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Abstract

Long-context language models (LCLMs) can
process long context, but still exhibit position
bias, also known as “lost in the middle”, which
indicates placing key information in the middle
of the context will significantly affect perfor-
mance. To mitigating this, we first explore
the micro-level manifestations of position bias,
concluding that attention weights are a micro-
level expression of position bias. Then we iden-
tify that, in addition to position embeddings,
positional information in hidden states also con-
tributes to position bias, and it manifests itself
in specific channels of hidden states, called
positional hidden states. Based on these, we
propose a method to mitigate position bias by
scaling positional hidden states. Experiments
on NaturalQuestions Multi-document QA, KV
retrieval and LongBench, using various mod-
els including RoPE models, context window-
extended models, and Alibi models, demon-
strate the effectiveness and generalizability of
our approach. Our method can improve per-
formance by up to 15.2% in “lost in the mid-
dle” benchmark by modifying just one chan-
nel of hidden states. Our code is available at
https://aka.ms/PositionalHidden.

1 Introduction

Long-context language models (LCLMs) (Reid
et al., 2024; Liu et al., 2025; Young et al., 2024;
Abdin et al., 2024; DeepSeek-AI, 2024) have re-
cently garnered significant attention within the
community, enabling LLMs to handle longer and
more complex tasks such as long-context question-
answering (Caciularu et al., 2023; Li et al., 2025).
However, recent research (Li et al., 2025; Liu et al.,
2024; Li et al., 2024; Shi et al., 2023; Tang et al.,
2023; He et al., 2024a; Zhang et al., 2024) shows
that even long-context LLMs often fail to utilize all
context information effectively, exhibiting a “lost in
the middle" bias where middle context information

†Work during internship at Microsoft.

is ignored. This issue affects all types of LLMs,
regardless of their architecture or size, and worsens
with longer contexts.

Previous works have analyzed this issue from the
perspectives of data distribution (He et al., 2024a;
Yu, 2023; An et al., 2024) and position embed-
dings (Zhang et al., 2024; Chen et al., 2024). For
example, FILM (An et al., 2024) addresses posi-
tion bias by constructing data with key information
distributed in various positions for supervised fine-
tuning (SFT). Ms-PoE (Zhang et al., 2024) miti-
gates position bias by interpolating RoPE (Su et al.,
2024) using head-wise scaling factors.

On the other handsome works (Haviv et al.,
2022; Wang et al., 2024; Chi et al., 2023) have
proven that, besides position embeddings, the hid-
den states of LLMs can also convey positional infor-
mation, which is generated by the causal attention
mask. Although various works (see related works
in Appendix A) have attempted to mitigate posi-
tion bias, few of them have related position bias to
positional information in hidden states, which may
be another non-negligible source of position bias.

To verify the relation between position bias and
positional information in hidden states, we conduct
a series of experiments. First, as many previous
works (Yin et al., 2024; Wang et al., 2025; Chen
et al., 2024) have observed, we find U-shaped at-
tention weights consistent with position bias in
specific layers. Second, we use perturbation ex-
periments to prove position bias is indeed affected
by positional information in hidden states. Third,
We identify some channels called “positional chan-
nel” (the hidden states corresponding to them are
called “positional hidden states”), whose values can
manifest absolute positional information, through
a process of hypothesis and subsequent verifica-
tion. Finally, we confirm these channels can indeed
affect position bias.

Naturally, to mitigate position bias, a direct way
is to eliminate (or minimize) its potential cause:
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positional hidden states. So, we propose a posi-
tion bias mitigation method named “scale posi-
tional hidden states”. Specifically, we first design
a heuristic searching algorithm that quickly identi-
fies which channels (along the hidden size axis) of
the hidden states are potential positional channel,
using monotonicity and smoothness as indicators.
Then We select the optimal channel among them
based on the loss on a calibration dataset. Next,
based on extensive engineering experience, we de-
sign a well-designed attention modification algo-
rithm that let the scaled hidden states only influence
the attention queried by the last token, to eliminate
positional bias in attention, while avoiding interfer-
ing too much with the original attention leads to
unstable model performance.

Extensive experiments on various models, in-
cluding LLaMA-2 (Touvron et al., 2023), Vi-
cuna (Chiang et al., 2023), Mistral (Jiang et al.,
2023), Gemma (Team et al., 2024), Qwen (Bai
et al., 2023), and MPT (Team, 2023), and across
different tasks, including Multi-document QA, KV
retrieval, LongBench (Bai et al., 2024) benchmark,
demonstrate that our method effectively mitigates
position bias by modifying only one channel of
the hidden states of the model. In addition, we
test on timeline reorder task (Li et al., 2024) and
MMLU (Hendrycks et al., 2021) to show our meth-
ods has minimal side effects on the original capa-
bilities of the model.

Our main contributions are as follows:

1. We are the first to discover that the positional
information in hidden states is also the cause
of position bias, especially the bias to the be-
ginning.

2. We are the first to find explicit, visible hid-
den states channels which are approximately
correlated to absolute token positions, called
positional hidden states. And we confirm they
can affect position bias.

3. We propose a method for identifying and scal-
ing the positional hidden states to mitigate
position bias.

2 Positional Information in hidden states
affects position bias

In this section, we first identify patterns in atten-
tion weights that closely correspond to position
bias. Then, through modifying the causal mask in
former layers and observing the change of attention
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Figure 1: The relationship between causal mask, posi-
tional information in hidden states, positional hidden
states, position embedding, attention pattern and posi-
tion bias of model’s performance.

in latter layers, we demonstrate position-related at-
tention bias can also be affected by the positional
information in hidden states. Third, we extract
specific hidden states channels which has mono-
tonicity with the token position, named “positional
hidden states”, and find that they bears responsi-
bility for the emergence of position bias. To sum
up, we show our findings about position bias in this
section in Figure 1.

2.1 Microscopic Manifestations of Position
Bias in Transformers: Attention Weight
Patterns

To explore the micro-level manifestations of posi-
tion bias in Transformers, we analyze the attention
weights in a classic long-context task, KV retrieval,
which requires the model to retrieve the value of
the given key from a list containing 50 Key-Value
pairs (see Appendix D.1 for detailed prompts). The
KV pair corresponding to the given key in the ques-
tion is called the Gold KV. In attention analysis,
we average all the attention weights from the last
token of the question to the tokens of the i-th KV
pair as the model’s “attention to the i-th KV”. More
details about how we calculate attention are in Ap-
pendix D.1.

As shown in Figures 2, in deep layers, the model
exhibits retrieval-like behavior, focusing on key in-
formation, forming a diagonal pattern observed in
Figure 2b. So we call them retrieval-related lay-
ers. While in other shallow layers, it always focus
most attention on the start or end of the prompt,
wherever the key information is located, exhibit-
ing vertical lines patterns, as shown in Figure 2a.
Attention patterns of all the layers are shown in Ap-
pendix F, based on which we roughly regard that
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layers 15~20 belong to the retrieval-related layers.
In retrieval-related layers, it can be observed that

the attention weights for key information (Gold
KV) exhibit patterns similar to position bias: when
key information is located at the start or end of the
prompt, the attention weights focused on it are rela-
tively higher, while in the middle, lower. Moreover,
we extract the attention to key information (average
of layers 15~20) with different context length. As
shown in Figure 2c, as the context length grows,
the attenuation of attention weights with respect to
position becomes more pronounced.

Furthermore, in Appendix D.2, we find artifi-
cially adjusting the attention weights to the key
information can directly improve the correspond-
ing retrieval accuracy (this is intuitive). Thus, we
confirm that position bias of model performance
is to a large extent caused by the bias in attention
weight patterns. So in the following experiments,
we also use attention weights as the indicator of
whether the model has successfully retrieved the
key information, as well as the retrieval accuracy.

2.2 Positional Information in Hidden States
Also Contributes to Position Bias

Recent works (Haviv et al., 2022; Wang et al., 2024;
Chi et al., 2023) have indicated that, besides posi-
tion embeddings, the causal mask can also intro-
duce positional information, which is then stored
in the hidden states of LLMs. However, there is no
research about whether such information will affect
position bias. Therefore, we design a perturbation
experiment using Mistral-7B-v0.2 (32 layers) on
the classic KV retrieval task, where we modify the
causal mask, aiming at changing position informa-
tion in hidden states, and then observe whether
position bias is affected.

In the experiment, only the causal mask of the
layers 2 to 8 are modified, but we mainly ob-
serve the attention change in retrieval-related lay-
ers, specifically, the average attention of layers 15
to 20 is calculated. This setting avoids modifying
the causal mask directly shifts the attention, letting
us only see the effect of the positional information
in hidden states.

The modification to the causal mask is called
Crop Mask, which alters it so the tokens of the
gold KV pair can only see itself, but not previous
tokens (details about this operation are in Appendix
D.3). Based on the theory of previous works, we
posit this modification will make the positional
feature of the tokens of the gold KV pair similar to

that of the first KV pair.
In addition, as a comparison, we also shift the po-

sition embedding of the tokens of the gold KV (in
every layer) as comparisons. Such shift includes:
(1) PE to Beginning, which assigns the position
IDs of the first KV pair to that of the gold KV pair;
(2) PE to End, which assigns the position IDs of
the last (the 50th) KV pair to it.

As shown in Figure 3, the original model appar-
ently exhibits a “lost in the middle” pattern: when
gold KV is in the middle position, the KV retrieval
accuracy as well as the attention to it is much lower.

The most notable result is, modifying the casual
mask effectively enhances the attention to the gold
KV, as well as the retrieval accuracy, whatever its
position is. It even lets the attention at the middle
be improved to almost on par with the beginning.

As for PE modification, “PE to end” has a certain
degree of improving attention to the gold KV, but
can hardly allow the model’s performance to match
the accuracy when the gold KV pair is positioned
at the start or end of the prompt. In contrast, “PE
to Beginning” results in a noticeable performance
drop as well as attention weight reduction when the
gold KV is originally close to the end.

This phenomenon indicates us that, the direct
cause of the attention improvement in retrieval-
related layers, can only be the information trans-
mitted through hidden states (because PE and the
causal mask in these layers are both not modified).
That is, besides position embedding, the positional
information in hidden states, which is introduced
by causal mask, is also an important factor affect-
ing position bias.

2.3 Position Information can be clearly
manifested in Specific Hidden states
Channels

Definition 2.1 (Positional Hidden States). Let
hk(p) denote the k-th dimension of the hidden
states across each token’s position p. We define
positional hidden states ht as hidden states whose
values change consistently and monotonically with
the token position. Therefore, their derivative (after
curve fitting) should always be positive or negative:

• h′t(p) > 0, ∀p or h′t(p) < 0, ∀p

We have found that the positional information
in hidden states can affect position bias, and pre-
vious works (Haviv et al., 2022) have proven po-
sitional information can be linearly probed from
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(a) Vertical Line Pattern
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(b) Diagonal Line Pattern (c) Across Context Lengths

Figure 2: Attention distribution of the gold KV pair to each KV pair across different positions on the KV retrieval
task (Liu et al., 2024) using Mistral-7B (Jiang et al., 2023). (a) and (b) show the results averaged across all heads
of the layer. (c) shows the attention of the ground-truth KV to the ground-truth KV (i.e., diagonal lines from (b))
across different context lengths.

1st 10th 20th 30th 40th 50th
Position of ground-truth KV

0

1

2

3

A
tte

nt
io

n 
W

ei
gh

t (
1e

-3
)

1st 10th 20th 30th 40th 50th
Position of ground-truth KV

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y(
%

)

Original Crop Mask PE to Beginning PE to End

Figure 3: Performance and attention of different methods with the ground-truth KV at different positions in the KV
retrieval task (Liu et al., 2024) using Mistral-7B (Jiang et al., 2023).

hidden states. However, the high-dimensional hid-
den states make it hard to concentrate on certain
low-dimensional subspace to directly perceive or
manipulate positional information in LLMs. To
make this easier, we make a strong assumption:
the positional information (at least part of it) in
the hidden states should be manifested as activa-
tion values linearly correlated with each token’s
absolute position. Thus, on average, there should
exist some channels whose values change roughly
monotonically with the absolute token positions,
as shown in Definition 2.1. We call those channels
positional channels and the parts of hidden states
belonging to these channels as positional hidden
states.

Based on this assumption, to identify positional
channels, we average the model’s hidden states
using 2000 randomly generated strings as inputs,
whose lengths are 1000, to make an average hidden
states with shape [sequence length, hidden size].
Then we traverse each channel (along hidden size
axis, in other words, hidden size is the number
of channels) to check whether its activation values
(a one-dimensional array of sequence length) are

changing monotonically with token positions. To
eliminate the effect of outliers and noise, we apply
sliding window average with window size of 100
to that array and discard the first 30 tokens (be-
cause the hidden states values of these tokens are
often too huge (Sun et al., 2024)) before checking
monotonicity.

As the results shown in Figure 4, even though our
assumption is very strong, our experiments reveal
that causal LMs consistently possess such hidden
states across most layers (details in Appendix G),
regardless of whether the model has position em-
beddings. We further demonstrate that position
hidden states are mainly determined by the causal
mask but not position embeddings through pertur-
bation experiments in Appendix D.4.

Finally, we aim to confirm that even a single
position channel can significantly affect position
bias. So we conduct an experiment on KV retrieval,
where we manually modify (subtract a fixed value
from them) the values in the 213rd hidden states
channel of Mistral-7b of a KV pair, and find the
attention to this KV indeed greatly increases, which
proves our posit. Details about this experiment are
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Figure 4: Hidden states values with the token positions of the positional channel averaged across all layers.

in Appendix D.5.

3 Mitigating Position Bias

Previous work focusing on PE often attempted to
refine the application of RoPE, essentially minimiz-
ing the gap in position information (introduced by
RoPE) between tokens in different positions.

In Section 2, we have identified positional in-
formation in hidden states as another factor caus-
ing position bias, and found positional channels
strongly related to positional information. Thus,
similarly, to minimize the gap in position infor-
mation (introduced by positional information in
hidden states) between tokens, the most direct way
is to scale the activation values of those channels.

Therefore, we propose a method to mitigate po-
sition bias by scaling the positional hidden states,
as shown in Figure 5. Specifically, it consists of
two steps: identifying the positional hidden states
ht and scaling (multiplying) them by a factor s.

3.1 Problem Formulation
Given a pre-trained LLM θ and a general dataset
{x,y}, our objective is to find the optimal posi-
tional hidden states ht, i.e. the t-th channel of the
hidden states, and the corresponding scaling factor
s to maximally reduce position bias, which can be
formulated as follows:

argmin
ht∈H,s<1

1

|P |

|P |∑

i=1

L (x,y,pi;F (θ, ht, s)) (1)

where P represents the set of different positions
pi of the key information within the context of
the prompt x, F (θ, ht, s) denotes the operation
of scaling the LLM θ on the t-th channel (t ∈
[1, hidden size]) of its hidden states by the scaling
factor s (the specific scaling method is in Section
3.3), and L denotes the loss for general downstream
tasks of the modified model.

In practice, due to the computing cost, the loss
is computed on a small validation dataset of some
representative tasks. Intuitively, we can traverse
all different values of t and obtain the loss on a
calibration (validation) dataset to find the optimal
one. However, due the large hidden size which
is typically over 4k, traversal search is too time-
consuming, taking nearly 3 days for a 7B LLM.
So, we design a search algorithm, mainly based on
the monotonicity feature mentioned in Section 2, to
first select a small set (no more than 50) of channels
that are most likely to carry positional information
that can affect position bias. Then we only need to
traverse the small set of candidates to obtain their
losses.

3.2 Identifying Positional Hidden States

We have defined positional hidden states in Defi-
nition 2.1, but it is just an ideal situation. In prac-
tice, because the hidden states is mainly determined
by specific input text, the original values of them
will not strictly satisfy monotonicity, which means
we cannot rely on strict monotonicity to select the
positional channels, but whether it roughly con-
forms to monotonicity. Thus, we use least square
polynomial fit to approximate the values in the
channel. Moreover, hidden states of different layers
also vary. So we consider this channel as roughly
monotonic if the fitted curve conforms to mono-
tonicity in more than a quarter of all the layers of
the model.

Using curve fitting, we can usually identify
dozens or hundreds of channels that exhibit var-
ious degrees of monotonicity. However, some of
them are very close to the ideal monotonic curve,
while others fluctuate violently although they are
roughly monotonic. So we use another indicator,
smoothness, to evaluate if how close they are to the
ideal monotonic change. The smoothness score is
calculated by

∫
|h′′t (p)|2, where h′′(p) is the sec-
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Algorithm 1 Positional Hidden State Search
1: Input: LLM θ, hidden states H, layer number

L, validation set Dval, positions set P , thresh-
old ε

# Indentify top-K positional dimensions
2: ρ← ϕ
3: for t← 1 to |H| do
4: ct ← 0, gt ← 0
5: for l← 1 to L do
6: if h′

t(p) > 0,∀ p or h′
t(p) < 0,∀ p then

7: ct ← ct + 1, gt ← gt + Smooth(hl
t)

8: end if
9: end for

10: if ct > ε then
11: ρ← ρ ∪ {t}
12: end if
13: end for
14: ρ← argminK

t∈ρ
gt

# Evaluate on the validation dataset
15: for t ∈ ρ do
16: Lt ← 0
17: for p ∈ P do
18: Lt ← Lt + L(x,y, p;F (θ, ht, s))
19: end for
20: end for
21: t← argmink

t∈ρ
Lt

22: return t

ond derivative (or difference) of h(p), and a smaller
score means smoother. Only when ht is considered
roughly monotonic, its smoothness score will be
calculated, and averaged across layers. Then we
only maintain the channels with the Top-K smooth-
ness score. K is set to 10 in our default setting.

Finally, we evaluate the average loss across K
channels using a 100-sample calibration dataset for
KV retrieval. The channel with the lowest loss is
chosen for scaling.

To determine the optimal scale factor, we per-
form a grid search over {0.5, 0, -0.5, -1}, selecting
the factor with the lowest loss.

We organize our search algorithm in Algo-
rithm 1, the search process consists of the following
two steps: 1) Identify all the channels ρ of the hid-
den states that are roughly monotonic in more than
ε layers, and select the top-K channels with the
lowest smoothness score. Here ct is the number
of layers where ht(p) is monotonic, and gt is the
smooth score of ht(p). 2) Use a small calibration
dataset Dval = {x,y} to evaluate the impact of
scaling these positional hidden states respectively
and select the channel ht that can lead to the mini-
mal loss Lt.

3.3 Scaling Positional Hidden States
In our early experiments we find simply scaling
the positional channel of the hidden states in ev-
ery layer or in every module of the model can lead
to unstable performance of the model. Therefore,
to minimize the side-effect of scaling positional
hidden states, our proposed method is finely de-
signed to scale the positional hidden states only
affecting the attention weights from last token of
the sequence, as shown in Figure 5.

Due to the inherent lack of interpretability in
the working mechanisms of LLMs, our design is
mainly based on the experience of trial and error ex-
periments. So, we use some ablation experiments,
shown in Appendix E, to explain why we scale only
1 channel but not more, modify the last token’s at-
tention but not all tokens, and use 3 indicators to
search the optimal channel.

Specifically, in our method, for the tokens pre-
ceding the last token, the attention calculation re-
mains the same as the original. In a sequence of
length l, for the last token’s attention computation,
we obtain the modified query state ql (of the l-th
token, i.e. the last token) and key states K (of all
the tokens) by scaling the positional hidden states.
That is,

ql = P(WQf(h(l), p, s), l)

K = P(WKf(h, p, s), [1, 2, ..., l])
(2)

Here f(h, p, s) means the p-th channel of h is
scaled by the factor s. Therefore, the combined
attention calculation is as follows:

z =





Softmax(
qiK

⊤ + Mask√
d

)V , i < l

Softmax(
qlK

⊤
√
d

)V , i = l

(3)

where z is the attention output.
Except calculating the combined attention

weights, the other modules remain the same as
those in the original method. We implement our
method using FlashAttention-2 (Dao, 2024) with
minimal overhead, so our approach results in only
a slight increase in latency, as shown in Appendix
C.4,

Moreover, we find modifying the hidden states
in the initial layers (especially the 1st or 2nd layer)
will also make the model’s output more unstable,
as well as the last layers. Thus we only apply
our scaling to layers in the middle (they are more
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Figure 5: The framework of scaling positional hidden states and modifying attention.

likely to be retrieval-related layers), for example,
the 10th to 25th layers with total 32 layers. The
specific layer selection is also based on engineering
experience.

4 Experiments

4.1 Setup

Evaluation Tasks and Models We apply our
method to a wide range of popular open-source
LLMs, including: 1) RoPE (Chen et al., 2023) mod-
els: LLaMA-2 (7B, 13B) (Touvron et al., 2023),
Mistral-7B (Jiang et al., 2023), Gemma-7B (Team
et al., 2024), Qwen1.5-7B (Bai et al., 2023); 2) Con-
text window extended models: Vicuna-16k (7B,
13B) (Chiang et al., 2023); 3) Alibi (Press et al.,
2022) models: MPT-30B (Team, 2023). All the
models are instruction-tuned versions.

And we evaluate the performance in 2 aspects:
1) Position-bias-related tests: “lost in the mid-
dle” benchmark, including NaturalQuestion multi-
document QA (Liu et al., 2024) and KV re-
trieval (Liu et al., 2024) with the Gold document or
KV at different positions in the context. The multi-
document QA task includes 20 documents with a
prompt length of about 2.3k tokens, while the KV
retrieval task includes 140 KV pairs with an aver-
age length of about 10k tokens. 2) General long-
context multi-task benchmark: LongBench (Bai
et al., 2024), including multi-document QA, single-
document QA, summarization, few-shot learning,
synthetic tasks, and code completion, totaling 16
tasks with an average length of 37k tokens.

For prompts that exceed the context windows
of LLMs, we follow LongBench’s approach by
truncating from the middle and retaining the head
and tail of the prompt to fit within the context win-
dows. We use the metrics and scripts provided by
the benchmark’s github repository for evaluation.
More details about the benchmarks are in Appendix

B.

Implementation Details We implement our ap-
proach using PyTorch and HuggingFace Transform-
ers in an A100 GPU. To ensure stable and repro-
ducible results, we use greedy decoding in all gen-
eration experiments.

In the searching algorithm, we set the top-K to
top-10 and ε to L/4, where L is the number of total
layers. The search process takes approximately 10
minutes. The details of the scaling channels, layers,
and factors are shown in Appendix C.3.

Baselines Besides the original models, we in-
clude another training-free positional bias mitiga-
tion method as the baseline, which is signified by
w/ Ms-PoE (Zhang et al., 2024). It is a head-wise
position embedding scaling method, and we follow
its default settings to apply scaling coefficients of
1.2 to 1.8 starting from the 3rd layer.

4.2 Main Results

From the evaluation results of “lost in the mid-
dle” benchmark in Table 1, several conclusions can
be drawn: 1) Our method better improves overall
performance at most positions, with the average
improvement of up to 9.3%, 15.2% in NQ and
KV retrieval, respectively, except for LLaMA-2-
13B in KV retrieval. 2) Our method effectively
enhances LLMs’ exploitation of information lo-
cated in the middle and rear parts of the prompt.
When key information is at the beginning of the
prompt, performance is sometimes increased or
decreased. Considering only the average perfor-
mance of the last four positions, our method’s im-
provements over the original increase to 11.3%
and 16.8% in NQ and KV retrieval, respectively,
much higher than MsPoE. 3) Our method demon-
strates better generalization performance, showing
improvement on nearly all types of models, regard-
less of RoPE models, context window extended
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Methods NaturalQuestion KV Retrieval
1st 5th 10th 15th 20th Avg. 0% 25% 50% 75% 100% Avg.

LLaMA-2-7b-chat 32.4 23.8 30.6 31.6 38.2 31.3 77.6 24.6 62.0 35.6 78.0 55.6
LLaMA-2-7b-chat w/ Ms-PoE 40.8 29.2 33.0 32.8 39.6 35.1 95.0 29.8 21.4 51.8 89.8 57.6
LLaMA-2-7b-chat w/ Ours 33.6 34.0 40.6 43.0 51.8 40.6 63.6 38.0 82.2 40.6 94.6 63.8

LLaMA-2-13b-chat 45.2 39.6 40.4 44.2 51.0 44.1 74.2 39.0 70.4 84.4 86.8 71.0
LLaMA-2-13b-chat w/ Ms-PoE 48.4 41.4 42.4 45.4 52.6 46.0 87.8 28.0 35.4 49.2 83.0 56.7
LLaMA-2-13b-chat w/ Ours 50.6 43.4 45.0 49.4 58.2 49.3 41.2 17.0 49.6 76.8 84.8 53.9

Vicuna-7b-v1.5-16k 70.4 54.8 46.8 45.8 47.8 53.1 98.4 0.8 0.2 0.2 0.2 20.0
Vicuna-7b-v1.5-16k w/ Ms-PoE 67.0 55.2 50.6 46.8 48.2 53.6 97.4 36.8 15.6 5.2 6.6 32.3
Vicuna-7b-v1.5-16k w/ Ours 63.8 57.6 53.6 51.2 55.6 56.4 95.4 22.0 12.6 5.2 20.4 31.1

Vicuna-13b-v1.5-16k 67.4 48.2 45.2 45.6 44.4 50.2 95.6 74.2 64.2 58.8 18.2 62.2
Vicuna-13b-v1.5-16k w/ Ms-PoE 70.0 51.4 46.8 42.8 47.0 51.6 91.8 59.4 71.6 74.4 48.8 69.2
Vicuna-13b-v1.5-16k w/ Ours 67.4 51.4 47.6 48.8 48.0 52.7 97.2 83.4 80.8 68.8 35.4 73.1

Mistral-7b-Instruct-v0.2 57.2 55.0 61.2 61.6 62.6 59.5 99.8 93.0 89.0 95.0 94.2 94.2
Mistral-7b-Instruct-v0.2 w/ Ms-PoE 58.2 60.0 62.6 58.8 62.2 60.4 99.8 95.6 88.4 96.0 95.4 95.0
Mistral-7b-Instruct-v0.2 w/ Ours 61.2 56.4 63.2 59.8 64.0 60.9 97.6 93.2 90.6 95.6 93.8 94.2

Gemma-1.1-7b-it 29.6 25.2 28.2 29.6 27.4 28.0 98.6 67.0 62.4 83.4 100.0 82.3
Gemma-1.1-7b-it w/ Ms-PoE 33.8 29.0 31.6 28.6 28.6 30.3 0.0 0.0 0.0 0.0 0.0 0.0
Gemma-1.1-7b-it w/ Ours 35.4 31.4 36.0 35.4 35.0 34.6 97.6 95.8 97.6 96.8 99.6 97.5

Qwen1.5-7b-chat 72.4 53.8 52.2 51.2 54.4 56.8 100.0 97.2 84.6 60.0 56.4 79.6
Qwen1.5-7b-chat w/ Ms-PoE 67.4 49.8 48.2 47.4 47.0 52.0 3.4 1.4 2.8 2.6 0.6 2.2
Qwen1.5-7b-chat w/ Ours 67.4 55.2 53.6 56.0 59.4 58.3 97.2 95.6 98.8 76.6 94.4 92.5

MPT-30b-chat 75.6 49.6 39.0 33.4 39.6 47.4 71.4 34.8 31.6 41.6 74.0 50.7
MPT-30b-chat w/ Ms-PoE / / / / / / / / / / / /
MPT-30b-chat w/ Ours 75.0 48.8 41.6 40.6 44.0 50.0 99.0 65.8 48.6 46.6 69.4 65.9

Table 1: Performance of different methods with different models on NaturalQuestions (20 docs) (Liu et al., 2024)
and KV retrieval (140 KV pairs) (Liu et al., 2024) dataset. “/ ” signifies “not applicable”.

models like Vicuna-16K, or Alibi models like MPT.
In contrast, Ms-PoE causes instability of the output
of Qwen and Gemma in KV retrieval, leading to
very low accuracy.

From the evaluation results of Longbench in Ta-
ble 2, our method demonstrates varying degrees
of improvement across different tasks, with the
most significant increases being 1.5% in few-shot
learning tasks, 3.4% in code tasks, 4% in synthetic
tasks, 9.2% in single document QA tasks, and 1.9%
in multi-document QA tasks. However, maybe
because Longbench mainly focuses on comprehen-
siveness and reality, the influence of position bias
on these tasks is relatively minimal, our method
does not significantly improve the average scores
(only a little). But it at least demonstrates that it
will not impair the model’s original capability to
handle various long context tasks.

4.3 Analysis

From Bias to Balance As shown in Table 1,
there is an trend that our method generally in-
creases performance when the key information is
at the middle or end, but decreases when at the
beginning. It reveals a possible fact that the po-

sitional hidden states may be an important factor
causing the model to overly focus on the beginning
parts of the context while miss the rear or middle
parts. Therefore, scaling positional hidden states
by a scaling factor less than 1 can reduce its im-
pact, thus shift the model’s attention distribution
from the bias to the beginning to a more balanced
distribution.

In theory, a scaling factor over 1 amplifies the
effect of positional hidden states, and one between
0 and 1 shrinks it. A negative factor can even re-
verse it. Correspondingly, as shown in Figure 6,
a positive scaling factor over 1 causes the model
to focus more on the beginning, while a negative
factor shifts the focus towards the end. A factor
between 0.5 and -1 leads to a relatively balanced
attention distribution, where the average accuracy
also peaks. These results demonstrate that scal-
ing positional hidden states are essentially steering
the position information in the model, to shift the
position bias towards our desired direction.

Side Effects It is natural to concern scaling
hidden states may impair the model’s normal
workflow. So we utilized MMLU benchmark
(Hendrycks et al., 2021), which assesses LLMs’
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Models SingleDoc MultiDoc Synth. Summ. FewShot Code AVG

LLaMA-2-7b-chat 28.9 29.7 6.6 26.3 61.2 47.1 33.3
LLaMA-2-7b-chat w/ Ms-PoE 29.8 31.7 10.5 26.7 61.0 48.1 34.6
LLaMA-2-7b-chat w/ Ours 29.2 29.3 9.7 25.0 61.6 46.9 33.6

LLaMA-2-13b-chat 21.4 14.6 11.2 26.1 61.5 39.8 29.1
LLaMA-2-13b-chat w/ Ms-PoE 20.8 15.4 12.7 27.3 62.8 36.3 29.2
LLaMA-2-13b-chat w/ Ours 30.6 9.6 10.8 25.7 62.6 43.2 30.4

Vicuna-7b-v1.5-16k 30.2 21.6 7.2 26.7 53.9 40.5 30.0
Vicuna-7b-v1.5-16k w/ Ms-PoE 32.3 24.2 8.3 28.0 55.2 43.1 31.8
Vicuna-7b-v1.5-16k w/ Ours 27.1 22.1 11.2 26.1 55.0 40.2 30.3

Vicuna-13b-v1.5-16k 31.1 33.8 21.2 26.2 62.0 39.8 35.7
Vicuna-13b-v1.5-16k w/ Ms-PoE 34.5 33.1 16.0 27.5 64.5 37.6 35.5
Vicuna-13b-v1.5-16k w/ Ours 30.1 35.1 25.0 25.8 63.5 41.7 36.9

Mistral-7b-Instruct-v0.2 37.8 28.5 49.7 28.8 65.3 52.9 43.8
Mistral-7b-Instruct-v0.2 w/ Ms-PoE 41.7 22.2 38.4 2.8 23.8 19.5 24.7
Mistral-7b-Instruct-v0.2 w/ Ours 38.4 30.4 49.8 29.4 64.8 52.9 44.3

Gemma-1.1-7b-it 39.4 23.2 32.2 24.2 14.4 19.8 25.5
Gemma-1.1-7b-it w/ Ms-PoE 41.7 22.2 38.4 24.9 14.0 19.5 26.8
Gemma-1.1-7b-it w/ Ours 39.0 23.0 35.5 24.5 14.9 19.3 25.7

Qwen1.5-7b-chat 46.4 39.5 38.4 22.3 56.4 50.2 42.2
Qwen1.5-7b-chat w/ Ms-PoE 42.0 41.5 30.3 25.7 46.5 38.0 37.3
Qwen1.5-7b-chat w/ Ours 45.8 38.8 38.5 22.1 57.6 49.6 42.2

MPT-30b-chat 27.9 21.9 7.5 25.7 57.3 39.3 29.9
MPT-30b-chat w/ Ms-PoE / / / / / / /
MPT-30b-chat w/ Ours 29.4 19.5 6.7 25.8 57.6 40.1 29.9

Table 2: Performance of different methods with different models on LongBench (Bai et al., 2024).

Model MMLU Reorder

Vicuna-7b-v1.5-16k 48.22 20.83
Vicuna-7b-v1.5-16k w/ Ours 48.38 20.83

Qwen1.5-7b-chat 60.84 28.13
Qwen1.5-7b-chat w/ Ours 61.43 28.13

Mistral-7B-Instruct-v0.2 60.31 18.75
Mistral-7B-Instruct-v0.2 w/ Ours 60.38 19.79

Table 3: Performance of difference models on MMLU
and the timeline reorder task, before and after applying
our method.

general capabilities, and the timeline-reorder task
from LooGLE (Li et al., 2024), which requires
arranging events chronologically across extensive
text and is sensitive to positional information, to
evaluate whether our method will impair the origi-
nal abilities of LLMs. As shown in Table 3, there
is no significant detriment to the models’ perfor-
mance with our methods in default settings.

5 Conclusion

We propose a method which scales positional hid-
den states to mitigate the position bias issue of
LLMs. Specifically, our study first explore the re-
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Figure 6: Attention distribution on KVs at different
positions (depths) and performance when scaling the
2,393rd channel of Vicuna-7b with different scale fac-
tors on KV retrieval (Liu et al., 2024) of 100 KV pairs.

lationships between position bias (in the model’s
performance), attention weights, causal mask, po-
sitional information in hidden states and positional
channels, to confirm the positional channels can
affect position bias. Based on these findings, we
design a positional channel search algorithm to
identify positional hidden states, and mitigate the
model’s position bias by scaling the positional hid-
den states. These findings provide a new perspec-
tive for research related to position information and
position bias of LLMs.
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Limitations

The selection of layers to apply is mainly based on
engineering experience. And although our method
has tried to minimize the side effect of scaling hid-
den states, if choosing a too large scale factor or
an inappropriate channel to scale, we still observe
significant performance degradation.

Some newly released models like Qwen2.5
(Qwen et al., 2024) have achieved nearly perfect
performance on retrieval-based long-context tasks.
Thus, on traditional benchmarks, our method may
not bring more improvement. Experiment on more
newly released models and benchmarks may still
be needed in the future.
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A Related Works

Addressing Position Bias Recent works reveal
that LLMs often exhibit position bias, also known
as the "lost in the middle" phenomenon (Liu et al.,
2024; Kamradt, 2023). Previous efforts to mitigate

this bias fall into several categories: 1) RoPE-based
methods: These approaches modify the RoPE com-
putation process to alleviate long-distance atten-
tion decay (less attention means less information
retrieved), including Attention Bucket (Chen et al.,
2024), which uses an ensemble of multiple RoPE
bases to mitigate position bias, and Ms-PoE (Zhang
et al., 2024), which dynamically interpolates with a
small coefficient for different heads. 2) SFT-based
methods (He et al., 2024a; Yu, 2023; An et al.,
2024): These methods construct data with more
diverse key information distributions or employ
system2think SFT tasks to mitigate position bias.
They require further training of the model. 3) Atten-
tion mask-based methods (He et al., 2024b): These
methods modify attention mechanisms, including
Attention Transition (Gao et al., 2023), which redi-
rects attention to significant parts of the context and
Stable Mask (Yin et al., 2024), which introduces
pseudo attention into the causal mask, ensuring
stable attention distribution when facing lengthy
texts. 4) Prompt-based methods (Jiang et al., 2024;
Peysakhovich and Lerer, 2023): These methods
introduce an external module to reorder or com-
press information in the prompt, thereby mitigating
position bias.

B Datasets Details

We choose NaturalQuestion Multi-document QA
and Key-Value Retrieval datasets used in “lost in
the middle” paper (Liu et al., 2024) to evaluate
the degree to which our method alleviates posi-
tion bias. NaturalQuestion Multi-document QA
requires the model to answer the question based on
one key information document which is inserted in
a long context consisting of many irrelevant docu-
ments. And Key-Value Retrieval needs the model
to retrieve the value corresponding to the given key
from a list consisting of hundreds of Key-Value
pairs. These two datasets are both classic long-
context tasks which aim to evaluate the differences
of model performance when key information is
located at different positions in the context. The
evaluation metric is accuracy, based on whether the
model’s response contains the string of the correct
answer.

In addition, we evaluate our method’s im-
provements across multi task types, using Long-
Bench (Bai et al., 2024), a benchmark for bilin-
gual, multitask, and comprehensive assessment
of long context understanding capabilities of
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LLMs. It contains six major categories, cov-
ering single-document QA, multi-document QA,
summarization, few-shot learning, synthetic tasks
and code completion. The evaluation metrics are:
F1 for single-document QA and multi-document
QA, Rouge-L for summarization, accuracy (exact
match) for few-shot learning and synthetic tasks,
and edit similarity for code completion. During in-
ference, since the original context may sometimes
be too long, the input sequences will be truncated
in the middle part to avoid exceeding the context
window of the model.

C Other Implementation Details

C.1 Curve Fitting
When we perform curve fitting on h(p), we use
least-squares cubic polynomial fit. And when judg-
ing its monotonicity, we skip the first 30 positions
because the first a few values are often outliers.
Since h(p) is originally a discrete function, in prac-
tice, we employ the second-order difference to ap-
proximate the second-order derivative when com-
puting smoothness.

C.2 Ms-PoE on Mistral
When applying Ms-PoE (Zhang et al., 2024) to
mistral-7b (Jiang et al., 2023) with its default pa-
rameters (minimal scale factor is 1.2 and maximal
is 1.8), we found the model fail to generate normal
responses, so we set the maximal scale factor to
1.2, under which Ms-PoE (Zhang et al., 2024) is
equal to PI (Chen et al., 2023) with scale factor 1.2.

C.3 Parameters of the Scaling Method

Model Channel Index Scale factor Applied layers

LLaMA-2-7b-chat 2,393 -1 10~25
LLaMA-2-13b-chat 4,283 -1 10~34
Vicuna-7b-v1.5-16k 2,393 0 10~25
Vicuna-13b-v1.5-16k 4,923 0 10~34
Mistral-7B-Instruct-v0.2 213 0 10~25
Gemma-1.1-7b-it 1,665 0 10~22
Qwen1.5-7b-chat 1,081 0.2 10~25
MPT-30b-chat 6,926 0 10~42

Table 4: The scaled channels, scale factors and applied
layers of models.

The scaled channel indices, scale factors and
applied layers of each model we use in out experi-
ments are shown in Table 4.

C.4 Inference Latency
Table 5 shows the running time of LLaMA-2-7b-
chat with different methods in the KV retrieval

Method KV Retrieval Multi-Doc

FlashAttention-2 22 14
Ours 32 15
Ms-PoE 61 26

Table 5: Average inference time (minutes) of LLaMA-
2-7b-chat in a single A100 on KV retrieval.

dataset consisting of 500 samples with average
length of about 10,000, and the multi-document
QA dataset consisting of 500 samples with aver-
age length of about 3,300. Our method requires
recompute the query and key states, thus inevitably
requires more time compared to baseline, but the
cost is within an acceptable range. In contrast,
Ms-PoE (Zhang et al., 2024) need to compute the
attention weights twice, resulting in a doubling of
time consumption.

D Details of The Confirmatory
Experiments

D.1 Obtain Attention to Key Information
To avoid the influence of internal knowledge in the
model and make attention calculation simpler, we
conduct a KV retrieval task, whose prompt format
is as follows:

Json data:
{"os08jbk1limft6wgxeda":
"imx6lyp4b8ogjaq7ret1",
......(n key-value pairs)}

The value of key "os08jbk1limft6wgxeda"
is "

The last token of the prompt will directly account
for predicting the answer, i.e., the value which need
to be retrieved. Hence, the last token’s attention
weights to the previous text can reflect whether it
accurately retrieves the key information. We define
the model’s attention (in some layer) to the key
information as AG in Eq 4, where G represents
the set of token positions corresponding to where
the key information is at, l is the position of the
last token of the prompt, and al,j represents the
attention weight of the l-th token to the j-th token.
By shifting G, we use the same method to calculate
its attention to each other KV pairs.

AG =
1

|G|
∑

j∈G
al,j (4)
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D.2 Attention is Related to Performance

As shown in Figure 7, when we manually double
the attention weights of the gold KV (i.e. the 25th
KV, as illustrated in Figure 7b) during the model’s
forward pass on the KV retrieval task, the retrieval
accuracy when the gold KV is the 25th KV im-
proves, (shown in Figure 7d). This demonstrates
that the attention weights to the key information
are positively correlated with retrieval accuracy.

D.3 How We Modify Causal Mask and
Position Embedding in KV Retrieval

In the method 1 in section 2.2, we crop the causal
mask to let the “key tokens” unable to attend the
previous tokens. As shown in Figure 8, the white
part represents the cropped part, which means atten-
tion weights are 0, and the orange part represents
the attention between tokens within key tokens. In
addition, we have retained the attention of key to-
kens to the first token to maintain the stability of at-
tention distribution. What is more, we only modify
the causal mask in layers 1~8, but as the results, the
attention to the key information is still significantly
improved in layers 15~31, which indicates the po-
sitional information generated by causal mask in
former layers can be transmitted to latter layers
using posisional hidden states as the medium, thus
modifying the causal mask solely in the former
layers can induce a profound shift in the model’s
comprehension of positional information.

In the method 2 and 3 in section 2.2, we mod-
ify the position embeddings through altering the
position ids. The specific operation is shown in
the Figure 9, in which we directly replace the posi-
tion ids corresponding to the key tokens with the
position ids of the starting tokens (or the ending
tokens) , and actually only the attention weights of
the last token to previous tokens are modified. We
apply this modification in all the layers. Compared
to modifying the causal mask, if only modify po-
sition embedding in former layers, the attention in
the latter layers remains almost unchanged, which
indicates the positional information generated by
position embedding may be temporary and can
hardly be transmitted across layers.

D.4 Perturbation on Causal Mask and
Position Embedding

To further explore the origin of these position hid-
den states, we performed perturbation experiments.
As depicted in Figure 11c, subtracting 200 from the

position ids corresponding to the 400th to 600th
tokens (reducing PE) had only a minor effect on the
position hidden states, whereas, in Figure 11b, crop
the causal mask to make the 400th to 600th tokens
unable to attend the 1st to 400th tokens (cropping
causal mask) led to significant fluctuations in po-
sitional hidden states of the 400th to 600th tokens.
This result proves the causal mask is the main fac-
tor causing this kind of positional hidden states,
and it is the token’s position in the causal mask that
determines its value in the positional hidden states,
but not position ids of position embedding.

D.5 Positional Hidden States Affect Attention

Although it is intuitive that these monotonically
changing hidden states channels convey rich posi-
tional information, it is unclear how much impact
one position channel will have on position bias. To
find out this, we modify the position hidden states
values to see corresponding attention changes, in a
KV retrieval task with 50 KV pairs while the gold
KV is the 26th KV.

Specifically, we subtract 0.3 from the 213rd
channel of the hidden states of the tokens of the
26th and 36th KV respectively (in layer 15 to 20 of
Mistral-7b-v0.2), and observe the change of posi-
tional hidden states (the 213rd channel) and atten-
tion weights of each KV.

As shown in Figure 10, we show each KV’s av-
erage hidden state value of the 213rd channel of
Mistral-7b-v0.2 and the average attention to each
KV, which are both averaged across layer 15 to
20 (because they are retrieval-related layers). It is
clear that when the positional hidden states values
of the 26th or 36th KV greatly drop, the attention
to it is greatly increased, even over the level of
the 1st KV, regardless of whether it is the gold
KV. Therefore, we confirm only changing one po-
sitional channel can significantly affect attention,
thus affect position bias.

E Ablation Experiments of the Searching
Algorithm

To evaluate the contributions of different compo-
nents in our method, we introduce the following
sets for the ablation study: (1) Ours w/o monotonic-
ity, w/o smoothness, and w/o validation set, which
adjust the search algorithm by not considering one
of these three indicators, respectively (details in
Appendix C). (2) Ours w/ scale 2 channels, which
scales the top-2 positional hidden states simultane-
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Figure 7: Distribution of attention weight and accuracy as the gold KV is placed at different positions in the prompt.
(b) and (d) are situations when the attention on the 25th KV pair is manually modified.

Key Tokens

Figure 8: Cropping the causal mask to let key tokens unable to see previous tokens, except the first token.

ously. (3) Ours w/ modify last 16 tokens and w/
modify all tokens, which adjust the range of tokens
affected by the scaling operation in Equ.(3).

Table 6 shows the ablation results. It can be seen
that without filtering by monotonicity or smooth-
ness, performance may decline, and removing the
validation set results in more decline in model per-
formance. When the range of tokens or channels
affected by scaling is expanded, most models expe-
rience varying degrees of performance loss. Con-
sidering these factors, we choose to modify only
the last token and the top-1 positional channel to
achieve the best performance.

F Attention Distribution Layer-wise and
Head-wise

Figure 12 shows Mistral-7b’s attention to each
KV pair of each layer (average across all attention
heads) in the context in a KV retrieval task when
the gold KV is put at different positions. The y-
axis is the gold KV’s position, x-axis is each KV’s
position, and the scale of the colorbar represents
attention (10−3). We can observe that diagonal pat-
terns, which indicates the attention is concentrated
on the “key tokens”, appear only in the latter layers

(start from layer 14), and may be a manifestation
of retrieval behavior. In contrast, the former layers
only focus on the beginning or end, regardless of
where the key information is located.

Figure 13 shows the head-wise situation of layer
15. We can see actually only a portion of attention
heads exhibit diagonal patterns, which may corre-
spond to retrieval heads (Wu et al., 2025). The
attention distribution in these heads also shows a
pattern corresponding “lost in the middle”, being
larger at the beginning or end while significantly
smaller at the middle.

G Positional Hidden States Visualization

We show various models’ positional hidden states
of each layer in Figure 14. When visualizing, we
discard the first 30 tokens because the hidden states
values of these tokens are often too huge (usually
hundreds of times larger than the normal value (Sun
et al., 2024)), which can disrupt monotonicity. We
observe its monotonic trend may first appears just
in the first layer (actually just after the first attention
module), and continues to be more marked.
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Figure 9: Shifting position ids to the start (PE to beginning).

Method LLaMA-2-7b Vicuna-13b Gemma-7b Mistral-7b Qwn1.5-7b

not applied 31.3 50.2 28.0 59.5 56.8

Ours 40.6 52.7 34.6 60.9 58.3
w/o monotonicity 40.6 51.8 34.6 60.9 58.3
w/o smoothness 40.6 52.7 27.8 60.9 58.3
w/o validation set 30.1 51.8 26.5 60.9 58.3
w/ scale top-2 channels 37.2 50.8 31.7 60.1 57.2
w/ modify last 16 tokens 41.6 51.5 34.6 59.7 58.1
w/ modify all tokens 44.0 50.8 31.7 59.5 57.4

Table 6: Average performance of different ground-truth positions using different methods on NaturalQuestions
multi-document QA dataset (20 documents) (Liu et al., 2024).
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Figure 10: The positional hidden states and attention of each KV in a KV retrieval task (the gold KV is the 26th
KV) of Mistral-7b-v0.2. (a)(b) We modify the hidden states of the 26th KV. (c)(d) We modify the hidden states of
the 36th KV. (a)(c) The value of the 213rd channel of the hidden states (averaged across layer 15 to 20) of each
KV (averaged across the tokens of the KV). (b)(d) The attention (averaged across layer 15 to 20 and across every
attention head) to each KV.
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Figure 11: We performed perturbation experiments on the causal mask and position embedding (PE), showing the
213rd channel of hidden states of some layers of Mistral-7b (Jiang et al., 2023) using randomly synthesized corpus
as input. It is clear that only cropping mask cause significant drop of positional hidden states values.
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Figure 12: The average attention weight distributed on each KV, of all the 32 layers of Mistral-7b, on a 50 KV pairs
retrieval task, when the gold KV is put at each different position.
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Figure 13: The average attention weight distributed on each KV, of all the 32 attention heads of layer 15 of
Mistral-7b, on a 50 KV pairs retrieval task, when the gold KV is put at each different position.
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(d) Tinyllama-NoPE

Figure 14: Hidden states values with the token positions of the positional channel of each layer. The x-axis represents
the position, and the y-axis represents the value of the states. (a) The 213rd channel of Mistral-7b-v0.2 (b) The
2393th channel of Llama2-7b (c) The 1942th channel of MPT-30b (d) The 1156th channel of TinyLlama-NoPE-1.1B,
which is a model without any position embeddings.
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