR with existing
IT datasets yields further performance gains;

* Data Efficiency: The performance of WebR
improves linearly relative to the logarithmic
growth of training data;

* Scalability: WebR scales with LLM size, con-
sistently boosting larger models;

* Domain Adaptability: WebR achieves do-
main adaption by simply adjusting the propor-
tion of source web documents.

2 Related Work

The synthesis of high-quality instruction-tuning
(IT) data (Zhou et al., 2023a; Jiang et al., 2023,
2024a; Xu et al., 2024a) can be broadly classified
into three main categories:

Human-Crafted Method primarily involves em-
ploying professionals to create instructions, as seen
in datasets like SUPER-NI (Wang et al., 2022)
and DOLLY (Conover et al., 2023). While these
datasets offer high-quality content, their size is
constrained by the significant costs associated
with manual creation. Alternatively, approaches
like ShareGPT (Chiang et al., 2023) and Wild-
Chat (Zhao et al., 2024) leverage user interaction
logs with LLMs to collect human-generated instruc-
tions. However, this method risks incorporating
toxic or undesirable content (Zhao et al., 2024).

Semi-Automated Synthetic Method uses LLMs
to generate synthetic IT datasets by starting with a
small set of human-annotated seed data and expand-
ing them through few-shot prompting. Notable
methods include Self-Instruct (Wang et al., 2023),
Alpaca (Taori et al., 2023), and Evol-Instruct (Xu
et al., 2024a). While these techniques enable large-
scale data generation, the diversity of the synthe-
sized data is often constrained by the quality and
variety of seed examples (Li et al., 2024a).

Fully Automated Synthetic Method utilizes
LLMs to synthesize IT data from scratch, draw-
ing from web-scraped documents. For instance,
Weblnstruct (Yue et al., 2024) extracts question-
answer (QA) pairs from web documents to con-
struct instruction-response datasets. Nevertheless,
this approach depends on the explicit presence of
QA pairs within the raw web corpus, which is not
always guaranteed. Similarly, backtranslation (Li
et al., 2024d; Nguyen et al., 2024) treats web doc-
uments as natural responses and employs LLMs
to infer the corresponding latent user instructions.
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Figure 2: Overview of the proposed Web Reconstruction (WebR) framework. Leveraging an off-the-shelf LLM,
WebR transforms raw web documents into high-quality instruction-response pairs. It strategically assigns each
document as either an instruction or a response to trigger the process of web reconstruction.

However, web documents often contain irrelevant
content or unsuitable expressions, making them
suboptimal as response candidates.

3 Web Reconstruction

Prior fully automated synthetic methods often
rely on strong assumptions about the structure
and content of raw web documents—such as the
presence of explicit question-answer pairs, min-
imal irrelevant content, or appropriate expres-
sions—necessitating complex preprocessing steps
like retrieval and filtering. In contrast, we intro-
duce the Web Reconstruction (WebR) framework,
which leverages a powerful, off-the-shelf LLM to
overcome these limitations by directly reconstruct-
ing unstructured and noisy web content into high-
quality, response-like outputs. As shown in Figure
2, WebR comprises two core strategies: (1) Web as
Instruction, where raw web content is concatenated
with a synthesized rewrite request to serve as a
complete instruction, guiding the generation of a re-
organized, coherent response; (2) Web as Response,
where a latent instruction is inferred by treating raw
web content as a response, enabling reconstruction
through the LLM’s initial rollout and subsequent
refinement. By adopting this dual-branch approach,

WebR efficiently generates high-quality instruction-
response pairs, ensuring contextually appropriate
outputs while eliminating the need for extensive
preprocessing.

3.1 Web as Instruction

Raw web documents often contain disorganized
or irrelevant information that hinders direct usabil-
ity. Even when dealing with well-structured con-
tent, further refinement is often required to meet
human-preferred formats and stylistic conventions.
A natural approach to reconstructing web content
is to rewrite it according to specific requirements,
such as style, format, structure, etc. To ensure di-
verse and realistic rewriting scenarios, we leverage
a powerful LLM to generate a detailed rewrite re-
quest tailored to the original document’s content
(See prompt in Figure 7). The request, along with
the raw web content, are concatenated to form a
comprehensive instruction. In addition to whole-
document transformations, we further enhance task
diversity by randomly (50% probability) generat-
ing rewrite requests that target specific sections of
the web content rather than the entire document, as
shown in Figure 8. This simulates real-world text
manipulation scenarios where users may need to
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extract and modify only certain portions of a text.
The curated instructions are then processed by the
LLM to produce reconstructed web content. No-
tably, the complexity of rewrite requests naturally
encompasses various NLP tasks, such as summa-
rization, information extraction, and semantic un-
derstanding. Addressing these tasks requires LLM
to demonstrate advanced reasoning and compre-
hension abilities, thereby enhancing its proficiency
in instruction-following, contextual understanding,
and reasoning (as verified in Table 3).

3.2 Web as Response

Inspired by instruction backtranslation (Li et al.,
2024d), we propose an alternative approach to re-
construct web content by treating the web as a
response. Specifically, we utilize a LLM to predict
a latent instruction for which the raw web content
would serve as an ideal response, as illustrated in
Figure 9. To further enhance diversity, specific
segments of web content are treated as responses
(with a 50% probability), as depicted in Figure 10.
Unlike traditional back-translation methods, which
directly treat latent instructions and raw web con-
tent as instruction-response pairs, our approach
introduces a two-stage refinement process. First,
we generate an initial response by rolling out an
LLM prediction for the latent instruction. Next, we
refine this response using both the raw web con-
tent and the latent instruction to produce a more
accurate and comprehensive output, as shown in
Figure 11. The initial rollout ensures that the re-
sponse exhibits human-like fluency and natural lan-
guage style, while the subsequent refinement step
integrates critical information from the raw web,
ensuring that the final response is both precise and
thorough. This dual-stage process significantly en-
hances the LLM’s performance in knowledge ac-
quisition and question-answering tasks, as demon-
strated by the improvements reported in Table 3.
The generated instruction as well as the refined
response are finally paired as IT data.

3.3 Dataset Construction Details

Following prior work (Li et al., 2024d; Yue et al.,
2024), we construct our dataset by sampling raw
web documents from three diverse and represen-
tative domains: 70% from the English subset of
Common Crawl (Computer, 2023) (general do-
main), 15% from OpenWebMath (Paster et al.,
2024) (math domain), and 15% from GitHub (Com-
puter, 2023) (code domain). To enable large-scale

creation of diverse synthetic data for various scenar-
ios, we adopt a persona-driven instruction synthesis
strategy inspired by Ge et al. (2024). Initially, an
LLM generates personas for the raw web docu-
ments (see template in Figure 6), which guide the
subsequent instruction synthesis for our proposed
Web Reconstruction process. The ratio of Web as
Instruction to Web as Response is set to 2:1, follow-
ing insights from the ablation study presented in
Table 3. To enhance diversity and eliminate redun-
dancy, we apply MinHash (Broder, 1997) dedupli-
cation based on n-gram features of instructions. We
configure the signature size to 128 and the similar-
ity threshold to 0.7. The final synthesized dataset
comprises 100,000 instruction-response pairs.

To evaluate the effectiveness of WebR in gen-
erating high-quality IT datasets, we use WebR
to construct datasets with two LLMs: the
open-source L1ama3-70B-Instruct (Dubey et al.,
2024) (temperature=0.6, top-p=0.9) and the pro-
prietary GPT-40-mini (Achiam et al., 2023) (tem-
perature=0.7, top-p=1.0). The resulting datasets,
WebR-Basic (from Llama3) and WebR-Pro (from
GPT-40-mini), differ in their generative capabil-
ities and quality. A comparative analysis of the
average token lengths is presented in Appendix C,
while a detailed cost analysis of WebR is provided
in Appendix D. Notably, the overall expenditure
for calling GPT-40-mini API is $38.57.

4 Experimental Setup

4.1 Baselines

We compare the family of IT datasets generated
by WebR with ten state-of-the-art (SOTA) open-
source IT datasets, categorized as follows: (1)
Human-crafted data: ShareGPT (Chiang et al.,
2023) and WildChat (Zhao et al., 2024) are ex-
emplary human-written datasets containing 112K
and 652K high-quality multi-round conversations
between humans and GPT, respectively. (2) Semi-
automated synthetic data: Alpaca (Taori et al.,
2023) and Evol-Instruct (Xu et al., 2024a) rep-
resent widely-used synthetic datasets generated
with semi-automated techniques. (3) Mixed data:
Tulu V2 Mix (Ivison et al., 2023) and Open-
Hermes 2.5 (Teknium, 2023) are crowd-sourced
datasets that aggregate diverse open-source IT
datasets, featuring 326K and 1M conversations,
respectively. (4) Fully automated synthetic data:
Magpie (Xu et al., 2024b) synthesizes IT data by
prompting Llama3-70B-Instruct with its chat tem-
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Human  Response

Alpaca  Arena MT IFEval

IT Data #Data Effort Generator Eval 2 Hard Bench Pr.(S) Ins.(S) Avg.
None (w/o fine-tuning) - - - ‘ 0.18 0.31 1.78 16.26 18.01 7.31

ShareGPT 112k High ChatGPT 9.89 6.49 6.34 38.52 42.26 22.70
WildChat 652k High GPT-35 &4 14.62 8.73 6.60 39.53 45.66 23.03
Tulu V2 Mix 326k Mid Mix 9.91 5.41 5.76 37.69 41.05 19.96
OpenHermes 2.5 M Mid Mix 12.89 8.20 6.51 38.82 43.52 21.99
Alpaca 52k Low Davinci-003 4.21 1.24 3.75 20.21 23.56 10.59
Evol Instruct 143k Low ChatGPT 7.19 5.58 5.77 39.00 44.25 20.36
Weblnstruct 100k No Llama3-70B 343 1.69 5.35 18.99 20.56 10.00
Backtranslation 100k No Llama3-70B 5.24 2.81 3.74 26.85 29.61 13.65
DoG-Instruct 100k No Llama3-70B 11.75 8.07 5.92 36.60 41.87 20.84
Magpie 100k No Llama3-70B 23.62 13.98 6.26 33.83 43.07 24.15
WebR-Basic 100k No Llama3-70B 25.33 16.50 6.95 41.40 50.69 28.17
IT Mix 100k Mid GPT-40-mini 30.39 28.03 7.36 43.30 47.38 31.29
Magpie 100k No GPT-40-mini 32.61 27.97 7.26 36.81 45.07 29.95
WebR-Pro 100k No GPT-40-mini | 34.36 31.10 7.57 43.79 51.76 33.71
(IT + WebR-Pro) Mix 100k Mid GPT-40-mini 35.00 34.23 7.50 48.06 53.23 35.60
(IT + WebR-Pro) Merge 200k Mid GPT-40-mini 35.40 35.12 7.59 49.72 53.97 36.36

Table 1: Instruction-following performance comparison of various instruction-tuning (IT) data, based on Llama3-8B.

plate, from which we sample 100k examples. To
ensure a fair and controlled comparison, we re-
produce several representative web-based IT syn-
thesis methods—namely WeblInstruct (Yue et al.,
2024), Backtranslation (Li et al., 2024d), and
DoG-Instruct (Chen et al., 2024)—using the same
source web data as our proposed WebR. All meth-
ods are implemented based on the LLaMA3-70B-
Instruct model, thereby aligning model capacity
and input sources across approaches.

4.2 Models and Training Settings

For instruction tuning (IT), we train Llama3-
8B-base (Dubey et al., 2024) and Qwen2.5-
1.5/3/7/14B-base (Qwen Team, 2024) on various IT
datasets. For each IT dataset, we fine-tune models
with five different random seeds and report the aver-
age performance. We adhere to the official instruc-
tion templates provided by each model. To ensure
a fair comparison, we use consistent training hyper-
parameters across different baseline datasets. The
comprehensive implementation details are listed in
Appendix A.

4.3 Evaluation Benchmarks and Metrics

We evaluate the performance of the fine-tuned mod-
els using four widely adopted instruction-following
benchmarks: AlpacaEval 2 (Li et al., 2023), Arena-
Hard (Li et al., 2024c), MT-Bench (Zheng et al.,
2023), and IFEval (Zhou et al., 2023b). For Al-
pacaEval 2, we report the length-controlled win
rate (LC), which ensures robustness against ver-
bosity. For Arena-Hard, we report the win rate

(WR) against the baseline model. For MT-Bench,
we provide the average score, using GPT-4-turbo
as the evaluation judge. For IFEval, we report two
metrics: prompt-level strict accuracy (Pr. (S)) and
instruction-level strict accuracy (Ins. (S)). More
evaluation details are listed in Appendix B.

5 Experimental Results

5.1

WebR Outperforms Existing Baselines. Table
1 highlights the performance of Llama3-8B-base
fine-tuned with datasets generated by WebR, com-
pared to those fine-tuned with baseline datasets. A
general trend emerges: [T datasets requiring higher
human effort tend to exhibit better performance
than those with lower or no human effort. Never-
theless, our WebR-Basic, which entirely eliminates
human effort in dataset creation, significantly and
consistently surpasses the SOTA Magpie dataset
across all four benchmarks with a 16.65% average
improvement. To ensure a fair and more challeng-
ing comparison, we deduplicated and randomly
sampled 100k instructions from baseline datasets
of varying human effort levels (high, mid, and
low) and generated responses using GPT-4o0-mini,
naming this synthesized strong baseline "IT Mix."
We also generate responses using GPT-40-mini for
Magpie and compare with our proposed method.
Even under the same response generator, WebR-
Pro consistently outperforms I'T Mix and Magpie
by 7.73% and 12.55%, respectively. These results
validate that datasets generated by WebR possess

Main Results
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IT Data | MMLU | ARC WinoGrande | MATH GSMSK | HumanEval | Avg.
None (w/o fine-tuning) |  60.56 | 7352 5214 | 19.62 56.16 | 3908 | 50.18
WildChat 58.46 72.62 49.43 19.34 60.25 42.55 50.44
OpenHermes 2.5 60.08 75.65 51.22 24.18 64.70 44.43 53.38
Magpie 58.58 71.53 51.93 16.12 57.39 40.85 49.40
WebR-Basic 60.85 76.27 5291 20.28 55.57 40.10 51.00
IT Mix 57.44 73.56 50.36 22.00 61.87 45.12 51.73
WebR-Pro 61.15 74.92 53.20 24.94 60.69 48.73 53.94
(IT + WebR-Pro) Mix 60.69 77.63 50.67 26.34 64.90 50.61 55.14
(IT + WebR-Pro) Merge 61.02 76.27 52.72 28.36 66.41 50.61 55.90

Table 2: Performance comparison of downstream tasks (Knowledge, Reasoning, Math, Code) based on Llama3-8B.

. Alpaca MT IFEval
Setting Eval 2 Bench Pr. (S) Avg. MMLU ARC MATH HumanEval Avg.
WebR-Pro | 3417 7.50 43.55 2841 | 61.15 74.92 24.94 48.73 52.43
-w/o Persona 33.30 6.93 44.69 28.31 60.98 74.58 24.03 48.50 52.02
-w/o Part 33.89 7.53 42.60 28.01 61.05 72.53 22.73 48.41 51.18
-w/o Refinement 31.61 7.42 44.73 27.92 59.83 74.92 24.36 48.61 51.93
-w/o MinHash 32.43 7.29 43.02 27.58 60.69 74.92 24.82 47.15 51.90
Ratio of Web as Instruction to Web as Response (2 : 1 in WebR)
1:0 29.15 7.10 39.56 25.27 58.79 74.58 25.74 50.00 52.28
1:1 33.16 7.39 43.26 27.94 60.60 73.22 25.18 48.78 51.95
1:2 32.99 7.33 42.85 27.72 57.76 72.61 25.26 50.00 5141
0:1 3341 6.68 42.54 27.54 52.68 72.90 23.30 46.95 48.96

Table 3: Ablation study based on Llama3-8B.

superior quality, enabling significantly enhanced
instruction-following performance.

Compatibility of WebR. To explore the potential
synergy between WebR and existing datasets, we
merged IT Mix and WebR-Pro using two strategies:
(1) random sampling of 50k data points from each
dataset and (2) direct concatenation. As shown
in Table 1, both merged datasets deliver further
performance improvements over their individual
components, establishing new SOTA results. This
can be attributed to the complementary strengths of
the datasets: IT Mix offers broader data coverage,
while WebR-Pro provides higher quality and more
challenging instructions, as evidenced in Figure 3.

Performance on Downstream Benchmarks.
We evaluate the impact of various instruction-
tuning datasets on downstream task performance
across multiple domains': (1) Knowledge:
MMLU (Hendrycks et al., 2021a); (2) Reasoning:
ARC (Clark et al., 2018) and WinoGrande (Sak-
aguchi et al., 2019); (3) Math: MATH (Hendrycks
et al., 2021b) and GSM8K (Cobbe et al., 2021);
(4) Code: HumanEval (Chen et al., 2021). As
shown in Table 2, models fine-tuned on the WebR

"Evaluation  settings
//opencompass.org.cn.

are aligned with https:

datasets outperform those trained on other base-
lines, demonstrating their effectiveness in improv-
ing generalization across diverse downstream tasks,
especially in challenging benchmarks like ARC
and WinoGrande. Furthermore, the combination of
WebR-Pro and IT Mix further validates the comple-
mentary strengths of WebR data in aligning models
with complex task requirements.

5.2 Ablation Study

Table 3 compares the LLM performance using dif-
ferent settings to construct WebR-Pro.

* w/o Persona: removing the author’s per-
sona information during instruction genera-
tion leads to performance declines across al-
most all benchmarks.

* w/o Part: creating instructions solely from
the entire web content, rather than using spe-
cific parts, causes notable performance degra-
dation, particularly on IFEval and reasoning-
intensive tasks like ARC and MATH.

* w/o Refinement: skipping the refinement
step for Web as Response—by directly
adopting the rollout response as the fi-
nal output—results in a substantial drop in
instruction-following performance.

* w/o MinHash: eliminating MinHash-based
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IT Data Human Effort Avg. Score Diversity
WildChat high 23.03 0.93
OpenHermes mid 21.99 0.87
Evol Instruct low 20.36 0.88
Weblnstruct no 9.79 0.84
Magpie no 24.15 0.92
WebR-Basic no 28.17 0.91
‘WebR-Pro no 33.58 0.93

Table 4: Comparison of embedding diversity.

WildChat
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Figure 3: Statistics of instruction quality and difficulty.

deduplication decreases performance across
all benchmarks, highlighting the importance
of maintaining dataset diversity.

* Ratio of Web as Instruction to Web as Re-
sponse: varying the ratio of Web as Instruc-
tion to Web as Response data synthesis reveals
that each component contributes uniquely
to model capabilities. Specifically, Web as In-
struction enhances reasoning and understand-
ing tasks (e.g., ARC and MATH), while Web
as Response primarily improves instruction-
following and question-answering tasks (e.g.,
IFEval and AlpacaEval 2). The optimal bal-
ance is achieved at a ratio of 2:1, which deliv-
ers the best overall performance.

6 Analysis

6.1 Dataset Analysis of WebR

Diversity. We utilize a quantitative measure of
diversity: (1) we randomly sample N = 10, 000 in-
structions from each dataset and encode them using

10 20 a0 80 100
Log scale of # Training Data (k)

Figure 4: The impact of training data scale on the aver-
age instruction-following performance.

the all-mpnet-base-v22 embedding model; (2)
we compute the average cosine similarity between
all embedding pairs and define embedding diversity
as1l— ﬁ 2 _vi<j cos(e;, e;), where higher val-
ues indicate greater diversity. Table 4 demonstrates
that WebR-Pro achieves the highest diversity score
(0.93), matching that of WildChat, which involves
high human effort. Notably, WebR-Pro surpasses
all other datasets—including those requiring hu-
man annotation like OpenHermes (0.87) and Evol
Instruct (0.88)—indicating its strong capability to
generate diverse instructions automatically. Fur-
thermore, it outperforms previous automatic base-
lines such as Weblnstruct (0.84) and Magpie (0.92),
highlighting its effectiveness in promoting diversity
without human intervention.

Quality and Difficulty. Following Magpie (Xu
et al., 2024b), we use the Qwen2.5-72B-Instruct
model to evaluate the quality and difficulty of
each instruction, categorizing them into five levels.
As depicted in Figure 3, synthetic data generally
demonstrates higher quality and greater difficulty
compared to human-crafted instructions. In par-
ticular, WebR-Basic exhibits superior distributions
in both quality and difficulty metrics, surpassing
existing baselines in these aspects.

6.2 Data Efficiency of WebR

Figure 4 illustrates the impact of training data scale
on model performance. The results clearly un-
derscore the superior data efficiency of WebR-Pro
compared to IT Mix: (1) With only 10k training
samples, WebR-Pro achieves a striking 40.26 %
performance improvement over I'T Mix, highlight-
ing its exceptional capability to elicit latent poten-
tial from LLMs even with limited data. (2) WebR-

2https://huggingface.co/sentence—transformers/
all-mpnet-base-v2
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Base LLM IT Data AlpacaEval 2 Arena-Hard MT-Bench IFEval/Pr. (S) IFEval/Ins. (S)
Qwen2.5-1.5B IT Mix 10.98 15.10 6.03 29.57 33.27
o ‘WebR-Pro 11.00 (+0.02) 14.03 (-1.07) 5.92 (-0.11) 29.57 (+0.00) 32.16 (-1.11)
Qwen2.5-3B IT Mix 22.36 26.54 6.95 43.07 44.73
: WebR-Pro 2229 (-0.07)  28.13 (+1.59) 7.03 (+0.08) 42.38 (-0.69) 44.71 (-0.02)
Qwen2.5-7B IT Mix 32.59 45.10 7.45 49.35 52.68
) WebR-Pro  34.90 (+2.31) 45.66 (+0.56) 7.62 (+0.17) 50.55 (+1.20) 53.35 (+0.67)
Qwen2.5-14B IT Mix 42.07 59.00 8.10 58.04 60.63
wenz. WebR-Pro 46.19 (+4.12) 62.13 (+2.13) 8.39 (+0.29) 60.23 (+2.19) 64.88 (+4.25)

Table 5: Performance comparison across varied scales of base LLMs.

Data Proportion AlpacaEval2 MATH  HumanEval MedQA  FinBen Avg.
IT Mix 30.19 22.00 45.12 38.88 29.20 33.08
WebR-Pro (4.7 gen : 1 math : 1 code) 34.17 24.94 48.73 47.31 29.56 36.94
-1 gen 34.40 22.52 44.78 44.94 28.97 35.12
- 1 gen: 1 math 34.25 28.09 48.23 46.59 29.77 37.39
-1 gen: 1 math: 1 code 34.59 27.10 51.39 46.83 29.34 37.85
-1gen: 1math: 1code: 1 med 32.75 26.22 49.68 49.98 29.01 37.53
-lgen: 1math: 1code: 1 med:1fin 33.03 25.38 48.17 45.64 30.22 36.49

Table 6: Domain adaptation based on Llama3-8B, with the domain improvements marked in green.

Pro exhibits a more consistent and pronounced
linear performance increase with respect to the
logarithmic growth in training data, consistently
outperforming IT Mix across all data scales. These
results strongly validate the efficacy of WebR in
efficiently leveraging training data to unlock and
enhance the capabilities of LLMs.

6.3 Scalability of WebR

Table 5 highlights the impact of base LLM scale
on the performance of our proposed WebR method.
While WebR-Pro slightly underperforms IT Mix
at the 1.5B model scale, its advantages become
increasingly pronounced as the model size grows.
For instance, WebR-Pro achieves an average per-
formance improvement of 2.86 % over IT Mix with
Qwen2.5-7B and an even more substantial improve-
ment of 5.55% with Qwen2.5-14B. These results
suggest that the advanced synthesis paradigm of
WebR better aligns with larger models’ capacity
to capture complex patterns and utilize reasoning-
intensive data. In contrast, smaller models with lim-
ited capacity may struggle to fully exploit WebR’s
potential.

6.4 Domain Adaptability of WebR

We explore the potential of our proposed WebR
framework for domain adaptation by simply ad-
justing the proportion of source web documents.
Starting with general-domain content, we progres-

sively add domain-specific materials from math,
code, medicine, and finance, assessing perfor-
mance across relevant benchmarks. For the medical
and financial domains, we utilize raw web docu-
ments from IndustryCorpus2 (Shi et al., 2024), and
evaluate using MedQA (Jin et al., 2021) and Fin-
Ben (Xie et al., 2024) benchmarks. As shown in
Table 6, WebR demonstrates strong adaptability
across domains. Compared to the IT Mix base-
line, incorporating domain-specific data consis-
tently improves performance, with math and code
data yielding significant gains in MATH (28.09)
and HumanEval (51.39), and medical and finan-
cial domains showing strong results on MedQA
(49.98) and FinBen (30.22). These results highlight
WebR’s ability to incorporate specialized knowl-
edge while maintaining competitive general-
domain performance. Furthermore, the process
of collecting domain-specific web documents is
straightforward, underscoring WebR’s practicality.

7 Conclusion

In this paper, we present Web Reconstruction
(WebR), a fully automated framework for synthe-
sizing high-quality instruction-tuning (IT) datasets.
Harnessing the richness of raw web content, we
conceptualize web reconstruction as an instruction-
tuning data synthesis task via a novel dual-
perspective paradigm—Web as Instruction and Web
as Response—where each web document is des-
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ignated as either an instruction or a response to
trigger the reconstruction process. Extensive exper-
iments show that WebR-generated datasets consis-
tently outperform state-of-the-art baselines across
four instruction-following benchmarks and six di-
verse downstream tasks. Furthermore, WebR ex-
hibits exceptional compatibility, data efficiency,
and scalability with existing datasets, underscor-
ing its potential as a versatile tool for advancing
instruction-driven LLM training.

Limitations

While WebR can already obtain satisfactory per-
formance, there are several areas for improvement
and future exploration. Firstly, the current imple-
mentation of WebR focuses on single-turn data
synthesis. Expanding this framework to support
multi-turn conversations could further enhance its
applicability to complex, interactive tasks. Sec-
ondly, due to constraints in time and computa-
tional resources, the size of the constructed WebR-
Basic and WebR-Pro datasets is currently limited
to 100k samples. However, given the vast avail-
ability of web documents—numbering in the tril-
lions—the WebR framework has significant poten-
tial for scaling to create large-scale IT datasets,
which could further boost performance. Thirdly,
WebR does not incorporate advanced data selection
techniques, such as Instruction Following Diffi-
culty (IFD) (Li et al., 2024b), as part of its post-
processing pipeline. Incorporating such techniques
could refine data quality and further enhance the
instruction-following capabilities of LLMs (Jiang
et al., 2024b). Finally, advanced post-training tech-
niques such as reinforcement learning from human
feedback (RLHF) (Ouyang et al., 2022; Huang
et al., 2025) and direct preference optimization
(DPO) (Rafailov et al., 2023; Jiang et al., 2025) can
be applied to the synthesized WebR data to further
enhance alignment performance, which we leave
for future work.
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A Implementation Details

Our implementation is based on the alignment-
handbook repo®. The training procedure was exe-
cuted on 4 NVIDIA A800 GPUs, each equipped
with 80GB of memory. The duration required to
train a single instance of the model, specifically
the Llama3-8B-base, was approximately 9 hours.
The specific hyperparameters used during training
are detailed in Table 7. Notably, all models were
trained using the same set of hyperparameters, ex-
cept for the maximum sequence length, which was
set to 2048 for the 14B LLMs to mitigate computa-
tional bottlenecks.

Hyperparameter Value

Batch size 128

Learning rate 2e-5

Epoches 4

Max length 4096 (2048 for 14B LLMs)
Optimizer AdamW
Scheduler cosine

Weight decay 0

Warmup ratio 0.1

Table 7: Training hyperparameters for Llama3-8B-base
and Qwen2.5-1.5/3/7/14B-base.

B Evaluation Details

Table 8 lists the evaluation details for AlpacaEval
2 (Li et al., 2023), Arena-Hard (Li et al., 2024c),
MT-Bench (Zheng et al., 2023), and IFEval (Zhou
et al., 2023b). AlpacaEval 2 comprises 805 ques-
tions from 5 datasets, and MT-Bench spans 8
categories with a total of 80 questions. Arena-
Hard is an enhanced version of MT-Bench, fea-
turing 500 well-defined technical problem-solving
queries. IFEval consists of 541 samples, each con-
taining 1 to 3 verifiable constraints. Evaluation
metrics are reported in accordance with each bench-
mark’s protocol.

C Dataset Analysis

Statistics including token lengths of instructions
and responses are illustrated in Figure 5. To-
kens are counted using the tiktoken library*. For
WebR-Basic, the average token lengths of instruc-
tions and responses are 441.41 and 381.28, respec-
3https://gi'chub.com/huggingface/

alignment-handbook
*https://github.com/openai/tiktoken
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Figure 5: Lengths of instructions and responses in
WebR-Basic and WebR-Pro.

tively. For WebR, the average token lengths of
instructions and responses are 439.88 and 457.34,
respectively.

D Cost Analysis

Here we analyze the cost-effectiveness of our pro-
posed Web Reconstruction framework. For context,
we estimated the budget for data synthesis using
the GPT-40-mini API, based on the Batch API’s
pricing of $0.075 per 1M input tokens and $0.3
per 1M output tokens. Table 9 lists the breakdown
of the estimated costs for each step, which demon-
strates that the overall expenditure ($38.57) is both
reasonable and manageable.

Additionally, our main experiment in Ta-
ble 1 demonstrates that the open-source
Llama3-7@0B-Instruct model can achieve
satisfactory performance for our proposed Web Re-
construction, significantly outperforming previous
IT datasets. Notably, Llama3-7@B-Instruct can
be deployed on only 2 NVIDIA-3090 GPUs, with
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Benchmark  # Exs. Baseline Model Judge Model Scoring Type Metric
AlpacaEval 2 805 GPT-4 Turbo GPT-4 Turbo Pairwise comparison Length-controlled win rate
Arena-Hard 500 GPT-4-0314 GPT-4 Turbo Pairwise comparison Win rate
MT-Bench 80 - GPT-4/GPT-4 Turbo  Single-answer grading Rating of 1-10
IFEval 541 - - Rule-based verification Accuracy

Table 8: Evaluation details for AlpacaEval 2 (Li et al., 2023), Arena-Hard (Li et al., 2024c), MT-Bench (Zheng
et al., 2023), and IFEval (Zhou et al., 2023b). The baseline model refers to the model compared against.

Avg. Input Avg. Output
# of Samples Token Length Token Length Cost ($)
Generate author’s persona 100,000 523 32 4.88
Web as Instruction (instruction) 66,667 711 123 6.02
Web as Instruction (rollout response) 66,667 611 392 10.90
Web as Response (instruction) 33,333 645 91 2.52
Web as Response (rollout response) 33,333 91 522 5.45
Web as Response (refined response) 33,333 1,155 591 8.80
Total - - - 38.57

Table 9: Estimated budget for data synthesis using the GPT-40-mini APL

the option to further reduce hardware requirements
through low-bit quantization®. This provides an
economical alternative for our proposed WebR. In
conclusion, our framework demonstrates robust-
ness in leveraging diverse LLMs for data synthesis,
confirming its adaptability and effectiveness.

E Prompt Template

Figure 6 shows the prompt template for generating
the author persona according to the web content.
Figure 7 shows the prompt template for generating
the rewrite request based on the whole web content.
Figure 8 shows the prompt template for generating
the rewrite request based on a specific part of the
web content. Figure 9 shows the prompt template
for generating the latent instruction corresponding
to the whole web content. Figure 10 shows the
prompt template for generating the latent instruc-
tion corresponding to a specific part of the web
content. Figure 11 shows the prompt template for
generating a refined response based on the raw web
and the instruction.

Shttps://github.com/ollama/ollama
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Prompt Template for Author Persona

[Text]
{web}

[Instruction]
The text above is from an English webpage. According to the text, please infer the author's profile (within 30
words).

Figure 6: Prompt template for generating author persona.

Prompt Template for Web as Instruction (all)

[Text]
{web}

[Author of the Text]
{persona}

[Instruction]
The text above is from an English webpage. Imagine that you are a user of an Al assistant, please provide a rewrite
request specifically designed based on the text content, to create a new version of the text. You can ask for the
rewrite to follow constraints including word/sentence/paragraph length, style, format, structure, etc. You should
also follow the below rules:

- The rewrite request should strictly follow the profile of the author.

- The rewrite request should be based on the above text, rather than an isolated instruction.

- The constraints should be detailed and specific.

- Output only the request.

- Do **not** directly use the keyword 'rewrite' and 'new version' in the generated request.

- Make sure the generated request is within {len_limit} words.

Figure 7: Prompt template for Web as Instruction (generating the rewrite request based on the whole web content).

Prompt Template for Web as Instruction (part)

[Text]
{web}

[Author of the Text]
{persona}

[Instruction]
The text above is from an English webpage. Imagine that you are a user of an Al assistant, please provide a rewrite
request specifically designed based on the text content, to create a new version of the text focusing on a specific
part of information, rather than global information, in the given text above. You can ask for the rewrite to follow
constraints including word/sentence/paragraph length, style, format, structure, etc. You should also follow the
below rules:

- The rewrite request should strictly follow the profile of the author.

- The rewrite request should be based on the above text, rather than an isolated instruction.

- The constraints should be detailed and specific.

- Output only the request.

- Do **not** directly use the keyword 'rewrite’, 'new version', and 'specific part information' in the generated
request.

- Make sure the generated request is within {len_limit} words.

Figure 8: Prompt template for Web as Instruction (generating the rewrite request based on the specific part of the
web content).
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Prompt Template for Web as Response (all)

[Text]
{web}

[Author of the Text]
{persona}

[Instruction]
Imagine that you are a user of an Al assistant, please provide the most likely request to which the text above
would be a great answer. You should also follow the below rules:

- The request should strictly follow the profile of the author.

- Ensure your request is detailed, specific (including the style, format, and structure of the text), clear, and
concise.

- Output only the request.

- Make sure the generated request is within {len_limit} words.

Figure 9: Prompt template for Web as Response (generating the latent instruction based on the whole web content).

Prompt Template for Web as Response (part)

[Text]
{web}

[Author of the Text]
{persona}

[Instruction]
Imagine that you are a user of an Al assistant, please provide the most likely request to which **a specific part of
the text above** would be a great answer. You should also follow the below rules:

- The request should strictly follow the profile of the author.

- Ensure your request is detailed, specific (including the style, format, and structure of the text), clear, and
concise.

- Output only the request.

- Make sure the generated request is within {len_limit} words.

Figure 10: Prompt template for Web as Response (generating the latent instruction based on the specific part of the
web content).

Prompt Template for Web as Response (Answer Refinement)

Based on the Provided Information, please improve the Answer to the Question, so that the improved answer is of
high quality and factually correct. Only output the improved answer.

[Provided Information]
{web}

[Question]
{request}

[Answer]
{answer}

Figure 11: Prompt template for Web as Response (answer refinement).
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