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Abstract

Visual commonsense plays a vital role in un-
derstanding and reasoning about the visual
world. While commonsense knowledge bases
like ConceptNet provide structured collections
of general facts, they lack visually grounded
representations. Scene graph datasets like
Visual Genome, though rich in object-level
descriptions, primarily focus on directly ob-
servable information and lack systematic cat-
egorization of commonsense knowledge. We
present Visual Commonsense Dataset (VCD),
a large-scale dataset containing over 100,000
images and 14 million object-commonsense
pairs that bridges this gap. VCD introduces a
novel three-level taxonomy for visual common-
sense, integrating both Seen (directly observ-
able) and Unseen (inferrable) commonsense
across Property, Action, and Space aspects.
Each commonsense is represented as a triple
where the head entity is grounded to object
bounding boxes in images, enabling scene-
dependent and object-specific visual common-
sense representation. To demonstrate VCD’s
utility, we develop VCM, a generative model
that combines a vision-language model with
instruction tuning to discover diverse visual
commonsense from images. Extensive evalua-
tions demonstrate both the high quality of VCD
and its value as a resource for advancing vi-
sually grounded commonsense understanding
and reasoning. Our dataset and code will be re-
leased on https://github.com/NUSTM/VCD.

1 Introduction

Commonsense, comprising facts and principles hu-
mans rely on in daily life, is essential for decision-
making and behavior. Integrating it into AI sys-
tems enhances human-like reasoning, improves in-
terpretability, and has become a growing area of
research. Visual commonsense, a portion of com-
monsense, refers to general knowledge about the
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visual world. While existing commonsense knowl-
edge bases, e.g, ConceptNet (Speer et al., 2017),
include some visual commonsense represented in
textual form, they lack visually grounded common-
sense—specific, contextually rich knowledge tied
to actual visual scenes. Such limitation results in
restricted coverage and insufficient detail for effec-
tively bridging vision and language understanding.
Cognitive science research (Kahneman et al., 1992)
indicates that humans perceive the world by focus-
ing on objects in a scene, noting their attributes,
spatial relationships, and actions to gather multidi-
mensional information. This information forms the
basis of visual commonsense, which is inherently
scene-dependent and object-specific.

On the other hand, scene graph datasets in the
field of computer vision, e.g, Visual Genome (VG)
(Krishna et al., 2017), although provide rich object-
level descriptions of attributes, actions, and rela-
tionships, typically lack a systematic categorization
of commonsense. Moreover, they predominantly
focus on commonsense directly observable in im-
ages (referred to as seen commonsense in this pa-
per), while neglecting commonsense not visually
apparent but still relevant to the image and can be
inferred by general world knowledge (referred to
as unseen commonsense). For example, in Fig. 1,
given a scene depicting “a man skateboarding on
a busy street”, humans can naturally infer unseen
commonsense like “the man might be hit by a car”.
Such unseen commonsense is crucial for deep vi-
sual understanding and reasoning, but has received
insufficient attention in current research.

To address these challenges, we present VCD, a
large-scale Visual Commonsense Dataset by inte-
grating and linking Visual Genome and Concept-
Net. VCD includes over 100,000 images with more
than 14 million object-commonsense pairs, where
each image is annotated with objects it contains,
and each object is further annotated with its related
visual commonsense triples. Similar to Concept-
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Figure 1: An example from VCD. Given the left image, two objects (a man and a car) are annotated along with their
associated 11 visual commonsense triples. These triples are organized within a hierarchical taxonomy. For example,
( man, LocatedNear, car) is a Seen commonsense under the Space aspect, ( man, ReceivesAction, hit by a car) is
an Unseen commonsense under the Action aspect.

Net, each commonsense is represented as a (head,
relation, tail) triple; but the head here is a language-
vision pair, consisting of an entity and its corre-
sponding bounding box in the current image. By
grounding commonsense entities to the bounding
boxes in the image, VCD bridges the gap between
linguistic knowledge and visual information.

We introduce a three-layer taxonomy to cate-
gorizing these visual commonsense triples. First,
we identify visually relevant categories from the
34 basic knowledge types defined in ConceptNet
as the foundational layer. These categories are
then grouped into three fundamental aspects widely
studied in computer vision (i.e, Property, Action,
and Space), constituting the second layer. For the
top layer, we distinguish commonsense knowledge
based on its visual observability in the given im-
age (i.e, Seen commonsense versus Unseen com-
monsense). This hierarchical taxonomy provides
a comprehensive framework for organizing visual
commonsense knowledge, bridging NLP and CV
domains while enabling analysis of both observable
and inferential visual relationships.

VCD captures rich patterns and relationships that
reflect the visual world, enabling the discovery of
scene-dependent and object-specific visual com-
monsense. In this regard, we train a genera-
tive model, VCM, that integrates a vision-language
model with instruction tuning, to generate visual
commonsense from images. The instructions cover

diverse types of commonsense within the taxon-
omy, enabling VCM to generate different categories
of commonsense triples according to the provided
instruction, spanning both Seen and Unseen vi-
sual commonsense across the Property, Action, and
Space aspects.

Extensive evaluations, including both automatic
and human evaluations, demonstrate 1) the high
quality of the VCD dataset, 2) the strong perfor-
mance in visual commonsense discovery, particu-
larly surpassing GPT-4o in identifying unseen com-
monsense, and 3) the enhancement of downstream
vision-language tasks through the discovered visual
commonsense knowledge. These comprehensive
evaluations demonstrate VCD’s value as a founda-
tional resource for discovering and leveraging vi-
sual commonsense, advancing visually-grounded
commonsense AI.

2 Related Work

Commonsense in text has been a longstanding re-
search focus, with early studies primarily dedicated
to constructing commonsense knowledge bases.
ConceptNet (Speer et al., 2017) integrates multiple
knowledge bases. ASER (Zhang et al., 2020b) cap-
tures selectional preference knowledge extracted
from over 11 billion tokens of unstructured text.
TransOMCS (Zhang et al., 2020a) employs linguis-
tic graphs to align ASER with ConceptNet. DIS-
COS (Fang et al., 2021) enhances commonsense of
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ASER by aggregating information from neighbor-
ing concepts. ATOMIC (Sap et al., 2019; Hwang
et al., 2021; Shen et al., 2023) is a collection of
if-then knowledge triplets centered on daily events.

Research on visual commonsense has evolved
from focusing on the specific commonsense cate-
gory to broader, more generalized commonsense
categories. Early work focused on different specific
dimensions of images, including taxonomy (Chen
et al., 2013), unary affordance (Chao et al., 2015),
physical properties (Zellers et al., 2021; Tang
et al., 2023), and spatial relationships (Yatskar
et al., 2016; Xu et al., 2018; Collell et al., 2018;
Diomataris et al., 2021). More recent studies have
expanded beyond these individual dimensions to
explore generalized visual commonsense knowl-
edge (Vedantam et al., 2015; Chen et al., 2022; Liu
et al., 2022; Zellers et al., 2019; Zhang et al., 2022;
Li et al., 2023; Singh et al., 2023; Xia et al., 2023).
A crucial aspect of visual commonsense is the gen-
eration of scene graphs, which models object in-
teractions within an image to support high-level
reasoning (Krishna et al., 2017; Yu et al., 2017).
Another important research direction involves mul-
timodal knowledge graphs (Oñoro-Rubio et al.,
2017; Ferrada et al., 2017; Liu et al., 2019; Alberts
et al., 2020; Wang et al., 2020), which extend tra-
ditional knowledge graphs by associating entities
with non-textual data, such as images. However, no
existing multimodal knowledge graphs are explic-
itly designed to capture visual commonsense. We
distinguish visual recognition from visual common-
sense, aligning the latter’s “seen” aspects with Vi-
Cor’s (Zhou et al., 2024) Visual Commonsense Un-
derstanding (VCU). While visual recognition iden-
tifies objects and attributes (e.g., a “man,” “thin”),
VCU, or “seen” commonsense, provides an explicit,
structured understanding of this literal visual con-
tent, such as “(man, HasProperty, thin)” or “Person
washing dishes”. Therefore, visual commonsense
leverages visual recognition to build a structured,
queryable layer of knowledge about directly ob-
servable elements and their explicit relationships
within a scene, forming a foundational step towards
deeper reasoning.

3 Visual Commonsense Dataset
Construction

3.1 Preliminary Resources

ConceptNet (Speer et al., 2017) is a multilingual
commonsense knowledge base that comprises a

vast collection of manually curated triples, each
representing words or phrases and their common-
sense relationships. It systematically defines 34
categories of commonsense and encompasses more
than 4 million English triples. However, its tex-
tual representation limits its ability to effectively
capture scene-dependent and object-specific visual
commonsense, which is crucial for understanding
real-world contexts.

Visual Genome (VG) (Krishna et al., 2017) is a
large-scale scene graph dataset containing 108,077
images with dense annotations of 5.4 million re-
gion descriptions, 3.8 million object instances, 2.8
million attributes, and 2.3 million relations. De-
spite its extensive coverage, VG lacks a structured
categorization of visual commonsense and does not
include unseen commonsense.

3.2 Visual Commonsense Taxonomy
We introduce a three-layer hierarchical taxonomy
to organize the visual commonsense. At first, we
identify visually relevant categories from 34 ba-
sic knowledge types defined in ConceptNet, estab-
lishing the foundational layer. These categories
are then grouped into three fundamental aspects
commonly employed in computer vision (i.e, Prop-
erty (Tang et al., 2023), Action (Chao et al., 2015),
and Space (Collell et al., 2018)), forming the sec-
ond layer. At the top layer, we introduce a visi-
bility dimension that classifies knowledge as seen
or unseen commonsense. Seen commonsense con-
tains directly observable commonsense from im-
ages, While unseen commonsense involves inferred
commonsense requiring contextual reasoning or
life experiences. This results in a hierarchical vi-
sual commonsense taxonomy. Taking the image in
Fig. 1 as an example, ( man, LocatedNear, car)
is a Seen commonsense under the Space aspect,
( man, ReceivesAction, hit by a car) is an Unseen
commonsense under the Action aspect. More de-
tails of the visual commonsense taxonomy can be
found in App. A.1.

3.3 Seen Commonsense Annotation
VG encompasses a diverse range of real-world
scenes, enriched with detailed annotations includ-
ing object-level triples and region-level phrases,
each accompanied by a bounding box. These anno-
tations make VG a valuable resource for capturing
a broad spectrum of seen commonsense about vari-
ous entities in an image by processing its existing
object-level triples and region-level phrases.
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Figure 2: The construction process of VCD.

Therefore, our approach to annotate seen com-
monsense is to map existing triples in VG to our
visual commonsense taxonomy, and align region
phrases in VG with the visual commonsense taxon-
omy.

3.3.1 Mapping Existing Triples in VG to
Visual Commonsense Taxonomy

Fig. 2 shows that VG includes objects marked with
bounding boxes and annotated with descriptive
triples. These triples encapsulate visible attributes,
actions, and spatial relationships. For instance,
(man, is, tall) represents an attribute, while (man,
play, skateboard) and (man, on, road) represent
actions and spatial relationships, respectively.

To map these triples to seen commonsense cate-
gories, we establish part-of-speech based mapping
rules. Verbs are mapped to /Seen/Action, adjectives
to /Seen/Property, and prepositions to /Seen/Space.
For example, (man, is, tall), as shown in Fig. 2, is
mapped to ( man, /Seen/Property/HasProperty,
tall) with the recognition of tall as an adjective.

Furthermore, /Seen/Space/LocatedNear captures
co-occurrence relationships, implying that two en-
tities often appear together within the same visual

scenario without a specific spatial relation. For in-
stance, since “man” and “car” co-occur in Fig. 2,
one could infer a seen commonsense triple ( man,
/Seen/Space/LocatedNear, car).

3.3.2 Aligning Region Phrases in VG to Visual
Commonsense Taxonomy

Only mapping existing triples in VG may lead
to omissions. However, region phrases in VG
can supplement these triples. For example, con-
sider a region phrase “a thin man behind the yel-
low car” from VG in Fig. 2. This phrase im-
plicitly contains several seen commonsense triples
that are missing from the existing triples, such
as ( man, /Seen/Space/Relatedness, behind car),
( man, /Seen/Property/HasProperty, thin). Con-
sequently, we extract additional triples from region
phrases using an automatic process. A manual re-
view is then conducted to ensure the reliability and
accuracy of the extracted triples.

Extracting Candidate Phrases We begin by ap-
plying constituency parsing to region phrases to
extract candidate phrases, including preposition,
verb, and noun phrases. For example, given the

5565



Table 1: Comparison with other visual commonsense datasets. # Categories represents the number of visual
commonsense categories included in each dataset.

Seen Unseen # Categories # Images # BBox # Commonsense

ConceptNet (Speer et al., 2017) ✔ ✔ 34 ✘ ✘ ≈4M
Visual Genome (Krishna et al., 2017) ✔ ✘ ✘ ≈106K ≈4.1M ≈5M
SpatialCS (Liu et al., 2022) ✔ ✘ 1 ✘ ✘ 1224
ViComTe (Zhang et al., 2022) ✔ ✘ 1 ✘ ✘ 11114
VEC (Li et al., 2023) ✔ ✘ 2 ✘ ✘ 4090
VIPHY (Singh et al., 2023) ✔ ✘ 2 ✘ ✘ ≈30K
ImageNetVC (Xia et al., 2023) ✔ ✘ 2 ✘ ✘ 4976

VCD ✔ ✔ 11 ≈106K ≈2.4M ≈14M

region phrase “a thin man behind the yellow car”
in Fig. 2, constituency parsing classifies the entire
phrase as a prepositional phrase, as well as “a thin
man” and “the yellow car” as noun phrases.

Mapping Candidate Phrases to Triples Upon
candidate phrases, dependency parsing is used to
determine their syntactic structure. Then, for each
type of candidate phrase, we use a carefully-defined
set of mapping rules to map syntactic structures to
commonsense triples. To illustrate, for the noun
phrase “a thin man” where “man” is the root, we
apply the mapping rule “adjective + noun → (noun,
/Seen/Property/HasProperty, adjective)” to yield
the triple ( man, /Seen/Property/HasProperty,
thin). Full set of mapping rules is in App. A.2.

Bounding Box Localization To determine the
bounding boxes for objects in triples extracted from
regional phrases, we first compute the overlap ratio
between the given region and the annotated bound-
ing boxes. We then filter out boxes with an overlap
ratio below a predefined threshold, retaining only
those that meet or exceed this criterion to form a
candidate set. Next, we match object names from
the triples to the candidate set, preserving only
those triples that have a unique correspondence,
while discarding those with multiple matches or no
valid match. The resulting triples are then used to
enhance seen commonsense triples of objects.

3.4 Unseen Commonsense Annotation

Unseen commonsense is essential for visual com-
monsense reasoning beyond direct visual percep-
tion. While Visual Genome (VG) focuses on seen
commonsense directly observable in images, it
lacks annotations for unseen commonsense that
is not visually present. ConceptNet complements
this by providing a rich source of unseen common-

sense.
Therefore, our approach to annotating unseen

commonsense is to extract relevant knowledge
triples from ConceptNet that correspond to ob-
jects in the image, serving as unseen commonsense
knowledge for the given image. The process con-
sists of the following steps:

Synset Generation To enhance the coverage of
unseen commonsense retrieved, we first lemmatize
the names of objects in VG for synset generation,
as shown in Fig. 2.

Triple Retrieval in ConceptNet Using the gen-
erated synset, we retrieve ConceptNet for unseen
commonsense for each object, ensuring a compre-
hensive collection of unseen commonsense associ-
ated with each identified object in an image.

Object-aware Sorting Humans naturally con-
sider all objects within a scene when making asso-
ciations. As shown in Fig. 2, an image of a man
skateboarding alongside many cars may evoke un-
seen commonsense that the man is at risk of being
hit by a car. This connection between “man” and
“car” arises from their co-occurrence in the image.
Building on this cognitive process, we prioritize
unseen commonsense that involves objects present
in the image, as they are more intuitively derived
from the visual context. This object-aware sorting
strategy ensures that retrieved commonsense aligns
more closely with human reasoning process.

3.5 Dataset Statistics

Tab. 1 provides a comprehensive comparison of our
dataset (VCD) with existing visual commonsense
datasets. Unlike most datasets, VCD integrates both
seen and unseen commonsense, exhibiting distinct
advantages in coverage, diversity, and scale.

5566



UnseenSeen

HasProperty
12.30%

LocatedNear
16.52%

Relatedness
25.93%

CapableOf
35.30%

ReceivesAction
2.89%

  

HasProperty
0.42%

CreatedBy
0.02%

LocatedNear
1.06%

UsedFor  2.85%
CapableOf  2.20%

ReceivesAction
0.51%

21,99 distinct 
/Unseen/Action/ReceivesAction triples

53,035 distinct 
/Seen/Property/HasProperty triples

2,449,126 distinct bounding boxes

106,277 distinct images

71,216 distinct 
/Seen/Space/LocatedNear triples

12,297 distinct 
/Unseen/Action/UsedFor triples

…

152,200 distinct 
/Seen/Action/CapableOf triples

Figure 3: The statistics of VCD.

18 20 22 24 26
(a)

Ran
dom

Unse
en

Se
en

Human

 19.2

 20.31

 24.21

 26.1

Seen Unseen
(b)

0.0

0.5

1.0

1.5

2.01.86
1.64

Figure 4: (a) Automatic evaluation using CLIP simi-
larity scores; (b) Human evaluation with Likert scale
ratings.

Fig. 3 illustrates that VCD consists of 106,277 im-
ages and 2,449,126 bounding boxes, encompassing
18,136 unique object names. Furthermore, Fig. 3
presents the distribution of distinct commonsense
triples across various categories, along with their
respective proportions within VCD. Examples of
VCD are provided in App. A.3.

3.6 Dataset Quality Control

VCD is built upon ConceptNet and VG, both of
which are high-quality, manually annotated re-
sources. While these foundations provide reliable
base data, our work focuses on linking and aligning
these resources. Therefore, we first evaluate the per-
formance of our linking and alignment processes,
followed by both automatic and human evaluations
of the final annotations.

Evaluation of the Off-the-shelf Annotation Tools
We utilize spaCy (Honnibal et al., 2020) for part-of-
speech tagging and dependency parsing on region
phrases in VG. A human evaluation of 200 sam-
ples confirms a 99% accuracy rate. Similarly, for
constituency parsing, AllenNLP (Gardner et al.,
2018) achieves 97.5% accuracy based on human
evaluation of 200 samples.1

1The high accuracy of both spaCy and AllenNLP is largely
due to simple linguistic structure of region phrases in VG.

Evaluation of the Iterative Annotation Process
To establish the rule set in Sec. 3.3.2, we follow an
iterative annotation process. In each iteration, 200
samples are examined. If the error rate exceeds 5%,
the rules are refined and reassessed. This process
repeats until the error rate falls below 5%, ensuring
that VCD adheres to rigorous quality standards.

Automatic Evaluation of the Annotated Com-
monsense Following Gadre et al. (2023); Schuh-
mann et al. (2022), we evaluate the quality of
VCD by calculating image-commonsense match-
ing scores using the CLIP model. As shown in
Fig. 4(a), we derive a lower bound by randomly
sampling commonsense triples for an image and
computing the match score. For the upper bound,
we manually annotate ground truth seen common-
sense for 300 images and calculate their matching
scores. Fig. 4(a) shows that the seen commonsense
matching score is slightly below the upper bound,
indicating the high quality of VCD. The unseen com-
monsense matching score is only slightly higher
than the lower bound, as these scores pertain to ob-
jects within the image but do not match the image
semantically.

Human Evaluation of the Annotated Common-
sense In addition to automatic evaluation, we per-
form human evaluation on 4,000 randomly selected
images using a 0-2 Likert scale (higher is better),
with ratings provided by undergraduate students
working on vision-language learning. Following
(Ouyang et al., 2022), we first assess their agree-
ment with researcher-labeled examples and select
the 10 evaluators with the highest agreement scores.
Fleiss’s Kappa of 0.804 indicates a good agreement.
As shown in Fig. 4(b), seen commonsense receives
high preference, aligning with CLIP scores. While
unseen commonsense has lower CLIP scores, eval-
uators still favor it, indicating that it effectively
reflects commonsense not depicted in the image.

4 Visual Commonsense Discovery and Its
Evaluation

VCD provides a comprehensive foundation for dis-
covering visual commonsense from images, captur-
ing rich patterns and relationships that enable the
application of such knowledge to enhance down-
stream VL tasks. Leveraging this dataset, we train
VCM, a Visual Commonsense Discovery Model that
combines a generative VL architecture with instruc-
tion tuning. This allows VCM to generate visual
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commonsense from novel images. The generated
visual commonsense can be used to improve the
performance of downstream VL applications.2

4.1 Training a Visual Commonsense
Discovery Model

Given an image I , an object oi with a bounding
box, and a commonsense category rk, VCM aims to
generate a set of m commonsense triples T k

i :

T k
i = {t1, t2, . . . , tm} = VCM(I, oi, rk), (1)

where oi ∈ {o1, . . . , oj} represents the set of ob-
jects identified within I (each annotated with a
bounding box), rk ∈ {r1, . . . , rl} represents the
set of all types of visual commonsense, tm =
(oi, rk, c) is a commonsense triple, and c is in the
form of nouns, adjectives, or phrases.

Additionally, we iterate over each object oi ∈
{o1, . . . , oj} and each type of visual commonsense
rk ∈ {r1, . . . , rl}, in order to discover a compre-
hensive set of commonsense triples T :

T =

j⋃

i=1

l⋃

k=1

T k
i = {T 1

1 , .., T
l
1, T

1
2 , .., T

l
j}. (2)

The input of VCM comprises an image, the name
of an object with a bounding box, and a category
of visual commonsense to discover. As shown in
Fig. 5, these versatile elements are integrated into
one instruction template using instruction tuning
methods (Dai et al., 2023; Xu et al., 2023). The
output of VCM is a series of commonsense triples
generated in an autoregressive manner. VCM aims
to minimize the following loss function:

L = −
|y|∑

i=1

logPθ (yi | y<i, x) , (3)

where θ denotes model parameters, x represents
the instruction and y denotes the commonsense.
The training details are provided in App. B

4.2 Evaluation of Visual Commonsense
Discovery

4.2.1 Evaluation Protocol
Automatic Evaluation Metrics For the auto-
matic evaluation of VCM’s visual commonsense dis-
covery capabilities, we employ metrics for natu-
ral language generation: BLEU-1 (B-1) (Papineni

2As this paper primarily focuses on VCD construction, we
present a concise version of this part here due to space limita-
tions, with more detailed descriptions in the Appendix.

VCM

What is “Seen” “located near” 
commonsense knowledge about 
“man” in the given region of the 
image? Region: (x1, y1, x2, y2)

What is “Uneen” “capable of” 
commonsense knowledge about 
“man” in the given region of the 
image? Region: (x1, y1, x2, y2)

(man, …, fall down)
(man, …, run)
…

(man, …, be late)

… …

Vision-language Instruction Commonsense
Triples

(man, …, bus)
…

(man, …, car)

Figure 5: The input and output in VCM.

Table 2: Automatic evaluation results of VCM.

Model B-1↑ B-2↑ R↑ M↑ W↓
SPHINX 6.4 2.0 7.6 6.2 170.5
Qwen-VL 9.4 3.0 11.5 10.2 120.5
GPT-4o 15.1 6.3 19.5 16.0 100.7
OFAlarge 1.1 0.3 2.0 1.2 100.8
VCMtiny 41.3 31.5 44.8 37.8 78.3
VCMmedium 48.8 37.6 52.4 45.2 73.5
VCMbase 53.9 42.4 56.8 50.1 71.0

VCMlarge 56.6 45.6 59.9 53.3 67.1
w/o image 51.3 43.7 56.4 51.6 72.5
w/o region 51.5 42.6 55.4 47.7 69.4
w/o name 39.9 28.9 44.3 36.2 91.5

et al., 2002), BLEU-2 (B-2), Rouge-L (R) (Lin,
2004), METEOR (M) (Banerjee and Lavie, 2005),
and Word Error Rate (W) (Su et al., 1992).

Human Evaluation Metrics While automatic
evaluation metrics provide preliminary insights,
they may not fully capture the diversity and qual-
ity perceived by humans. Therefore, we conduct a
human evaluation, focusing on the correctness and
completeness of commonsense generated by VCM.
For each type of visual commonsense, 10 images
are randomly selected. Their associated outputs are
compared against those produced by multimodal
large language models. Two independent evalu-
ators analyze the results, and any disagreements
are resolved by a third. The evaluations are struc-
tured as win/draw/lose comparisons. Fleiss’ kappa
scores reveal moderate agreement among evalua-
tors. Evaluators receive salary at a rate of $8 per
hour, which is above the local average wage.

4.2.2 Automatic Evaluation
Tab. 2 summarizes the results of the automatic eval-
uation. Upon analyzing the results in Tab. 2, we
can find that VCM exhibits improvements in all au-
tomatic evaluation metrics as the model scale in-
creases, which is consistent with our expectations.
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Table 3: Comparison with MLLMs by human evalua-
tion. W.R., D.R. and L.R. represent rate of win, draw
and lose, respectively.

VCMlarge
Seen Unseen

W.R. D.R. L.R. W.R. D.R. L.R.

vs. OFAlarge 100% 0% 0% 100% 0% 0%
vs. VCMbase 34% 56% 10% 36% 62% 2%

vs. SPHINX 68% 14% 18% 91% 7% 2%
vs. Qwen-VL 59% 29% 12% 86% 11% 3%
vs. GPT-4o 28% 42% 30% 41% 29% 30%

Particularly, VCMtiny shows a significant decrease
in performance, highlighting the importance of the
model scale for VCD.

4.2.3 Human Evaluation
The results of the human evaluation are summa-
rized in Tab. 3. VCMlarge consistently outperforms
VCMbase across both seen and unseen commonsense
discovery, aligning with the findings of automatic
evaluation and reinforcing the reliability of auto-
mated metrics. Furthermore, VCMlarge significantly
outperforms SPHINX, which struggles to adhere
to instructions, particularly in identifying and gen-
erating unseen commonsense.

While GPT-4o demonstrates strong performance
in generating diverse examples of seen common-
sense, it underperforms in unseen commonsense
discovery, often confusing seen and unseen com-
monsense. This suggests that GPT-4o faces chal-
lenges in distinguishing and generating them as
distinct categories. In contrast, VCMlarge exhibits a
stronger ability to associate unseen commonsense
with image objects, leading to more precise unseen
commonsense discovery.

4.2.4 Ablation Study
To evaluate the impact of images, bounding boxes,
and object names on VCM’s performance, we con-
duct ablation studies. Results in Tab. 2 show that
removing any of these elements degrades perfor-
mance, with the removal of object names causing
the most significant drop, even below VCMbase. This
highlights the critical role of textual information
from object names.

4.3 Evaluation on Vision-language Tasks

We further evaluate the effectiveness of visual
commonsense discovered by VCM on two down-
stream VL tasks. The first is a dedicated evalua-
tion of a model’s visual commonsense capabilities,

Table 4: Visual commonsense capacity on ImageNetVC.

COL. SHA. MAT COM. OTH. AVG

OFA 47.2 72.6 66.7 100.0 85.1 80.7
VCM 56.6 69.3 73.5 99.7 88.1 83.5

Table 5: Significance of commonsense on VQA tasks.

VQAv2 OK-VQA

OFA 75.3 33.8
w/ commonsense 75.8 34.6

Qwen-VL-7B 79.5 58.6
w/ commonsense 79.9 60.0

while the second involves visual question answer-
ing (VQA) datasets that require both image un-
derstanding and external knowledge. Intuitively,
the discovered visual commonsense can enhance
performance on both VL tasks. Due to space limi-
tations, we provide more details in the Appendix.

Visual Commonsense Evaluation We assess
whether VCD could enhance VCM’s visual common-
sense capabilities by comparing the backbone and
VCM on IMAGENETVC, where we would expect
VCM, fine-tuned on VCD upon the backbone, to
demonstrate superior performance. The experimen-
tal results are reported in Tab. 4. It is observed
that VCMlarge shows improvements in the categories
of Color, Material, Component, and Others, indi-
cating an overall improvement in commonsense
knowledge. However, there is a minor decrease in
recognizing Shapes, likely due to a deficiency in
VCD’s shape-related commonsense.

Visual Question Answering This section eval-
uates on VQAv2 (Goyal et al., 2017) and OK-
VQA (Marino et al., 2019) to underscore the sig-
nificance of the commonsense discovered by VCM
for VQA. We compare the results from the back-
bone against those from the backbone incorporat-
ing commonsense discovered by VCM as comple-
ment information for answering the question. The
experimental results are reported in Tab. 5. We can
find that integrating the commonsense discovered
by VCM indeed enhances the performance of both
VQA datasets, which is evidence of the significance
of VCD for downstream VL tasks.
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5 Conclusion

We introduced VCD, a large-scale Visual Common-
sense Dataset that bridges the gap between lin-
guistic and visual commonsense. By combining
structured relations from ConceptNet with object-
level annotations from Visual Genome, VCD pro-
vides both seen and unseen commonsense across
three aspects: Property, Action, and Space. This
hierarchical taxonomy enables fine-grained, scene-
dependent, and object-specific commonsense repre-
sentation. To demonstrate its utility, we developed
VCM, a generative model trained with instruction
tuning. The model exhibits a strong ability in dis-
covering various types of visual commonsense, and
improves performance on vision-language tasks
like visual question answering. VCD provides a
foundation for enhancing visually grounded com-
monsense understanding and reasoning, enabling
AI systems to better capture visual commonsense
knowledge for real-world applications.

Limitations

One limitation of our study is that, due to space
constraints, this paper primarily focuses on intro-
ducing VCD and the corresponding task of visual
commonsense discovery. Our evaluation of the sig-
nificance of discovered visual commonsense for
vision-language tasks is relatively simple. In future
work, we plan to conduct a more systematic and
comprehensive evaluation across a broader range
of downstream vision-language tasks.

Furthermore, this study considers only visual
commonsense in static images, leaving out dy-
namic, temporal, and causal visual commonsense
as reflected in videos. Exploring these aspects
presents a promising research direction which we
aim to pursue in future work.
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A Details of VCD Construction

A.1 Definition and Examples for Visual
Commonsense Taxonomy

First, we present the definition of categories of
visual commonsense in Tab. 6. Then, based on
Fig. 1, we furthermore provide examples for each
category of visual commonsense as an illustration.
To maintain conciseness, not all bounding boxes in
the image depicted in Fig. 1 are annotated.

A.2 Full Set of Mapping Rules

This section presents the full set of mapping rules,
detailed in Tab. 7. Tab 7’s first column displays
the syntactic structures identified through syntactic
parsing of noun phrases, which are the result of
constituent syntactic analysis. Depending on these
syntactic structures, a subsequent mapping to a va-
riety of types of visual commonsense is performed,
as indicated in Tab. 7’s third column, and is based
on the parts of speech (POS) outlined in the second
column. To facilitate comprehension, Tab. 7 also
includes corresponding examples and explanations
for each distinct mapping rule.

A.3 Examples in VCD

We provide examples from VCD as illustrated in
Fig. 6. VCD includes detailed commonsense corre-
sponding to each object within the image, delin-
eated by bounding boxes. This commonsense is
expressed in the form of triples. For the sake of
conciseness, we do not provide the complete set
of commonsense for every object annotated with
bounding boxes in the image.

A.4 Word Cloud for VCD

In Fig. 8 and Fig. 9, we provide word clouds for
seen and unseen commonsense, repectively. It can
be observed that seen commonsense frequently con-
tains words describing positions and colors, e.g,
“white” and “on”. While in the word cloud for un-
seen commonsense, the word cloud contains words
like “time” and “place”, which are abstract con-
cepts. The differences well align to the definition
of seen and unseen commonsense.

B Details of VCM Training and Evaluation

B.1 Implementation Details of VCM

VCM is based on OFA (Wang et al., 2022), an
encoder-decoder architecture. While early vision-
language models primarily focused on image-text
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Table 6: Definitions and examples of visual commonsense taxonomy.

Category Definition Example

Seen

Property HasProperty The object has a currently seen property, such as shape, color, or material. (car, /Seen/Property/HasProperty, yellow)

Space
LocatedNear The object co-occurs with another object in a currently seen manner, without a specific spatial relationship. (car, /Seen/Space/LocatedNear, streetlight)

Relatedness The object has a currently seen spatial relationship with another object. (car, /Seen/Space/Relatedness, after a car)

Action
CapableOf The object performs a currently seen active action. (car, /Seen/Action/CapableOf, drive on road)

ReceivesAction The object undergoes a currently seen passive action. (skateboard, /Seen/Action/ReceivesAction, played by man)

Unseen

Property
HasProperty The object has a currently unseen property, such as shape, color, or material. (iron, /Unseen/Property/HasProperty, hard)

CreatedBy The object has a currently unseen method of creation. (car, /Unseen/Property/CreatedBy, factory)

Space LocatedNear The object co-occurs with another object in a currently unseen manner, without a specific spatial relationship. (man, /Unseen/Space/LocatedNear, sofa)

Action

CapableOf The object performs a currently unseen active action. (man, /Unseen/Action/CapableOf, grow up)

UsedFor The object has a currently unseen function or purpose. (car, /Unseen/Action/UsedFor, drive to work)

ReceivesAction The object undergoes a currently unseen passive action. (car, /Unseen/Action/ReceivesAction, hit)

Table 7: Full set of mapping rules.

POS Category Example Explanation

PP - /Seen/Space/Relatedness man before the yellow car → (man, /Seen/Space/Relatedness, before car)
“Man” is the root noun. Regarding the prepositional phrase “before the
yellow car”, we simplify it to “before car” to obtain the basic triple form.

VP
VBN /Seen/Action/ReceivesAction man hit by a yellow car → (man, /Seen/Action/ReceivesAction, hit by a car)

“Man” is the root noun. Regarding the verbal phrase “hit by a yellow
car”, since POS of “hit” is “VBN”, we map it to a passive action.

VBG /Seen/Action/CapableOf car driving on the road → (car, /Seen/Action/CapableOf, driving on road)
“Man” is the root noun. Regarding the verbal phrase “driving on the
road”, since POS of “driving” is “VBG”, we map it to a active action.

NP
ADJ /Seen/Property/HasProperty a small car → (car, /Seen/Property/HasProperty, small)

“Car” is the root noun. Regarding the noun phrase “a small car”, since
POS of “small” is “ADJ”, we map it to “/Seen/Property/HasProperty”.

VBG /Seen/Action/CapableOf a running man → (man, /Seen/Action/CapableOf, run)
“Man” is the root noun. Regarding the noun phrase “a running man”, since
POS of “running” is “VBG”, we map it to “/Seen/Action/CapableOf ”.

alignment, more recent VL models have enhanced
object localization capabilities by extending to
region-text alignment. However, few models effec-
tively incorporate coordinate specifications within
instructions. We require a model with strong local-
ization abilities that can seamlessly integrate coor-
dinate information into instructions. Consequently,
OFA, with its capability to process bounding box
coordinates and its moderate model size, serves as
a suitable foundation for instruction tuning.
VCD is divided into 8:1:1 for training, validation,

and test set. The AdamW optimizer (Loshchilov
and Hutter, 2019) with β1 = 0.9 and β2 = 0.999 is
utilized for optimization. To avoid overfitting, we
apply regularization techniques i.e, dropout with a
rate of 0.1, weight decay of 0.01, and label smooth-
ing set at 0.1. We implement a linear decay learn-
ing rate scheduler with an initial warmup ratio of
0.06, and VCM is trained on 4 NVIDIA RTX A6000
GPUs for a total of 3 epochs.

B.2 Output with Multiple Triples

We model VCM in a generative manner, allowing
the generation of novel commonsense triples that
are not contained in the training set. Crucially, VCD
provides a rich set of commonsense triples for each
object-type pair. we devise a strategy to preserve
this diversity in the generated output.

For seen commonsense, given n triples of an

object o and a type r, {(o, r, ec1), ..., (o, r, ecn)},
we sample m triples and join their tail nodes with
[sep], yielding ec1[sep]...[sep]ecm, where m ≤ n
helps manage the number of commonsense triples
desired during generation.

Given the sorted unseen commonsense as de-
scribed in Sec. 3.3.2, we concatenate the top-k
tail nodes into ic1[sep]...ick and then add j ran-
dom nodes sampled from the remaining to form
ic1[sep]...ick[sep]icsk+1, ...icsk+j . This strategy
ensures the generation of high-priority unseen com-
monsense while also maintaining a diversity of
lower-priority commonsense.

B.3 Evaluation Details of VCM

We select powerful open and closed source
MLLMs on MME leaderboard (Fu et al., 2023),
SPHINX, Qwen-VL-7B, and GPT-4o (OpenAI,
2023), and then manually compare them with
VCMlarge by carefully crafting the prompts.

The crafted prompts and qualitative results are
illustrated in Tab. 9 and Tab. 10. Texts in double
quotations are key components that can be adapted
based on the object under consideration, the type
of visual commonsense, etc. Here, we show only
the optimally chosen prompt that was used for the
experimental results in Tab. 3.
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…
(plants, create by, seed)
(umbrellas, shade, table)
(umbrellas, shade, people)
(umbrellas, shield from, rain)
…

(street light, in, crosswalk)
(car, park by, roadside)
…
(street light, cover with, posters)
(car, wait at, red signal)
…
(street light, can, illuminate)
(car, cost, a lot of money)
…

plants

umbrellas

street light

car

(plants, /UnSeen/Property/CreatedBy, 
seed)
(umbrellas, /UnSeen/Action/CapableOf,
shade table)
(umbrellas, /UnSeen/Action/CapableOf,
shade table)
(umbrellas, /UnSeen/Action/CapableOf,
shade people from sun)
(umbrellas, /UnSeen/Action/CapableOf,
shield one from rain or sun)

(street light, /Seen/Space/Relatedness,
in crosswalk)
(street light, /Seen/Action/CapableOf,
illuminate)
(street light, /Seen/Action/CapableOf,
saying walk)
(car, /UnSeen/Action/CapableOf, travel 
on road)
(car, /UnSeen/Action/CapableOf, cost a 
lot of money)

… …

Figure 6: Examples in VCD.
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Figure 7: Distribution of object names in VCD.

Figure 8: Word cloud for seen commonsense in VCD.

B.4 Qualitative Results of VCM

In this section, we showcase a variety of exam-
ples produced by VCMlarge. As observed in Fig. 10,
it is evident that VCMlarge is capable of gener-
ating high-quality representations of both seen
and unseen commonsense categories associated
with a specific object in an image. While the

Figure 9: Word cloud for unseen commonsense in VCD.

results are generally accurate, there may be oc-
casional errors. For instance, in the final im-
age of Fig. 10, “/Unseen/Property/HasProperty”
of “sidewalk” is correctly discovered as “paved
with concrete”; however, this description could
be more precisely attributed to the type of
“/Seen/Action/ReceivesAction”.
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Table 8: Detailed hyperparameters of VCM configuration. We list the configuration for VCM of 4 different sizes.

Model #Param. Backbone Hidden size Intermediate Size #Head #Enc. Layers #Dec. Layers

VCMtiny 33M ResNet50 256 1024 4 4 4
VCMmedium 93M ResNet101 512 2048 8 4 4
VCMbase 182M ResNet101 768 3072 12 6 6
VCMlarge 472M ResNet152 1024 4096 16 12 12

Table 9: Detailed prompts for evaluating GPT-4o.

Type Prompt

/E/P/HasProperty
[image] List some “visible” “has property” commonsense about the “field” located in the red bounding box in the image.
Output in the following format: (filed, visible has property, short phrase).

/E/S/LocatedNear
[image] List some “visible” “located near” commonsense about the “cheese” located in the red bounding box in the image.
Output in the following format: (cheese, visible located near, short phrase).

/E/S/Relatedness
[image] List some “visible” “related spatial relation” commonsense about the “hamburger” located in the red bounding box in
the image. Output in the following format: (hamburger, related spatial relation, on the desk).

/E/A/CapableOf
[image] List some “visible” “capable of” commonsense about the “wings” located in the red bounding box in the image.
Output in the following format: (wings, visible capable of, short phrase).

/E/A/ReceivesAction
[image] List some “visible” “receives passive action” commonsense about the “window” located in the red bounding box
in the image. Output in the following format: (window, receives passive action, short phrase).

/I/P/HasProperty
[image] List some “invisible” “has property” commonsense about the “hose” located in the red bounding box in the image.
Output in the following format: (hose, invisible has property, short phrase).

/I/P/CreatedBy
[image] List some “invisible” “created by” commonsense about the “tree” located in the red bounding box in the image.
Output in the following format: (hose, invisible created by, short phrase).

/I/S/LocatedNear
[image] List some “invisible” “located near” commonsense about the “shadow” located in the red bounding box in the image.
Output in the following format: (shadow, invisible located near, short phrase).

/I/A/CapableOf
[image] List some “invisible” “capable of” commonsense about the “tire” located in the red bounding box in the image.
Output in the following format: (tire, invisible capable of, short phrase).

/I/A/UsedFor
[image] List some “invisible” “used for” commonsense about the “car” located in the red bounding box in the image.
Output in the following format: (car, invisible used for, short phrase).

/I/A/ReceivesAction
[image] List some “invisible” “receives passive action” commonsense about the “picture” located in the red bounding box
in the image. Output in the following format: (picture, invisible receives passive action, short phrase).

C Details of Downstream VL Tasks

C.1 Details of Evaluation on IMAGENETVC

IMAGENETVC evaluates commonsense under-
standing across multiple dimensions, including
color, shape, material, components, and other at-
tributes of various objects. For example, the ques-
tion “What is the color of a koala?” from IMA-
GENETVC assesses the model’s knowledge of a
koala’s typical color, which is brown. To evaluate
performance on IMAGENETVC, we compare the
backbone model with the backbone trained on VCD
by directly testing them on IMAGENETVC, using
experimental setting provided by (Xia et al., 2023).

C.2 Details of Evaluation on VQA

We evaluates on VQA tasks to underscore the sig-
nificance of the commonsense discovered by VCD.
While visual commonsense reasoning could be a
good option, the datasets (Zellers et al., 2019; Park
et al., 2020) mostly focus on human behaviors and
states, not offering a broad reflection of common-
sense’s role for diverse objects as discovered by

VCD. Therefore, we select VQAv2 (Goyal et al.,
2017) OK-VQA (Marino et al., 2019) dataset,a vi-
sual question answering task requiring models to
utilize visual information from images to answer
questions.

It is reasonable to assume that performing VCD
on an image can provide additional insights that
are instrumental in improving VQA performance,
as commonsense serves as additional information
for better question answering.

For each question in VQAv2 and OK-VQA, we
begin by identifying the entities contained within
the questions using dependency parsing. Next, we
employ OFAlarge to determine the bounding boxes
corresponding to these entities in the image. Fi-
nally, we used VCMlarge for visual commonsense
discovery pertaining to the identified objects in the
image.

It is important to note that not all the common-
sense discovered by VCMlarge is equally beneficial
for answering the questions. As such, we filter the
commonsense and retain only what is most rele-
vant to the question. The reserved commonsense is
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Table 10: Detailed prompts for evaluating SPHINX and Qwen-VL-7B.

Type Prompt

/E/P/HasProperty [image] Can you tell me what visible properties common sense the “field” has in this image?
/E/S/LocatedNear [image] Can you tell me what exists near this “cheese” in the bounding box of the image?
/E/S/Relatedness [image] Can you tell me anything about the location of the “hamburger” in the picture?
/E/A/CapableOf [image] Please list some “capable of” commonsense you can see about “wings” in the bounding box of the image.
/E/A/ReceivesAction [image] Can you tell me what are the common sense passively accepted actions of the “window” in the picture?
/I/P/HasProperty [image] Can you tell me what visible properties commonsense the “car” has in this image?
/I/P/CreatedBy [image] Please list some “created by” commonsense you can imagine about “tree” in the bounding box in the image.
/I/S/LocatedNear [image] Please list some “located near” commonsense you can imagine about “shadow” in the bounding box of the image.
/I/A/CapableOf [image] Please list some “capable of” commonsense you can imagine about “tire” in the bounding box of the image.
/I/A/UsedFor [image] Please use your imagination to tell me what can “car” in the picture be used for.

/I/A/ReceivesAction
[image] Please list some “receives passive action” commonsense you can imagine about “picture” in the bounding box
of the image.

(lamp, 
Unseen/Action/ReceivesActio
n) :
placed on table; found in 
room; found to sit on dresser; 
found in office building; …

(book, 
Unseen/Property/CreatedBy):
writer; author

(blanket, 
Seen/Space/Relatedness):
on bed

(painting, 
Unseen/Space/LocatedNear):
school; rest on easel; museum; 
gallery opening; attic; …

(church, 
Seen/Property/HasProperty): 
large; white

(cross, 
Seen/Space/LocatedNear):
table; light; carpet; cross; 
building; pew; …

(glass, Unseen/Action/CapableOf):
withstand modest forces; 
shattering; hold water; shattering 
if left wet; …

(glass, Seen/Action/CapableOf):
withstand modest forces; 
shattering; hold water; shattering 
if left wet; hold liquid; …

(bread, 
Seen/Action/ReceivesAction): 
toasted

(sidewalk, 
Unseen/Property/HasProperty):
sticky; smooth; paved with 
concrete; flat long and narrow

(sign, Unseen/Action/UsedFor):
visual understanding; 
unspoken words; traffic 
directions; telling to do 
things; …

lamp

book
blanket

painting

cross

church

glass

bread

sign

sidewalk

Figure 10: Qualitative results generated by VCMlarge.

then concatenated with the question, enriching the
context for the answer generation.

For fair comparison, both the backbone and the
backbone with visual commonsense are finetuned
on VQAv2 and OK-VQA from scratch under the
identical experimental setting.

To validate the effectiveness of different types
of commonsense, we randomly select 100 samples
from VQA-v2 and evaluate the accuracy manu-
ally with different types of commonsense. Tab. 11
shows the efficacy of seen over unseen common-
sense for VQAv2, since VQAv2 is a relatively sim-
ple VQA dataset where most of the questions are
related to seen commonsense.

Table 11: Accuracy with different type of commonsense
on VQAv2.

Category ✘ Explicit Implicit

Accuracy 0.89 0.92 0.90
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