
Findings of the Association for Computational Linguistics: ACL 2025, pages 5742–5763
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Memory or Reasoning? Explore How LLMs Compute Mixed Arithmetic
Expressions

Chengzhi Li1 Heyan Huang1,2 Ping Jian*1,2 Zhen Yang1 Chenxu Wang1 Yifan Wang1

1School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
2Beijing Engineering Research Center of High Volume Language Information Processing

and Cloud Computing Applications, Beijing Institute of Technology, Beijing, China
{lichengzhi,hhy63,pjian,bityangzhen,wangchenxu,3220231253}@bit.edu.cn

Abstract

Large language models (LLMs) can solve com-
plex multi-step math reasoning problems, but
little is known about how these computations
are implemented internally. Many recent stud-
ies have investigated the mechanisms of LLMs
on simple arithmetic tasks (e.g., 𝑎 + 𝑏, 𝑎 × 𝑏),
but how LLMs solve mixed arithmetic tasks
still remains unexplored. This gap highlights
the limitation of these findings in reflecting real-
world scenarios. In this work, we take a step
further to explore how LLMs compute mixed
arithmetic expressions. We find that LLMs fol-
low a similar workflow to mixed arithmetic cal-
culations: first parsing the complete expression,
then using attention heads to aggregate infor-
mation to the last token position for result gen-
eration, without step-by-step reasoning at the
token dimension. However, for some specific
expressions, the model generates the final
result depends on the generation of interme-
diate results at the last token position, which
is similar to human thinking. Furthermore, we
propose a Causal Effect Driven Fine-tuning
method (CEDF) to adaptively enhance the iden-
tified key components used to execute mixed
arithmetic calculations to improve LLMs’ rea-
soning ability.

1 Introduction

In recent years, large language models (LLMs)
have demonstrated excellent performance in com-
plex reasoning tasks (Mondorf and Plank, 2024).
Through large-scale pre-training, in-context learn-
ing, and chain-of-thought(CoT) techniques, LLMs
can solve math problems at the high school level
and above (He et al., 2024). However, their com-
plex reasoning ability is relatively poor without
using CoT (Yu et al., 2024).

When solving arithmetic problems without CoT,
do LLMs output corresponding answers based on
memory directly, or do they perform operations

* Corresponding author

equivalent to arithmetic rules internally (reason-
ing)? This reflects whether the models have truly
understood arithmetic problems, further determin-
ing the extent to which we can trust the outputs
of LLMs. In recent years, with the development
of interpretability techniques, the understanding
of how large models tackle simple text compre-
hension tasks and perform basic arithmetic calcu-
lations has been steadily increasing (Hanna et al.,
2023; Wang et al., 2023; Quirke and Barez, 2024;
Stolfo et al., 2023). However, how LLMs accom-
plish more complex mathematical reasoning tasks,
which are prevalent in real-world applications, still
remains mysterious.

In this work, we preliminarily explore mixed
arithmetic calculation, a complex multi-step mathe-
matical reasoning problem. People solve the values
of sub-expressions of mixed arithmetic expressions
step by step in the order of the Parenthesis, Expo-
nents, Multiplication, Addition, and Subtraction
(PEMDAS) rules, ultimately arriving at the cor-
rect answer. Do LLMs execute mixed arithmetic
calculations in the same rule?1

To figure out the answer to this question, we
conducted the following explorations: 1) Based
on causal effect attribution, we identify the key
components that the model uses to execute differ-
ent mixed arithmetic expressions. 2) Using Patch-
scopes (Ghandeharioun et al., 2024) and pattern
analysis, we explore the composition of key com-
ponents and the functional roles of each component.
Through knockout experiments, we verified these
perspectives.

Therefore, we confirmed that the model com-
pletes mixed arithmetic tasks as follows: as the
activation propagates forward, the model first un-
derstands task instruction, then comprehensively
parses the expression, and finally aggregates the

1This work does not involve discussions on exponentiation
operations.

5742

operand information to the last token for result gen-
eration. This forward answer generation process is
similar to simple arithmetic tasks without step-by-
step reasoning, according to the PEMDAS rule at
the token dimension. However, we find that LLMs
exhibit similarities to human thinking in other as-
pects (perspectives 1 & 2).

In summary, LLMs complete mixed arithmetic
tasks in a manner that is neither purely memory-
based nor purely reasoning-based, reflecting
both similarities and differences compared to
human thought processes.

Compared to previous work, we emphasize the
following new perspectives:

1. Unlike simple arithmetic operations, LLMs’
key heads exhibit significant functional differ-
entiation, and different types of mixed expres-
sions activate different attention heads.

2. For some specific expressions, the model gen-
erates the final result that depends on the gen-
eration of intermediate results, which can be
seen as a form of arithmetic "reasoning" dif-
ferent from human thinking.

3. We propose a Causal Effect Driven Fine-
tuning method (CEDF) to adaptively enhance
the identified key components used to execute
mixed arithmetic calculations, which achieves
significant improvements compared to full
fine-tuning and precise tuning.

2 Related Work

2.1 Mechanical Interpretability
Mechanistic interpretability is a subfield of AI inter-
pretability that focuses on attributing model behav-
iors to its components, thus reverse engineering the
network (Saphra and Wiegreffe, 2024). Research
efforts have focused on understanding internal fea-
tures (Elhage et al., 2022; Ju et al., 2024; Allen-Zhu
and Li, 2024), identifying key components or cir-
cuit within models (Chughtai et al., 2023; Nanda
et al., 2023; Hanna et al., 2023; Lieberum et al.,
2023; Wang et al., 2023). In understanding the
internal features field, Patchscopes (Ghandehari-
oun et al., 2024) and SelfIE (Chen et al., 2024)
maps a given representation to a sentence in natu-
ral language, having obvious advantages over other
methods (Pal et al., 2023). In the field of detec-
tion circuits, activation patching is a classic circuit
detection algorithm based on causal mediation anal-
ysis (Vig et al., 2020). The EAP-IG algorithm is

a linear approximation to the activation patching
algorithm combined with the integral gradient to
estimate the importance of each edge in the com-
putational subgraph (Hanna et al., 2024).

We use Patchscopes to understand the internal
features of LLMs in mixed arithmetic calculation
tasks and use EAP-IG to identify the key mod-
ules and pathway in the calculation process in this
work (Ghandeharioun et al., 2024; Hanna et al.,
2024).

2.2 Interpretability on Arithmetic Tasks
The earliest explorations focused on arithmetic
problems with two or three operands (Quirke and
Barez, 2024; Nanda et al., 2023). Stolfo’s work
showed that early MLP modules establish an un-
derstanding of the concepts of operands and opera-
tors, while middle-layer attention heads transport
information from operand and operator tokens to
the last token, with late MLPs that integrate all
the information completing the computational rea-
soning (Stolfo et al., 2023). Zhang’s work further
explored this process, finding that less than 5% of
attention heads in LLMs are related to arithmetic
operations, and these components play a critical
role in solving complex mathematical application
problems (Zhang et al., 2024). Nikankin carefully
investigated the functions of neurons in key MLP
layers, discovering that 1.5% of neurons in each
layer combine in a pattern-recognition manner to
form bags of heuristics approach that complete
arithmetic reasoning (Nikankin et al., 2024).

Our work extends them to the more complex
case of mixed arithmetic expressions, which re-
quire understanding the relationship between mul-
tiple operators and parentheses.

Contemporaneously, Mirzadeh and Deng ex-
plored the nature of large models’ arithmetic
reasoning behavior from alternative research
perspectives beyond mechanistic interpretabil-
ity (Mirzadeh et al., 2024; Deng et al., 2024). Their
conclusions emphasize different aspects and do not
conflict with the viewpoints presented in this paper.

3 Experimental Setup

3.1 Task Definition
We define the expression of mixed arithmetic rea-
soning tasks studied in this work. In this paper, for
simplicity and ease of analysis, mixed arithmetic
expressions are inductively defined as follows:

1. Every integer 𝑘 ∈ Z is an expression.

5743

2. If 𝐸1 and 𝐸2 are expressions, then so are: 𝐸1+
𝐸2, 𝐸1 − 𝐸2, 𝐸1 × 𝐸2, 𝐸1 ÷ 𝐸2.

3. Define an evaluation function 𝑣 : Expr → Z
with the following recursive rules:

𝑣(𝑘) = 𝑘 (1)

𝑣(𝐸 + 𝐹) = 𝑣(𝐸) + 𝑣(𝐹) (2)

𝑣(𝐸 − 𝐹) = 𝑣(𝐸) − 𝑣(𝐹) (3)

𝑣(𝐸 × 𝐹) = 𝑣(𝐸) × 𝑣(𝐹) (4)

𝑣(𝐸 ÷ 𝐹) = 𝑣(𝐸) ÷ 𝑣(𝐹) (5)

where Expr is the set of all mixed arithmetic
expressions, and 𝑘 is an integer.

Since division is not closed over the set of in-
tegers, we define the result of division operations
as integer division results, ignoring cases where
exact division is not possible. We define 𝑣(𝐸) and
𝑣(𝐹) as the Intermediate Result (IR) values for
expression E <op> F, where <op> ∈ {+,−,×,÷}.

We use {𝑋1, 𝑋2, 𝑋3 . . . } to denote the operands
appearing in the expression in left-to-right order.
The task of mixed arithmetic operations is defined
as constructing a model that, given an expression,
outputs the final result of the expression. We will
explain this process in the following sections. The
task template is shown in Appendix A.

3.2 Datasets
We construct a dataset with different recursive
rounds, and the dataset consisting of all 𝑖-round ex-
pressions is named as D𝑖 . The values of operands,
IRs, and Final Results (FR) are constrained to the
range of [0, 1000). Random sampling is employed,
and we ensure that each expression prototype in
the dataset is represented by 2000 samples.

3.3 Models
We investigated the following four representa-
tive models: Qwen2.5-14B-Instruct (Qwen Team,
2024), Llama3-8B-Instruct (Dubey et al., 2024),
Phi-4 (Abdin et al., 2024), and Gemma-2-9B-
IT (Team et al., 2024). All results presented in
the main text are based on experiments conducted
with the Qwen2.5-14B-Instruct model. Results for
the other models are provided in the Appendix C.3
& D.4.

4 Key Component Detection

4.1 Method
We use the EAP-IG algorithm (Hanna et al., 2024)
to estimate the causal effect of each edge in the

mi
1

mi
2

mi
3 ...

mi
T

ai, j

mv
1

mv
2

mv
3 ...

mv
T

t=1 <q k v>

t=2 <q k v>

t=3 <q k v>

t=T <q k v>

t=1

t=2

t=3

t=T

mi
1

mi
2

mi
3 . . .

mi
T

mv
1

mv
2

mv
3 . . .

mv
T

t=1

t=2

t=3

t=T

ai, j

t=1 <q>
t=1 <k>
t=1 <v>
t=2 <q>

t=2 <k>

t=T <v>

av,u

a. b.

c.

Figure 1: The edges of different components in the
token-wise computational graph. In the figure, 𝑖 and 𝑣
represent two different layer indices satisfying 𝑖 < 𝑣,
while 𝑗 and 𝑢 represent arbitrary head indices in these
two different layers.

model’s computational graph, thereby we can know
WHAT key components of the model execute
mixed arithmetic calculations. More introduction
about EAP-IG is provided in Appendix B.1.

Unlike previous interpretability studies using
circuit detection algorithms (Hanna et al., 2023;
Goldowsky-Dill et al., 2023; Wang et al., 2023;
Merullo et al., 2024), we model Transformers-
based LLM as a token-wise computational graph,
allowing us to analyze the importance differences
of edges connecting different tokens directly.

We use 𝑎𝑙,𝑛𝑡 , 𝑚𝑙
𝑡 to refer to the 𝑛-th attention head

in the 𝑏-th layer at the 𝑡-th token position of the
model and the 𝑡-th token position MLP module in
the 𝑙-th layer of the model, respectively. We use
𝑒𝑛1→𝑛2
𝑡 ,𝑞𝑘𝑣 to refer to the edge from node 𝑛1 to node
𝑛2 in 𝑡-th token position, while 𝑞𝑘𝑣 used to refer to
the type (query, key, value) of the edge, which can
be 𝑞, 𝑘 , 𝑣 or does not exist.

The connections of these edges and nodes are
shown in Figure 1. Based on the EAP-IG algo-
rithm (Hanna et al., 2024), the causal effect 𝑠𝑛1→𝑛2

𝑡 ,𝑞𝑘𝑣

for each edge 𝑒𝑛1→𝑛2
𝑡 ,𝑞𝑘𝑣 can be obtained using the

following formula:

𝑠𝑛1→𝑛2
𝑡 ,𝑞𝑘𝑣 =

(𝑧𝑛1
𝑡 ,𝑞𝑘𝑣 − 𝑧𝑛1

𝑡 ,𝑞𝑘𝑣)
1
𝑚

𝑚∑︁
𝑘=1

𝜕L(𝑧 + 𝑘
𝑚 (𝑧 − 𝑧))

𝜕𝑧𝑛2
𝑡 ,𝑞𝑘𝑣

(6)

where 𝑧
𝑔
𝑡,𝑞𝑘𝑣 and 𝑧

𝑔
𝑡,𝑞𝑘𝑣 represent the activation val-

5744

X1

X2

X3

last

H
ea

ds

Layers

a. MLPs

b. Attention Heads

Figure 2: The distribution of causal effects across all
MLPs (a) and all attention heads (b)2.

ues of edge 𝑒𝑛1→𝑛2
𝑡 ,𝑞𝑘𝑣 based on clean input is 𝑥 and

disturbed input 𝑥, respectively. L represents the
model’s loss function, and 𝑚 represents the num-
ber of hyperparameter integration steps of the algo-
rithm. 𝑧 and 𝑧 are the model’s all hidden represen-
tations when the input is 𝑥 and 𝑥, respectively.

4.2 Implementation Details

Following previous work (Hanna et al., 2023;
Goldowsky-Dill et al., 2023; Wang et al., 2023;
Merullo et al., 2024), we used the Kullback-Leibler
divergence between the probability distributions of
the output token of the patched run and the clean
run as the metric. We randomly changed the values
of operands or the types of operators in each clean
sample’s expression to construct perturbed samples
𝑥.

4.3 Main Results

Benefiting from more granular modeling of the
forward computation process, the top 1% of high
causal effect edges, when considered as a circuit,
can recover an average of 85% of the full model’s
performance. Therefore, we believe that we have
identified the key components of the model to com-
plete the mixed arithmetic calculation task. Table 3
presents the circuit performance of 1% of the edges
on different expressions.

Figure 2 illustrates the average distribution of
causal effects across all MLPs and attention heads
for all expressions in D2.

2The sign / in the first column in Figure 2& 5 means the
causal effect is so high that it exceeds the range of the color
bar.

4.4 Discussion

Key MLPs. From Figure 2, we observe that: 1)
At the operand positions, only the early 30 layers
have an impact on the output; for the last token,
only layers 31-37 have a positive causal effect,
while layers 41-44 have a negative causal effect.
This difference indicates that the first 30 layers and
the last 18 layers play different roles in complet-
ing mixed arithmetic calculations. We will further
explore this functional difference in the following
sections.

More discussions about the parentheses effect
are provided in Appendix C.

Key Attention heads. From Figure 2, we ob-
serve that: 1) Only a small portion of the heads
has a significant impact on output. This enables
further investigation into the patterns of these key
heads and analysis of their functionalities. 2) The
distribution of key heads is not concentrated, with
relatively more heads between layers 19 and 36,
and most high effect heads beyond layer 37 having
negative effects. We use a threshold of 1e-5 to clas-
sify high causal effect heads and further analyze
their functionalities in the following sections.

5 MLP Function Analysis

5.1 Method

Patchscopes parses the information in the activa-
tion by patching them to an "zero" expression, so
we can know HOW the model generates the inter-
mediate and final results(IRs&FRs). This workflow
is illustrated in Figure 3. The algorithm details are
provided in the Appendix B.2.

5.2 Implementation Details

We perform Patchscopes (Ghandeharioun et al.,
2024) on the residual flow at the operand positions
and the last token position to parse the information
of the operand values, IRs, and FRs "stored" in the
activation. We run Patchscopes on all expressions
in D2 to analyze the functions of the key MLPs in
the model.

5.3 Main Results

Main results are shown in Figure 4. All operands
are resolved from the operand positions, while the
IR and FR are resolved from the last token position.

We find that the resolution rate of the IR in dif-
ferent expressions has three different trends. There-
fore, we classify them into three groups according

5745

 0 + (0 − 0) =

.

 3 + (6 − 2) =

.

7

Corrupted Run Clean Run Zero Expression

4

4

 9 − (3 + 4) =

 0 + (0 − 0) =

.

 3 + (6 − 2) =

.

7

Source Expression Target Expression

4

4

 0 + 4

 6－2

 3＋4

a). Patchscope workflow. b). Knockout workflow.

Figure 3: The main workflow of Patchscopes (a) and knockout (b).

R
es

ol
ut

io
n

R
at

e

Layer

Figure 4: The resolution rates on type-1 expressions.

to the trends. More discussions about these three
expression types are provided in the Appendix D.
To prevent misclassification of expressions, we
use the light area to show the trend of the stan-
dard deviation of the resolution rate, indicating that
all expressions in this group change in the same
trend. The resolution rates on type-1 expressions
are shown in Figure 4.

5.4 Discussion

From Figure 4, we observe that:
1) From around layer 15, as the activation prop-

agates forward, the resolution rate of the operands
gradually decreases. This indicates that the infor-
mation of the operand values in the activation is
gradually transformed or transferred.

2) From around layer 30, the resolution rate
of the operands drops rapidly, which corresponds
to the key MLPs detection results, indicating that
the information of the operands is transferred out
of this position, and the subsequent activation no
longer contains information related to the operand.

3) From around layer 31, the resolution rate of
the IR and FR begins to rise. This corresponds
to the drop in the resolution rate of the operands
in observation 2. This indicates that the operand
information is transferred to this position and is
mapped to the IR or FR after the MLP layer, i.e.,
arithmetic reasoning is performed. This observa-

 Early Late

H
ea

ds

 H
ea

ds

 Early Late
0 10 20 30 40 Layers

a. QK Effect Distribution

b. VO Effect Distribution

Figure 5: The differences in causal effects between QK
and OV circuits.

tion is also consistent with the results of key MLP
detection. This indicates that the model doesn’t
step-by-step result value mapping at the token
dimension.

4) For type1 expressions, the drop in the res-
olution rate of the IR corresponds to the further
rise in the resolution rate of the FR, indicating that
the IR is further mapped to the FR in subsequent
MLPs. This demonstrates the model’s reliance
on IRs for arithmetic "reasoning" at the layer
level for specific expressions, resembling human
arithmetic reasoning. We will discuss the cases
of type2 and type3 further in the Appendix D.

6 Attention Head Function Analysis

6.1 Method

We conducted comparative studies and pattern anal-
ysis to reveal the functionalities of different types
of attention heads to understand HOW attention
heads assist MLPs in arithmetic calculation tasks.

5746

 Early-QK Late-QK Early-VO Late-VO

×10-3

3

2

1

0

C
au

su
l e

ff
ec

t

Figure 6: The causal effects distribution of attention
heads.

6.2 Implementation Details

Previous work on simple arithmetic operations
has found that key attention heads often transfer
operand information to the last token. As these
heads are directly related to the generation of re-
sults by the late MLPs, we refer to these heads as
late heads. Correspondingly, we refer to the key
heads identified in this work that do not transfer
information to the last token as early heads. This
classification helps to discuss the functionalities
of attention heads more clearly in the following
sections.

Based on the token-wise computational graph
and EAP-IG algorithm, we note that the relevant
edges of attention heads at certain token positions
have high causal effects, meaning that these heads
primarily function to transport information between
these positions. Therefore, we specifically distin-
guish early heads and late heads based on whether
the edge from the attention head to the last token
position MLP (the red edge in Figure 2) has the
highest causal effect of all output edges.

For different types of attention heads, we ana-
lyzed the intersection-over-union (IoU) of the sub-
sets activated by different expressions. Due to the
significant differences in the sets of attention heads
relied upon by different expressions, we provide
examples to illustrate the patterns of different types
of attention heads and discuss their functionalities
by category.

6.3 Result and Discussion

6.3.1 Comparing early and late heads.
By analyzing the causal effect differences between
< 𝑞, 𝑘 > and < 𝑣, 𝑜 >, we can assess the impor-
tance of the QK circuit and OV circuit (Elhage
et al., 2021) in the information transport function
of these heads. Here < 𝑜 > means the output of the
attention heads. The results are shown in Figure 5

& 6.

From Figure 5 & 6, we observe that:

1) For all attention heads, the causal effect of the
VO circuit is generally higher than that of the QK
circuit. This is expected because the VO circuit
directly determines the output of the attention head,
while the QK circuit only determines the attention
pattern.

2) Comparing the QK and VO circuits of dif-
ferent types of attention heads, we find that the
causal effect of the QK circuit of early heads is
much lower than that of late heads. This indicates
that the information transport of early heads can
be completed mainly by the OV circuit, while the
information transport of late heads mainly depends
on the full cooperation of the QK and VO circuits.

Why does this difference occur? We believe
this is related to the functionality of the attention
heads. Early heads transfer information within a
fixed input token sequence, so the transfer path is
relatively fixed, and the QK circuit plays a minor
role. In contrast, the functionality of late heads is
directly related to generating the next token, which
requires "querying" information from the context,
so the QK circuit plays a more critical role.

3) Early heads are distributed before layer 28,
while late heads are mainly distributed between lay-
ers 23 and 37. Early heads correspond to the region
where the MLP resolution rate decreases slowly,
while late heads are located before the region where
the IR and FR resolution rates rise rapidly. This
verifies the reliability of the MLP function analysis.

6.3.2 Comparing different expressions.

According to the types of operators involved, we
divide all expressions in D2 into 10 categories. We
use a threshold of 1e-5 to classify high causal ef-
fect heads. Figure 7 shows the IoU of the high
causal effect attention head sets for different types
of expressions.

From Figure 7, we observe that: In both early
and late heads, there are three high IoU regions,
namely the addition-subtraction related region,
the multiplication-related region, and the division-
related region. Expressions involving the same
operation type often have high IoU. This indicates
that the model activates different sets of attention
heads according to the operation type to complete
the information transport task.

5747

 a.The IoU of Early Heads b.The IoU of Late Heads

Figure 7: The IoU across all expressions of early (a) and late (b) heads causal effects.

 a. Head a0,4 b. Head a16,17 c. Head a32,17

++ +− −− +× −× ×× ÷× +÷ −÷ ÷÷ ++ +− −− +× −× ×× ÷× +÷ −÷ ÷÷ ++ +− −− +× −× ×× ÷× +÷ −÷ ÷÷

C
au

su
l e

ff
ec

t

Figure 8: The patterns and causal effect differences across all expressions of three representative heads .

6.3.3 Pattern Analysis.

Based on the results of the comparative study, we
show the patterns of three representative attention
heads in Figure 8 to discuss their roles in mixed
arithmetic operations.

From Figure 8, we observe that:
1) Head 𝑎0,4 focuses on the keywords in the task

instructions, indicating that it plays a role in task
understanding. Moreover, it has high efficiency
on all expressions, indicating that it plays a role in
all different expression tasks. This is expected be-
cause its function is independent of the expression.

2) Head 𝑎16,17 is an early head related to mul-
tiplication. It builds attention between operators
and operands in multiplication expressions and has
high efficiency only in expressions involving multi-
plication and second-highest efficiency in expres-

sions involving division. This is consistent with the
results of the comparative study.

Moreover, its pattern indicates that the function
of early heads is to parse expressions. We be-
lieve this is the main reason for the slow decrease
in the resolution rate of the operand values in the
mid-term residual flow, i.e., early heads inject in-
formation from other token positions into the resid-
ual flow to establish a global understanding of the
operands.

3) Head 𝑎32,17 is a late head related to addition
and subtraction. It builds attention from the last
token to the operands in addition and subtraction
expressions. It has high efficiency in all expres-
sions involving addition and subtraction, while hav-
ing zero or even negative efficiency in expressions
involving multiplication and division.

5748

Layer

R
es

ol
ut

io
n

R
at

e

Figure 9: The resolution rates without early heads.

Settings 𝑣(𝑋1 − 𝑋2) 𝑣(𝑋3 − 𝑋4) FR
R L R L R L

W/o Knock 47% 32.1 36% 32.1 81% 35.7
m33,K16 35% 33.6 33% 33.4 27% 36.4
m33,K32 27%↓ 34.7 21%↓ 34.7 26%↓ 36.0
m36,K16 50% 32.4 44% 32.9 26% 35.7
m36,K32 47% 32.9 42%↑ 32.9 21%↓ 35.0

Table 1: The results of knockout late heads. R repre-
sents the average resolution rate, and L represents the
average first resolution position. K16 and K32 represent
knocking out the top 16 and 32 heads, respectively. m33
and m36 represent the 𝑚33

𝑙𝑎𝑠𝑡 -heads and 𝑚36
𝑙𝑎𝑠𝑡 -heads, re-

spectively.

This phenomenon is consistent with the results
of the comparative study. Its pattern proves that the
function of late heads is to transport operand
information to the last token to assist the MLP in
arithmetic reasoning.

7 Knockout and Enhancement

7.1 Knockout Key Heads

7.1.1 Method and Details
We selected a representative and complex expres-
sion (𝑋1 − 𝑋2) + (𝑋3 − 𝑋4) for the knockout exper-
iments. Details regarding the expression selection
are provided in the Appendix F.1.

As shown in Figure 3.b, we first obtain the activa-
tion values of the attention heads from a perturbed
run and patch the activation values to the corre-
sponding positions of the clean run as the knockout
run. Then we patch the residual activation values
of the knockout run to zero expression to detect the
IR and FR.

7.1.2 Knockout Early Heads
First, we conducted knockout experiments on early
heads to observe the changes in the resolution rate
of the operands after knockout. The results are
shown in Figure 9. Knocking out early heads gen-

erally leads to a decrease in the resolution rate of
the operand values in the residual flow. This is be-
cause, without the attention heads responsible for
task understanding in the early heads, the model
cannot correctly establish a proper understanding
of the operands. This indicates that the MLP’s
representation of the operands depends on the
collaboration of the early heads.

7.1.3 Knockout Late Heads
To demonstrate that the late MLP relies on IRs
for reasoning by knocking out late heads, we per-
formed a detailed classification of the late heads.

As shown in Table 1, first row, for this expres-
sion, the IRs are mainly parsed at 𝑚33

𝑙𝑎𝑠𝑡 , while
the FRs are primarily parsed at layer 36 and be-
yond. We refer to the late heads that are most
important for these two MLPs as 𝑚33

𝑙𝑎𝑠𝑡 -heads and
𝑚36

𝑙𝑎𝑠𝑡 -heads, respectively. More information about
𝑚33

𝑙𝑎𝑠𝑡 -heads and 𝑚36
𝑙𝑎𝑠𝑡 -heads is provided in the Ap-

pendix F.2.
By knocking out 𝑚33

𝑙𝑎𝑠𝑡 -heads and 𝑚36
𝑙𝑎𝑠𝑡 -heads

separately, we observed the impact of these heads
on the generation of IRs and FRs. The results are
shown in Table 1.

From Table 1, we observe that:
1) Knocking out 𝑚33

𝑙𝑎𝑠𝑡 -heads leads to a decrease
in the resolution rates of both the IRs and FRs, even
though these heads have a lower effect on 𝑚36

𝑙𝑎𝑠𝑡 .
This indicates that 𝑚36

𝑙𝑎𝑠𝑡 relies on the informa-
tion from 𝑚33

𝑙𝑎𝑠𝑡 to generate the FRs. This is also
validated by the effects between MLPs shown in
Appendix F.3.

2) Knocking out 𝑚36
𝑙𝑎𝑠𝑡 -heads reduces the reso-

lution rate of the final results without affecting the
resolution of the IRs from 𝑚33

𝑙𝑎𝑠𝑡 . This indicates that
𝑚33

𝑙𝑎𝑠𝑡 does not require these heads to generate IRs,
even if some heads of them are upstream of the
33rd layer MLP.

7.2 Adaptive Enhancement
7.2.1 Implementation Details
We design fine-tuning experiments to explore the
impact of the identified calculation pathway on the
model’s performance. Due to the limited diversity
of synthetic data, we used D2 and D3 as the train-
ing sets and D4−7 as the test sets. We evaluate the
robustness of the model’s abilities by testing the
model’s generalization ability on more challenging
data in a zero-shot setting.

We performed fine-tuning by setting the learn-
ing rate based on the causal effects obtained from

5749

Tuning Setting Test Acc (Zero-shot)
D4 D5 D6 D7

No Tunig 45% 29% 18% 15%
Full Tunig 77% 52% 30% 22%

Precise Tunig 82% 55% 32% 24%
CEDF 86% 64% 45% 33%

Table 2: Test accuracy of different tuning settings.

EAP-IG, called Causal Effect Driven Fine-tuning
method (CEDF). All results are obtained based on
small LLMs due to the limited diversity of synthetic
data. More details are provided in the Appendix G.

7.2.2 Results and Discussions
As shown in Table 2, CEDF significantly
outperforms full fine-tuning and precise fine-
tuning (Zhang et al., 2024), demonstrating the ef-
fectiveness of the identified key components.

The experimental results indicate that the key
components can more robustly enhance reasoning
ability, which shows that it is these components that
determine the model’s ability to perform arithmetic
reasoning robustly, rather than simply memorizing
expressions.

8 Conclusion

Do LLMs execute mixed arithmetic calculations in
the same rule as human? Our work thoroughly
investigates how LLMs complete mixed arithmetic
tasks to answer this question. On the one hand, the
model follows a workflow different from humans
to complete this task, namely task understanding,
operand representation, expression parsing, infor-
mation aggregation, and arithmetic "reasoning".
On the other hand, the model exhibits patterns sim-
ilar to human thinking in many details, such as
understanding the correlations between different
operator types and relying on intermediate results
to generate the final result at the last token. In
summary, our answer is that neither memory nor
reasoning accurately applies.

Our work provides new insights into under-
standing the mathematical reasoning capabilities
of LLMs and offers new inspirations for future re-
search, which will help improve the reliability of
LLMs.

Limitations

Due to methodological limitations, we did not ex-
plore the impact of CoT on the model, which is the
popular technology of current reasoning models.

This is beyond the scope of this paper, and we will
explore it in future work.

Due to computational resource limitations, our
experiments were only conducted on small models
with a parameter scale of around 10B. In future
work, we will conduct experiments on larger mod-
els.

The diversity of synthetic data is insufficient, and
our conclusions may not fully apply to mathemati-
cal reasoning problems with complex descriptions.
In future work, we will investigate complex mathe-
matical reasoning problems.

Due to limited resources and space, the proposed
CEDF method has not been validated on larger
LLMs.

Ethics and Risks

This paper mainly focuses on interpreting how the
LLM to complete the mixed arithmetic calculation
task without CoT. Our goal is to enhance model
arithmetic reasoning ability by understanding why
they perform such performance first, thereby ad-
vancing the development of more reliable and ro-
bust LLMs. Nonetheless, the findings in this paper
about LLM inner mechanisms may be misused
by malicious actors to attack or mislead LLMs.
Therefore, we stress the importance of increased
oversight by relevant authorities concerning the
applications of LLMs.

Acknowledgments

This work is supported by the grants from the Na-
tional Natural Science Foundation of China (No.
U21B2009 & 62376130). The authors would like
to thank the organizers of ACL 2025 and the re-
viewers for their helpful suggestions.

References
Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien

Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero
Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li,
Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric
Price, Gustavo de Rosa, Olli Saarikivi, Adil Salim,
Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli
Yu, Cyril Zhang, and Yi Zhang. 2024. Phi-4 technical
report. Preprint, arXiv:2412.08905.

Zeyuan Allen-Zhu and Yuanzhi Li. 2024. Physics of
language models: Part 3.1, knowledge storage and
extraction. In Forty-first International Conference on
Machine Learning.

5750

https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.08905
https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj

Reuben Baron and David Kenny. 1986. The moderator-
mediator variable distinction in social psychologi-
cal research: Conceptual, strategic, and statistical
considerations. Journal of Personality and Social
Psychology, 51:1173–1182.

Haozhe Chen, Carl Vondrick, and Chengzhi Mao. 2024.
SelfIE: Self-interpretation of large language model
embeddings. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pages
7373–7388. PMLR.

Bilal Chughtai, Lawrence Chan, and Neel Nanda. 2023.
A toy model of universality: Reverse engineering
how networks learn group operations. In Proceedings
of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine
Learning Research, pages 6243–6267. PMLR.

Chunyuan Deng, Zhiqi Li, Roy Xie, Ruidi Chang, and
Hanjie Chen. 2024. Language models are symbolic
learners in arithmetic. Preprint, arXiv:2410.15580.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony S. Hartshorn, Aobo
Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Au-
rélien Rodriguez, Austen Gregerson, Ava Spataru,
Baptiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Cantón Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab A. AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Raden-
ovic, Frank Zhang, Gabriele Synnaeve, Gabrielle
Lee, Georgia Lewis Anderson, Graeme Nail, Gré-
goire Mialon, Guanglong Pang, Guillem Cucurell,
Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo
Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Is-
abel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade
Copet, Jaewon Lee, Jan Laurens Geffert, Jana Vranes,
Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya
Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Ji-
awen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe
Spisak, Jongsoo Park, Joseph Rocca, Joshua John-
stun, Joshua Saxe, Ju-Qing Jia, Kalyan Vasuden Al-
wala, K. Upasani, Kate Plawiak, Keqian Li, Ken-591
neth Heafield, Kevin Stone, Khalid El-Arini, Krithika
Iyer, Kshitiz Malik, Kuen ley Chiu, Kunal Bhalla,
Lauren Rantala-Yeary, Laurens van der Maaten,
Lawrence Chen, Liang Tan, Liz Jenkins, Louis Mar-
tin, Lovish Madaan, Lubo Malo, Lukas Blecher,
Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Babu Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Mathew Oldham, Mathieu
Rita, Maya Pavlova, Melissa Hall Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,

Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri S. Chat-
terji, Olivier Duchenne, Onur cCelebi, Patrick Al-
rassy, Pengchuan Zhang, Pengwei Li, Petar Vasić, Pe-
ter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen
Krishnan, Punit Singh Koura, Puxin Xu, Qing He,
Qingxiao Dong, Ragavan Srinivasan, Raj Gana-
pathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohit Girdhar,
Rohit Patel, Romain Sauvestre, Ronnie Polidoro,
Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou,
Rui Wang, Saghar Hosseini, Sahana Chennabas-
appa, Sanjay Singh, Sean Bell, Seohyun Sonia
Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Chandra Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu,
Wenhan Xiong, Wenyin Fu, Whit ney Meers, Xavier
Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yiqian Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zhengxu Yan, Zhengx-
ing Chen, Zoe Papakipos, Aaditya K. Singh, Aaron
Grattafiori, Abha Jain, Adam Kelsey, Adam Shajn-
feld, Adi Gangidi, Adolfo Victoria, Ahuva Gold-
stand, Ajay Menon, Ajay Sharma, Alex Boesen-
berg, Alex Vaughan, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Anam Yunus, An-
drei Lupu, Andres Alvarado, Andrew Caples, An-
drew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan,
Beau James, Ben Maurer, Ben Leonhardi, Bernie
Huang, Beth Loyd, Beto De Paola, Bhargavi Paran-
jape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock,
Bram Wasti, Brandon Spence, Brani Stojkovic, Brian
Gamido, Britt Montalvo, Carl Parker, Carly Burton,
Catalina Mejia, Changhan Wang, Changkyu Kim,
Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris
Cai, Chris Tindal, Christoph Feichtenhofer, Damon
Civin, Dana Beaty, Daniel Kreymer, Shang-Wen Li,
Danny Wyatt, David Adkins, David Xu, Davide Tes-
tuggine, Delia David, Devi Parikh, Diana Liskovich,
Didem Foss, Dingkang Wang, Duc Le, Dustin Hol-
land, Edward Dowling, Eissa Jamil, Elaine Mont-
gomery, Eleonora Presani, Emily Hahn, Emily Wood,
Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan
Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat
Ozgenel, Francesco Caggioni, Francisco Guzm’an,
Frank J. Kanayet, Frank Seide, Gabriela Medina
Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Govind Thattai, Grant Herman,
Grigory G. Sizov, Guangyi Zhang, Guna Lakshmi-
narayanan, Hamid Shojanazeri, Han Zou, Hannah
Wang, Han Zha, Haroun Habeeb, Harrison Rudolph,

5751

https://doi.org/10.1037//0022-3514.51.6.1173
https://doi.org/10.1037//0022-3514.51.6.1173
https://doi.org/10.1037//0022-3514.51.6.1173
https://doi.org/10.1037//0022-3514.51.6.1173
https://proceedings.mlr.press/v235/chen24ao.html
https://proceedings.mlr.press/v235/chen24ao.html
https://proceedings.mlr.press/v202/chughtai23a.html
https://proceedings.mlr.press/v202/chughtai23a.html
https://arxiv.org/abs/2410.15580
https://arxiv.org/abs/2410.15580

Helen Suk, Henry Aspegren, Hunter Goldman, Igor
Molybog, Igor Tufanov, Irina-Elena Veliche, Itai
Gat, Jake Weissman, James Geboski, James Kohli,
Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff
Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizen-
stein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi
Yang, Joe Cummings, Jon Carvill, Jon Shepard,
Jonathan McPhie, Jonathan Torres, Josh Ginsburg,
Junjie Wang, Kaixing(Kai) Wu, U KamHou, Karan
Saxena, Karthik Prasad, Kartikay Khandelwal, Katay-
oun Zand, Kathy Matosich, Kaushik Veeraragha-
van, Kelly Michelena, Keqian Li, Kun Huang, Ku-
nal Chawla, Kushal Lakhotia, Kyle Huang, Lailin
Chen, Lakshya Garg, A Lavender, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng
Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsim-
poukelli, Martynas Mankus, Matan Hasson, Matthew
Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Her-
moso, Mo Metanat, Mohammad Rastegari, Mun-
ish Bansal, Nandhini Santhanam, Natascha Parks,
Natasha White, Navyata Bawa, Nayan Singhal, Nick
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev,
Ning Dong, Ning Zhang, Norman Cheng, Oleg
Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pa-
van Balaji, Pedro Rittner, Philip Bontrager, Pierre
Roux, Piotr Dollár, Polina Zvyagina, Prashant Ratan-
chandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah
Hogan, Robin Battey, Rocky Wang, Rohan Mah-
eswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun
Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy
Zha, Shiva Shankar, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Sung-Bae Cho, Sunny Virk, Suraj Subramanian,
Sy Choudhury, Sydney Goldman, Tal Remez, Tamar
Glaser, Tamara Best, Thilo Kohler, Thomas Robin-
son, Tianhe Li, Tianjun Zhang, Tim Matthews, Timo-
thy Chou, Tzook Shaked, Varun Vontimitta, Victoria
Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish
Kumar, Vishal Mangla, Vlad Ionescu, Vlad Andrei
Poenaru, Vlad T. Mihailescu, Vladimir Ivanov, Wei
Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xia Tang, Xiaofang Wang, Xiao-
jian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo
Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li,
Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam,
Yu Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach
Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, and Zhiwei Zhao. 2024. The llama 3
herd of models. ArXiv, abs/2407.21783.

Nelson Elhage, Tristan Hume, Catherine Olsson,

Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,
Carol Chen, Roger Grosse, Sam McCandlish, Jared
Kaplan, Dario Amodei, Martin Wattenberg, and
Christopher Olah. 2022. Toy models of superpo-
sition. Preprint, arXiv:2209.10652.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Atticus Geiger, Hanson Lu, Thomas F Icard, and
Christopher Potts. 2021. Causal abstractions of neu-
ral networks. In Advances in Neural Information
Processing Systems.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-
berg. 2022. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary
space. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Process-
ing, pages 30–45, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Asma Ghandeharioun, Avi Caciularu, Adam Pearce,
Lucas Dixon, and Mor Geva. 2024. Patchscopes:
A Unifying Framework for Inspecting Hidden Rep-
resentations of Language Models. arXiv preprint.
ArXiv:2401.06102.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato,
and Aryaman Arora. 2023. Localizing Model
Behavior with Path Patching. arXiv preprint.
ArXiv:2304.05969.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2023. How does gpt-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model. In Advances in Neural Information
Processing Systems, volume 36, pages 76033–76060.
Curran Associates, Inc.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov.
2024. Have Faith in Faithfulness: Going Beyond
Circuit Overlap When Finding Model Mechanisms.
arXiv preprint. ArXiv:2403.17806 [cs].

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan
Liu, and Maosong Sun. 2024. Olympiadbench:
A challenging benchmark for promoting agi with
olympiad-level bilingual multimodal scientific prob-
lems. Preprint, arXiv:2402.14008.

Tianjie Ju, Weiwei Sun, Wei Du, Xinwei Yuan,
Zhaochun Ren, and Gongshen Liu. 2024. How large

5752

https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://arxiv.org/abs/2209.10652
https://arxiv.org/abs/2209.10652
https://openreview.net/forum?id=RmuXDtjDhG
https://openreview.net/forum?id=RmuXDtjDhG
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.48550/arXiv.2401.06102
https://doi.org/10.48550/arXiv.2401.06102
https://doi.org/10.48550/arXiv.2401.06102
https://doi.org/10.48550/arXiv.2304.05969
https://doi.org/10.48550/arXiv.2304.05969
https://proceedings.neurips.cc/paper_files/paper/2023/file/efbba7719cc5172d175240f24be11280-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/efbba7719cc5172d175240f24be11280-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/efbba7719cc5172d175240f24be11280-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2403.17806
https://doi.org/10.48550/arXiv.2403.17806
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://aclanthology.org/2024.lrec-main.722

language models encode context knowledge? a layer-
wise probing study. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 8235–8246, Torino, Italia.
ELRA and ICCL.

Charles M. Judd and David A. Kenny. 1981. Process
analysis: Estimating mediation in treatment evalua-
tions. Evaluation Review, 5(5):602–619.

Tom Lieberum, Matthew Rahtz, János Kramár, Neel
Nanda, Geoffrey Irving, Rohin Shah, and Vladimir
Mikulik. 2023. Does circuit analysis interpretability
scale? evidence from multiple choice capabilities in
chinchilla. Preprint, arXiv:2307.09458.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick.
2024. Circuit Component Reuse Across Tasks
in Transformer Language Models. arXiv preprint.
ArXiv:2310.08744.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.

Philipp Mondorf and Barbara Plank. 2024. Be-
yond accuracy: Evaluating the reasoning behavior
of large language models – a survey. Preprint,
arXiv:2404.01869.

Neel Nanda. 2022. Interpreting gpt: The logit lens.
Accessed: 2025-05-20.

Neel Nanda. 2023. Attribution Patching: Activation
Patching At Industrial Scale.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. 2023. Progress mea-
sures for grokking via mechanistic interpretability. In
The Eleventh International Conference on Learning
Representations.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and
Yonatan Belinkov. 2024. Arithmetic Without Algo-
rithms: Language Models Solve Math With a Bag of
Heuristics. arXiv preprint. ArXiv:2410.21272 [cs].

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron C Wal-
lace, and David Bau. 2023. Future lens: Anticipating
subsequent tokens from a single hidden state. In Pro-
ceedings of the 27th Conference on Computational
Natural Language Learning (CoNLL), pages 548–
560.

Judea Pearl. 2009. Causality: Models, Reasoning and
Inference, 2nd edition. Cambridge University Press,
USA.

Philip Quirke and Fazl Barez. 2024. Understand-
ing Addition in Transformers. arXiv preprint.
ArXiv:2310.13121.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Naomi Saphra and Sarah Wiegreffe. 2024. Mechanistic?
Preprint, arXiv:2410.09087.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya
Sachan. 2023. A Mechanistic Interpretation of
Arithmetic Reasoning in Language Models us-
ing Causal Mediation Analysis. arXiv preprint.
ArXiv:2305.15054.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional Conference on Machine Learning.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, Johan Ferret, Peter
Liu, Pouya Tafti, Abe Friesen, Michelle Casbon,
Sabela Ramos, Ravin Kumar, Charline Le Lan,
Sammy Jerome, Anton Tsitsulin, Nino Vieillard,
Piotr Stanczyk, Sertan Girgin, Nikola Momchev,
Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill,
Behnam Neyshabur, Olivier Bachem, Alanna Wal-
ton, Aliaksei Severyn, Alicia Parrish, Aliya Ah-
mad, Allen Hutchison, Alvin Abdagic, Amanda
Carl, Amy Shen, Andy Brock, Andy Coenen, An-
thony Laforge, Antonia Paterson, Ben Bastian, Bilal
Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu
Kumar, Chris Perry, Chris Welty, Christopher A.
Choquette-Choo, Danila Sinopalnikov, David Wein-
berger, Dimple Vijaykumar, Dominika Rogozińska,
Dustin Herbison, Elisa Bandy, Emma Wang, Eric
Noland, Erica Moreira, Evan Senter, Evgenii Elty-
shev, Francesco Visin, Gabriel Rasskin, Gary Wei,
Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna
Klimczak-Plucińska, Harleen Batra, Harsh Dhand,
Ivan Nardini, Jacinda Mein, Jack Zhou, James Svens-
son, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana
Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fer-
nandez, Joost van Amersfoort, Josh Gordon, Josh
Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mo-
hamed, Kartikeya Badola, Kat Black, Katie Mil-
lican, Keelin McDonell, Kelvin Nguyen, Kiranbir
Sodhia, Kish Greene, Lars Lowe Sjoesund, Lau-
ren Usui, Laurent Sifre, Lena Heuermann, Leti-
cia Lago, Lilly McNealus, Livio Baldini Soares,
Logan Kilpatrick, Lucas Dixon, Luciano Martins,
Machel Reid, Manvinder Singh, Mark Iverson, Mar-
tin Görner, Mat Velloso, Mateo Wirth, Matt Davi-
dow, Matt Miller, Matthew Rahtz, Matthew Watson,
Meg Risdal, Mehran Kazemi, Michael Moynihan,
Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi
Rahman, Mohit Khatwani, Natalie Dao, Nenshad
Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay
Chauhan, Oscar Wahltinez, Pankil Botarda, Parker
Barnes, Paul Barham, Paul Michel, Pengchong
Jin, Petko Georgiev, Phil Culliton, Pradeep Kup-
pala, Ramona Comanescu, Ramona Merhej, Reena
Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan
Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah
Cogan, Sarah Perrin, Sébastien M. R. Arnold, Se-
bastian Krause, Shengyang Dai, Shruti Garg, Shruti
Sheth, Sue Ronstrom, Susan Chan, Timothy Jor-
dan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas

5753

https://aclanthology.org/2024.lrec-main.722
https://aclanthology.org/2024.lrec-main.722
https://doi.org/10.1177/0193841X8100500502
https://doi.org/10.1177/0193841X8100500502
https://doi.org/10.1177/0193841X8100500502
https://arxiv.org/abs/2307.09458
https://arxiv.org/abs/2307.09458
https://arxiv.org/abs/2307.09458
https://doi.org/10.48550/arXiv.2310.08744
https://doi.org/10.48550/arXiv.2310.08744
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2404.01869
https://arxiv.org/abs/2404.01869
https://arxiv.org/abs/2404.01869
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens?utm_campaign=post_share&utm_source=link
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://doi.org/10.48550/arXiv.2410.21272
https://doi.org/10.48550/arXiv.2410.21272
https://doi.org/10.48550/arXiv.2410.21272
https://doi.org/10.48550/arXiv.2310.13121
https://doi.org/10.48550/arXiv.2310.13121
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.48550/arXiv.2410.09087
https://doi.org/10.48550/arXiv.2305.15054
https://doi.org/10.48550/arXiv.2305.15054
https://doi.org/10.48550/arXiv.2305.15054
https://proceedings.mlr.press/v70/sundararajan17a/sundararajan17a.pdf

Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav,
Vilobh Meshram, Vishal Dharmadhikari, Warren
Barkley, Wei Wei, Wenming Ye, Woohyun Han,
Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong,
Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand
Rao, Minh Giang, Ludovic Peran, Tris Warkentin,
Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia
Hadsell, D. Sculley, Jeanine Banks, Anca Dragan,
Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hass-
abis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Ar-
mand Joulin, Kathleen Kenealy, Robert Dadashi,
and Alek Andreev. 2024. Gemma 2: Improving
open language models at a practical size. Preprint,
arXiv:2408.00118.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art Shieber. 2020. Investigating gender bias in lan-
guage models using causal mediation analysis. In
Advances in Neural Information Processing Systems,
volume 33, pages 12388–12401. Curran Associates,
Inc.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter-
pretability in the wild: a circuit for indirect object
identification in GPT-2 small. In The Eleventh Inter-
national Conference on Learning Representations.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov.
2024. Distilling system 2 into system 1. Preprint,
arXiv:2407.06023.

Wei Zhang, Chaoqun Wan, Yonggang Zhang, Yiu-ming
Cheung, Xinmei Tian, Xu Shen, and Jieping Ye.
2024. Interpreting and Improving Large Language
Models in Arithmetic Calculation. arXiv preprint.
ArXiv:2409.01659.

A Task Instruction

In this paper, the task instruction we used is shown
in Figure 10.

B Methods Details

B.1 EAP-IG

B.1.1 Transformer Circuits
Transformer Circuits is an interpretability frame-
work for analyzing the internal mechanisms of
Transformer models (Elhage et al., 2021). It con-
ceptualizes the model as a circuit composed of in-
terconnected computational components, where in-
formation flows along specific pathways to perform
tasks. This framework, developed by researchers at
Anthropic, views a Transformer as a directed graph
where attention heads and MLP layers form nodes,
with their connections constituting edges through
which information flows.

Default Mixed Expression Form
System: Please answer the result value
directly, don't output any other word.
User: (523 - 054) + 172 =
Assistant: 641

Question Form
System: Please answer the result value
directly, don't output any other word.
User: x = (523 - 054) + 172, what is the
value of x?
Assistant: 641

Systems of Equations Form
System: Please answer the result value
directly, don't output any other word.
User: It is known that x, y satisfy the
following equations: x = 523 - 054, y =
172 + x. What is the value of y?
Assistant: 641

Complex Context Form
System: Please answer the result value
directly, don't output any other word.
User: The initial price of WMT stock is
$523. In the first day, the stock price
decreased by $054. In the second day, the
stock price increased to 002 times its
original value. What is the final price of
the WMT stock?
Assistant: $938

Figure 10: The task instruction used in this paper.

The core components in this framework include:
(1) attention heads decomposed into Query-Key
(QK) circuits that determine where information
flows, and Value-Output (VO) circuits that deter-
mine what information is passed; (2) MLP lay-
ers that transform information within the residual
stream; and (3) residual connections that maintain
information flow throughout the network.

A central insight of this approach is the compo-
sitionality of model behavior—complex behaviors
emerge from interactions between simpler compo-
nents. For instance, in arithmetic tasks, certain
attention heads may specialize in passing operand
information, while others focus on parsing opera-
tors, with late-layer MLPs ultimately performing
computations (Zhang et al., 2024).

Circuit analysis enables identifying critical path-

5754

https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://arxiv.org/abs/2407.06023
https://doi.org/10.48550/arXiv.2409.01659
https://doi.org/10.48550/arXiv.2409.01659

ways responsible for specific model capabilities, re-
vealing which components contribute significantly
to particular outputs. This understanding facilitates
both interpretability and targeted interventions like
the ones employed in our study to analyze the inter-
nal mechanisms used by LLMs to perform mixed
arithmetic operations.

B.1.2 Causal Mediation Analysis
Causal Mediation Analysis is a statistical approach
for investigating how an independent variable
affects an outcome variable through intermedi-
ate variables (mediators) (Judd and Kenny, 1981;
Baron and Kenny, 1986; Pearl, 2009). In the con-
text of neural networks, it involves interventions on
specific model components to observe how these
interventions affect the model’s outputs, thereby
establishing causal relationships between compo-
nents and outcomes. Causal mediation introduces
the concept of counterfactuals: "What would the
output be if a specific component behaved differ-
ently?", allowing researchers to isolate the func-
tional contribution of specific neural network com-
ponents.

B.1.3 Activation Patching
Activation patching is a key component identifica-
tion or circuit detection method based on causal me-
diation analysis. It achieves this by implementing
key patching operations to perform causal interven-
tions and assess the strength of the resulting causal
effects. Many studies identify circuits using activa-
tion patching (Vig et al., 2020; Geiger et al., 2021),
which replaces a (clean) edge activation with a cor-
rupted one during the model’s forward pass. If the
resulting change in the metric is greater than some
threshold 𝜏, the edge is added to the circuit.

B.1.4 Edge Attribution Patching (EAP)
(Nanda, 2023) automate and accelerate the causal
scores calculations by a first-order approximation.
Given an edge 𝑒 = (𝑢, 𝑣) with clean and cor-
rupted activations 𝑧𝑢 and 𝑧′𝑢, EAP approximates
the change in loss 𝐿 caused by corrupting 𝑒 as

(𝑧′𝑢 − 𝑧𝑢)⊤∇𝑣𝐿 (𝑠), (7)

𝐿 (𝑥) = −𝑀 (𝑥) (8)

where ∇𝑣𝐿 (𝑠) is the gradient of 𝐿 with respect
to the input of 𝑣. Note that EAP estimates the
change in loss 𝐿, which is always set to −𝑀 (𝑥).
The change in loss (Approximate causal effects) for
each edge can be computed with one forward pass

on corrupted inputs and one forward and backward
pass on clean inputs. Therefore, we can select
which edges fall in the circuit based on the change
in loss.

B.1.5 EAP with Integrated Gradients
(EAP-IG)

IG aims to solve a problem that affects both the
gradient × input method and EAP: zero gradients.
The authors of the work (Sundararajan et al., 2017)
note that if one of the model’s internal activations
has a zero gradient at 𝑠, that activation will not
contribute to the attribution, even if the activation
has a non-zero gradient at 𝑠′, and the difference
in activations is significant. IG resolves this issue
by cumulating the gradients along the straight-line
path from 𝑠′ to 𝑠. We use a more detailed variant
of EAP-IG, as shown in Equation 6.

B.2 Patchscopes
Patchscopes is a method that explains the model’s
hidden representations by patching. It consists of
the following steps.

1. Run the forward computation on the source
prompt in the source model (the green model
in Figure 3.a) and cache the source layer’s rep-
resentation. In Figure 3.a, the source prompt
is "3 + (6 − 2) =".

2. Run the forward computation on the target
prompt up to the target layer in the target
model (the yellow model in Figure 3.a). In
Figure 3.a, the target prompt is "0+ (0−0) =".

3. Patch the target representation of "=" at the
target layer, replacing it with the cached rep-
resentation (from step 2), and continue the
forward computation from that layer onward.

By observing the target model’s output after
patching, we can understand what information is
stored in the cached representation. In this work,
we determine whether the cached representation
stores operands, intermediate results, or final re-
sults by observing whether the expected result is
output by the target model.

C More Key Component Detection
Details

C.1 Circuit Performance
Table 3 shows the performance of the circuits de-
tected on different expression tasks. As can be

5755

Opteration
Types

KL Div Prob Diff
Full Top1% Full Top1%

++ 1.21 1.09 1.00 0.99
+− 1.16 1.05 0.99 0.98
−− 1.09 0.98 0.98 0.96
+× 1.01 0.86 0.92 0.89
−× 1.23 1.03 0.90 0.87
×× 1.23 1.04 0.99 0.98
÷× 1.23 1.04 0.95 0.92
+÷ 0.91 0.78 0.78 0.75
−÷ 0.95 0.82 0.82 0.79
÷÷ 1.09 0.93 0.91 0.88

Table 3: The circuit performance on different expres-
sions.

Figure 11: The distribution of causal effects across all
MLPs on (X1 <op> X2) <op> X3 and X1 <op> (X2
<op> X3).

seen, our method effectively detects key compo-
nents across various models.

C.2 Parenthesis Position Effect

By comparing the key component detection results
in Figure 11 of expressions with parentheses at dif-
ferent positions, we can see that the position of the
parentheses does not significantly affect the distri-
bution of key components. This indicates that the
model uses the same components to parse paren-
theses at different positions.

C.3 Other Models Results

We ran EAP-IG on Phi-4, Gemma-2-9B-IT, and
Llama-3.1-8B-Instruct and obtained similar results.
This indicates that our method is reliable.

Opteration
Types

KL Div Prob Diff
Full Top1% Full Top1%

Llama-3.1-8B-Instruct
+ 0.03 0.03 0.12 0.11
− 0.03 0.02 0.15 0.14
× 0.05 0.04 0.29 0.26
÷ 0.05 0.04 0.26 0.25

Phi-4
+ 0.24 0.20 0.50 0.44
− 0.14 0.12 0.37 0.33
× 0.18 0.15 0.47 0.44
÷ 0.09 0.07 0.26 0.25

Gemma-2-9B-IT
+ 0.23 0.22 0.65 0.64
− 0.21 0.20 0.62 0.62
× 0.21 0.20 0.64 0.63
÷ 0.19 0.18 0.53 0.52

Table 4: The circuit performance on different expres-
sions of three other models.

Circuit Performance Table 4 shows the perfor-
mance of the circuits detected on different models.
As can be seen, our method effectively detects key
components across various models. Probability
difference value is positively correlated with the
model’s predictive performance on the expression,
and the performance of the three models is signifi-
cantly different from that of Qwen2.5-14B. In the
following functional analysis, we will only focus
on Gemma-2-9B-IT.

Key Components Distributions Here we show
the distributions of key components for three mod-
els, as shown in Figure 14,13 and 12. We find that
the distributions of key components for different
models have similar characteristics, and the discus-
sions in the main text hold for these models.

D More Discussion about IR

D.1 Expressions Tpyes

According to the trend of IR, we divide the ex-
pressions into three types. The first type is that
the IR first rises and then falls; the second type is
that it only rises with the FR, and the third type is
that it remains almost unchanged. In the following
Figure 15, we show the other two different trends.

The specific expressions represented by each
type are as Table 5.

5756

Figure 12: The distribution of causal effects across all
MLPs (a) and all attention heads (b) of Llama-3.1-8B-
Instruct.

Figure 13: The distribution of causal effects across all
MLPs(a) and all attention heads(b) of phi-4.

Figure 14: The distribution of causal effects across all
MLPs (a) and all attention heads (b) of gemma-2-9B-IT.

a. Type 2

b. Type 3

Figure 15: The resolution rates on type-2 and type-3
expressions.

Expression Types
Type 1

(𝑎 + 𝑏) + 𝑐 𝑎 + (𝑏 + 𝑐) 𝑎 + (𝑏 − 𝑐)
(𝑎 − 𝑏) + 𝑐 𝑎 + (𝑏 × 𝑐) 𝑎 + (𝑏 ÷ 𝑐)
(𝑎 × 𝑏) + 𝑐 𝑎 − (𝑏 × 𝑐) 𝑎 ÷ (𝑏 + 𝑐)

Type 2
(𝑎 − 𝑏) − 𝑐 (𝑎 − 𝑏) × 𝑐 (𝑎 − 𝑏) ÷ 𝑐
(𝑎 × 𝑏) − 𝑐 (𝑎 × 𝑏) × 𝑐 (𝑎 × 𝑏) ÷ 𝑐
(𝑎 ÷ 𝑏) + 𝑐 (𝑎 ÷ 𝑏) × 𝑐 (𝑎 ÷ 𝑏) ÷ 𝑐
𝑎 × (𝑏 + 𝑐) 𝑎 × (𝑏 − 𝑐) 𝑎 × (𝑏 × 𝑐)
𝑎 × (𝑏 ÷ 𝑐) 𝑎 ÷ (𝑏 − 𝑐) 𝑎 ÷ (𝑏 × 𝑐)
𝑎 ÷ (𝑏 ÷ 𝑐)

Type 3
(𝑎 + 𝑏) ÷ 𝑐 (𝑎 + 𝑏) − 𝑐 (𝑎 ÷ 𝑏) − 𝑐
(𝑎 + 𝑏) × 𝑐 𝑎 − (𝑏 ÷ 𝑐) 𝑎 − (𝑏 + 𝑐)
𝑎 − (𝑏 − 𝑐)
Table 5: The expressions of different types.

5757

a. Question Form b. Systems of Equations Form c. Complex Context Form

Ty

pe
 3

Ty

pe
 2

Ty

pe
 1

Figure 16: The resolution rates on type-1, type-2, and type-3 expressions across three different task forms.

D.2 Other Expression Forms

To ensure the robustness of our conclusions, we
verified the trend of IR changes on more task forms.
We found that the trend of IR changes is similar
across different task forms. Here, we present the IR
change trends for three different expression forms:
Question Form, Systems of Equations Form, and
Complex Context Form. The templates used are
shown in Figure 10, and the trends of IR changes
are shown in Figure 16.

As shown in Figure 16, compared to other forms,
the mean FR resolution rates on the Complex Con-
text Form for all types of expressions significantly
decrease, and the standard deviation increases no-
tably. Considering that this task requires a deeper
understanding of the context, it is expected that the
resolution rates are lower and more unstable for
such challenging tasks. More importantly, these
resolution rate trends across all task forms in Fig-
ure 16 are well-aligned with the conclusions we
obtained from the default mixed arithmetic expres-
sion task.

D.3 Validated by Other Detection Methods

To avoid the potential limitations of Patchscopes,
we used the Logit Lens (Geva et al., 2022; Nanda,
2022) to detect intermediate results. The results are
shown in Figure 17, which are consistent with those
obtained from Patchscopes, further demonstrating
the robustness of our conclusions.

Figure 17: The resolution rates on type-1, type-2, and
type-3 expressions using the Logit Lens.

5758

Figure 18: The resolution rates on all types of expres-
sions using Gemma-2-9B-IT.

D.4 Other Models Results

We analyzed Gemma-2-9B-IT using the same
method, and the results are shown in Figure 18.
The results show a similar trend to those of Qwen.
This indicates that our conclusions are reliable.

E More Pattern Analysis

Due to the diversity of the distribution of key atten-
tion heads on different expressions, we only show
more patterns using the expression (𝑋1 − 𝑋2) +
(𝑋3 − 𝑋4) as an example to provide more evidence
for the previous observations.

E.1 More Early Head Patterns

Figure 19 illustrates the attention patterns of several
typical early attention heads. We observe that these
attention heads are functionally specialized, and
their primary functions can be inferred from their
attention patterns.

Head 𝑎0,4 primarily transports information from
"operations" and "specified" to "in", indicating its
role in understanding the task instruction.

Head 𝑎14,2 transports information between
parentheses and operators, suggesting its role in
parsing the expression range corresponding to the

operator.
Head 𝑎16,19 transports information between dif-

ferent operands, indicating its role in understanding
the relationships between operands.

Head 𝑎19,19 transports operator information to
the second operand, suggesting its role in linking
the operator type to its second operand.

Head 𝑎19,35 transports information about the sec-
ond operand to the right parenthesis, aiding in the
comprehensive understanding of the subexpression.

E.2 More Late Head Patterns

Figure 20 illustrates the attention patterns of several
typical late attention heads.

Head 𝑎33,32 and 𝑎32,17 established an attention
relationship between the operands of X2, X4, and
the last token, indicating their important role in
transmitting operand information to the final token.
At the same time, the operands they transfer cor-
respond to the IR parsed by 𝑚33

𝑙𝑎𝑠𝑡 , reflecting the
further functional differentiation of later heads.

Head 𝑎36,39 and 𝑎35,11 established an attention
relationship between the operands of X1, X3, and
the last token, the operands they transfer corre-
spond to the FR parsed by 𝑚36

𝑙𝑎𝑠𝑡 .

F More Knockout Details

F.1 Expression Selection

To verify whether the conclusions obtained on D2
hold for more complex expressions, we selected a
more complex expression (𝑋1 − 𝑋2) + (𝑋3 − 𝑋4).
This expression includes both addition and subtrac-
tion operations and two parentheses, corresponding
to two IRs, which can more reliably verify whether
the model relies on IRs for arithmetic reasoning.
We do not involve multiplication and division oper-
ations because the model’s performance is limited
on expressions involving multiplication and divi-
sion in D3.

F.2 Key Late Heads Distributions

Figure 21 shows the most important attention heads
in the upstream nodes of the last token at the 33rd
and 36th MLP layers. The patterns of the two most
important attention heads in 𝑚33

𝑙𝑎𝑠𝑡 -heads, 𝑎33,32

and 𝑎32,17, are shown in Figure 20a and b, respec-
tively, and the patterns of the two most important
attention heads in 𝑚36

𝑙𝑎𝑠𝑡 -heads, 𝑎36,39 and 𝑎35,11,
are shown in Figure 20c and d, respectively.

5759

a. Head 𝑎0,4 attention pattern. b. Head 𝑎0,27 attention pattern.

c. Head 𝑎14,2 attention pattern. d. Head 𝑎16,19 attention pattern.

e. Head 𝑎19,19 attention pattern. f. Head 𝑎19,35 attention pattern.

Figure 19: Six typical attention patterns of early attention heads.

5760

a. Head 𝑎33,32 attention pattern. b. Head 𝑎32,17 attention pattern.

c. Head 𝑎36,39 attention pattern. d. Head 𝑎35,11 attention pattern.

Figure 20: Four typical attention patterns of late attention heads.

Attention heads → m33tlast

Attention heads → m36tlast

Figure 21: The distribution of key late heads related
𝑚33𝑡𝑙𝑎𝑠𝑡 and 𝑚36𝑡𝑙𝑎𝑠𝑡 on (𝑋1 − 𝑋2) + (𝑋3 − 𝑋4).

D2 D3 D4 D5 D6 D7
2530 8145 1600 3200 8600 12800

Table 6: The Statistics of D2−7. The sample numbers
of D2−3 are the training sets, while sample numbers of
D4−7 are the test sets.

F.3 Causal Effect between 𝑚33𝑡𝑙𝑎𝑠𝑡 and
𝑚36𝑡𝑙𝑎𝑠𝑡

Figure 22 shows the causal effect scores between
the last token of 𝑚33𝑡𝑙𝑎𝑠𝑡 and 𝑚36𝑡𝑙𝑎𝑠𝑡 . As can
be seen, 𝑚33𝑡𝑙𝑎𝑠𝑡 is the most important positive
input source node for 𝑚36𝑡𝑙𝑎𝑠𝑡 , which verifies the
dependence of 𝑚36𝑡𝑙𝑎𝑠𝑡 on 𝑚33𝑡𝑙𝑎𝑠𝑡 .

G Adaptive Enhancement Details

G.1 Dataset Details

Since large language models struggle to correctly
handle multi-digit numbers, in the enhancement

5761

Figure 22: The input nodes causal effects distribution
of 𝑚36𝑡𝑙𝑎𝑠𝑡 .

experiments, we limit the values of operands, in-
termediate results, and final results to [0, 10), al-
lowing the model to focus on enhancing arithmetic
reasoning performance rather than understanding
multi-digit numbers.

Due to the large number of expressions in D4−7,
we randomly selected 100 samples from each pro-
totype to construct the test set (see Table 6). The
random sampling was fixed for reproducibility, and
all tuning experiments used these samples.

We set the batch size to 40 and the number of
epochs to 10 in all experiments in this work. All
results are averaged over independent 3 runs.

G.2 Training Details

In the CEDF method, the learning rate for each
component (MLP or attention head) is calculated
according to the following formula:

𝑙𝑟𝑔 = 𝑙𝑟0 ×
𝑠𝑔 − 𝑠𝑚𝑖𝑛

𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛
(9)

where 𝑙𝑟𝑔 is the learning rate of component 𝑔, 𝑙𝑟0
is the global learning rate in full fine-tuning, 𝑠𝑔 is
the causal effect score of component 𝑔, and 𝑠𝑚𝑖𝑛

and 𝑠𝑚𝑎𝑥 are the minimum and maximum causal
effect scores in the computation graph.

G.3 Ablation Study

Our method adds no extra modules or hyperparam-
eters, relying only on the learning rate. We ablate

the backbone model scale and learning rate, with
results shown in Table 7. CEDF is insensitive to
both the learning rate and the backbone model.

When the learning rate is set to 1e-4, full fine-
tuning fails to converge. However, since many
components’ effective learning rates are lower than
𝑙𝑟0, CEDF still performs acceptably, demonstrating
its robustness to learning rate scaling.

G.4 Resource Requirements
All experiments were conducted on a NVIDIA
A800 GPU, with each experiment taking approxi-
mately 4 hours on average.

5762

Backbones Learning
Rate 𝑙𝑟0

Setting Test Acc (Zero-shot)
D4 D5 D6 D7

Backbones Sensitivity
Qwen2.5-0.5B 5e-5 Full SFT 76% 51% 31% 22%
Qwen2.5-0.5B 5e-5 CEDF 80% 56% 35% 26%
Qwen2.5-3B 5e-5 Full SFT 83% 56% 34% 25%
Qwen2.5-3B 5e-5 CEDF 87% 61% 37% 28%
llama3.2-1B 5e-5 Full SFT 71% 48% 29% 21%
llama3.2-1B 5e-5 CEDF 78% 56% 35% 26%
llama3.2-3B 5e-5 Full SFT 74% 54% 35% 26%
llama3.2-3B 5e-5 CEDF 93% 73% 44% 29%

Learning rates Sensitivity
Qwen2.5-1.5B 1e-5 Full SFT 73% 52% 33% 25%
Qwen2.5-1.5B 1e-5 CEDF 82% 58% 36% 26%
Qwen2.5-1.5B 5e-5 Full SFT 77% 52% 30% 22%
Qwen2.5-1.5B 5e-5 CEDF 86% 64% 45% 33%
Qwen2.5-1.5B 1e-4 Full SFT 12% 12% 12% 11%
Qwen2.5-1.5B 1e-4 CEDF 69% 47% 31% 24%

Table 7: The Results of Ablation Experiments.

5763

