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Abstract

Recent advances in preference optimization
have demonstrated significant potential for im-
proving mathematical reasoning capabilities in
large language models (LLMs). While cur-
rent approaches leverage high-quality pairwise
preference data through outcome-based crite-
ria like answer correctness or consistency, they
fundamentally neglect the internal logical co-
herence of responses. To overcome this, we
propose Probability-Consistent Preference Op-
timization (PCPO), a novel framework that es-
tablishes dual quantitative metrics for prefer-
ence selection: (1) surface-level answer cor-
rectness and (2) intrinsic token-level probabil-
ity consistency across responses. Extensive
experiments show that our PCPO consistently
outperforms existing outcome-only criterion
approaches across a diverse range of LLMs and
benchmarks. Our code is publicly available at
https://github.com/YunqiaoYang/PCPO.

1 Introduction

In recent years, enhancing the mathematical rea-
soning ability of Large Language Models (OpenAI,
2023; Anil et al., 2023; Touvron et al., 2023a,b;
Bai et al., 2023; Jiang et al., 2023b, 2024; An-
thropic, 2024; Yang et al., 2024a) (LLMs) has
emerged as an important research direction (Ahn
et al., 2024; Minaee et al., 2024). Among vari-
ous approaches, Direct Optimization Preference
(DPO) (Rafailov et al., 2024) is widely used due to
its simplicity and efficiency. Since its introduction,
numerous extensions of DPO have been proposed
to further improve mathematical reasoning in di-
verse ways. For instance, methods such as Self-
Rewarding LLMs (Yuan et al., 2024) and iterative
DPO (Xu et al., 2023) demonstrate the effective-
ness of iterative training strategies. Additionally,
constructing high-quality pairwise preference data

*Equal contribution.
†Corresponding author.

is essential for preference optimization (Bai et al.,
2022; Yang et al., 2023).

To construct high-quality pairwise preference
data, previous methods, such as IRPO (Pang et al.,
2024) and ScPO (Prasad et al., 2024), select prefer-
ence training pairs from generated responses that
include a Chain-of-Thought (CoT) (Kojima et al.,
2022) process followed by a final answer, have
proven particularly effective in advancing mathe-
matical reasoning performance. IRPO (Pang et al.,
2024) employs gold labels (correct answers) to dis-
tinguish between chosen and rejected responses.
Specifically, if a response’s answer matches the
gold label, it is designated as a chosen response;
otherwise, it is classified as rejected. On the other
hand, ScPO (Prasad et al., 2024) utilizes a voting
function to evaluate the self-consistency (Wang
et al., 2022) of responses. Responses whose an-
swers appear most frequently are selected as cho-
sen, while those with the least frequent answers are
marked as rejected.

However, both methods focus solely on the cor-
rectness or frequency of the final answer while
overlooking the internal logical connections or nu-
anced differences between responses. This lim-
itation restricts the creation of more refined and
informative preference training data (Wang et al.,
2024). Consequently, models may have difficulty
recognizing subtle yet critical distinctions between
chosen and rejected responses during the iterative
DPO training process (Fürnkranz and Hüllermeier,
2010; Wirth et al., 2017).

In this paper, we propose a novel method called
Probability-Consistent Preference Optimization
(PCPO), which leverages both the final answer
and the internal logical connections of responses
when selecting preference pairs. Our method is
grounded in the principle that the token generation
process in LLMs fundamentally involves predicting
new tokens based on the highest conditional prob-
ability given all existing tokens (Vaswani, 2017;
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Figure 1: Overview of the PCPO method. The pipeline mainly consists of three steps. (1) Given a prompt set, utilize
Mt (M0 as the seed model) to generate responses yni with reasoning cni and answer ani , and construct candidate
pairs on correctness §2.1. (2) utilize Mt to calculate weighted scores sw for each pair based on the token probability
consistency, and select preference pairs based on it §2.2. (3) train the next iteration model Mt+1 with the selected
preference pairs and PCPO Loss §2.3.

Radford, 2018). Specifically, PCPO calculates a
weighted score between preferred and dispreferred
answers by evaluating the conditional probability
of each token in the responses (Holtzman et al.,
2019; Welleck et al., 2020). Preference pairs are
then selected based on the highest weighted scores.
This approach provides a quantitative framework
for selecting preference pairs by considering not
only the correctness of the final answer but also the
internal coherence of the responses. By incorporat-
ing these factors, PCPO ensures a more robust and
principled selection of preference pairs.

In each iteration, We first use the seed model to
generate multiple responses for each math problem,
and we construct a candidate preference pair set
based on the correctness of the final answer. Then,
we calculate the token-level consistency score for
all the preference pairs from the candidate pair set.
Afterward, we select the preference pairs with the
highest token-level weighted score for each prob-
lem to construct preference training pairs eventu-
ally. Finally, we use the preference pairs selected to
train the next iteration model with a modified DPO
loss. To validate our method, we apply it to widely
used math datasets, including GSM8K (Cobbe
et al., 2021), MATH-500 (Hendrycks et al., 2021;
Lightman et al., 2023) Olympiadbench (He et al.,
2024) and AMC23 (Mathematical Association of
America, 2023).To comprehensively demonstrate
the effectiveness of our approach, we conduct ex-
periments across a diverse range of seed models,
such as Llama-3-8b-Instruct (Dubey et al., 2024),
Mathstral-7b-v0.1 (Jiang et al., 2023a), Qwen-2.5-
7B-Instruct (Yang et al., 2024b) and Qwen-2.5-
Math-7B-Instruct (Yang et al., 2024c). Consistent
results across these models showcase the effective-

ness of our method.
In summary, our contributions are as follows:
1) We propose Probability-Consistent Preference

Optimization (PCPO), a novel method that lever-
ages both the final answers and the internal con-
nections of the responses to select higher-quality
preference pairs for training, thereby enhancing the
mathematical reasoning capabilities of seed LLMs.

2) Extensive experiments demonstrate that our
method consistently outperforms existing outcome-
only criterion approaches (e.g.,, IRPO, ScPO)
across a diverse range of LLMs and benchmarks.

3) Through empirical analysis, we highlight the
critical importance of considering the internal con-
nections of responses when selecting preference
pairs. This insight paves the way for future re-
search aimed at improving reasoning capabilities
through more sophisticated preference pair selec-
tion methods.

2 Method

As depicted in Figure 1, our method starts with a
pre-trained seed language model and a fixed prompt
set of math problems with final answers. The PCPO
pipeline mainly consists of three steps. (1) utilize
Mt (M0 as the seed model) to generate responses
yni with reasoning cni and answer ani , and construct
candidate pairs on correctness §2.1. (2) utilize Mt

to compute weighted scores sw for each pair based
on the token probability, and select preference pairs
based on it §2.2. (3) train the next iteration model
Mt+1 with the selected preference pairs and PCPO
loss §2.3. The model will be trained and updated
at each iteration, resulting in a series of models
M1, . . . ,MT .
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2.1 Construct Candidate Pairs
We assume we have an initial model M0, and a
prompt set D = {(xi, y∗i )} containing questions
xi and their correct answers y∗i . We focus on the
process applied to a specific prompt xi, and there-
fore, we omit the subscript i for simplicity in the
following subsections.

Response Generation. In each iteration, we first
use the current model Mt to generate N different
responses for the prompt x, i.e., Y = {yn =
(cn, an) ∼ Mt(x)} and n ∈ [N ], where cn, an

represents the Chain-of-Thought reasoning steps
and the prediction answer. If the prediction an-
swer an of the response yn equals the gold answer
y∗, we put the response into a response subset Yw,
otherwise Yl.

Prepare candidate pair set. Assume that there
are p chosen responses yw in Yw and q rejected re-
sponses yl in Yl, where p and q satisfy the condition
p + q = N . To generate all possible preference
pairs, we use the cartesian product (Hewitt and
Savage, 1955) between the set Yw and Yl to con-
struct p×q pairs, denoted as Yw×Yl = {(yw, yl) |
yw ∈ Yw, yl ∈ Yl}. However, due to computa-
tional constraints, we must limit the number of
candidate pairs. To achieve this, we employ the
Levenshtein distance technique (Heeringa, 2004)
to filter the candidate pairs effectively. Its rationale
is discussed in Appendix A.

The Levenshtein distance measures the mini-
mum number of edits required to transform one
sequence into another, serving as a metric for se-
quence similarity. For each rejected response yl,
we compute its Levenshtein distance with all cho-
sen responses {yw} and select the top k pairs with
the smallest distances as candidate pairs. This
process results in the candidate pair set Cpairs

t =
{(yjw, yl)}, where j = 1, 2, ...,min(p, k) repre-
sents the number of candidate chosen responses
for each rejected response yl.

2.2 Construct Preference Pairs
In this step, we first introduce the concept of token
probability consistency (ct), a token-level metric
derived from the standard cross-entropy formula-
tion for individual tokens (Vaswani, 2017; Radford,
2018; Hong et al., 2024):

Lt = − logP (xi|x<i). (1)

Next, we define the pair-weighted score(sw), a pair-
level metric computed from the token probability

consistency values of the chosen and rejected re-
sponses within a pair. Based on this score, we
selectively extract preference training pairs from
the candidate pairs set Cpairs

t .

Calculate token probability consistency. For
each response y in a certain candidate pair (yw, yl),
we perform the following steps. First we tokenize
y into a sequence {yt} using the tokenizer of the
current iteration model Mt, where t = 1, 2, ..., l
and l denotes the length of the token sequence {yt}.
We then infer Mt to obtain the casual conditional
probability PMt(y

t|y<t, x) for each token.
With the tokenized pairs and their corresponding

token probabilities, we proceed to the next step:
employing a matching function M in Appendix B
to align the common tokens between the two re-
sponses in a pair sequentially. This allows us to
compute the token consistency score(ct), which is
defined as

ct (yw|yl) = exp(−| logPw (yt|x, y<t)

− logPl (yt|x, y<t) |) , yt ∈ M(yw, yl). (2)

The concept of comparing token-level losses
draws inspiration from recent works such
as Christopoulou et al. (2024), which emphasizes
sparse token-level optimization, and Lin et al.
(2024b), which highlights the importance of crit-
ical tokens in alignment tasks. Additionally, the
use of exponential mapping aligns with the design
principles of ORPO’s odd-one-out loss (Hong et al.,
2024), as both approaches aim to transform token-
level differences into probabilistic metrics for more
effective optimization. This combination of ideas
provides a principled foundation for our token prob-
ability consistency framework.

Calculating pair-weighted score. The token-
level consistency score ct is a normalized metric
ranging between 0 and 1, where a higher value
indicates a smaller difference in logarithmic proba-
bilities between the chosen and rejected responses
for a given token. Since the logarithmic probabil-
ity represents a conditional probability, a higher
score suggests that the preceding tokens provide
the most relevant context for predicting the current
token (Vaswani, 2017; Radford, 2018). To com-
pute the overall score s, we aggregate the token-
level consistency scores ct across all matched to-
kens. However, since the number of matched to-
kens varies with the length of the responses, we
normalize the final score by dividing it by the total
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length of the preference pair. This yields the pair-
weighted score sw for each preference pair, defined
as

sw (yw|yl) =
∑

t ct (yw|yl)
lyl

, (3)

where lyl denotes the length of the token sequence
in the rejected response. This normalization en-
sures that the score is robust to variations in re-
sponse length and provides a fair comparison
across preference pairs.

Select preference pairs. Given that we have per-
formed the process in Section 2.2 for all the candi-
date pairs (yjw, yl). Next, we select the preference
pair with the highest pair-weighted score for the
rejected responses yl. Specifically, for a given re-
jected response yl, we choose the corresponding
chosen response ychosenw that maximizes the pair-
weighted score sw. This ensures that the chosen
response exhibits the strongest token-level consis-
tency and correlation with the rejected response,
making it the most suitable candidate for prefer-
ence optimization (Holtzman et al., 2019; Welleck
et al., 2020). The resulting set of selected prefer-
ence pairs can be formally represented as

Spairs
t = {(ychosenw , yl)} (4)

=

{
argmax
(yjwyl)

sw
(
yjw|yl

) ∣∣∣∣ yjw, yl ∈ {(yjw, yl)}
}
,

(5)

where Spairs
t denotes the final set of selected pref-

erence pairs for the prompt x, and argmax iden-
tifies the chosen response ychosenw that maximizes
the pair-weighted score sw for a given rejected
response yl. This selection process ensures that
the chosen pairs are optimized for token-level con-
sistency and alignment with human preferences,
while maintaining a strong correlation between the
chosen and rejected responses.

2.3 PCPO Loss Function
We design our PCPO loss function as follows:

LPCPO(y
+, y−|x)=

−sw(x) log σ

(
β log

Mθ(y
+ |x)

Mt(y+ | x) − β log
Mθ(y

− |x)
Mt(y− | x)

)

︸ ︷︷ ︸
Weighted DPO Loss

−αsw(x)

|y+| logMθ(y
+ |x)

︸ ︷︷ ︸
Weighted NLL Loss

.

The loss function integrates a pair-weighted
score sw into both DPO and NLL losses, inspired
by IRPO (Pang et al., 2024) and ScPO (Prasad
et al., 2024). The weighted DPO loss and the
weighted NLL loss, dynamically prioritize pairs
with high token-level consistency, akin to sparse
alignment strategies in SparsePO (Christopoulou
et al., 2024). It also adaptively balances language
modeling with preference alignment, similar to
ScPO’s self-consistency weighting.

The use of sw as a dynamic weighting mecha-
nism is grounded in token-level consistency princi-
ples from Zeng et al. (2024) and Lin et al. (2024b),
while the inclusion of NLL loss ensures stable op-
timization, as highlighted in IRPO (Pang et al.,
2024). This design enables adaptive sample weight-
ing, robustness to sequence length variations, and
flexible optimization through parameters β and α.
The pair-weighted score sw serves as a key innova-
tion, enhancing the training process’s effectiveness
and interpretability.

3 Experiment setup

Datasets. We assess the effectiveness of PCPO
across a large and challenging range of mathe-
matical reasoning datasets: GSM8K consists of
1.3k high-quality grade school math word prob-
lems. MATH-500 is a curated subset drawn
from the MATH dataset comprising 500 chal-
lenging competition-style mathematics problems.
Olympiadbench is a test set of mathematics prob-
lems from olympiads, designed to assess deep
problem-solving skills, creativity, and advanced
mathematical reasoning. AMC23 is a test set of
40 problems from the 2023 American Mathemat-
ics Competitions (AMC 12). These problems are
renowned for their depth and subtlety, offering a
rigorous assessment of reasoning skills and preci-
sion.

Metrics. We report zero-shot Pass@1 and
Maj@8 results. The Pass@1 score denotes The
greedy decoding accuracy of a single response. The
Maj@8 score denotes the accuracy of the majority
answer voted from 8 candidate responses (Wang
et al., 2022). More evaluation details are presented
in Appendix C.

Training data. Our training data includes 7.5k
GSM8K training set, 7.5k MATH training set, 7.5k
subset of Orca-math (Li et al., 2024), and 7.5k sub-
set of Cn-k12 (Li et al., 2024), 30k in total. In our
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Metric GSM8K MATH-500 Olympiadbench AMC23
Iteration Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8

Llama3-8B-Instruct
Seed M0 71.3 81.6 30.8 34.2 8.1 10.2 10.0 7.5
IRPO M1 79.1 86.4 29.4 35.6 7.3 10.0 0 17.5
IRPO M2 81.1 88.4 30.6 36.6 6.7 9.8 0 12.5
ScPO M1 79.3 87.5 30.2 34.6 6.4 10.4 7.5 15.0
ScPO M2 81.6 88.6 32.2 36.4 7.9 10.5 5.0 17.5
PCPO (ours) M1 80.1 87.8 32.2 36.6 7.9 9.5 15.0 22.5
PCPO (ours) M2 82.8 88.9 33.2 38.4 9.5 11.7 10.0 20.0

Mathstral-7B-v0.1
Seed M0 84.3 91.4 57.2 63.2 21.8 26.7 25.0 40.0
IRPO M1 87.0 92.3 57.2 63.4 23.6 29.0 20.0 32.5
IRPO M2 87.7 91.4 58.4 66.8 24.6 29.2 20.0 30.0
ScPO M1 87.1 92.0 57.4 65.4 23.4 30.5 22.5 27.5
ScPO M2 87.6 92.3 60.4 66.8 24.1 30.7 27.5 40.0
PCPO (ours) M1 87.9 91.9 58.6 66.4 24.9 29.2 20.0 37.5
PCPO (ours) M2 89.0 92.3 61.8 69.4 25.2 32.1 32.5 47.5

Qwen2.5-7B-Instruct
Seed M0 92.3 94.0 76.4 81.2 38.5 44.9 47.5 60.0
IRPO M1 92.2 93.9 75.2 80.4 37.9 43.3 50.0 55.0
IRPO M2 92.3 93.9 77.6 81.2 40.1 45.0 52.5 57.5
ScPO M1 92.2 94.1 76.8 80.8 39.9 44.4 55.0 60.0
ScPO M2 92.3 93.9 76.8 81.4 39.9 44.7 57.5 60.0
PCPO (ours) M1 92.6 94.5 76.4 81.8 39.9 45.9 45.0 62.5
PCPO (ours) M2 92.6 94.1 78.0 82.4 40.3 45.0 57.5 65.0

Qwen2.5-Math-7B-Instruct
Seed M0 92.9 93.9 81 83.0 43.4 46.1 62.5 70.0
IRPO M1 93.1 94.0 81.2 82.8 44.1 47.4 67.5 70.0
IRPO M2 92.7 93.9 79.8 83.6 44.6 47.7 65 70.0
ScPO M1 92.6 94.1 80.8 83.0 44.7 47.3 67.5 70.0
ScPO M2 93.1 94.0 80.8 83.0 44.6 48.1 67.5 70.0
PCPO (ours) 92.9 94.2 80.6 83.4 44.9 48.7 70.0 72.5
PCPO (ours) 93.3 94.1 81.4 83.8 44.3 48.7 67.5 75.0

Table 1: Results of our method PCPO comparing with the baseline methods on GSM8K, MATH, Olympiadbench,
and AMC23. The results are zero-shot Pass@1 and Maj@8 accuracy.

approach, we don’t need to generate new data, and
the training data are fixed for all the experiments.

Baselines. Seed Model uses Chain-of-Thought
prompting (Kojima et al., 2022) with greedy de-
coding, achieving zero-shot Pass@1 and Maj@8
accuracy. IRPO (Pang et al., 2024) utilizes itera-
tive training with pairwise preferences at the out-
come level, considering the correctness of the fi-
nal answer when building preference training data.
ScPO (Prasad et al., 2024) uses an inference-time-
only approach that selects the most frequent final
answer to build preference training data. Similar to
IRPO, ScPO is still an outcome-level method that
considers the correctness and the frequency of the
final answer.

Implementation details. We set N = 16 to gen-
erate responses for the training data, with the tem-
perature of 1 and top-p = 0.95. For each iteration,
we sample 15k training data, training a total of 6
epochs with a useful batch size of 128. We use
an initial leaning rate 1.0 × 10−7 with the cosine
scheduler and AdamW optimizer with a warm-ratio

of 0.1 for smoother training. The NLL regulariza-
tion coefficient α is set to 1 and the DPO loss term
coefficient β is set to 0.5, following Prasad et al.
(2024). For the Pass @1 evaluation, we implement
greedy decoding with the temperature of 0, and for
the Maj@8 evaluation, we set a temperature of 0.95
and top-p = 0.95. We use one node containing 8
A800 GPUs for training.

4 Main Rresults

4.1 Comparison Results

The main results are shown in Table 1, demon-
strating that the performance of our PCPO exceeds
baseline methods across multiple seed models on
the GSM8K, MATH, Olympiadbench, and AMC23
benchmarks.

Specifically, for the Llama-3-8B-Instruct model,
PCPO achieves significant improvements over
ScPO and IRPO. On the GSM8K Pass@1 test, it
surpasses ScPO and IRPO by 1.2 and 1.7 points,
respectively. Similarly, on the MATH-500 Pass@1
test, it outperforms these baselines by 1.0 and
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Metric GSM8K MATH-500 Olympiadbench AMC23
Iteration Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8

Llama3-8B-Instruct
Seed M0 71.3 81.6 30.8 34.2 8.1 10.2 10.0 7.5
IRPO+DPO M1 79.8 88.1 29.4 34.2 6.8 10.8 5.0 10.0
IRPO+DPO M2 81.7 88.2 30.0 35.8 7.4 8.1 0 5.0
ScPO+DPO M1 79.3 86.7 29.4 37.0 7.3 11.0 5.0 10.0
ScPO+DPO M2 81.3 88.6 31.6 38.8 7.0 8.7 5.0 12.5
PCPO (ours)+DPO M1 80.6 87.9 30.4 38.4 7.4 11.0 7.5 10.0
PCPO (ours)+DPO M2 81.9 89.0 31.8 39.8 9.3 12.1 7.5 15.0

PCPO (ours) M1 80.1 87.8 32.2 36.6 7.9 9.5 15.0 22.5
PCPO (ours) M2 82.8 88.9 33.2 38.4 9.5 11.7 10.0 20.0

Table 2: DPO training results with the preference pair training data curated by our PCPO method and baseline
methods on GSM8K, MATH, Olympiadbench, and AMC23. For instance, IRPO+DPO represents DPO training
with the preference data constructed by IRPO method. The results are zero-shot Pass@1 and Maj@8 accuracy.

Metric GSM8K MATH-500 Olympiadbench AMC23
Iteration Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8

Llama3-8B-Instruct
PCPO (ours)+DPO M1 80.6 87.9 30.4 38.4 7.4 11.0 7.5 10.0
PCPO (ours)+DPO M2 81.9 89.0 31.8 39.8 9.3 12.1 7.5 15.0
PCPO (ours) M1 80.1 87.8 32.2 36.6 7.9 9.5 15.0 22.5
PCPO (ours) M2 82.8 88.9 33.2 38.4 9.5 11.7 10.0 20.0

Table 3: PCPO Loss training and original DPO Loss training results comparison. The results are zero-shot Pass@1
and Maj@8 accuracy.

2.6 points, respectively. The improvements are
more pronounced on the OlympiadBench Pass@1
test, with gains of 1.6 and 2.8 points over ScPO
and IRPO, respectively. Notably, on the AMC23
Pass@1 test, PCPO achieves an impressive lead of
7.5 and 15.0 points over ScPO and IRPO, respec-
tively. A similar trend is observed for Mathstral-
7B-v0.1, with PCPO achieving gains of 1.4 and 1.3
points on GSM8K Pass@1, 1.4 and 3.4 points on
MATH-500 Pass@1, and 5.0 and 12.5 points on
AMC23 Pass@1 over ScPO and IRPO.

For the Qwen-2.5-7B-Instruct model and Qwen-
2.5-MATH-7B-Instruct model, the performance
gains are relatively smaller. We provide a theoret-
ical analysis based on some literature. McKenzie
et al. (2023) propose that LMs may show inverse
scaling or worse task performance with increased
training data scale. And according to Gan and
Liu (2024), the efficacy of large language mod-
els (LLMs) is extensively influenced by both the
volume and quality of the training data. Qwen-
2.5-7B-Instruct model and Qwen-2.5-MATH-7B-
Instruct model utilized iterative fine-tuning of data
and was reinforced by a reward model during the
post-training phase (Yang et al., 2024b). As a
result, the quality of the training dataset we use
does not significantly benefit the LLM. Neverthe-
less, PCPO still consistently outperforms IRPO

and ScPO across all benchmarks, demonstrating a
clear advantage over outcome-level methods. For
the Qwen-2.5-MATH-7B-Instruct model, while
IRPO and ScPO underperform the seed model M0

on MATH-500, PCPO continues to demonstrate
consistent gains, highlighting its robustness over
outcome-level methods.

Table 1 also demonstrated that the performance
of PCPO shows more consistency and robustness
over the iteration training, detailed explanations in
Appendix D. Overall, PCPO consistently outper-
forms the baselines that rely solely on final results
when constructing preference training data on all
the benchmarks with Pass@1 and Maj@8 metrics.

5 Ablation Study and Analysis

5.1 Effect of Preference Data

To isolate the impact of training data quality, we
design an experiment where all methods—PCPO,
IRPO (Pang et al., 2024), and ScPO (Prasad et al.,
2024)—use the same DPO loss function (Rafailov
et al., 2024), despite their original loss functions
differing as described in Section 2.3. This allows
us to directly compare the effectiveness of the pref-
erence pairs generated by each method.

Table 2 shows the performance of Llama-3-8B-
Instruct trained with preference pairs curated by
PCPO, IRPO, and ScPO, all optimized using the
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Figure 2: Rewards of PCPO and DPO. The chosen
and rejected responses reward comparison of PCPO and
DPO training on the same preference pairs.

DPO loss. Here, "IRPO+DPO" denotes training
data curated by IRPO with the DPO loss, and sim-
ilarly for other methods. The results demonstrate
that models trained with PCPO’s preference pairs
consistently outperform those trained with IRPO
or ScPO pairs. Specifically, PCPO M2 achieves
1.9 and 2.3 points higher on the OlympiadBench
Pass@1 test compared to IRPO M2 and ScPO M2,
respectively, and 2.5 points higher on the AMC23
Pass@1 test than the best-performing model trained
with IRPO or ScPO data. These results highlight
the superior quality of PCPO’s preference pairs, fur-
ther validating its effectiveness in curating training
data.

5.2 Effect of Loss

Table 3 demonstrates that the model trained with
the PCPO Loss, as described in Section 2.3, out-
performs the model trained with the original DPO
Loss on the same PCPO curated preference pairs.
Figure 2 shows the chosen and rejected responses
reward comparison of PCPO and DPO training on
the same preference pairs. The reward, denoted as
r = β log πθ(y|x)

πref (y|x) , reflects the preference inten-
sity of the current strategy model πθ for generat-
ing a specific response y relative to the reference
model πref (Stiennon et al., 2020; Rafailov et al.,
2024). Notably, the chosen reward for PCPO Loss
exhibits a more pronounced increase, indicating
more efficient learning from preference data due to
an improved gradient update strategy. These results
underscore that the PCPO Loss enables more effec-
tive preference training compared to the original
DPO Loss.

5.3 Generalizability

Section 5.1 shows that the preference training data
curated by our PCPO framework is of higher qual-

ity. To further validate its versatility, we apply
our framework to enhance several DPO variants:
RPO (Pang et al., 2024) (the single-iteration ver-
sion of IRPO), IPO (Azar et al., 2024) (designed
to prevent overfitting), ORPO (Hong et al., 2024)
(reference-free alignment), and TDPO (Zeng et al.,
2024) (token-level alignment). As shown in Ta-
ble 4, PCPO +RPO, PCPO +IPO, PCPO +ORPO,
and PCPO +TDPO consistently outperform their
original counterparts across nearly all benchmarks.
These results highlight the effectiveness and broad
applicability of our framework in improving di-
verse preference alignment methods.

5.4 Case Study
We have already presented the efficiency and versa-
tility of the preference training pairs curated with
our PCPO framework in Section 5.1, 5.3, and we
will quantitatively analyze it through some cases in
this section. Figure 3 shows four responses from
the Llama3-8B-Instruct with the same prompt gen-
erated in Section 2.1. These four responses exem-
plify the response generation process, showcasing
both correct and incorrect answers, as well as var-
ious answer patterns. In this case, response-a and
response-b have the right answer, while response-c
and response-d have the wrong answer. Moreover,
it can be easily seen from the bold sentence that
these four responses have two answer patterns, and
response-a and response-c are of one pattern while
response-b and response-d are of another pattern.
However, because they have no difference in their
final answer, outcome-only methods are not able
to distinguish them, so it’s totally random for these
methods to construct preference pairs from them.
Our PCPO can easily identify different answer pat-
terns in the token-level and put the responses with
the nearest pattern in a preference pair.

In this case, the weighted scores in Equation (3)
of these pairs are shown in Table 5, thus PCPO is
able to select response-a and response-c as a pref-
erence pair and response-b and response-d another.
From this case study, we can conclude that our
PCPO can select preference pairs with the highest
token probability consistency, which the existing
outcome-level methods can not do.

5.5 Analysis of training consumption
We conducted a statistical analysis of the quantita-
tive comparisons with baseline methods. The en-
tire training process can be divided into three parts:
response generation, preference pair construction,
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Metric GSM8K MATH-500 Olympiadbench AMC23
Iteration Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8

Llama3-8B-Instruct
Seed M0 71.3 81.6 30.8 34.2 8.1 10.2 10.0 7.5
DPO M1 79.8 87.4 29.4 34.2 6.8 10.8 5.0 10.0
PCPO (ours)+DPO M1 80.6 87.9 30.4 38.4 7.4 11.0 7.5 15.0
RPO M1 79.1 86.4 29.4 35.6 7.3 10.0 0 17.5
PCPO (ours)+RPO M1 80.0 87.3 30.6 37.4 7.4 10.7 5.0 22.5
IPO M1 80.6 88.0 24.4 37.6 8.1 11.9 10.0 10.0
PCPO (ours)+IPO M1 81.3 88.1 32.2 38.4 9.9 12.6 15.0 20.0
ORPO M1 81.6 88.1 27.0 32.8 8.0 10.5 10.0 12.5
PCPO (ours)+ORPO M1 81.9 88.2 29.0 36.4 8.6 11.9 10.0 25.0
TDPO M1 79.8 86.5 29.8 35.0 7.7 9.0 5.0 12.5
PCPO (ours)+TDPO M1 79.7 87.1 30.4 36.2 8.4 9.8 5.0 25.0

Table 4: Performance of applying PCPO framework to construct training data with different DPO variants on
GSM8K, MATH, Olympiadbench, and AMC23. The results are zero-shot Pass@1 and Maj@8 accuracy.

"Maria bought 8 DVDs at Store A for $15 each, so the total cost of her 
purchase at Store A is 8 * $15 = $120.\nShe bought 12 DVDs at Store B for $12 
each, so the total cost of her purchase at Store B is 12 * $12 = $144.\nShe bought 
5 DVDs online at $16.99 each, so the total cost of her online purchase is 5 * 
$16.99 = $84.95.\nThe total cost of all her purchases before the discount is $120 
+ $144 + $84.95 = $348.95.\nMaria has a 15% discount on her purchases from 
Store A and Store B, so the discount on these purchases is 15\/100 * ($120 + 
$144) = 15\/100 * $264 = $39.60.\nThe final amount Maria has to pay after the 
discount is $348.95 - $39.60 = $309.35.\nThe answer is: $309.35$"

Right: response-a
"At Store A, Maria bought 8 DVDs at $15 each, so her total cost is 8 * $15 = 
$120.\nAt Store B, she bought 12 DVDs at $12 each, so her total cost is 12 * $12 
= $144.\nAt the online store, she bought 5 DVDs at $16.99 each, so her total cost 
is 5 * $16.99 = $84.95.\nThe total cost before the discount is $120 + $144 + 
$84.95 = $348.95.\nMaria has a 15% discount on her total cost from Store A and 
Store B, so the discount is 0.15 * ($120 + $144) = 0.15 * $264 = $39.60.\nThe
final amount Maria has to pay after the discount is $348.95 - $39.60 = 
$309.35.\nThe answer is: $309.35$"

Right: response-b

"Maria bought 8 DVDs from Store A at $15 each, so the total cost was 8 * $15 
= $120.\nShe bought 12 DVDs from Store B at $12 each, so the total cost was 12 
* $12 = $144.\nShe bought 5 DVDs from the online store at $16.99 each, so the 
total cost was 5 * $16.99 = $84.95.\nThe total cost of all her purchases before the 
discount was $120 + $144 + $84.95 = $348.95.\nMaria had a 15% discount for 
her purchases from Store A and Store B, which means she got a discount of 
15\/100 * ($120 + $144) = $45.\nSo the total cost after the discount was $348.95 
- $45 = $303.95.\nThe answer is: $303.95$"

Wrong: response-c
"At Store A, Maria bought 8 DVDs at $15 each, so her total cost there was 8 
* $15 = $120.\nAt Store B, she bought 12 DVDs at $12 each, so her total cost 
there was 12 * $12 = $144.\nAt the online store, she bought 5 DVDs at $16.99 
each, so her total cost there was 5 * $16.99 = $84.95.\nThe total cost before the 
discount is $120 + $144 + $84.95 = $348.95.\nMaria has a 15% discount for her 
physical store purchases, so the discount is 15\/100 * ($120 + $144) = 
$45.\nAfter the discount, Maria's total cost is $348.95 - $45 = $303.95.\nThe
answer is: $303.95$"

Wrong: response-d

Figure 3: A few right and wrong responses from the same prompt. The four responses can be divided into two
groups, where each has a similar response pattern.

Pairs a & c b & c a & d b & d

sweighted 0.791 0.525 0.559 0.793

Table 5: The weighted score sweighted of the four re-
sponses in Figure 3.

and training. The costs of the generating process
and training process are nearly identical across all
methods, with the main difference arising from the
preference pair construction step. We calculated
the average computational consumption (converted
to 8*A800 GPU Hours) of training seed models for
one iteration, as shown in table 6.

Although our method requires approximately
15% more GPU hours in the training process due
to the need for token probability calculations, we
believe it’s worthy the marginal performance gain
over the baseline methods.

6 Related Works

Preference optimization for math reasoning.
Reinforcement learning from human feedback
(RLHF) (Christiano et al., 2017) methods such as
Direct Optimization Preference (DPO) (Rafailov
et al., 2024) have emerged as a prominent approach
for aligning Large Language Models (LLMs) with
human preferences (Ouyang et al., 2022; Yang
et al., 2024b). Recent advancements have intro-
duced specialized variants for mathematical reason-
ing tasks. For instance, IRPO (Pang et al., 2024)
selects preference training pairs from generated
responses that include a Chain-of-Thought (CoT)
and trains with DPO Loss adding a NLL term.
ScPO (Prasad et al., 2024) utilizes a voting function
to evaluate the self-consistency (Wang et al., 2022)
of responses and trains with a weighted DPO+NLL
loss. IPO aims to prevent DPO from overfitting
to the preference dataset and ORPO eliminates the
need for a reference model. our proposed PCPO
distinguishes itself by explicitly considering the in-
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Process Generate Responses Construct Preference Pairs Train Total

IRPO 3.2 N/A 4.5 7.7
ScPO 3.2 N/A 4.5 7.7
PCPO 3.2 1.2 4.5 8.9

Table 6: The average computational consumption among PCPO and baseline methods.

ternal logical relationships within preference pairs,
offering a unique approach to preference optimiza-
tion in mathematical reasoning tasks.

Token-level preference optimization. Recent
advancements in token-level preference optimiza-
tion have sought to address the inherent mismatch
between sequence-level rewards and the token-
level nature of LLM training and generation (Lin
et al., 2024a). For instance, TDPO (Zeng et al.,
2024) introduces a novel framework for aligning
LLMs with human preferences at the token level,
incorporating forward KL divergence constraints
for individual tokens. SparsePO (Christopoulou
et al., 2024) learns automatically during training in-
herently sparse masks over token-level rewards and
KL divergences, highlighting that not all tokens
are important in preference optimization. Lin et al.
(2024b) illustrated the importance of critical tokens
and proposed cDPO to automatically recognize and
conduct token-level rewards for the critical tokens
during the alignment process. The methods above
either emphasize or ignore certain tokens when ap-
plying preference optimization, while our method
PCPO utilizes token-level probability consistency
to select preference pairs before the preference op-
timization process.

7 Conclusion

In this paper, we introduce Probability-Consistent
Preference Optimization (PCPO), which provides
a quantitative framework for selecting preference
pairs by considering both the correctness of the
final answer and the internal coherence of the re-
sponses. We introduced the concept of token prob-
ability consistency and the pair-weighted score to
help select resulting preference training pairs. Ex-
tensive experiments demonstrate that our method
consistently outperforms existing outcome-only cri-
terion approaches (e.g., IRPO, ScPO) across a di-
verse range of LLMs and benchmarks. This work
paves the way for future research aimed at improv-
ing reasoning capabilities through more sophisti-
cated preference pair selection methods.

Limitations

While our approach demonstrates strong perfor-
mance in supervised settings, it inherently depends
on access to ground-truth final answers to construct
reliable preference pairs. Acquiring high-quality
labeled data is often resource-intensive, which re-
stricts the scalability of our method to new domains.
These limitations require preference optimization
frameworks that can function effectively without
gold-standard annotations. Addressing these chal-
lenges would significantly broaden the applicabil-
ity of our method to real-world scenarios where
labeled data is scarce or unavailable.

Additionally, the process of selecting preference
training pairs necessitates generating a substantial
number of candidate pairs, which in turn requires
producing a larger volume of responses. This in-
creases the computational demands and GPU hours,
posing additional resource constraints.

Ethics Statement

Privacy Considerations

In this study, we employed several publicly avail-
able datasets, including GSM8K1 (Cobbe et al.,
2021), MATH-5002 (Hendrycks et al., 2021; Light-
man et al., 2023), Olympiadbench3 (He et al.,
2024), AMC234 (Mathematical Association of
America, 2023), and Numina-math5 (Li et al.,
2024). These datasets are distributed under per-
missive licenses.

For model training, we utilized Llama-3-
8B-Instruct (Dubey et al., 2024), Mathstral-
7B-v0.1 (Jiang et al., 2023a), Qwen-2.5-7B-
Instruct (Yang et al., 2024b), and Qwen-2.5-Math-
7B-Instruct (Yang et al., 2024c). All these mod-

1https://huggingface.co/datasets/openai/gsm8k
2https://huggingface.co/datasets/

HuggingFaceH4/MATH-500
3https://huggingface.co/datasets/realtreetune/

olympiadbench
4https://github.com/QwenLM/Qwen2.5-Math/tree/

main/evaluation/data/amc23
5https://huggingface.co/datasets/AI-MO/

NuminaMath-CoT
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els are licensed under Apache License 2.0 and are
available for academic use.

In summary, our use of these datasets and mod-
els strictly complies with ethical guidelines for re-
search data usage, upholding the principles of aca-
demic integrity and responsible research conduct.

Security considerations

Security Considerations In this study, the mod-
els were trained using generated mathematical re-
sponses, which were carefully curated to ensure
they do not contain any malicious or adversarial
content. All responses were derived from fixed
problem sets, which were explicitly selected to
avoid any overlap with potential test datasets. This
approach mitigates the risk of data leakage and en-
sures that the training process remains secure and
unbiased. By adhering to these practices, we main-
tain the integrity of the training data and prevent
any unintended exposure of sensitive or proprietary
information.
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Appendix

A Levenshtein Distance

In this experiment, we established an edit distance
threshold of 8, corresponding to a total of 16 re-
sponses per prompt. For each rejected response,
we retained the chosen responses with the 8 small-
est edit distances. In cases where the number of
chosen responses was fewer than 8, all available
responses were preserved. Figure 4 displays the
frequency distribution (bars) and cumulative per-
centage (line) of edit distance rankings (1–8, from
min to max) for the final selected preference pairs.
Rank 1 shows the highest frequency (50.2%), fol-
lowed by rank 2 (20%), with frequencies declining
sharply for ranks 5–8. The cumulative percentage
reaches 95.4% by rank 5 and 100% at rank 8, in-
dicating minimal contributions from higher ranks.
Key Insights:

• Pareto Dominance: Ranks 1–5 (95.4% cumu-
lative) dominate outcomes, aligning with the
Pareto principle.

• Central Tendency: Rank 1 alone captures
50.2%, highlighting strong local consistency.

• Low Dispersion: Ranks 6–8 contribute negligi-
bly (<4.6%), confirming high data concentra-
tion.

The results mean we can set an edit distance
threshold of 5 to filter candidate pairs with more
than 90 percent of resulting preference pairs within.
This analysis supports algorithm optimization by
prioritizing top-ranked edit distances for candidate
pair filtering.

Figure 4: Frequency Distribution and Cumulative Per-
centage Pareto Chart of Edit Distance Rankings.

B Matching Function

Algorithm 1 shows the match function pseudocode.
Let c = [c1, c2, . . . , cm] and r = [r1, r2, . . . , rn]

Algorithm 1 Match Function
Require: c = [c1, . . . , cm], r = [r1, . . . , rn].
Ensure: Masks Mc, Mr , index mapping I.
1: matcher← SequenceMatcher(None, c, r)
2: Mc ← [False]×m, Mr ← [False]× n
3: I ← ∅
4: for (tag, i1, i2, j1, j2) ∈ matcher do
5: if tag = equal and (i2 − i1) ≥ 1 then
6: for (ci, rj) ∈ zip(range(i1, i2), range(j1, j2)) do
7: Mc[ci]← True
8: Mr[rj]← True
9: I ← I ∪ {(ci, rj)}

10: end for
11: end if
12: end for
13: return (Mc,Mr, I)

represent the token sequences of the chosen and
rejected responses, respectively. The function iden-
tifies the longest common subsequence (LCS) of
tokens between c and r. For each aligned sub-
sequence of length at least 1, it generates binary
masks Mc ∈ {0, 1}m and Mr ∈ {0, 1}n, Addi-
tionally, the function outputs an index mapping I,
which records the positions of aligned tokens in c
and r.

In summary, the function can be compactly rep-
resented as

(Mc,Mr, I) = Match(c, r)

where Match is the sequence matching operation
that identifies common tokens and generates the
corresponding masks and index mapping.

Figure 5 illustrates the visualization for applying
the Match function to align token sequences be-
tween chosen and rejected responses. As outlined
in Section 2.2, we first tokenize the responses using
the current iteration model Mt. Next, the Match
function M generates common token masks for
the sequences in a sequential manner. The masked
tokens are highlighted in different colors, with in-
dex mappings indicating their positions in each
sequence. We obtain the final matched tokens by
extracting these tokens.

C Evaluation details.

We use the standard automatic evaluation scripts
following Qwen-Math (Yang et al., 2024c). The au-
tomatic evaluation pipeline mainly contains three
steps: response generation, answer parsing, and
comparison. First, the pipeline employs model
Mt to generate responses for each problem in the
test set with a CoT prompt (Kojima et al., 2022)
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"Let's break it down step by step:\n\n1. Initially, there are 
55.0 oranges in the box.\n2. Deborah has 11.0 oranges in 
a bag, but we don't add those to the box yet.\n3. Susan 
puts 35.0 more oranges into the box. We add these new 
oranges to the initial 55.0 oranges.\n4. To find the total 
number of oranges in the box now, we add the initial 
number and the new number:\n\n55.0 (initial) + 35.0 
(new) = 90.0\n\nSo, there are \\boxed{90.0} oranges in 
the box now.."

Chosen response:
“Let‘s break it down step by step:\n\nInitially, there are 
55.0 oranges in the box.\n\nDeborah has 11.0 oranges in a 
bag, but we need to add those to the box. So, the total 
number of oranges in the box becomes:\n\n55.0 + 11.0 = 
66.0 oranges\n\nThen, Susan puts 35.0 more oranges into 
the box. So, we add those to the total:\n\n66.0 + 35.0 = 
101.0 oranges\n\nTherefore, there are now \\boxed{101.0} 
oranges in the box.”

Rejected response:

"Let's break it down step by step:\n\n1. Initially, there are 
55.0 oranges in the box.\n2. Deborah has 11.0 oranges in 
a bag, but we don't add those to the box yet.\n3. Susan 
puts 35.0 more oranges into the box. We add these new 
oranges to the initial 55.0 oranges.\n4. To find the total 
number of oranges in the box now, we add the initial 
number and the new number:\n\n55.0 (initial) + 35.0 
(new) = 90.0\n\nSo, there are \\boxed{90.0} oranges in 
the box now.."

Chosen response selected tokens:
“Let‘s break it down step by step:\n\nInitially, there are 
55.0 oranges in the box.\n\nDeborah has 11.0 oranges in 
a bag, but we need to add those to the box. So, the total 
number of oranges in the box becomes:\n\n55.0 + 11.0 = 
66.0 oranges\n\nThen, Susan puts 35.0 more oranges into 
the box. So, we add those to the total:\n\n66.0 + 35.0 =
101.0 oranges\n\nTherefore, there are now
\\boxed{101.0} oranges in the box.”

Rejected response token sequence:
𝑀𝑀𝑡𝑡 tokenize, Match Function

Figure 5: The Match Function pipeline. For a given pair of chosen and rejected responses, we first utilize
the current iteration model Mt to tokenize them and then use the algorithm 1 to get the longest common token
subsequences, as highlighted in different colors.

(e.g., "Please reason step by step, and put your fi-
nal answer within boxed{}") Second, the pipeline
will extract the final answer from the response us-
ing regular expressions and fix the format of the
answer such as removing extra brackets and mod-
ify the representation of fractions etc. Finally, the
pipeline compares the extracted answer with the
ground truth using an exact match criterion. This
criterion requires that the answers satisfy one of
the following conditions: (1) numerical equality,
where both answers can be converted to floats and
are equal, or (2) symbolic equality, where both an-
swers can be converted to SYMPY6 expressions and
are equal. Through this pipeline, we can maximize
the consistency and accuracy of the test results.

D Iterations

Table 1 presents the model performance evolve-
ment over the seed model M0, M1 and M2. In a
nutshell, PCPO performs better along the iterations
over baseline methods IRPO, ScPO while achiev-
ing better absolute scores. For instance, on the
Llama3-8B-Instruct,PCPO Pass@1 on the GSM8K
test evolves from M1 80.1% to M2 82.8%, and
the Olympiadbench test evolves from M1 7.9% to
M2 9.5%, surpassing each iteration of the IRPO
and ScPO method. Results on the Mathstral-7B-

6https://github.com/sympy/sympy

v0.1 show a similar trend. Although the iteration
gains of all methods on the Qwen2.5-7B-Instruct
and the Qwen2.5-MATH-7B-Instruct is less stable
owning to the reason we explained in Section 4.1,
our PCPO still performs a more consistent perfor-
mance. The ScPO method almost saturates on the
Qwen2.5-7B-Instruct through iterations, with only
a small gain on the AMC23 Pass@1 test, and the
IRPO method drops on the GSM8k, MATH-500
and AMC23 Pass@1 test from M1 to M2. In all,
the performance of PCPO shows more consistency
and robustness over the iteration training, confirm-
ing the effectiveness of our method.

E Prompts

Prompt templates7 for generating responses are
shown below:

Response Generation Template

User:
Please reason step by step, and put
your final answer within \\boxed{{}}.

{{ question }}

Assistant:

7The prompt template was from https://github.com/
QwenLM/Qwen2.5-Math
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