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Abstract

Medical quality control indicators are essen-
tial to assess the qualifications of healthcare
institutions for medical services. With the im-
pressive performance of large language mod-
els (LLMs) like GPT-4 in the medical field,
leveraging these technologies for the Medical
Quality Control Indicator Calculation (MQ-
CIC) presents a promising approach. In this
work, (1) we introduce a real-world task MQ-
CIC and propose an open-source Chinese elec-
tronic medical records (EMRs)-based dataset
(CMQCIC-Bench) comprising 785 instances
and 76 indicators. (2) We propose a semi-
automatic method to enhance the rule repre-
sentation. Then we propose the Clinical Facts-
based Inferential Rule (CF-IR) method that dis-
entangles the clinical fact verification and in-
ferential rule reasoning actions. (3) We con-
duct comprehensive experiments on 20 repre-
sentative LLMs, covering general and medical
models. Our findings reveal that CF-IR outper-
forms Chain-of-Thought methods in MQCIC
tasks. (4) We conduct an error analysis and in-
vestigate the capabilities of clinical fact verifi-
cation and inferential rule reasoning, providing
insights to improve performance in the MQCIC
further. The dataset and code is available in
this repository .

1 Introduction

Medical quality control indicators play an essen-
tial role in assessing the performance of healthcare
institutions (@vretveit, 2001; Wang et al., 2018;
Anderson et al., 2017). Recently, Large Language
Models (LLMs) like GPT-4 (Achiam et al., 2023)
have shown promising capabilities in the medical
domain. These include applications such as diag-
nostic reasoning (Dou et al., 2024), clinical note
generation (Yang et al., 2023a), and automated clin-
ical assessment (GU et al., 2024). Such capabilities

* Corresponding authors.
"https://github.com/YuY-2001/C-MQCIC

Indicator Definition:

ICH Improvement/Stabilization at Discharge Rate:

Definition: Proportion of ICH patients with discharge GCS/NIHSS
(Medical Knowledge) better than (Numerical Computation)
admission (Multi-Sources) score relative to total ICH patients.

Calculation Formula:
_ Patients with discharge GCS or NIHSS better than admission score

Rate = -
gl Total ICH Patients

Step1: Recall emrs according to denominator rule

Step2: Check if emrs meet numerator rule

ISSUE: Dose patient notes meet the numerator rule [ICH patients with
discharge GCS/NIHSS better than admission score]? True/False

; ID:001 Admission: GCS

— 13... Discharge: GCS 15...

ID:n Admission: GCS 15...
Discharge: GCS 14...

Uil )
L:_Q-I GCS, 13< 15 True GCS, 15> 14 False

Step3: Statistical result
[Number of True] / [Number of Total ICH patients].

Figure 1: An example of calculation progress for ICH
improvement/stabilization at discharge rate. Firstly col-
lect patient records with intracerebral hemorrhage (ICH).
Then identify those with discharge scores better than
or equal to admission scores. Finally, the proportion of
these patients among all ICH cases is calculated.

also prove effective in Medical Quality Control
Indicator Calculation (MQCIC) (Ye et al., 2025).

Traditionally, calculating quality indicators re-
lied on manually constructed rules (regular ex-
pressions) (Tamang et al., 2015; Hsu et al., 2016),
which is time-consuming (Ross et al., 2015). As
illustrated in Figure 1, the indicator "ICH Improve-
ment/Stabilization at Discharge Rate" contains
<Definition, Calculation Formula>, which requires
(i) medical knowledge regarding the Glasgow
Coma Score(GCS) and NIH Stroke Score(NIHSS),
reflecting different patient conditions; (ii) multiple
sources of information, including both admission
and discharge records; and (iii) numerical com-
putation or logical reasoning. With such fine-
grained rules, experts develop scripts to identify
the relevant data from the unstructed text. How-
ever, these quality control indicators related to vari-
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ous diseases are continually refined and expanded
over time. Relying solely on fixed scripts or NLP
extraction methods is inadequate and lacks gener-
alizability (Lee et al., 2019; Raju et al., 2015).

Fortunately, LLLMs have demonstrated excellent
performance in the transformation as well as de-
composition of rules (Wang et al., 2023a; Wu et al.,
2024; Xu et al., 2024). However, several obstacles
remain in developing LLM-based clinical appli-
cations (Huang et al., 2024), especially MQCIC:
(i) LLMs struggle to provide accurate, reliable an-
swers for complex clinical reasoning tasks, espe-
cially when using Chain-of-Thought (CoT) reason-
ing (Wei et al., 2022). (ii) Concerns over LLMs’ re-
liance on opaque, "black-box" methods for clinical
decisions, which may erode user trust. Increasing
focus is being placed on improving LLM reason-
ing to follow explicit logical rules (Servantez et al.,
2024a; Yang et al., 2024c; Sun et al., 2024), shifting
from context-dependent to transparent, rule-based
prompting.

Therefore, this work aimed to explore leverag-
ing explicit rules to achieve automated indicator
calculation using LLMs based on electronic med-
ical records (EMRs). Firstly, we introduce a real-
world task MQCIC, and propose an open-source
dataset, CMQCIC-Bench, derived from Chinese
EMRs on an online Chinese website. The dataset
comprises 785 instances spanning 76 indicators.
Each instance consists of a Patient Note, a Ques-
tion, and an Answer. We also provide detailed an-
notations of clinical facts and explanations. Due to
the ambiguity of existing rules that impairs the ef-
fectiveness of LLMs, we propose a semi-automatic
method to enhance the rule representation. With
these refined rules, we introduce the Clinical Fact-
based Inferential Rule reasoning (CF-IR) method
that disentangles the two abilities during the infer-
ence stage. We conducted extensive experiments
on 20 representative LLMs across general and med-
ical domain. The evaluation results demonstrate
that CF-IR outperforms the CoT method. Further-
more, we investigated the capabilities of clinical
fact verification and inferential rule reasoning.

In summary, the major contributions are as fol-
lows:

* We introduce a clinical scenario task Medical
Quality Control Indicator Calculation and
propose CMQCIC-Bench, a Chinese open-
source dataset with 785 instances, covering 76
different medical quality control indicators.

* We propose a semi-automatic method to en-
hance the rule representation. Then we pro-
pose the Clinical Fact-based Inferential Rule
reasoning (CF-IR) method that disentangles
the clinical fact verification and inferential
rule reasoning actions.

* We conducted comprehensive experiments on
20 representative LLMs, where CF-IR im-
proved performance by 0.43% in the zero-shot
setting and 1.45% in the one-shot setting.

* We analyze errors and explore clinical fact ver-
ification and rule reasoning, offering insights
to improve MQCIC performance.

2 The Medical Quality Control Indicator
Calculation Task

Typically, MQCIC involves three steps: (1) Recall
relevant EMRs from all cases based on the denomi-
nator rules of the indicator. (2) Identify the EMRs
that meet the numerator rules from these relevant
EMRs. (3) Finally, compute the proportion to de-
termine the indicator’s value. The first step can be
addressed by matching the ICD-10 codes with diag-
nostic results. However, the second step is the most
challenging, which is the focus of this work. Con-
sidering the type of answer is not unique, we define
the task as a binary classification problem rather
than a cloze task. Thus, the problem is defined as
follows: given a Patient Note P and a Question ()
related to the indicator’s rule, the task of MQCIC
is to generate the answer A = {T'rue, False}.

3 Dataset Construction

In this section, we construct a dataset, CMQCIC-
Bench, for the MQCIC task. The main content in-
cludes the data collection of indicators and patient
notes, data annotation, and data characteristics.

3.1 Data Collection

We collected indicators and patient notes from two
sources. Indicators Sources. We manually cu-
rated 76 challenging indicators from authoritative
documents?, all developed by experts. For each in-
dicator, a rule-related question was constructed for
inclusion in the CMQCIC-Bench. Patient Notes
Sources. We gathered raw data from a Chinese
open-source medical website®. Patient notes meet-
ing the denominator rules were filtered based on

*http://www.ncis.cn/home
3https://www.iiyi.com/
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Patient Note

Admission Record:Chief Complaint: "Sudden loss of consciousness
accompanied by projectile vomiting and incontinence for 3 hours."Past medical
history: Hypertension for 8 years|...]The GCS score was 4.[...]Discharge
Record:[...]

Question
Dose patient notes meet the numerator rule[ICH patients with discharge
GCS/NIHSS better than admission score]? True/False

Explanitaion
Clinical Fact:
Fact 1: adm GCS score is 13. True. Fact 2: adm NIHSS score is none. False.
Fact 3: dis GCS score is 15. True. Fact 4: dis NIHSS score is none. False.
Reasoning:
For Rule 1 (GCS Score Comparison Rule), we compare Fact 3 (15 points) with
Fact 1 (13 points). Since 15 is greater than 13, Rule 1 is True.For Rule 2 (NIHSS
Score Comparison Rule),[...] For Rule 3 (Comprehensive Assessment), since
Rule 1 is True, we conclude that the patient's GCS score at discharge is equal to

or better than at admission.

Figure 2: Example instance of the CMQCIC-Bench
dataset.

Final Answer
True

ICD-10 codes and diagnostic findings. Finally, we
manually removed patient names, hospital informa-
tion, and other sensitive data to ensure no privacy
risks.

3.2 Data Annotation

Specifically, the annotation process uses the follow-
ing three-step pipeline. (1) Clinical fact extrac-
tion. We leverage GPT-40 to extract the original
information from EMRs without any modification,
then reason based on the context to verify the clin-
ical fact. The clinical facts contain GCS scores,
lab exams, medications, etc. (2) Answer and ex-
planation generation. Given the obtained facts,
for each instance, we leverage GPT-40 to gener-
ate the step-by-step explanation through logical
reasoning and a final answer {True, False}. (3)
Data quality control. Finally, with the guidance of
medical experts, annotators are required to check
the answer in three facets: fact extraction, logical
reasoning, and consistency. Fact extraction and log-
ical reasoning verify the accuracy of the first two
stages, while consistency ensures alignment within
the patient notes to exclude low-quality cases. In
the end, we curated 785 instances for CMQCIC-
Bench, as shown in Figure 2, each instance consists
of a Patient Note P, a Question (), a step-by-step
Explanation, and the final answer A. With the
same process, we constructed a CMQCIC-Private
dataset derived from patient notes of top-tier ter-
tiary hospitals in China. Ethics committees and
experts have rigorously de-identified these data to
ensure no privacy leakage risk.

CMQCIC-Bench | CMQCIC-Private
Indicators 76 42
Instance 785 314
Avg. L of Note 380.41 520.71
Avg. L of Q. 99.72 113.04
Min Facts 1 1
Max Facts 13 13
Avg. Facts 3.59 4.02
Open-source Yes No

Table 1: Statistics of CMQCIC-Bench and CMQCIC-
Private datasets. Avg.: average; Q.: question.

Distribution of Indicator
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Figure 3: The distribution of indicator in CMQCIC-
Bench dataset.

3.3 Data Characteristics

As shown in Table 1, we use Tiktoken* to mea-
sure sample lengths, yielding average lengths of
380.41 and 520.71, respectively. The shorter aver-
age length of each P in CMQCIC-Bench compared
to the private dataset stems from the summarized
nature of the source data (e.g., lab exams include
only key findings). Despite this, the number of
facts ranges from 1 to 13, with averages of 3.59
and 4.02, underscoring the task’s demand for multi-
step reasoning, consistent with real-world scenar-
ios. Additionally, Figure 3 illustrates the indicator
distribution, which spans 30 diseases.

4 Method

As shown in Figure 1, the indicators constructed
by experts are quite vague, and the underlying
medical knowledge can directly affect the imple-
mentation of the rules. Therefore, we propose a
semi-automatic method that decomposes them into
transparent, templated clinical facts and logical
rules. We then introduce the Clinical Fact-based
Inferential Rule (CF-IR) reasoning pattern for in-
ference. As illustrated in Figure 4, the method
comprises two key components: Rule Represen-
tation Enhancement and CF-IR. Additionally, we
introduce Automatic CF-IR (ACF-IR) to explore

*https://github.com/openai/tiktoken
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ICH Improvement/Stabilization at Discharge Rate:
Proportion of ICH patients with discharge GCS/NIHSS better
than admission score relative to total ICH patients.
Numerator Rule:

Discharge GCS/NIHSS better than admission score.

\v Knowledge Enhancement @rl]

Glasgow Coma Scale (GCS)

Patient Note: Admission: The patient ... The total GCS (Glasgow Coma Scale)
score is 13 (Eye-opening response 3, Verbal response 4, Motor response 6).
Discharge: The patient's general condition is stable ...The GCS score is 15.
Templated Clincal Facts: [Fact I: adm GCS score is _; Fact 2: adm NIHSS
score is _; Fact 3: dis GCS score is _; Fact 4: dis NIHSS score is ]

Logical Rules: [(dis GCS > adm GCS) (dis NIHSS< adm NIHSS) — True]

x Inference [@ Qwen2.5 . GPT-40 0 LlamaS.l...J

Total score ranges from 3 (indicating deep unconsciousness)
to 15 (indicating full consciousness)...

National Institutes of Health Stroke Scale (NIHSS)

The NIHSS score ranges from 0 (no stroke symptoms) to 42
(severe stroke)

B v

Logical Rule 1: GCS score comparision: NL:if dis GCS score
larger than adm GCS score, then true. SY: if dis GCS score >
adm GCS score — True

Logical Rule 2: NIHSS score comparision ...

¥ Clinical Fact Templatization ,®

Fact 1: adm GCS score is _Fact 2: adm NIHSS score is
Fact 3: dis GCS score is _ Fact 4: dis NIHSS score is

Rule Decomposition D-E

Templated Clincal Facts: [...]

Human Review Logical Rules:[NL: ... SY: ...]

ol

Clinical Fact Verification:

Fact I: adm GCS score is _

- Evidence: The total GCS (Glasgow Coma Scale) score is 13. - Result: adm
GCS score is 13.  Fact 2: adm NIHSS score is none.

Fact 3: dis GCS score is _

- Evidence: The GCS score is 15. - Result: dis GCS score is 15. Fact 4: dis
NIHSS score is none.

Inferential Rule Reasoning:

For Rule 1 (GCS Score Comparison Rule)

NL rule application: we compare Fact 3 (15 points) with Fact 1 (13 points).
Since 15 is larger than 13, Rule 1 is True. SY rule application: Fact 3 >
Factl, True.

For Rule 2 (NIHSS Score Comparison Rule)

NL rule application: we cannot evaluate this rule because both Fact 2 and Fact
4 are False (no NIHSS scores provided). SY rule application: not sure, False
Overall Result:

Since Rule 1 is True, we conclude that the patient's GCS score at discharge is
equal to or better than at admission.

Answer: True.

Figure 4: An example overview of our method. On the left is the process of Rule Representation Enhancement,
where human experts verify each result. On the right is an example illustrating the CF-IR method.

the automatic performance of rule representation
enhancement.

4.1 Rule Representation Enhancement

* Step 1: Knowledge Enhancement. We lever-
age GPT-4o to recall relevant information in-
stead of collecting additional medical books
and guidelines. It aims to resolve rule ambigu-
ities arising from the lack of knowledge. For
example, the high and low scores of GCS and
NIHSS have different meanings, and splitting
the rules based solely on semantic information
could result in incorrect logical rules.

* Step 2: Rule Decomposition. We use GPT-
40 to break down complex rules into simpler
logical rules in both natural and symbolic lan-
guage. Symbolic language streamlines natural
language by converting it into variables, com-
bined with mathematical and logical symbols
to build logical expressions.

* Step 3: Clinical Fact Templatization. GPT-
4o further extracts the clinical facts involved
in the logical rules, which are independent.
Each clinical fact with a supposed answer set,
such as True/False, numerical value unit, etc.

In the end, we enlisted human experts to review the
enhanced rules for the 76 indicators.

4.2 Clinical Fact-based Inferential Rule
Reasoning

Motivated by Jin et al. (2024), the model performs
two steps during inference: Clinical Fact Veri-
fication and Inferential Rule Reasoning. LLM
first extracts and verifies the related information
using the templated clinical fact. Then, LLM rea-
soning on the verified clinical facts with explicit
logical rules. We believe that disentangling these
two distinct abilities improves performance during
the inference process and enhances interpretability.
Here are some discussions about the two abilities,
and we explore deeply in Section 6.3.

(1) Clinical Fact Verification. Before engaging
in clinical reasoning, it is crucial to obtain accurate
clinical information(Wang et al., 2024a). However,
extracting clinical facts and verifying them through
reasoning in a long context with noises of over
380.41 tokens is quite challenging. This includes
identifying synonyms, linking symptoms to facts
(e.g., high GCS indicates better consciousness),
understanding medications (e.g., dual antiplatelet
therapy), and analyzing surgical indications, all re-
quiring medical knowledge and clinical reasoning.

(2) Inferential Rule Reasoning. Reasoning can
be categorized in multiple ways (Yu et al., 2024).
In this study, we specifically define ’Inferential
Rule Reasoning’ as the capability to deduce a final
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Zero-Shot One-Shot
Standard CoT CF-IR | ACF-IR CoT CF-IR
MiniCPM3-4B (Hu et al., 2024) 63.31 72.10  68.91 78.98 83.56  82.67
Internlm?2.5-1.8B (Cai et al., 2024) 56.17 56.18 54.14 65.85 6891 64.07
Internlm?2.5-7B (Cai et al., 2024) 63.31 73.12  79.49 77.07 84.07 84.45
Internlm?2.5-20B (Cai et al., 2024) 69.04 77.57  80.63 83.06 86.36  88.78
Qwen2.5-0.5B (Yang et al., 2024a) 54.26 56.05 53.88 52.86 61.01 53.63
~ Qwen2.5-1.5B (Yang et al., 2024a) 66.11 6343 6242 60.50 7121 73.24
?g Qwen2.5-3B (Yang et al., 2024a) 60.38 73.37 67.64 79.361  77.83  82.03
8 Qwen2.5-7B (Yang et al., 2024a) 66.49 82.80 8292 85.73t+ 8522 89.93
Qwen2.5-14B (Yang et al., 2024a) 78.98 82.03 86.11 84.96 87.89 91.59
Qwen2.5-32B (Yang et al., 2024a) 75.54 86.49  87.21 92.351 89.80 94.77
Qwen2.5-72B (Yang et al., 2024a) 87.77 87.51 92.73 91.33t 9095 95.54
Ilama3.1-8B (Dubey et al., 2024) 48.53 63.05 78.34 73.88 81.52 85.85
Ilama3.1-70B (Dubey et al., 2024) 82.54 85.85 8547 84.45 88.53 91.84
GPT-40 (Achiam et al., 2023) 77.45 8891 91.84 90.57 91.59 93.88
HuatuoGPT2-7B (Chen et al., 2024) 54.01 5426  49.55 48.66 53,50 56.81
— HuatuoGPT2-14B (Chen et al., 2024) 53.63 55.28 46.36 37.19 52.10 43.31
._“5’ Apollo2-0.5B (Zheng et al., 2025) 39.55 41.96 41.14 57191 5439  65.47
g Apollo2-1.5B (Zheng et al., 2025) 53.31 52.03 50.82 52.61 66.11 65.22
Apollo2-7B (Zheng et al., 2025) 57.57 60.00 61.91 48.91 71.71  65.35
Apollo-72B (Wang et al., 2024c) 68.91 7624  72.61 80.63 86.11 86.36
Average 63.84 69.41 69.71 71.31 76.62  77.73

Human 95.00

Table 2: Aggregated performance (micro-average accuracy) across all indicators on CMQCIC-Bench, using general

and medical LLMs. Bold denotes the best performance. Underline denotes the second performance.

Green

denotes the best performance in certain LLM. { denotes ACF-IR outperforms the CoT.

conclusion by applying logical rules to multiple
clinical facts. Specifically, for each templated clini-
cal fact, the LLM first performs targeted informa-
tion extraction and verification. Subsequently, it
applies explicit logical rules to conduct structured
reasoning based on the verified clinical facts.

5 Experiments

We now describe the experimental setup, empiri-
cally evaluate CF-IR, and compare it with existing
methods using the CMQCIC-Bench dataset.

5.1 Settings

Here are the details of the models, methods, and
evaluation metrics.

Models. We select a representative set of 14
general large language models including GPT-
4> (Achiam et al., 2023), Qwen2.5 series (Yang
et al., 2024a), Internlm?2.5 series (Cai et al., 2024),
Llama3.1 series (Dubey et al., 2024), MiniCPM3-
4B (Hu et al., 2024), as well as 6 medical large lan-
guage models, comprising the Apollo series (Zheng
et al., 2025; Wang et al., 2024c), and HuatuoGPT2
series (Chen et al., 2024). We omit the "chat" and

S opt-40-2024-08-06

"instruct" in Table 2.

Methods. We assess six prompt-based method-
ologies: (1) Standard Prompt, utilizing solely the
original rules and patient notes; (2) Zero-Shot
CoT (Kojima et al., 2022), enhanced with the di-
rective "Let’s think step by step”; (3) For CF-IR
prompt, we leverage human-reviewd fact templates
and logical rules to derive the answer; (4) Specif-
ically, we examine the One-shot CoT (Wei et al.,
2022); (5) To explore the ability of LLM for rule
representation enhancement, we introduce ACF-
IR, an automated framework that enables LLMs
to decompose rules and then conduct CF-IR; (6)
Additonally, we set One-Shot CF-IR.

For each indicator, we selected an example out-
side of CMQCIC-Bench. The outputs for these
examples were generated by GPT-4o in a zero-shot
setting and were carefully reviewed and annotated
by human evaluators.

Evaluation. Following prior works (Servantez
et al., 2024b; Yang et al., 2024c), the final an-
swer for each instance was labeled as ’True/Yes’
or ’False/No’, enabling us to use accuracy as the
outcome evaluation metric. To evaluate step-wise
reasoning, we compared responses against ground
truth using DeepSeek (Liu et al., 2023), assessing
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Type Question Patient Note

Error of LLMs

A Can the screening for anxiety and
depression symptoms be consid-
ered complete based on the medical
records of hospitalized Parkinson’s
disease patients?

, the PDSS-2 score dropped
from 10 to 2,[...].

On the initial visit and the
34th day after treatment, the
patient’s H-Y stage decreased
from stage 3 to 2.5,

Based on the provided electronic medical
record information, there are no clear men-
tions of specific results for anxiety and
depression symptom screenings. There-
fore, we are unable to determine the values
for the following facts: Anxiety symptom
screening = Not sure Depression symptom
screening = Not sure.

B Please assess if the patient’s
coronary intervention meets post-
operative success criteria: resid-
ual stenosis <20% after stenting
or <50% after PTCA, with a TIMI
grade of 3.

Treatment Process: [...] Post-
stent implantation, there was

Based on the provided instructions and
medical records, [...] After stent im-
plantation, there was no significant resid-
ual stenosis in the patient’s left coronary
artery LAD. Therefore, the answer is "Yes"

Table 3: Examples of two main error types.

two dimensions: Fact Faithfulness (relevance to
the original text) and Fact Correctness (accuracy
of the fact result). Scores range from 0 (irrele-
vant/incorrect) to 1 (fully relevant/correct). We
utilized DeepSeek © to extract facts from gold ex-
planations and score model responses accordingly.
Scores were averaged per instance to accommodate
varying fact counts, resulting in an overall average
score. Below is a formal definition of the metrics:

FC, — > Judge(factj,7“)7 O

m

" Judge(fact;,r

m
where Judge(-) represents the LLMs, outputting 0
or 1. The m denotes the number of facts in the i-th
instance. The fact; denotes the j-th fact of the i-th
instance. Human evaluation, we designed regex
to extract key information, subsequently assessed
by experts.

Implement Details. We conduct all experiments
on H800 and use VLLM 7 to accelerate for general
LLMs. Specifically, we load the medical LLMs
directly. Additionally, we set the max_new_tokens
= 1024; repetition_penalty = 1.2; temperature =
0.001. The experiments were run three times with
random seeds, and the scores were averaged.

5.2 Main Results

Table 2 presents our evaluation results of various
LLMs on the CMQCIC-Bench dataset.

(1) Current leading general LLMs perform
better than medical LLMs. Qwen2.5-32B/72B-
Instruct, and GPT-40 score similarly at 94.77,

Shttps://www.deepseek.com/
"https://github.com/vllm-project/vlim

, incorrect rationale, and is colored.

95.54, and 93.88, respectively, while medical
LLMs lag, with Apollo-72b scoring only 86.36.
Only Qwen2.5-72B-Instruct nears human perfor-
mance, highlighting the ongoing challenge of the
MQCIC task for current methods and LLMs.

(2) CF-IR methods perform better than CoT
across different parameters and models. In zero-
shot and one-shot settings, the average score of
CF-IR improves by 0.43% and 1.45%, respectively,
compared to CoT. Unlike the CoT method, which
performs reasoning along random paths, our ap-
proach integrates explicit logical rules with verifi-
able facts, enhancing the stability and interpretabil-
ity of LLMs. While CF-IR demonstrated strong
performance across various parameters in the one-
shot setting, we observed that in the zero-shot sce-
nario, CF-IR outperformed CoT only on general
models with parameters > 7B. We will analyze our
improvement in Section 6.

(3) One-Shot setting can bring significant im-
provements. In general, after providing the exam-
ples, CoT and CF-IR achieved improvements of
10.38% and 11.50%, respectively, the performance
of all models showed significant improvements in
the one-shot setting for both the CoT and CF-IR
methods except HuatuoGPT2. This may stem from
HuatuoGPT’s fine-tuning data being predominantly
centered around QA tasks (Chen et al., 2024), with-
out incorporating clinical scenarios, and weak in
instruction-following.

(4) Automated rule representation enhance-
ment remains challenging. While CF-IR achieves
strong performance (77.73) with enhanced rule rep-
resentation, ACF-IR’s automated approach scores
lower (71.31), underperforming CoT. Notably, only
Apollo2-0.5B and specific Qwen?2.5 variants (3B,
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Zero-Shot One-Shot
Error Type | CoT CF-IR | CoT CF-IR
clinical fact | 0.19 023 | 0.17) 0.17]
reasoning | 0.11  0.07 | 0.07) 0.05)
other 0.00 0.01 | 0.00- 0.00)
Total 0.31 030 | 0.23] 0.22]

Table 4: Error type distribution of LLMs on CMQCIC-
Bench. Arrows represent the changes from zero-shot to
one-shot. We averaged all the models’ performances.

7B, 32B, 72B) surpass CoT in one-shot settings, re-
vealing the limitations of intrinsic model planning
capabilities (Servantez et al., 2024b; Yang et al.,
2024b). A promising direction involves leveraging
advanced open-source models (e.g., GPT-40) or
specialized plan training (Wu et al., 2024) for rule
decomposition, complemented by medical models
for inference.

6 Empirical Analysis and Discussion

In this section, we analyze errors and evaluate step-
wise reasoning, further exploring clinical fact veri-
fication and inferential rule reasoning capabilities.

6.1 Error Analysis

Firstly, we categorize errors into three types: Type
A, B and C, representing errors in clinical fact veri-
fication, inferential rule reasoning, and other types,
respectively. We display the example of two main
error types in CMQCIC-Bench in Table 3.

Building on prior work (Khandekar et al., 2025),
we employ DeepSeek to classify error types by
comparing LLM outputs with ground truth in
CMQCIC-Bench, facilitating a granular error anal-
ysis across LLMs. Since incorrect clinical facts can
propagate and affect inferential rule reasoning, we
focus on identifying the earliest error type. A man-
ual review of 200 randomly sampled DeepSeek-
annotated errors confirmed an 87% accuracy, val-
idating our approach for analyzing error types in
all CF-IR responses. As shown in Table 4, provid-
ing demonstrations reduces Type A and B errors,
highlighting the value of exemplars. While CF-IR
does not mitigate clinical fact verification errors, it
significantly improves reasoning accuracy due to
its structured logical framework. Further details
are available in Appendix E.1 (Tables 11 and 12).

Models Methods FC FF
zero-shot CoT  68.09 68.07
zero-shot CF-IR 76.34 76.83
one-shot CoT  69.26 69.92
one-shot CF-IR  90.45 86.20
zero-shot CoT  66.63 66.42
zero-shot CF-IR 72.86 71.53
one-shot CoT  69.73 70.44
one-shot CF-IR 84.61 76.78
zero-shot CoT  68.25 66.44
zero-shot CF-IR 70.87 65.14
one-shot CoT  71.32 69.41
one-shot CF-IR 83.48 78.22
zero-shot CoT  67.31 63.36
zero-shot CF-IR 67.03 65.76
one-shot CoT  66.60 66.45
one-shot CF-IR  77.97 71.88
zero-shot CoT  65.24 62.49
zero-shot CF-IR 71.70 65.23
one-shot CoT 69.41 68.59
one-shot CF-IR 83.15 77.50
zero-shot CoT 57.02 57.52
llama3.1-8b zero-shot CF-IR 64.89 61.25
: one-shot CoT  68.13 65.61
one-shot CF-IR 78.40 70.38
Average 72.03 69.22

ACC
87.51
92.73
90.95
95.54
86.49
87.21
89.80
94.77
82.03
86.11
87.89
91.59
82.80
82.92
85.22
89.93
85.85
85.47
88.53
91.84
63.05
78.34
81.52
85.85
86.41

Qwen2.5-72b

Qwen2.5-32b

Qwen2.5-14b

Qwen2.5-7b

Ilama3.1-70b

Table 5: Comparison of step-wise and outcome evalu-
ation. FC denotes Fact Correctness. FF denotes Fact
Faithfulness. The results of ACC sourced from Table 2.

6.2 Evaluation on Step-Wise Reasoning

As shown in Table 5, the step-aware evaluation
metrics decreased by 14.38 and 17.19 points, re-
spectively, compared to the outcome evaluation
results. This suggests that the model often makes
clinical fact verification errors during the reasoning
process, even when the final result is correct.

6.3 Analysis on Clinical Fact Verification and
Inferential Rule Abilities

While the CF-IR method enhances inference per-
formance, we further investigate its two core capa-
bilities: Clinical Fact Verification and Inferential
Rule Reasoning. For Clinical Fact Verification,
we define the input as <Patient Note, Templated
Clinical Fact, Question> and the output as <Rea-
soning, Final Answer>, evaluated using Fact Faith-
fulness and Fact Correctness. Unlike step-wise
reasoning, we test each fact independently to avoid
contextual interference. For Inferential Rule Rea-
soning, providing verified facts as input to mini-
mize errors, the input is <Verified Clinical Facts,
Logical Rules>, and the output is <Explanation, Fi-
nal Answer>, evaluated using labels like *True/Yes’
or ’False/No’ for both natural (NL) and symbolic
(SY) languages. All experiments are conducted in
a zero-shot setting. Additional results are available

615



Performance vs Parameter Size

Qwen - Faithfulness (Solid Line)
Qwen - Correctness (Solid Line)
Apollo - Faithfulness (Dashed Line)
Apollo - Correctness (Dashed Line)

>t

Performance
N
o

1 10 100
Parameter Size (Log Scale)

Performance vs Parameter Size

801

o
=}

Accuracy

S
o

Qwen - NL (Solid Line)
Qwen - SY (Solid Line)
Qwen - Best (Solid Line)
Apollo - NL (Dashed Line)
Apollo - SY (Dashed Line)
Apollo - Best (Dashed Line)

20

*
*
*
A
A

1 10 100
Parameter Size (Log Scale)

Figure 5: Clinical fact verification and inferential
rule reasoning abilities of Qwen and Apollo series on
CMQCIC-Bench. NL denotes natural language; SY de-
notes symbolic language.

in Table 13 in Appendix E.2.

As shown in Figures 5, we find that: (1) Both
Qwen and Apollo exhibit performance-scale cor-
relations across capabilities. (2) Fact verification
performance significantly declines, consistent with
Table 5. (3) For inferential reasoning, Qwen per-
forms comparably in natural and symbolic settings,
while Apollo shows stronger natural language ro-
bustness. (4) With correct facts, Qwen surpasses
previous best results (standard, CoT, CF-IR) in
zero-shot settings, whereas Apollo underperforms,
likely due to Qwen’s extensive logical reasoning
training. See Appendix E.2 for additional results.

6.4 Benefit of fine-tuning

We fine-tuned the Qwen2.5-3B-Instruct model us-
ing LoRA (Hu et al., 2021) for 3 epochs on the
CMQCIC-Bench, with evaluation on CMQCIC-
Private. The data format follows ACF-IR: Input:
<Instruction, Patient Note, Rule>; Output: <Knowl-
edge, Templated Clinical Facts, Logical Rules,
Clinical Fact Verification, Inferential Rule Reason-

Performance Comparison
m Qwen2.5-7B M After-traning (Qwen2.5-3B) 71.7

Qwen2.5-3B

704 69.4
67.8

65

60.2

58.0 58.0

Accuracy

48.7

45

Standard Zero-Shot Cot Zero-Shot ACF-IR Zero-Shot CF-IR

Figure 6: Analysis of fine-tuning benefit. Performance
of three models on the CMQCIC-Private dataset.

ing, Final Answer>. As depicted in Figure 6, the
fine-tuned 3B model achieves comparable or su-
perior performance to the 7B model in real-world
scenarios. In zero-shot settings, it demonstrates
significant improvements across all methods, with
gains of 6.7, 8.3, 14.3, and 13.7, confirming the fea-
sibility of distillation rule enhancement for smaller
models. More details are provided in Appendix B.

7 Related Work
7.1 Rule-based LLM reasoning

While reasoning demonstrated a fundamental ca-
pability of LLLM on applications (Li et al., 2024),
there are many research such as CoT (Wei et al.,
2022), CoT-sc (Wang et al., 2023b), ToT (Yao et al.,
2024), etc. However, there are more attention on
rule-enhanced methods (Yang et al., 2023b; Sun
et al., 2023; Mu et al., 2023). Reasoning based
on facts and deriving answers from logical rules is
referred to as inferential rule following ability (Sun
et al., 2024). Leveraging such ability that integrat-
ing explicit rules with LLMs has gained significant
attention. For instance, Servantez et al. (2024b)
utilized the IRAC framework to tackle legal tasks
with LLMs, emphasizing the application of legal
rules. Additionally, Wang et al. (2024b) proposed
a neurosymbolic framework for multi-step rule ap-
plication. Despite the current limitations of LLMs
in rule-based reasoning (Yang et al., 2024c), our
work demonstrates that such rule-based reasoning
outperforms CoT reasoning in the MQCIC task.

7.2 LLM Evaluations in Clinical Scenarios

While LLMs have shown impressive capabilities
in medical knowledge recall and reading compre-
hension on medical exams (Nori et al., 2023; Sub-
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ramanian et al., 2024), their effectiveness in real-
world clinical applications remains a critical area of
evaluation. For example, Ouyang et al. (2024) as-
sesses LLMs across 14 expert-curated clinical sce-
narios, including diagnosis, discharge summaries,
and medical consultations. Similarly, Khandekar
et al. (2025) introduces MedCal-Bench, a bench-
mark designed to evaluate inferential rule reasoning
in medical contexts, while Hou et al. (2024) simu-
lates a multi-step diagnostic process to test clinical
reasoning capabilities. Furthermore, Munnangi
et al. (2024); Chung et al. (2025) explore LLMs’
abilities in clinical fact decomposition and verifica-
tion. In this work, we focus on evaluating LLMs in
the MQCIC task, with a specific emphasis on their
performance in clinical fact verification and infer-
ential rule reasoning, providing a detailed analysis
of these two critical abilities.

8 Conclusion

In this work, we present MQCIC, a novel task, and
CMQCIC-Bench, an open-source dataset derived
from Chinese EMRs. We propose a semi-automatic
approach to refine rule representation and introduce
CF-IR, a disentangled inference method. Experi-
mental results show that CF-IR surpasses CoT in
performance. Error analysis reveals enhanced ca-
pabilities in clinical fact verification and inferential
rule reasoning. Additionally, we evaluate step-wise
reasoning and conduct a detailed investigation of
the two abilities. Our work aims to advance the
application of LLLMs in MQCIC tasks and offers
deeper insights into these essential capabilities.

Limitations and Future Work

While we construct a CMQCIC-Bench dataset and
evaluate LLMs’ clinical fact verification and infer-
ential rule reasoning abilities, several limitations
can be improved. (1) Due to the difficulty of man-
ually verifying each sample, our dataset only con-
tains 785 instances. (2) We have only located a
comprehensive Chinese document on medical qual-
ity control indicators. As a result, our dataset con-
sists solely of Chinese EMRs, and we are also
leaning toward selecting Chinese LLMs for our
analysis. (3) While we observed a significant im-
provement in model performance with the one-shot
demonstration, benchmarking the model with few-
shot instances could have further enhanced accu-
racy, a scenario we did not test. (4) Although we
propose the CF-IR method, which performs well

across various LLMs with an enhanced rule repre-
sentation reviewed by humans, decomposing the
rules with a smaller LLM that lacks strong planning
capabilities remains a challenge.

Ethical Consideration

The medical cases are sourced from the iiyi website,
where doctors voluntarily contribute and share their
information. The data is explicitly authorized for
use in research and educational activities. To safe-
guard patient privacy, our dataset excludes any per-
sonally identifiable details, such as patient names,
hospital information, or other sensitive data. As
a result, there is no risk of privacy violations re-
lated to our dataset. Furthermore, all data usage
adheres to ethical guidelines and regulations gov-
erning medical information and research.
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A Models

¢ Qwen2.5-Instruct series. We choose the
{0.5, 1.5, 3,7, 14, 32, 72} sizes.

¢ Internlm2.5-Chat series. We choose the

{1.8,7, 20} sizes.

¢ Llama3.1-Instruct series. We choose the {8,
70} sizes.

» MiniCPM3-4B 8. It’s a lightweight Chinese
LLM.

* Apollo series We choose the Apollo2 {0.5,
1.5, 7} and Apollo 72. Apollo models trained
on Qwen and Qwen2 with a high quality med-
ical dataset.

* HuatuoGPT2 series We choose the Hu-
atuoGPT?2 {7, 14}. We strictly followed the
default load method of HuatuoGPT2-34B, but
the inference time was too long, and the fi-
nal results were not satisfactory. As a result,
we did not conduct further experiments on
HuatuoGPT2-34B.

B Training Details

As shown in Figure 5 and Table 6, Qwen2.5-7B-
Instruct is an excellent foundation model, con-
sidering both performance and time cost. How-
ever, for practical purposes, we prefer using a
more lightweight model. We trained the model
with LLaMA-Factory. ° We use the default
ds_z3_config and Lora fine-tuning. Detail pa-
rameters: per_device_train_batch_size: 3; gradi-
ent_accumulation_steps: 8; learning_rate: 1.0e-
5;num_train_epochs:4; Ir_scheduler_type: cosine;
warmup_ratio: 0.1; fpl6: true; ddp_timeout:
180000000.

C Discussion on Test-Time Scaling

While test-time scaling like (CoT-SC, ToT or O1,
R1) has attracted significant research attention,
practical deployment in clinical settings requires
careful consideration of GPU resource constraints,
as hospitals typically have limited computational
capacity. To address this, we quantitatively com-
pare the inference efficiency of our method against
CoT in Table 6, with measurements reported in
GPU-hours.

8https://huggingface.co/openbmb/MiniCPM3-4B
*https://github.com/hiyouga/LLaMA-Factory
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zero-shot one-shot
CoT CF-IR | CoT CF-IR
Qwen2.5-7B | 0.59 046] | 0.56 0.697
Qwen2.5-14B | 1.30 1.26] | 1.40 1.707
Qwen2.5-32B | 3.88 3.60] | 3.32 4.167
Qwen2.5-72B | 7.60 7.04] | 5.80 6.847

Table 6: Total Inference time of Qwen on CMQCIC-
Bench across different methods. The unit is an
hour-GPU. The arrow indicates the change in inference
time cost from CoT to CF-IR.

Models | CoT CF-IR
DeepSeek-V3 | 3h40min  3h29min]
DeepSeek-R1 | 10h10min  9h30min|

Table 7: Inference cost between DeepSeek-R1 and
DeepSeek-V3. Experiments in zero-shot setting.

Comparing inference times between chat and
reasoning models in Table 7, we observe that while
the reasoning model demonstrates better scalability,
the performance gains remain marginal in Table 8.
In the zero-shot setting, R1 did not demonstrate
significant improvement. In contrast, our CF-IR
framework outperformed the long cot method.

D Prompt

Here are the zero-shot prompt templates for the
data construction, rule representation enhance-
ment, clinical fact-based inferential rule reasoning
method, and other prompt-based methods we used
in this paper.

For each indicator rule question, we provide a
list of facts that should be extracted. The prompt
for clinical fact extraction is shown in Figure 7.
The main fields are in the Table 9 and Table 10.

Prompt for Rule Enhancement. As mentioned

Standard CoT CF-IR

Qwen2.5-7B 66.49 82.80 82.92
Qwen2.5-14B 78.79 86.49 87.21
Qwen2.5-32B 75.54  82.03 86.11
Qwen2.5-72B 87.77 87.51 92.73
llama3.1-70B 82.54 8585 8547
GPT-40 77.45 88.91 91.84
DeepSeek-V3 82.67 86.83 91.84
DeepSeek-R1 81.01 82.99 92.73

Table 8: Performance on test-time scaling.


https://huggingface.co/openbmb/MiniCPM3-4B
https://github.com/hiyouga/LLaMA-Factory

Fileds Name

Explanation

definition The definition of the indicator
formula The calculation formula of the indicator
significance The medical impact of indicator
other The relative knowledge or supplement
instruction_standard The standard prompt for MQCIC with the rule
numerator The numerator of indicator
denominator The denominator of indicator
rule The numerator rule of indicator
facts The templated clinical facts list
logical_rules The logical rules lists. Containing natural and symbolic languages.

Table 9: Main fields explanation of indicator file.

Fileds Name | Explanation
unique_id The unique id of the indicator
patient note The patient note of the instance
explaination The explanation of the answer
label The label of the answer
facts The list that contains all templated clinical facts with the related original text and answer
logic The list that contains logical rules with the answer

Table 10: Main fields explanation of data file.

Instuction: You are a medical expert. Please extract the {fact}
based on the provided electronic medical record. You should
determine the value of the fact from the electronic medical
record without making any assumptions. Please provide
specific evidence of the fact from the original text. If there is
no evidence, consider it unable to be determined.

Input: Patient Note

Output: Clinical facts and evidence

Figure 7: The clinical fact extraction prompt.

Instuction: You are a expert with medical knowledge. Please
generate the medical knowledge realted to indicator.

Input: {Indicator Definition}

Output: Relative knowledge

Figure 8: The Prompt Template of Knowledge Enhance-
ment.

in Section 4, we leverage LLMs to transform rules
through three steps: Knowledge Enhancement,
Rule Decomposition, and Clinical Fact Templaza-
tion. As shown in Figure 8, 9 and 10, we leverage
GPT-4o first to generate the relative knowledge,
logical rules, and templated clinical facts separately.
Prompt for Different Methods. The detail prompt
of different method as shown in Figure 11, Fig-
ure 12 and Figure 13.

Instuction: You are a expert with medical knowledge. Please
think step by step. Based on the relative knowledge, break
down the {Rule} into sub-ogical rules, which include both
natural language and symbolic language components.

Input: {Rule ; Relative Knowledge}

Output: Sub-logical rules

Figure 9: The Prompt Template of Rule Decomposition.

Instuction: You are a expert with medical knowledge. Please
extract all clinical facts that need to be verified from the
logical rules. Each clinical fact should be independent of the
others, with possible values including Yes/No, numerical
values, or characters.

Input: {Logical Rules}

Output: Clinical facts with assumed values

Figure 10: The Prompt of Templated Clinical Fact.

E Additional Analysis Details

E.1 Error Analysis Details

As shown in Table 11 and Table 12 we observed:
(1) Although the one-shot method reduces errors
across both types in both approaches, the CoT
method still results in more Type B errors, which
may be due to the differing reasoning paths in the
examples. (2) The CF-IR method effectively re-
duces Type B errors, but when it comes to Type
A errors, the issue seems to be more related to the
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Zero-Shot Standard:

English Version

###Instruction: This is an indicator calculation task. You need to evaluate the {patient note} based on the given {rules}. You should provide
relevant information from the record as an explanation. Finally, ##foutput: True/False/Not Sure. \n###Input: {patient note} {rules}
Chinese Version

#HInstreution: IXE—MEIRTEES, (REERIBATEHY (MIN ) SKIT (BT BHTHER, (REELLHRHEPIEXRAEEENERE.
ERgiiite: True/False/Not Sure.\n###8IN : {EEF9wH ) (FAMY

Zero-Shot CoT:

English Version

#it#nstruction: This is an indicator calculation task. You need to evaluate the {patient note} based on the given {rules}. You should provide
relevant information from the record as an explanation. Let’s think setp by step! Finally, ###output: True/False/Not Sure. \n###Input:{patient note}
{rules}

Chinese Version

##Instreution: IXE—MEIRTEES, (REEIRIBAEN FIN} XS (FBRTEH TR, (REEAHERSPEXNEEEAMERE,
BIr—SEE%E, HHERNKIEIEEDRE, SEME: True/False/Not Sure. \n#HaN . {EBF7M} (I}

Figure 11: The prompt template of standard and cot methods in translated English and Chinese version.

model’s intrinsic capabilities, which our method
has not been able to enhance or activate effectively.

E.2 Clinical Fact Verification and Inferential
Rule

It may be due to the excessively strict scoring crite-
ria that the overall score for clinical fact verification
ability is relatively low, but the trend still aligns
with expectations. As mentioned in Section 6.3,
there is a clear correlation between the model pa-
rameters and capabilities in the Apollo and Qwen
series. As shown in Table 13, however, models like
llama3.1 and HuatuoGPT?2, due to differences in
the number of parameters, fail to demonstrate this
relationship.
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Zero-shot CoT One-shot CoT

Type A TypeB TypeC Total | Type A TypeB TypeC Total

MiniCPM3-4B 0.21 0.08 0.00 0.28 0.13} 0.03] 0.00- 0.16
Internlm?2.5-1.8B 0.35 0.08 0.00 0.44 0.23] 0.08- 0.00- 0.31
Internlm?2.5-7B 0.15 0.12 0.00 0.27 0.13} 0.03] 0.00- 0.16
Internlm?2.5-20B 0.17 0.05 0.00 0.22 0.11) 0.03] 0.00- 0.14
Qwen2.5-0.5B 0.34 0.10 0.00 0.44 0.290 0.10- 0.00- 0.39

— Qwen2.5-1.5B 0.21 0.16 0.00 0.37 0.241 0.05] 0.00- 0.29
E Qwen2.5-3B 0.16 0.11 0.00 0.27 0.15) 0.07] 0.00- 0.22
8 Qwen2.5-7B 0.13 0.04 0.00 0.17 0.12] 0.03] 0.00- 0.15
Qwen2.5-14B 0.10 0.08 0.00 0.18 0.08] 0.04] 0.00- 0.12
Qwen2.5-32B 0.09 0.05 0.00 0.14 0.06J 0.04] 0.00- 0.10
Qwen2.5-72B 0.09 0.03 0.00 0.12 0.07) 0.02) 0.00- 0.09
Ilama3.1-8B 0.23 0.14 0.00 0.37 0.14] 0.04] 0.00- 0.18
llama3.1-70B 0.10 0.04 0.00 0.14 0.08] 0.03] 0.00- 0.11
GPT-40 0.08 0.03 0.00 0.11 0.06] 0.02] 0.00- 0.08
HuatuoGPT2-7B 0.17 0.28 0.00 0.46 0.237 0.23] 0.027 0.47

— HuatuoGPT2-14B 0.32 0.13 0.01 0.45 0.28] 0.187 0.01- 0.48
._‘5) Apollo2-0.5B 0.34 0.19 0.04 0.58 0.30) 0.15] 0.02] 0.46
é) Apollo2-1.5B 0.23 0.25 0.00 0.48 0.277 0.07] 0.00- 0.34
Apollo2-7B 0.17 0.23 0.00 0.40 0.241 0.04] 0.00- 0.28
Apollo-72B 0.14 0.10 0.00 0.24 0.11) 0.03] 0.00- 0.14

Table 11: Error type distribution of LLMs on CMQCIC-Bench dataset. Arrows represent the changes from zero-shot
to one-shot.

Zero-shot CF-IR One-shot CF-IR

Type A TypeB TypeC Total | Type A TypeB TypeC Total

MiniCPM3-4B 0.27 0.04 0.00 0.31 0.11} 0.067 0.00- 0.17
Internlm?2.5-1.8B 0.39 0.07 0.00 0.46 0.27] 0.101 0.00- 0.36
Internlm2.5-7B 0.18 0.03 0.00 0.21 0.134 0.024 0.00- 0.16
Internlm2.5-20B 0.15 0.04 0.00 0.19 0.10} 0.01} 0.00- 0.11
Qwen2.5-0.5B 0.28 0.18 0.00 0.46 0.28- 0.18- 0.017 046

~ Qwen2.5-1.5B 0.36 0.02 0.00 0.38 0.254 0.02- 0.00- 0.27
E Qwen2.5-3B 0.31 0.01 0.00 0.32 0.164 0.021 0.00- 0.18
8 Qwen2.5-7B 0.14 0.03 0.00 0.17 0.08] 0.01} 0.00- 0.10
Qwen2.5-14B 0.12 0.01 0.00 0.13 0.074 0.01- 0.00- 0.08
Qwen2.5-32B 0.12 0.02 0.00 0.14 0.054 0.00 0.00- 0.05
Qwen2.5-72B 0.06 0.01 0.00 0.07 0.03} 0.01- 0.00- 0.04
llama3.1-8B 0.20 0.02 0.00 0.22 0.12] 0.014 0.00- 0.14
llama3.1-70B 0.12 0.03 0.00 0.15 0.07) 0.00 0.00- 0.08
GPT-40 0.07 0.01 0.01 0.08 0.05) 0.01- 0.007  0.06
HuatuoGPT2-7B 0.33 0.16 0.01 0.50 0.31}) 0.11} 0.021 043

— HuatuoGPT2-14B 0.43 0.09 0.02 0.54 0.461 0.084 0.041  0.57
.5 Apollo2-0.5B 0.32 0.15 0.12 0.59 0.27) 0.07} 0.01) 035
ﬁ Apollo2-1.5B 0.30 0.17 0.01 0.49 0.264 0.084 0.01- 0.35
Apollo2-7B 0.29 0.10 0.00 0.38 0.14] 0.211 0.01- 0.35
Apollo-72B 0.26 0.01 0.00 0.27 0.114 0.031 0.00- 0.14

Table 12: Error type distribution of LLMs on CMQCIC-Bench dataset. Arrows represent the changes from zero-shot
to one-shot.
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Zero-Shot ACF-IR:

English Version

##Instruction: This is an indicator calculation task. You need to evaluate the {patient note} based on the given {rules}.

Step 1 Knowledge Enhancement: Please generate relevant medical knowledge based on the indicator rules and descriptions.

Step 2 Rule Decomposition: Please decompose the indicator rules, descriptions, and medical knowledge into sub-rules.

Step 3 Clinical Facts Templation: From the sub-rules, extract the facts that need to be evaluated.

Step 4 Logical Expression Generation: I would like you to generate Logical Rules (logical expressions) to integrate the Rules and Facts. Here,
Rules are the further refinement of the indicator requirements, and Facts are the specific elements that need to be evaluated within each Rule. The
value of Facts can be a True/False evaluation, or a specific value, such as negative/positive results, etc. Logical Rules perform logical operations
based on the results of the Facts to produce the final judgment result. Each Logical Rule consists of a natural language expression and a
corresponding symbolic language expression.

Step 5 Clinical Fact Verification: Please evaluate the value of the Facts based on the electronic medical records and provide the specific
representation of each fact in the original text. If it is not present, it should be considered as "Not Sure."

Step 6 Inferential Rule Reasoning: Based on each Logical Rule, perform logical reasoning to reach the final result.

Final Output: True/False/Not Sure.

Input: {patient note} {rules}

Chinese Version

Instreution: IXE—MEIRITEES, RESIRIBLAER (IR} KXY (BB T | 1T HIRR.

\n###Step] KNRIGR: B RIRIBISRRNFNR BB AR EFFNR,

\n###Step2 MRS : IBIRIEIRISIAAN. RBBFIEZAIRRS /I F Rules,

\n###Step3 M FrulessPIHENEE BT facts,

\n##HStep4 IBEERIAAERL: FRABLEIRERM Logical Rules (BIEFRIAR) , RXJRulesFlfactsZ [EFHTES. HF, RulesEXIIBIFERD

H—LHME; FactsME2E— M RulesHHhBFBEAFIMHINS, EEATLUATrue/FalsefIlT, tBRILARBERIIEESIEM/ RS,

I%)\%écal RulesM2EFFactstIERIFTIBEIZE, FHERRENFIIER, B Logical RulesE & BABSRAI— M NNNNHFSIES
§ 4N

\n###Step5 BBECFINT: IBIRIRIBER FRAFIRTFactshIE, HELSHEARNacfEFXPIMAILNRIZE, INSTIEFIRT.

\n###Step6 IBIEHEE . BT MLogical RulestEIRERIRARER,

\n##HERfGE . True/False/Not Sure.

\n#HEN . {EBTFIRIT (R}

Figure 12: The prompt template of ACF-IR method in translated English version and Chinese version.

Zero-Shot CF-IR:

English Version

###nstruction: This is an indicator calculation task. You need to evaluate the {patient note} based on the given {templated clinical facts} and
{logical rules}.

Step 1 Clinical Fact Verification: Please evaluate the value of the Facts based on the electronic medical records. Do not make any assumptions,
and provide the specific representation of each fact in the original text. If it is not present, consider it "Not Sure."

Step 2 Inferential Rule Reasoning: Based on each Logical Rule, perform reasoning to derive the final result. Here, Rules are further refinements
of the indicator requirements, and Facts are the elements within each Rule that need to be evaluated. The value of Facts can be a True/False
judgment, or a specific value, such as negative/positive results, etc. Logical Rules perform logical operations based on the results of the Facts to
generate the final judgment. Each Logical Rule consists of a natural language expression and a corresponding symbolic language expression.
Final Output: True/False/Not Sure.

Input:{patient note} {templated clinical facts} {logical rules}

Chinese Version

Instreution: XB—MEIRTEAESS, (REEARIBLEEN FIN ) Sexd {FB 70 1 THIRT.

\;ﬁ;#swpl EHINT: BRIERE PR F IR FactshYE, A2MUTERIE, FREBEARNacfEFX PRI, NREE, INAETE
Sl

\n###Step2 IBIEIEIR . ETEMogical RulesiEIRSRIRALER. HA, RulesEXHEREBERAIHE—SHL; FactslZEE—RulesZ4
BELFITINE, FUEPTLLN True FalsehSINT, PTLURRARAOB IR IS . Logical Rules T Facis G RIHTIBIEE
8, HEIREHFIRIER, B/ Logical RulesE@&BAESRAMI— NN SIESRA.

\n###Step3 Bfgtfit: True/False/Not Sure.

SN . (BB} (REIRICERSE ) (BRI}

Figure 13: The prompt template of CF-IR method in translated English and Chinese version.
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Clinical Fact Verification | Inferential Rule Reasoning | One-Stage

Faithfulness Correctness | NL(ACC) SY(ACO) Best(ACC)
MiniCPM3-4B 45.14 36.05 67.38 69.68 72.10%
Qwen2.5-0.5B 45.37 40.1 74.90 75.92 56.05%
Qwen2.5-1.5B 46.45 43.67 75.66 74.64 66.11*
= Qwen2.5-3B 52.08 50.02 83.69 81.18 76.05%
§ Qwen2.5-7B 67.63 53.13 90.44 88.91 82.92%
3 Qwen2.5-14B 67.94 62.35 92.35 94.52 87.21*
Qwen2.5-32B 75.41 69.47 89.80 94.14 86.11*
Qwen2.5-72B 74.07 77.13 93.63 93.88 92.73%
llama3.1-8B 47.89 37.88 82.67 80.89 78.34%
llama3.1-70B 48.59 40.48 85.60 85.98 85.47*
HuatuoGPT2-7B 13.27 22.93 47.89 44.20 54.26%*
= HuatuoGPT2-14B 32.55 35.47 62.42 62.03 55.28*
._‘5) Apollo2-0.5B 5.19 10.73 9.80 18.47 49.29%*
é’ Apollo2-1.5B 25.31 29.21 48.53 52.86 55.03%*
Apollo2-7B 33.78 33.93 56.30 42.29 61.91*
Apollo-72B 42.31 32.07 76.81 71.59 76.24%*
Average 45.18 42.16 71.12 70.69 70.94%*

Table 13: Performance of Clinical Fact Verification and Inferential Rule Reasoning on CMQCIC-Bench. For Clinical
Fact Verification, we utilize DeepSeek to assess both faithfulness and correctness. NL represents Natural Language,
SY denotes Symbolic Language, and ACC stands for Accuracy. To enable a clearer comparison, we present the
best results of the "standard,"” "CoT," and "CF-IR" approaches in Table 2. All experiments were conducted in the
zero-shot setting.
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