
Findings of the Association for Computational Linguistics: ACL 2025, pages 5291–5297
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

TriEmbed: Bridge the Gap between Text and Token Indices
with Embedding Reparameterization

Baizhou Huang Xiaojun Wan
Wangxuan Institute of Computer Technology, Peking University

State Key Laboratory of General Artificial Intelligence
{hbz19,wanxiaojun}@pku.edu.cn

Abstract
The current paradigm of language modeling is a
two-stage pipeline that first transforms raw text
to token indices, where the distribution is then
estimated. It inherently discards linguistic rela-
tions between tokens during tokenization, creat-
ing a fundamental gap. To address this, we pro-
pose TriEmbed, a reparameterization method
for embeddings that incorporates the morpho-
logical relationships inherent in subword tok-
enizer algorithms. Specifically, by organizing
the vocabulary into a Trie structure, we can
encode these relations and reparametrize the
embeddings, facilitating the recovery of other
linguistic relationships during training. Empiri-
cal results across various settings demonstrate
that TriEmbed outperforms conventional em-
beddings from the perspective of scaling, while
offering more linguistically informative token
embeddings.

1 Introduction

In recent years, language modeling has undergone
rapid advancements, unlocking unprecedented po-
tential through large-scale scaling. The current
paradigm of language modeling is a pipeline con-
sisting of two decoupled components: a tokenizer
and a language model. The tokenizer converts raw
text, defined in the text space, into a sequence of
token indices in the token index space, where the
language model can operate in a differentiable man-
ner. However, this transformation also introduces a
fundamental gap: tokenization discards the linguis-
tic relations between tokens (e.g., morphological
variations such as "run" and "running" or synony-
mous expressions like "big" and "large"), reducing
them to mere numerical representations (i.e. token
indices) with only identity relations preserved.

Common practice in LLMs disregards the gap,
relying on end-to-end training with the next to-
ken prediction objective to implicitly recover these
lost relationships. However, this process is uncon-
trollable, possibly leading to problems including

�������������

���

�����������

���������������

����������������

������������������

���������������

���������

��
	
������������

����������

�
��������������

�����������

������������

�����������������

���������

���������

������ �, ������

�

���� ������� �������� ���� ������� ��������

����

�������

��������

���� ������� ��������

�������

���� �����

����

�����

���

������

+ +

+

���� ������� �������� ���� ������� ��������

����

�������

��������

���� ������� ��������

�������

���� ����

�

����

�����

���

������

+ +

+��� ���

���������

���������

+ ����������������������

�������� ��������

Figure 1: (a) A subtree of token "m" in the Trie-
structured vocabulary. (b) Comparison between original
embeddings and our proposed TriEmbed. Each token is
assigned one embedding vector e(·) for the former and
one atomic vector a(·) for the latter as parameters.

representation degeneration (Gao et al., 2019), fre-
quency bias (Yu et al., 2022) and so on. Some
previous work attempts to include semantic rela-
tions by pretraining embedding modules (Minix-
hofer et al., 2022; Dobler and de Melo, 2023). Yet,
structural discrepancies between different represen-
tation spaces commonly induce domain shifts in
continual training, resulting in worse performance
than random initializations (Kim et al., 2024).

To bridge the gap, we propose a novel repa-
rameterization method for embedding modules,
TriEmbed, which incorporates the morphological
relations inherent in tokenizer algorithms. Subword
tokenizer builds on word formation morphology.
And its training process reflects morphological rela-
tions within vocabulary. We encode these relations
in ancestor-descendant connections within an im-
plicit Trie. Following the hierarchical structure of
the Trie, we derive each embedding from all its an-
cestors. Our method retains the benefits of random
initialization while seamlessly integrating induc-
tive bias about the morphological relations among
token indices.

We conduct extensive experiments to validate the
effectiveness of TriEmbed across different scales
of training corpora and model sizes. Notably, when

5291

pretraining Pythia on FineWeb-Edu, TriEmbed
achieves performance on par with conventional em-
bedding modules while requiring about 70% of the
model parameters or 90% of the pretraining corpus.
Furthermore, a detailed analysis reveals that our
approach significantly improves the morphology
of representation space, offering more meaningful
token embeddings.

2 Background

Language modeling aims to estimate the proba-
bility p(s) of any given text string s ∈ Σ∗. Cur-
rent paradigm follows a two-component pipeline
consisting of a tokenizer and a language model.
A tokenizer segments a text string s into tokens,
then maps them to a sequence of token indices
X = [x0, ...xN] ∈ Z∗. It provides an intermediate
token index space, in which the language model
can estimate the probability distribution pθ(xi|x<i)
in a differentiable way.

Tokenizer algorithm focuses on constructing a
suitable vocabulary. LLMs predominantly adopt
subword tokenizer such as BPE (Sennrich et al.,
2016), which hypothesizes that complex words
should be split into multiple subwords. For training,
they begin with a base vocabulary (e.g. all Unicode
characters), and iteratively merges the most fre-
quent token pairs in training corpus as a new token
to expand the vocabulary (see Appendix A for the
pseudo-code). Therefore, the resulting vocabulary
implicitly encodes a Trie1, as shown in Figure 1(a).

Although the pipeline simplifies the training pro-
cess for next token prediction, it also introduces
a fundamental gap when transforming from the
original text space to the token index space.

To illustrate this issue, consider the word
spelling challenge. A sample s= "model→
mod e l" is tokenized as X= [id(model), id(→
), id(_m), id(_o), id(_d), id(_e), id(_l)]. The
morphological relations between different tokens
(e.g. "model" and "_m") are lost, leading to
frequent failure of LLMs in word spelling tasks
(Karpathy, 2024).

This issue extends beyond morphology and is
inherent to the two-component pipeline. A wide
range of linguistic relationships, including seman-
tic, etymological, and derivational connections, are
similarly discarded after tokenization, since lan-

1We additionally consider an non-existing start-of-word
token as the prefix of all tokens in the vocabulary, hence
constructing a Trie.

guage models can only observe token indices with
identity relations left.

Common practice in LLMs tends to disregard the
gap, relying on end-to-end training with the next
token prediction objective to learn these linguistic
information implicitly. However, this process is
computational expensive. Moreover, the stochas-
tic nature of gradient-based algorithm makes the
training process uncontrollable, leading to severe
problems such as representation degeneration (Gao
et al., 2019; Biś et al., 2021) and frequency bias
(Schick and Schütze, 2020; Gong et al., 2018; Yu
et al., 2022). Another line of work (Minixhofer
et al., 2022; Dobler and de Melo, 2023) tries to ini-
tialize embeddings with pretrained weights to par-
tially recover the missing relations among tokens in
vocabulary. However, these pretrained embeddings
often exhibit structural discrepancy with the final
representation space of the language model. For
instance, they tend to have significantly larger vari-
ance magnitudes (Kim et al., 2024), which makes
the subsequent training difficult. More related work
is presented in Appendix B.

3 Method

As discussed in the previous section, the transfor-
mation from text space to token index space dis-
cards linguistic relationships between tokens, in-
troducing a fundamental gap. To address this, we
aim to leverage the inductive bias inherent in the
tokenizer to recover the lost information during
tokenization.

The subword tokenizer draws inspiration from
Word Formation Morphology (Pounder, 2000;
wfm, 1986; Görlach, 2003), a field that studies
the structure of words in terms of morphemes. And
its iterative merging process mirrors the word for-
mation process where words are constructed by
sequentially adding affixes to stems. As such, an
inherent morphological relation exists among the
resulting vocabulary.

By reorganizing the vocabulary into a Trie struc-
ture, this morphological information is captured
within the ancestor-descendant relationships of the
tree. We hypothesize that, the ancestor-descendant
relationship can serve as a foundation for the intri-
cate linguistic relations among tokens, facilitating
the restoration of other relations during training.

Building on the hypothesis, we propose
TriEmbed, a novel reparameterization approach
for the embedding module, which incorporates the

5292

����������������������
 ����������������������

���������������������
 �	�������������������

������
�����������������
 ������
�����������������

������
����������������
 ������
����������������

��������
��������
������������

��
���
��������
����� ������������� �����

­�
��

Figure 2: Scalability of different embeddings. (a-d) Pythia-410m and GPT2-large trained on different size of dataset.
(e-h) Different scales of Pythia and GPT2 trained on 0.5B tokens. The blue and orange curves represent the scaling
laws of TriEmbed and original embedding correspondingly, with fitting error shown on the right of each curve.

inductive bias about the Trie structure among to-
kens. Given a token, we derive its embedding from
those of its ancestors. Specifically, we first assign
each token with a unique atomic vector a(·), then
define the embedding of a token as the cumula-
tive sum of the atomic vectors of all its ancestors
and its own, i.e. e(v) =

∑
u∈ancestors(v) or u=v a(u).

This summation process follows a traversal from
the root of the Trie to the current node, reflecting
the word formation process in which affixes are
progressively added to a stem. The method is illus-
trated in Figure 1(b).

A key advantage of our approach is that it does
not introduce additional parameters, maintaining
parameter efficiency. Additional computational
costs are also minimal due to simplicity of summa-
tion. Despite its simplicity, TriEmbed still brings
significant improvements, which we will empiri-
cally demonstrate in the following experiments.

4 Experiments

4.1 Settings
Our experiments are conducted on two widely
used pretraining datasets including FineWeb-Edu
(Penedo et al., 2024) and CodeParrot (Tunstall
et al., 2022). We consider three different series of
language model architectures including Pythia (Bi-
derman et al., 2023), GPT2 (Radford et al., 2019)
and Qwen2.5 (Qwen et al., 2025). Notably, all
models are trained from scratch, and any references

to model names refer to architectures rather than
pretrained weights. Unless stated, we adopt Pythia-
410m and GPT2-large as the default model config-
urations and use a 0.5B-token subset of FineWeb-
Edu as the default dataset. More details about ex-
perimental settings are presented in Appendix C.

4.2 Scalability of TriEmbed

We evaluate the scalability of TriEmbed across
varying model and dataset sizes. We fit both model
scaling laws and data scaling laws on the experi-
mental results using Huber loss minimization, fol-
lowing Hoffmann et al. (2022). The scaling law fits
well in our experimental results with fitting error
less than 0.0001. The results for Pythia and GPT2
are presented in Figure 2, while those for Qwen2.5
are included in Appendix D.

It is evident that the fitted scaling curves of
TriEmbed are consistently below those of con-
ventional embedding modules. Notably, a Pythia
model with TriEmbed achieves performance com-
parable to a conventional 2.8B-parameter Pythia
model while requiring only 70% parameters. Fur-
thermore, under an identical Pythia-410M config-
uration, TriEmbed requires only 90% of the text
corpus to match the performance of a conventional
one trained on 1B tokens.

Furthermore, we also evaluate the transfer learn-
ing capability of TriEmbed by finetuning it on
SAMSum, a dialogue summarization dataset. The

5293

Figure 3: Visualization of different token embeddings
through a 2-dimensional PCA projection. The color gra-
dient corresponds to token frequency in training corpus,
with darker shades indicating lower frequencies.

results shown in Table 1 further highlight the supe-
riority of TriEmbed.

4.3 Ablation of Inductive Bias

The proposed reparameterization not only incorpo-
rates morphological relationships within the vocab-
ulary but also alters some gradient dynamics. To
investigate the reasons for the improved scaling per-
formance of TriEmbed, we conduct experiments
with other factors ablated. Specifically, we pre-
serve the topological structure of the Trie and ran-
domly shuffle all token indices, thereby disrupting
the ground-truth ancestor-descendant relationships.
The variant denoted as TriEmbedrand now shares
a similar gradient dynamics with TriEmbed, but
introduces incorrect inductive bias. As shown in
Figure 2, results of TriEmbedrand closely aligns
with the original embedding module under all set-
tings. This observation strongly suggests that the
performance gains stem primarily from the morpho-
logical relations between tokens in the tokenizer,
further demonstrating our hypothesis.

4.4 Analysis of Embedding

Visualization. We visualize the resulting token em-
beddings of different embedding modules in Figure
3. Consistent with the representation degeneration
problem in Gao et al. (2019), both original em-
beddings and TriEmbedrand degenerate into narrow
cones in the space. Moreover with color indicating
token frequency, we find that rare tokens and popu-
lar tokens are heavily clustered and lie in different
subregions of the space, aligned with the observa-
tion of frequency bias in Gong et al. (2018). In con-
trast, TriEmbed results in a significantly more uni-
form distribution over the embedding space, with

Model BERTScore Rouge1 Rouge2 RougeL

Pythia-410m 84.40 17.27 6.97 15.70
Pythia-410m w/ TriEmbed 84.32 18.08 7.31 15.57

GPT2-large 84.33 31.62 13.65 26.64
GPT2-large w/ TriEmbed 87.87 38.21 16.74 31.69

Table 1: Fine-tuning performance of TriEmbed on
SAMSum. All models are pretrained on FineWeb-Edu
(0.5B tokens subset) first.

Model Rare Words Word Analogy
Embedding Original TriEmbed Original TriEmbed

GPT2 52.41 54.93 30.55 47.45
GPT2-medium 55.50 56.11 24.75 43.77

GPT2-large 56.88 53.66 20.65 50.14
GPT2-xl 55.61 50.90 17.02 63.51

Pythia-70m 46.00 51.62 36.84 65.73
Pythia-160m 50.86 57.49 28.95 49.88
Pythia-410m 52.07 53.34 23.69 53.78

Pythia-1b 54.99 55.64 13.18 37.83
Pythia-1.4b 52.00 56.14 13.21 36.09
Pythia-2.8b 48.36 50.93 10.59 52.69

Table 2: Embedding performance on benchmarks for
word similarity and analogy. All models are pretrained
on FineWeb-Edu (0.5B tokens subset).

high-frequency and low-frequency tokens evenly
mixed together. This suggests that our approach
mitigates both representation degeneration and fre-
quency bias, encouraging a better embedding space
structure.
Word embedding benchmarks. We also vali-
date the quality of learned token embeddings on
standard word embedding benchmarks, includ-
ing Stanford Rare Words (Luong et al., 2013)
and Word Analogy (Mikolov et al., 2013). Re-
sults presented in Table 2 highlight the superiority
of TriEmbed, demonstrating our hypothesis that
ancestor-descendant relations can serve as a foun-
dation for learning other linguistic relations more
effectively.

5 Conclusions

In this work, we review the gap between text space
and token index space inherent in the current two-
component language modeling pipeline. We intro-
duce TriEmbed, a reparameterization method for
the embedding module that incorporates morpho-
logical information from the tokenizer algorithm.
Extensive experiments demonstrate the effective-
ness of TriEmbed particularly in terms of scala-
bility, suggesting a promising direction for future
large-scale pretraining of language models.

5294

Limitations

The gap between token index space and text space
is inherent to the current two-component pipeline
paradigm. While TriEmbed partially mitigates this
issue, it cannot fully close the gap without aban-
doning the tokenization process.

Additionally, our experiments are limited to pre-
training on small-scale models with fewer than 3
billion parameters due to resource limits. While re-
sults of our experiments have already demonstrated
clear advantages of TriEmbed, scaling up the exper-
iments to larger models and training corpus would
provide more robust validation, which we leave as
future work.

Acknowledgements

This work was supported by Beijing Science and
Technology Program (Z231100007423011) and
Key Laboratory of Science, Technology and Stan-
dard in Press Industry (Key Laboratory of Intelli-
gent Press Media Technology). We appreciate the
anonymous reviewers for their helpful comments.
Xiaojun Wan is the corresponding author.

References
1986. Chapter III: Word formation in generative mor-

phology, pages 37–56. De Gruyter Mouton, Berlin,
Boston.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling. Preprint, arXiv:2304.01373.

Daniel Biś, Maksim Podkorytov, and Xiuwen Liu. 2021.
Too Much in Common: Shifting of Embeddings in
Transformer Language Models and its Implications.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5117–5130, Online. Association for Computa-
tional Linguistics.

Konstantin Dobler and Gerard de Melo. 2023. FOCUS:
Effective Embedding Initialization for Monolingual
Specialization of Multilingual Models. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 13440–13454,
Singapore. Association for Computational Linguis-
tics.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and
Tie-Yan Liu. 2019. Representation Degeneration

Problem in Training Natural Language Generation
Models. Preprint, arXiv:1907.12009.

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei
Wang, and Tie-Yan Liu. 2018. FRAGE: Frequency-
Agnostic Word Representation. In Advances in Neu-
ral Information Processing Systems, volume 31. Cur-
ran Associates, Inc.

Manfred Görlach. 2003. 7. Morphology and word for-
mation, pages 75–92. John Benjamins Publishing
Company.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models. Preprint, arXiv:2203.15556.

Andrej Karpathy. 2024. Let’s build the gpt tokenizer.

Ha Young Kim, Niranjan Balasubramanian, and
Byungkon Kang. 2024. On Initializing Trans-
formers with Pre-trained Embeddings. Preprint,
arXiv:2407.12514.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better word representations with recur-
sive neural networks for morphology. In Proceed-
ings of the Seventeenth Conference on Computational
Natural Language Learning, pages 104–113, Sofia,
Bulgaria. Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. Preprint, arXiv:1301.3781.

Benjamin Minixhofer, Fabian Paischer, and Navid Rek-
absaz. 2022. WECHSEL: Effective initialization of
subword embeddings for cross-lingual transfer of
monolingual language models. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3992–4006,
Seattle, United States. Association for Computational
Linguistics.

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-Top:
Simple and Effective Postprocessing for Word Repre-
sentations. In International Conference on Learning
Representations.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben al-
lal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro Von Werra, and Thomas Wolf. 2024. The
fineweb datasets: Decanting the web for the finest
text data at scale. Preprint, arXiv:2406.17557.

Amanda Pounder. 2000. Process and Paradigms in
Word-Formation Morphology. De Gruyter Mouton,
Berlin, New York.

5295

https://doi.org/doi:10.1515/9783110877328.37
https://doi.org/doi:10.1515/9783110877328.37
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://doi.org/10.18653/v1/2021.naacl-main.403
https://doi.org/10.18653/v1/2021.naacl-main.403
https://doi.org/10.18653/v1/2023.emnlp-main.829
https://doi.org/10.18653/v1/2023.emnlp-main.829
https://doi.org/10.18653/v1/2023.emnlp-main.829
https://doi.org/10.48550/arXiv.1907.12009
https://doi.org/10.48550/arXiv.1907.12009
https://doi.org/10.48550/arXiv.1907.12009
https://doi.org/doi:10.1075/tlrp.7.11mor
https://doi.org/doi:10.1075/tlrp.7.11mor
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://www.youtube.com/watch?v=zduSFxRajkE
https://doi.org/10.48550/arXiv.2407.12514
https://doi.org/10.48550/arXiv.2407.12514
https://aclanthology.org/W13-3512/
https://aclanthology.org/W13-3512/
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://doi.org/doi:10.1515/9783110814378
https://doi.org/doi:10.1515/9783110814378

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Timo Schick and Hinrich Schütze. 2020. Rare Words: A
Major Problem for Contextualized Embeddings and
How to Fix it by Attentive Mimicking. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):8766–8774.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

L. Tunstall, L. von Werra, and T. Wolf. 2022. Natural
Language Processing with Transformers: Building
Language Applications with Hugging Face. O’Reilly
Media.

Dilin Wang, Chengyue Gong, and Qiang Liu. 2019a.
Improving Neural Language Modeling via Adversar-
ial Training. In Proceedings of the 36th International
Conference on Machine Learning, pages 6555–6565.
PMLR.

Lingxiao Wang, Jing Huang, Kevin Huang, Ziniu Hu,
Guangtao Wang, and Quanquan Gu. 2019b. Improv-
ing Neural Language Generation with Spectrum Con-
trol. In International Conference on Learning Repre-
sentations.

Sangwon Yu, Jongyoon Song, Heeseung Kim, Seong-
min Lee, Woo-Jong Ryu, and Sungroh Yoon. 2022.
Rare Tokens Degenerate All Tokens: Improving Neu-
ral Text Generation via Adaptive Gradient Gating for
Rare Token Embeddings. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 29–45,
Dublin, Ireland. Association for Computational Lin-
guistics.

A BPE Algorithm

Algorithm 1 Byte-pair Encoding
Input: Training corpus D, Target vocab size k,

Base vocabulary V
Output: Final vocabulary V
while |V|<k do

(tl, tr)← most frequent bigram in D.
tnew ← concat(tl, tr)
V ← V + {tnew}
Replace all occurrence of (tl, tr) with tnew
in D

end
return V

B Extended Related Work

Gao et al. (2019) observe that language model-
ing trained with next-token-prediction loss using
gradient descent commonly leads to token embed-
dings degenerating to a narrow cone. This phe-
nomenon, named the representation degeneration
problem, indicates an overall similarity among em-
beddings, leading to decreased expressiveness of
token embeddings. Therefore, it is difficult for the
model to learn linguistic relationships between the
tokens and to generate high quality texts. Existing
studies addressing this problem by applying post-
processing (Mu and Viswanath, 2018; Biś et al.,
2021) or regularization (Gao et al., 2019; Wang
et al., 2019b,a) directly to constraint the embedding
space. Our proposed TriEmbed doesn’t explicitly
constraint the embedding space. The reparameteri-
zation automatically change the gradient dynamics,
mitigating this problem.

Frequency bias in embedding space is another
problem. Gong et al. (2018) finds that rare words
and frequent words commonly occupy different
sub-regions of the embedding space. The reason
stems from the gradient descent with softmax. Be-
cause of the low sampling rates of rare words, their
token embeddings are merely updates, leading to
under-estimation. According to their observation,
the moving distance of the embedding for a popular
word is twice longer than that of a rare word during
training. Yu et al. (2022) mitigate this problem by
gating a specific part of the gradient of rare words.
Similarly, TriEmbed also mitigates the problem via
altering gradient dynamics. Since the token embed-
dings are now dependent, rare token embeddings
are more actively updated by the gradients of their
descendants.

5296

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.1609/aaai.v34i05.6403
https://doi.org/10.1609/aaai.v34i05.6403
https://doi.org/10.1609/aaai.v34i05.6403
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://books.google.com.sg/books?id=pNBpzwEACAAJ
https://books.google.com.sg/books?id=pNBpzwEACAAJ
https://books.google.com.sg/books?id=pNBpzwEACAAJ
https://doi.org/10.18653/v1/2022.acl-long.3
https://doi.org/10.18653/v1/2022.acl-long.3
https://doi.org/10.18653/v1/2022.acl-long.3

��������
��������

��������
���
��	����������

��������
���
���
������
� ��������
���
���
������
�

��������
���
��	����������

����������������
���� �
����������� �����

­

��

Figure 4: Scalability of different embeddings. (a)(b) Qwen-2.5 trained on different size of dataset. (c)(d) Different
scales of Qwen-2.5 trained on 0.5B tokens. The blue and orange curves represent the scaling laws of TriEmbed and
original embedding correspondingly.

C Experimental Details

Our experiments are conduct on two different
datasets, including FineWeb-Edu (Penedo et al.,
2024) and CodeParrot (Tunstall et al., 2022).
FineWeb-Edu is a popular English pretraining
dataset filtered by an educational quality classi-
fier for our main experiments. CodeParrot is also a
commonly used code pretraining dataset consist of
5,361,373 Python files crawled from Github. For
both datasets, we chunk the corpus into samples
of 512 sequence length. In the data scaling experi-
ments, we randomly sampled five subsets with 1B,
0.75B, 0.5B, 0.375B and 0.25B tokens respectively.

We consider three different series of language
model architectures including Pythia (Biderman
et al., 2023), GPT2 (Radford et al., 2019) and
Qwen2.5 (Qwen et al., 2025). All models are
weight tied by default.

For all experiments, we train the model from
scratch. The training batch size is 128 and the
training epoch is 1. We set the learning rate to 1e-4.
All loss reported in this work is calculated on a test
dataset of 5,000,000 tokens.

D Scalibility of TriEmbed on Qwen2.5

The scaling experimental results of Qwen2.5 series
are shown in Figure 4, which present similar pat-
terns to those of GPT2 and Pythia. Specifically, we
add a Qwen-0.25B configuration by scaling down
Qwen-0.5B.

5297

