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Abstract

Large Language Models (LLMs) have been
widely found to struggle with logical reasoning,
where even fine-tuned models fail dramatically
on out-of-distribution problems. However, ex-
isting work has focused on relatively complex
“many-hop” reasoning problems. In this pa-
per, we analyse the performance of fine-tuned
LLMs on simple reasoning problems, all of
which can be solved in at most three inference
steps. Due to the simplicity of these problems,
the model cannot encounter test problems that
are fundamentally different from those it has
seen during training. Unfortunately, however,
we find that the models remain highly brittle,
being susceptible to seemingly innocent pertur-
bations, such as the addition of duplicates to
the set of premises and shuffling the order in
which the premises are presented.

1 Introduction

In its simplest form, logical reasoning involves in-
ferring logical consequences by combining the in-
formation that is encoded in a given set of premises.
Consider, for example, the following premises: (i)
Alice is not judgmental or Alice is sincere; (i1) Al-
ice is judgmental or Alice is timid, (iii) Alice is not
timid. Premises (i) and (ii) imply: (iv) Alice is sin-
cere or Alice is timid. Combining (iv) and (iii), we
can furthermore derive: (v) Alice is sincere. In this
example, deriving (v) required two derivation steps.
In general, logical reasoning problems may involve
a large number of such derivation steps. Several
recent studies have shown that the logical reason-
ing abilities of Large Language Models (LLMs)
are surprisingly limited (Patel et al., 2024; Tian
etal., 2021; Wang et al., 2023; Parmar et al., 2024).
While it is possible to fine-tune LLMs to improve
their reasoning abilities, the resulting models strug-
gle with out-of-distribution test examples and they
are typically sensitive to language variance (Zhang
et al., 2023; Chang et al., 2024; Mirzadeh et al.,
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Instruction:
Do the premises entail the hypothesis?
Answer with yes or no only.

Premises:
[ Alice is not judgemental or Alice is sincere.

Alice is not timid or Alice is sincere.
Alice is not judgemental or Alice is awesome.
Alice is not timid or Alice is silly.
Alice is not sincere or Alice is timid.
Alice is not awesome or Alice is judgemental .
Alice is not silly or Alice is awesome.
Alice is not clean or Alice is timid.

[ Alice is judgemental.

Figure 1: A simple reasoning problem where the hy-
pothesis can be inferred by combining two premises.
However, GPT-4o fails to answer correctly.

Hypothesis:
Alice is sincere

2024).

However, previous evaluations were conducted
on fairly complex reasoning tasks (Chen et al.,
2023; Wang et al., 2023; Dalvi et al., 2021), where
e.g. up to 10 derivation steps have to be combined
to infer a given conclusion. Such reasoning prob-
lems rarely arise in everyday discourse. We there-
fore consider the following research question: can
LLMs be fine-tuned to reliably carry out simple
logical reasoning tasks? We specifically consider
reasoning problems that require at most 3 inference
steps. Such problems can typically be solved by
humans at a glance. Given the impressive capabil-
ities of recent LLLMs, we would thus expect them
to be capable of solving such problems as well.
Furthermore, while we focus on synthetically gen-
erated examples in our analysis, the ability to solve
simple reasoning problems is clearly of practical
significance. For instance, such forms of reasoning
are commonly needed for resolving ambiguities in
text. Similarly, RAG systems may need to combine
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information from different sources (Jeong et al.,
2024; Lazaridou et al., 2022).

Unfortunately, even for simple reasoning prob-
lems, we find that LLMs perform surprisingly
poorly. To illustrate this, Figure 1 shows a sim-
ple reasoning problem on which GPT-40 failed,
despite the fact that the hypothesis can be derived
in a single inference step. Motivated by this ob-
servation, we focus our analysis in this paper on
fine-tuned models. Consistent with previous work,
we find that fine-tuned models can solve reasoning
problems with near-perfect accuracy when test ex-
amples are generated in the same way as training
examples. Moreover, due to the simplicity of the
considered reasoning problems, it is not possible
for the model to encounter test examples that have
a different structure than those it has seen in train-
ing. Nonetheless, we find that the performance
of fine-tuned LL.Ms deteriorates significantly on
out-of-distribution examples. A closer analysis re-
veals that models struggle with seemingly innocent
differences in how examples are presented. For
instance, we find that the models struggle when
premises in the input are duplicated. Furthermore,
they are also highly sensitive to the order in which
the premises are presented, with the position of
literals being particularly important. These find-
ings show that even for simple reasoning problems,
fine-tuned LLMs rely on shortcuts rather than gen-
uinely learning to reason, which is in accordance
with what has been found for other forms of rea-
soning (Nikankin et al., 2024).

2 Related Work

Evaluating the reasoning abilities of LLMs has
been the subject of an extensive line of work,
which has covered, among others, deductive (Clark
et al., 2020; Saeed et al., 2021; Parmar et al., 2024;
An et al., 2024), abductive (Kazemi et al., 2023;
Tafjord et al., 2021), commonsense (Tian et al.,
2021; Dalvi et al., 2021), and symbolic reasoning
(Pan et al., 2023; Jiang et al., 2024). A common
finding is that the reasoning depth, i.e. the number
of inference steps that need to be chained to ar-
rive at the answer, is a strong predictor of problem
difficulty (Dziri et al., 2023; Parmar et al., 2024).
In particular, even fine-tuned LLMs fail to gen-
eralize to problems that require longer inference
chains than those in the training set (Zhang et al.,
2023). Chain-of-thought prompting (Kojima et al.,
2022; Saparov and He, 2023) and providing in-

context demonstrations (Wang et al., 2023) have
been found to improve reasoning abilities. How-
ever, such techniques are less effective for smaller
models, and they come with their own limitations
(Wei et al., 2022; Stechly et al., 2023, 2024). Rea-
soning models, such as OpenAl ol and DeepSeek
R1, can overcome some of these limitations, but at
the expense of a significant computational overhead
(Valmeekam et al., 2024). A practical solution is to
use LLMs to convert problem instances to symbolic
inputs for external solvers, and thus avoid relying
on the LLM to solve the reasoning problems them-
selves (Jiang et al., 2024; Pan et al., 2023). While
this may indeed be desirable for complex reason-
ing problems, we would still expect LLMs to be
capable of making simple logical inferences, as
this capability may be needed for general language
understanding (e.g. for resolving ambiguities).

To the best of our knowledge, only few works
have focused on simple reasoning problems. Yang
et al. (2024) showed that LLMs can sometimes fail
on simple problems, even if they perform well on
harder ones. A study on simple math reasoning
tasks involving two or three operands further un-
derscores the sensitivity of LLMs when exposed to
variations in numerical and textual framing (Stolfo
et al., 2023). LogicAsker (Wan et al., 2024) evalu-
ates the basic reasoning skills of LLMs, but their
focus is on off-the-shelf models such as GPT-4 and
Gemini 1.5, whereas we focus on the potential of
fine-tuning models on simple reasoning tasks.

3 Experimental Setup

The problems we consider involve a set of premises
and a hypothesis, all of which are natural language
verbalizations of formulas from propositional logic.
The task is to predict whether the hypothesis is
logically entailed by the premises (w.r.t. the usual
semantics of propositional logic). An example of a
problem instance is shown in Figure 1. The verbal-
izations are obtained using simple templates, which
makes the statements easy to parse and allows us
to focus specifically on the reasoning abilities.

Training Data To fine-tune our LLMs, we use
a dataset that is obtained as follows.! We first ran-
domly sample a set of clauses {¢1, ..., ¢m }. Each
clause is a literal or a disjunction of two literals,
where a literal is either an atomic proposition or
the negation of an atomic proposition. Each time

'Our code is available at https://github.com/
ariyaninf/simple_reasoning.
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a clause is added to the set, we use a SAT solver
(Le Berre and Parrain, 2010) to check that it re-
mains satisfiable; if not then the clause is discarded
and we repeat the sampling process. After the full
set of clauses has been sampled, we randomly sam-
ple one literal as the hypothesis. Further details on
the sampling algorithms are explained in Appendix
A.

Note that these problem instances are particu-
larly straightforward. For instance, because at most
two literals appear in each clause, they fall within
the polynomial fragment of propositional logic.
We further restrict the difficulty of the problem
instances by avoiding problems with an inference
depth of more than 3. Specifically, for a positive in-
stance, where the hypothesis is logically entailed by
the premises, we define the inference depth as the
number of inference steps which are needed to de-
rive the conclusion. An inference depth of & means
that the hypothesis is entailed by a subset of k + 1
premises. Inference depth O thus means that the hy-
pothesis is included in the set of premises. For neg-
ative examples, the inference depth is defined based
on the immediate consequence operator. Specifi-
cally, starting from the given set of premises, the
immediate consequence operator adds all premises
that can be derived in one step. The inference depth
of a negative problem instance is defined as the
number of times that the immediate consequence
operator can be applied before the set of premises
saturates. For instance, an inference depth of 0
means that all clauses that are logically entailed by
the set of premises are already included in the set.
Intuitively, problems with a higher inference depth
are more challenging.

We ensure that the training data is balanced in
two ways. First, we ensure that there is an equal
number of problems of depths 0, 1, 2 and 3. Second,
for each inference depth, we ensure that there is an
equal number of positive and negative examples.
The training set consists of a total of 100K problem
instances, where the number of atomic propositions
in each problem instance varies from 2 to 15, and
the number of premises from 2 to 50. A further
10K problem instances are sampled for validation.

Test Data We experiment with three different
test sets. First, we sample a set of 1000 problem in-
stances following the same process as for the train-
ing data. We will refer to this test set as SAT. To test
the robustness of the model to out-of-distribution
instances, we also generate test sets following the

Rule Priority (RP) and Label Priority (LP) sam-
pling strategies that were proposed by Zhang et al.
(2023). For both strategies, we sample 1000 prob-
lem instances. One key difference with SAT is that
RP and LP only include Horn clauses. Specifically,
the clauses in these two test sets are either positive
literals (i.e. atomic propositions), or clauses of the
form —pV g, where p and g are atomic propositions.

4 Results and Analysis

Table 1 summarizes the performance of a number
of standard LLMs. Although our main focus is
on evaluating the performance of fine-tuned mod-
els, to put the results in context, we also include
results for three pre-trained models, which are eval-
uated in a zero-shot fashion: GPT-40, 03-mini,
and DeepSeek-R1-Distill-Llama-8B. In the case
of GPT-40, we experimented both with a standard
prompt and with a chain-of-thought prompt (see
Appendix B.2). The fine-tuned models were trained
on 100K problem instances, obtained using the
SAT sampling strategy, as explained in Section 3.

A number of clear observations can be made.
First, GPT-40 and the distilled DeepSeek-R1 model
significantly underperform the fine-tuned models.
In the case of GPT-40, using CoT prompting some-
what improves results, although the overall perfor-
mance remains surprisingly disappointing, given
the simplicity of the considered problem instances.
For example, even in cases where the hypothesis is
listed among the premises (i.e., k = 0), the model
still make mistakes in a non-trivial number of cases.
Furthermore, for the LP dataset with k = 3, the
results for GPT-40 with standard prompting and
the distilled DeepSeek-R1 model are both around
random guessing (i.e., 50%). As a more power-
ful closed-source model, 03-mini performs better,
although it still makes mistakes, even in the sim-
plest settings. We noticed a slight improvement in
03-mini with CoT, particularly for problems with
a higher depth. We discuss the performance of
03-mini further in Appendix C.2.

The fine-tuned models achieve perfect accuracy
for k = 0. However, for £k = 3, we see a clear
deterioration in performance. Comparing the dif-
ferent models, we can see that the smallest models
(Llama-3.2 and Phi-4-mini) underperform, while
Llama-3.1 and Ministral-8B generally perform best.
It is notable that all fine-tuned models perform
considerably worse on RP and LP. While previ-
ous work has already highlighted the fact that fine-
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SAT RP LP
k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3
Pre-trained models
GPT-40 (standard) 93.2 83.6 80.0 76.8 93.6 67.6 58.0 572 91.6 64.8 51.6 51.2
GPT-40 (CoT) 97.2 90.0 820 72.0 100 81.6 66.0 532 99.6 84.8 804 65.6
03-mini (standard) 100 99.2 984 98.0 100 99.6 100 98.8 992 100 100 98.4
03-mini (CoT) 100 100 99.6 99.6 100 99.6 100 99.6 992 100 100 99.6
DeepSeek-R1-Distill-Llama-8B (COT) 92.0 752 652 63.6 872 73.6 612 564 844 712 552 47.6
Fine-tuned models
Meta-Llama-3-8B-Instruct 100 99.2 996 972 100 99.6 99.2 940 100 99.6 99.2 94.0
Llama-3.1-8B-Instruct 100 99.2 996 97.6 100 99.6 99.2 972 100 99.6 98.8 98.0
Llama-3.2-3B-Instruct 100 99.6 996 972 100 956 92.8 856 100 87.2 764 68.8
Mistral-7B-Instruct-v0.3 100 99.6 97.6 984 100 99.6 964 932 100 984 89.6 85.6
Ministral-8B-Instruct-2410 100 98.8 100 984 100 99.2 99.2 98.0 100 98.8 98.0 97.2
Qwen2.5-7B-Instruct 100 99.2 996 964 100 98.8 984 94.0 100 954 837 733
Phi-4-mini-insruct 100 98.0 97.6 944 100 964 944 90.0 100 95.6 844 78.8
gemma-3-4b-it 100 100 984 97.6 100 100 97.6 90.0 100 98.0 90.8 78.0
Table 1: Results for the SAT, RP and LP test sets, for different inference depth &k (accuracy).
tuned models can struggle on out-of-distribution T — .
. . . —— = T
examples (Zhang et al., 2023), this result is still ———— +
somewhat unexpected. Indeed, due to the simplic- =3
ity of the training and test problems, it is not im- @ —— k=0 —=— k=2
mediately clear that the RP and LP test examples . Sl L L
can really be considered to be out-of-distribution. o
. . . . e v - '
Howeve.r, upon closer inspection, we 1del}t1ﬁefl two P~ —F :><t\
aspects in which these datase.ts differ. Flr.st, in tl.le o —
case of LP, some of the premises are duplicated in &
the input. Second, in the case of RP and LP, all
literals (i.e. clauses of length 1) appear at the end of
. . . 100
the list of premises, whereas for SAT they appear in = e ——
between other premises. Despite the seemingly in- 9 \+—ﬂ+\‘+—~—~—-_..____—'
. +
nocent nature of these differences, we found them 5 % T
to have a clear impact on performance, as we show 85
in the remainder of this section. 80
0 2 4 6 8 10
duplicates

Sensitivity to Duplicated Premises Figure 2
shows the results of Llama-3.1-8B-Instruct on a
number of variants of the test sets, where up to
10 premises have been duplicated. To create these
variants, we repeatedly select one premise from the
list and add a copy of that premise at the end of
the list.> For RP and LP we can see a clear drop in
performance as a result of the added duplicates.

Sensitivity to Literal Positioning Figure 3
shows results on some variants of the test sets,
where the position of the literals is changed: none
refers to the original dataset, end is a variant where
all literals are placed at the end, shuffled is a variant
where all premises are shuffled, and literals thus

Note that the same premise might be duplicated more
than once using this strategy.

Figure 2: Accuracy for Llama-3.1-8B-Instruct when
varying numbers of duplicates are added to premises in
test instances

appear at random positions, and first is a variant
where all literals are placed at the start. The results
show that first leads to the worst results, with drops
of up to 14% in the case of RP. For LP and RP,
the end and none variants coincide. Interestingly,
for SAT, we can see a difference in performance
between none and shuffled, which shows that the
SAT sampling process introduces a bias in the posi-
tion of literals, due to the use of consistency checks
after each clause is sampled.
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Figure 3: Accuracy for Llama-3.1-8B-Instruct when
varying the position of literals in test instances.
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Figure 4: Accuracy for Llama-3.1-8B-Instruct when
we introduced duplicated premises in training examples
and tested it with the same test sets as in Fig. 2.

Mitigating the Sensitivity Issues One may won-
der whether the two aforementioned sensitivity is-
sues can be addressed by modifying the training
data. To test this, we first consider an experiment
where the model is fine-tuned on training examples
with duplicated premises. Specifically, for each of
the SAT training examples we added a number of
duplicated premises, sampled uniformly between
0 and 10. Figure 4 shows improved results, for a
fine-tuned Llama-3.1-8B-Instruct model, compared
to Figure 2, although introducing duplicates still
has a negative effect for LP.

We used a similar strategy to address the literal

positioning issue. In this case, we modified the
SAT training examples by altering the position of

0 SAT RP LP
Tox % T F ¥ i
L] " b4 P == H
A
o 3
4+
A
90
-
e none
85 end
4 shuffled
+  first

0 1 2 3 0 1 2 3 ] 1 2 3
depth

Figure 5: Accuracy for Llama-3.1-8B-Instruct fine-
tuned on SAT with varied literal positioning and tested
using the same test sets as in Fig. 3

literals. To keep the training data balanced, for
every inference depth, we maintained an equal rep-
resentation of the four considered literal position-
ing variations: none, shuffled, end, and first. We
enforce this separately for positive and negative
examples. As before, the dataset consists of 100K
training problems and 10K validation problems.
The results in Figure 5 show that this modification
to the training data can reduce the performance gap
between positioning variations at each inference
depth. However, the model still struggles with out-
of-distribution test sets, as the performance on LP
with & = 3 is surprisingly worse than in Figure 3.

5 Conclusions

This paper investigated the ability of LLMs to re-
liably and consistently perform simple reasoning.
We found that even on problems that only require
a single reasoning step, fine-tuned LLMs make
some mistakes. Moreover, while such mistakes
are rare on in-distribution examples, we found that
the performance can deteriorate dramatically when
seemingly innocent changes are made to test prob-
lems. In particular, we highlighted the effect of
duplicated premises and changing the order where
literals are positioned. While it is possible to allevi-
ate the specific issues that we identified by adapting
the training data, the fact that these issues arose in
the first place strongly suggests that fine-tuned mod-
els rely on reasoning shortcuts, even for the very
simple reasoning problems that we have considered.
As such, model performance should be expected to
deteriorate whenever out-of-distribution problem
instances are encountered.
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Limitations

For the fine-tuned models that we analysed in this
paper, we have relied on simple prompts, asking
the model to directly provide the answer. Strate-
gies such as chain-of-thought prompting may lead
to more robust results, especially when combined
with reinforcement learning. For instance, while
the results with the distilled DeepSeek-R1 model
were disappointing, fine-tuning such a model may
lead to more robust results. One challenge, how-
ever, is that chain-of-thought derivations cannot
straightforwardly be used to prove that a premise
cannot be entailed.
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A Sampling the Datasets
A.1 SAT Problem Generation

The algorithm to generate a dataset consisting of n
problem instances, using the SAT sampling strat-
egy, is described in Algorithm 1. For each problem
instance, the algorithm first chooses the number
of clauses m, by sampling this value uniformly at
random between a lower bound cls,,;,, and upper
bound cl$yq;. Similarly, the total number ¢ of
atomic propositions in the problem instance is cho-
sen between at,,;, and at;,q.. Subsequently, the
m premises are sampled by iteratively following
the same process. First, the number of literals & is
chosen to be 1 with probability of either 10% or
30%, depending on the specific scenario, while 2 is
selected otherwise. Lower probability will induce
problems with more inference depth. Then k atoms
are randomly selected among the set of ¢ available
atoms, and each atom is negated with 50% prob-
ability. Then, the algorithm checks whether the
generated clause is consistent with the clauses that
have already been added to the problem instance.
If not, the newly generated clause is discarded. Fi-
nally, after the clauses have been generated, a literal
is sampled to serve as the hypothesis of the prob-
lem instance, by choosing one of the ¢ atoms and
negating it with 50% probability.

Algorithm 1 Generate SAT

1: GENSAT (clSmin, clSmaz, Atmin, Atmaz, ™)
2 for idr = 1ton do
3 m = random(clSpmin, clSmaz)
4 ¢ = random(atin, atmaz)
5: // Generate the m premises
6 while len(clauses)< m do
7 k = random(1, 2)
8 cls = GenerateClause (k, /)
9: clauses < Add(cls)
10: if lisSatisfiable(clauses) then

11: clauses < Remove(cls)
12: end if

13: end while

14: // Generate a hypothesis

15: hyp = GenerateClause (1, /)

16: if isEntailed(clauses, hyp) then
17: label = T'rue

18: else

19: label = False

20: end if

21: end for

22: end

A.2 Sentence Templates

We translate the sampled clauses and literals into
natural language sentences using a straightforward
template-based approach. First, each atom is con-
verted into a phrase like “Alice is great”. We always
use Alice as the subject of these phrases, but vary
the adjective for different atoms. For our main
experiments, the same adjectives are used for the
problems in the training and test sets. However, in
Appendix C.1, we will experiment with alternative
test sets, in which a disjoint set of adjectives is
used for the test set, and/or different names besides
Alice are used as the subject. For the main experi-
ments, we use a total of 500 distinct adjectives. To
verbalize a negated atom, we put not in front of the
adjective. For instance, if the atom a corresponds
to the phrase “Alice is great”, then —a is verbal-
ized as “Alice is not great”. To verbalize clauses,
we simply connect the verbalizations of the literals
with the word or. For instance, if a corresponds to
“Alice is great” and b corresponds to “Alice is timid”
then a V —b would be verbalized as “Alice is great
or Alice is not timid”.

A.3 RP and LP Sampling Strategies

The RP and LP strategies where introduced by
Zhang et al. (2023). These strategies sample a
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set of atoms, together with a set of Horn rules of
the form a1 A ... A a — b. In accordance with
our focus on simple reasoning problems, we limit
their sampling process to only generate rules of the
form p — ¢, with a single atom in the body. Fur-
thermore, to keep the format consistent with that
of the SAT dataset, we convert each rule p — ¢
into the logically equivalent clause —p V ¢, before
translating them into sentences (in the same way
as for SAT). For example, using this sampling?,
we get the following atoms hesitant, spiky, curvy,
hypercritical and bright, as well as the following
rules:

hesitant — spiky
curvy — hypercritical
curvy — bright

together with the hypothesis spiky and the ground
truth label yes (meaning that the hypothesis is en-
tailed). We convert the rules into the following
clauses:

—hesitant \ spiky
—curvy V hypercritical

—curvy V bright

Finally, each atom (e.g. hesitant) is mapped to a
phrase like “Alice is great”, as for the SAT dataset.

A.4 Dataset Statistics

After generating the problem instances, we con-
struct the training and test sets by selecting a bal-
anced set of problem instances, ensuring there is an
equal number of problem instances for each of the
inference depths 0,1,2,3. Moreover, for each infer-
ence depth, we ensure that there is an equal number
of positive and negative examples. An overview of
the resulting datasets, along with some statistics,
are shown in Table 2. Note that we always train the
models on SAT.

B Experimental Settings

B.1 Model Checkpoints

Our experiments used DeepSeek-R1-Distill-Llama-
8B (DeepSeek-Al et al., 2025), Meta-Llama-3-
8B-Instruct (Touvron et al., 2023), Llama-3.1-
8B-Instruct, Llama-3.2-3B-Instruct, Mistral-7B-
Instruct (Jiang et al., 2023), Ministral-8B-Instruct-
2410, Qwen2.5-7B-Instruct (Bai et al., 2023), Phi-
4-mini-instruct (Abouelenin et al., 2025), and

*We use the code available at https://github.com/
joshuacnf/paradox-1learning2reason

Statistics SAT RP LP
Num. of premises [2,50] [2,50] [2,47]
Num. of atoms [2,15] [2,15] [2,15]
Depth [0, 3] [0, 3] [0, 3]
Avg. literals 3.08 2.89 2.27
Training size 100K - -
Validation size 10K - -

Test size 1000 1000 1000

Table 2: The statistics of datasets in default settings.

LLM Checkpoints

deepseek-ai/DeepSeek-R1-Distill-Llama-8B
meta-llama/Meta-ILlama-3-8B-Instruct
meta-llama/Llama-3.1-8B-Instruct
meta-llama/Llama-3.2-3B-Instruct
mistralai/Mistral-7B-Instruct-v0.3
mistralai/Ministral-8 B-Instruct-2410
Qwen/Qwen2.5-7B-Instruct
microsoft/Phi-4-mini-instruct
google/gemma-3-4b-it

Table 3: LLM checkpoints used in the experiments.

gemma-3-4b-it (Kamath et al., 2025). We fetched
all pre-trained models from Huggingface platform
using checkpoints listed in Table 3 and provided
instructions both in training and testing. Note that
we have focused on instruction-tuned LLMs, as
such models perform better in straightforward and
explicit tasks compared to the corresponding base
models.

B.2 Instruction Templates

The standard prompts that we used for our experi-
ments are shown in Figure 6. We provided instruc-
tions that require the model to respond succinctly
with “Yes” or “No”. These full instructions were
used during training, but we eliminated the last role
during testing. Furthermore, we set the tempera-
ture to almost 0 in testing to ensure reproducibility
with minimum variation.

For the (zero-shot) experiments with pre-trained
GPT-40 and DeepSeek-R1-Distill-Llama-8B, we
use prompt in Figure 7 and Figure 8. We set the
temperature to 0.6 for DeepSeek-R1, according to
the recommendation in the technical report. We
experimented with several standard prompts for
GPT-40 and chose the best-performing prompt for
this comparison.

B.3 Fine-tuning Setup

We trained all models using QLoRA with 4-bit NF
quantization and double quantization. Based on a
recommendation in the QLoRA paper (Dettmers
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Instruction for Llama family, Qwen, and Gemma

Standard prompt for GPT-40 and o3-mini

system: The input below provides a set of
premises and a hypothesis. Is the hypothesis
entailed by the premises? Answer with yes or no
only.

user: Premises: [insert premises]

Hypothesis: [insert hypothesis]

system: [Yes/No]

Instruction for Mistral family

user: The input below provides a set of
premises and a hypothesis. Is the hypothesis
entailed by the premises? Answer with yes or no
only. Premises: [insert premises]

Hypothesis: [insert hypothesis]

assistant: [Yes/No]

Instruction for Phi

system: The input below provides a set of
premises and a hypothesis. Is the hypothesis
entailed by the premises? Answer with yes or no
only.

user: Premises: [insert premises]

Hypothesis: [insert hypothesis]

assistant: [Yes/No]

Figure 6: Instruction templates that were used for fine-
tuning.

et al., 2023), we applied LoRA to all linear layers
of the models. For LoRA parameters, we set rank r
at 64, « at 16, and drop out at 0.1. To fit the model
in our GPU memory, we used batch size 4. We
fine-tuned the models for 1 epoch. In addition, we
used the AdamW optimizer with a learning rate set
to 2 x 10~%. All experiments were conducted on
a single NVIDIA RTX 4080 SUPER. It took 20 to
37 GPU hours to fine-tune one language model on
default SAT training and 4 minutes to test per case.

C Additional Experimental Results

Table 4 summarizes the performance of Llama-3.1-
8B-instruct fine-tuned on SAT, with different num-
bers of duplicates added and for different reodering
strategies. The performance gradually deteriorates
when duplicate premises are introduced, especially
for RP and LP, with the accuracy dropping up to
6% in both cases. Furthermore, the model is also

system: Do the premises entail the hypothesis?
Answer with yes or no only.
user: Premises: [insert premises]

Hypothesis: [insert hypothesis]

CoT prompt for GPT-40 and o3-mini

system: Carefully analyze the logical
structure of the following premises and
hypothesis. Break down your reasoning into
step-by-step derivations. Evaluate whether the
hypothesis is strictly entailed by the
premises. If the hypothesis follows logically,
return Yes. Otherwise, return No.

Format your response as follows:

Explanation: [Step-by-step derivation]
Entailment: [Yes/Nol
user: Premises: [insert premises]

Hypothesis: [insert hypothesis]

Figure 7: Standard and CoT prompts for zero-shot re-
sults obtained with closed-source GPT-40 and 03-mini
models.

sensitive to literal positioning, with drops up to
10%. This result is consistent with Section 4 where
the first strategy leads the worst performance.

C.1 Sensitivity to Changes in Verbalization

We adjusted the default SAT test by changing the
verbalization in three ways. In the new subjects
scenario, we used 500 random subject names be-
sides “Alice” (for the test set only). We ensure
that all premises from the same problem instance
always refer to the same subject. To analyze model
sensitivity to predicate changes, we replaced the ad-
jectives with 500 color names in the new predicates
scenario. Lastly, in the new templates scenario, we
describe the formulas as rules. For instance a V b
would be translated to —a — b and verbalized as
“If [verbalization of —a] then [verbalization of b]”.
Table 6 shows an example of the verbalizations
used in each of the considered variants. Table 5
summarizes the resulting model performance. The
model is generally robust to changes in subjects
and predicates, while struggling with the template
change (especially for £ = 2 and k& = 3).
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SAT RP LP

Test Sets

none end shuf first none end shuf first none end shuf first
default 99.1 992 983 977 99.0 99.0 94.1 895 991 99.1 941 894
1_dupl 99.1 992 983 982 98.1 983 948 89.7 985 99.0 936 904
2_dupl 989 987 984 982 982 987 946 90.6 983 982 944 909
3_dupl 983 983 97.6 977 980 983 945 905 976 978 956 921
5_dupl 986 984 983 97.8 955 962 934 903 968 965 947 928
7_dupl 97.8 976 978 972 954 954 927 90.5 960 949 933 924
10_dupl 980 978 98.0 973 932 934 925 897 949 935 940 932

Table 4: Test accuracy across all sampling for fine-tuned Llama-3.1-8B-instruct on SAT. We varied the scenarios
using order types and duplicated premises. Test sets are balanced with a random guess of 50%. The underlined
result shows the in-distribution test, whereas the results in bold represent out-of-distribution tests. Note that some

examples in LP default may contain duplicated premises.

SAT RP LP
Test Sets
k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3
default 100 992 996 976 100 99.6 99.2 972 100 99.6 988 98.0
new subject 100 98.8 100 968 100 99.6 98.8 972 100 99.6 984 98.0
new adjectives 100 98.8 992 964 100 100 988 956 100 100 98.8 97.6
new templates 99.6 93.6 86.0 76.0 100 90.8 748 660 100 84.0 664 60.8

Table 5: Test accuracy on different changes in verbalization.

Scenario Clauses

default Alice is noisy or Alice is cheerful

new subjects  Henry is noisy or Henry is cheerful

new predicates Henry is blue or Henry is ivory

new templates If Alice is not noisy then Alice is cheerful

Table 6: A clause transformation in verbalization tests.

C.2  03-mini Analysis

Even though 03-mini deliberately performs step-
by-step reasoning even with our standard prompt,
we noticed that the model slightly improved if we
explicitly instructed it to do so, especially for prob-
lems of higher depth. Apart from constraining the
final answer to yes/no only, we let the model re-
spond in a CoT manner and relax the maximum
number of new tokens. Figure 7 shows the prompts
used for 03-mini test.

In Table 1, we found that 03-mini’s performance
is very close to 100% across all depths with this
CoT prompt. Moreover, the few mistakes that 03-
mini makes can be explained by potentially mis-
leading verbalizations in the problem instances,
rather than genuine reasoning errors. For example,
podgy and overweight are considered to have the
same meaning by 03-mini, whereas in our problem
instances they are supposed to be independent prop-
erties. Similarly, lively and listless are believed to
be in contradiction by 03-mini.

CoT prompt for DeepSeek-R1

Below is an instruction that describes a task,
paired with an input that provides further
context. Write the response that appropriately
completes the request. Before answering, think
carefully about the question and create a
step-by-step chain-of-thoughts to ensure a

logical and accurate response.

### Instruction:

Evaluate whether the hypothesis is strictly
entailed by the premises. If the hypothesis
follows logically, return Yes. Otherwise,
return No.

Format your response as follows:
Entailment: [Yes/No]

### Question:

Premises: [insert premises]

Hypothesis: [insert hypothesis]

### Response:
<think>

{3

</think>

{3

Figure 8: CoT prompt for zero-shot test in DeepSeek-R1
model.
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