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Abstract

Dense retrievers are widely used in information
retrieval and have also been successfully ex-
tended to other knowledge intensive areas such
as language models, e.g., Retrieval-Augmented
Generation (RAG) systems. Unfortunately,
they have recently been shown to be vulner-
able to corpus poisoning attacks in which a
malicious user injects a small fraction of adver-
sarial passages into the retrieval corpus to trick
the system into returning these passages among
the top-ranked results for a broad set of user
queries. Further study is needed to understand
the extent to which these attacks could limit the
deployment of dense retrievers in real-world
applications. In this work, we propose Approx-
imate Greedy Gradient Descent (AGGD), a new
attack on dense retrieval systems based on the
widely used HotFlip method for efficiently gen-
erating adversarial passages. We demonstrate
that AGGD can select a higher quality set of
token-level perturbations than HotFlip by re-
placing its random token sampling with a more
structured search. Experimentally, we show
that our method achieves a high attack success
rate on several datasets and using several re-
trievers, and can generalize to unseen queries
and new domains. Notably, our method is ex-
tremely effective in attacking the ANCE re-
trieval model, achieving attack success rates
that are 15.24% and 17.44% higher on the NQ
and MS MARCO datasets, respectively, com-
pared to HotFlip. Additionally, we demonstrate
AGGD’s potential to replace HotFlip in other
adversarial attacks, such as knowledge poison-
ing of RAG systems.

1 Introduction

Dense retrievers, despite their wide application and
extensive deployment in real-world systems (Wan
et al., 2022; Mitra et al., 2017; Lewis et al., 2020;
Guu et al., 2020; Qu et al., 2021), have recently
been shown to be vulnerable to various adversarial
attacks such as corpus poisoning attacks (Zhong

et al., 2023) and data poison attacks (Long et al.,
2024; Liu et al., 2023), raising concerns about their
security. Given that the corpora used in retrieval
systems are often sourced from openly accessible
platforms like Wikipedia and Reddit, a concern-
ing scenario arises in which malicious actors can
poison the retrieval corpus by injecting some adver-
sarial passages, fooling the system into retrieving
these malicious documents rather than the most rel-
evant ones. Such attacks might be used for search
engine optimization (Patil Swati et al., 2013) for
promoting advertisement, or disseminating disin-
formation and hate speech.

A conventional approach for such attacks is Hot-
Flip (Ebrahimi et al., 2018), which involves col-
lecting a candidate set for a single randomly sam-
pled token position and finding the best token in
the candidate set with which to replace. In addi-
tion to corpus poisoning attacks on dense retrieval
systems, HotFlip has been widely used in many
other settings, such as knowledge poisoning attacks
on retrieval augmented generation (RAG) systems
(Zou et al., 2024) and adversarial prompt genera-
tion (Zou et al., 2023).

In this work, we begin by thoroughly investigat-
ing the HotFlip attack on dense retrieval systems
to identify its limitations. Based on these insights,
we propose a new general attack method called
Approximate Greedy Gradient Descent (AGGD).
Our experimental results show that AGGD can per-
form corpus poisoning attacks on dense retrieval
systems more effectively, revealing their vulner-
ability. Though we use corpus attacks on dense
retrievers as our primary example, it is important to
note that AGGD can replace Hot Flip as a whole in
any attack scenarios where HotFlip is applicable.

The main difference between AGGD and Hot
Flip is that AGGD uses gradient information more
effectively by selecting the top-ranked token from
all token positions, rather than over a single ran-
domly sampled position. This approach makes
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Figure 1: A simple example of finding a 2-token sequence a through HotFlip (left) and AGGD (right). If HotFlip
can’t find a better replacement for the currently sampled token position, there is a 1

2 probability that it will sample the
same token position again and redo the same evaluation, which is inefficient. Moreover, if the potential replacements
for another token also don’t contain a better option, HotFlip continues to loop through the same search without
reducing the loss.

AGGD’s search trajectory deterministic, enabling
a more structured best-first search. Experimental
results demonstrate that AGGD achieves a high
attack success rate across various datasets and re-
trieval models. In summary, our contributions are

• We provide a thorough understanding of the
existing HotFlip adversarial attack method,
explaining its mechanics and identifying its
potential problems.

• We propose AGGD, a gradient-based method
that replaces a randomized greedy search with
a systematic best-first greedy search over the
discrete token space. We demonstrate the ef-
fectiveness of AGGD in various settings.

• We conduct extensive experiments to show the
vulnerability of dense retrievers under AGGD.
For example, when attacking the ANCE re-
triever, injecting just one adversarial passage
can achieve an attack success rate of 80.92%
and 65.68% on these datasets, respectively,
improving by 15.24% and 17.44% over Hot-
Flip. The generated adversarial passage also
possesses the capability to transfer to unseen
queries in other domains.

2 Related Work

Dense Retrieval Dense retrievers utilize dense vec-
tor representations to capture the semantic informa-

tion of passages and have demonstrated tremendous
effectiveness compared to traditional retrieval sys-
tems (Yates et al., 2021). Consequently, they have
been employed in many knowledge-intensive ar-
eas such as information retrieval (Karpukhin et al.,
2020; Gillick et al., 2019; Wu et al., 2020; Wan
et al., 2022; Mitra et al., 2017), open-domain ques-
tion answering and language model pre-training
(Lewis et al., 2020; Guu et al., 2020; Qu et al.,
2021). For instance, retrieval-augmented genera-
tion (RAG) models (Lewis et al., 2020; Guu et al.,
2020; Lee et al., 2019) combine language mod-
els with a retriever component to generate more
diverse, factual and specific content.

Adversarial Attacks in Retrieval Systems
Black-hat search engine optimization, which aims
to increase the exposure of certain documents
through malicious manipulation, poses a threat by
reducing the quality of search results and inun-
dating users with irrelevant pages (Castillo et al.,
2011; Liu et al., 2023). Previous work has shown
that retrieval systems are susceptible to small per-
turbations: making small edits to a target passage
can significantly alter its retrieval rank (Song et al.,
2020; Raval and Verma, 2020; Song et al., 2022)
for individual or a small set of queries. More re-
cently, a stronger setting known as corpus poison-
ing attack has been studied in (Zhong et al., 2023),
where the attack success rate of an adversarial pas-
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Figure 2: Illustration of HotFlip (top) and AGGD (bottom) and their candidate sets.

sage is evaluated on unseen queries rather than on
targeted given queries. These attacks differ from
data poisoning attacks (Long et al., 2024; Liu et al.,
2023; Chen et al., 2017; Schuster et al., 2020), as
adversarial passages are injected into the retrieval
corpus rather than the training data of the retrievers.
The retrieval model remains unchanged in a corpus
poisoning attack.

Discrete Optimization Many adversarial attacks
in NLP involve discrete optimization, whether in
classification tasks (Wallace et al., 2019; Ebrahimi
et al., 2018; Song et al., 2021), retrieval systems
(Jia and Liang, 2017; Song et al., 2020; Raval and
Verma, 2020; Song et al., 2022), or adversarial
prompt generation (Zou et al., 2023; Shin et al.,
2020; Wen et al., 2024). The objective is to find
small perturbations to the input to lead the model
to make erroneous predictions. Due to the discrete
nature of texts, directly applying adversarial at-
tack methods from prior computer vision research
(Xiao and Wang, 2021; Tolias et al., 2019) is infea-
sible. Instead, many methods build upon HotFlip
(Ebrahimi et al., 2018) and approximate the effect
of replacing a token using gradients.

3 Motivation

In this section we motivate our approach by formal-
izing the corpus poisoning problem setting (Sec-
tion 3.1), describing and analyzing the standard
HotFlip approach for producing adversarial pas-
sages (Zhong et al., 2023) (Section 3.2), and identi-

fying a potential problem with this approach (Sec-
tion 3.3).

3.1 Corpus Poisoning Problem Setting

In retrieval systems, the retrieval model takes a
user query q and returns a ranked list of the k
most relevant passages from a large corpus col-
lection C = {p1, · · · , p|C|} consisting of |C| pas-
sages. Compared to sparse retrieval models, which
rely on lexical matching, dense retrievers rely on
semantic matching. Specifically, the queries and
the passages are first represented by d-dimensional
dense vectors using a query encoder Eq(·) and pas-
sage encoder Ep(·), respectively. Relevance scores
can then be computed according to a similarity
function. A commonly used similarity function
is the dot product of the dense vector representa-
tions of the query q and the passage p: Sim(q, p) =
Eq(q)

TEp(p). Finally, a ranked list of the k most
relevant passages L = [d̃1, d̃2, · · · , d̃k], (L ⊆ C) is
returned according to the relevance score.

We consider the problem of corpus attacks on
a dense retrieval system, where we design an al-
gorithm to find a small set of adversarial passages
A = {a1, · · · , a|A|} that can be retrieved by as
many queries as possible for query distribution PQ.
These adversarial passages are then inserted into
the corpus C to fool the dense retrieval models into
retrieving passages from A rather than the most
semantically relevant passages from the original
corpus |C|. The adversarial passage set A should

4276



be much smaller than the original corpus C. The
attack quality of the adversarial passage set A is
typically evaluated based on its attack success rate,
i.e., the percentage of queries for which at least one
adversarial passage appears in the top-k retrieval
results.

Formally, the overall objective is to find an ad-
versarial passage a, that maximizes the expected
similarity to a query q sampled from distribution
PQ, i.e.,

a = argmax
a

Eq∼PQSim(q, a)

In practice, we estimate the query distribution using
a training set of queries Q = {q1. · · · , q|Q|}, and
we aim to find an a with maximal similarity to Q,
i.e.,

a = argmax
a

1

|Q|
∑

qi∈Q
Sim(qi, a) = argmin

a
ℓ(a) (1)

where ℓ(a) = − 1
|Q|

∑
qi∈Q Sim(qi, a). The prob-

lem setting is realistic in search engines where a
malicious user might perform search engine op-
timization to promote misinformation or spread
spam.

Finding the exact solution to the optimization
problem (1) is challenging since we are optimiz-
ing over a discrete set of inputs (i.e., the tokens
in a passage). Additionally, running gradient de-
scent on the embedding space might yield solu-
tions that exist only in the embedding space and
deviate significantly from valid texts in the dis-
crete token space. In practice, a straightforward
approach that leverages the gradient w.r.t. the one-
hot token indicators can be employed to identify a
set of promising candidates for replacement (Zou
et al., 2023; Ebrahimi et al., 2018; Shin et al., 2020;
Zhong et al., 2023). Specifically, we can compute
the linearized approximation of replacing the i-th
token ti in a passage a, by evaluating the gradient
∇eti

ℓ(a), where eti denotes the embedding of the
token ti. (Recall that sentence embeddings can be
written as function of token embeddings, allowing
us to compute the gradient with respect to the token
embedding.) This idea has been adopted in many
gradient-based search algorithms such as HotFlip
(Ebrahimi et al., 2018) for producing adversarial
texts, AutoPrompt (Shin et al., 2020) and Greedy
Coordinate Gradient (GCG) (Zou et al., 2023) for
generating prompts. We revisit the idea of HotFlip
in the context of corpus attacks as an example.
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Figure 3: Comparing the true rank of words swapped
with their rank according to the gradient-based Taylor
approximation. The gradient identifies the top-1 correct
token to swap 9% of the time, and guesses within the
top ten tokens 58% of the time. (The "true rank" refers
to the ranking of tokens based on the actual increase
in similarity when a token is swapped, while the "Esti-
mated rank" refers to the ranking of tokens based on the
gradient estimate.)

3.2 HotFlip Revisited
In many text-based adversarial attacks, the goal is
to find a perturbation of an input sequence — a
randomly selected passage a — to optimize some
objective function. Due to the discrete nature of
text, this is essentially a combinatorial search prob-
lem: the attacker searches over a class of pertur-
bations on a such as word swapping or character
substitution (Morris et al., 2020) to produce the
final adversarial text. The corpus poisoning ap-
proach of (Zhong et al., 2023), for example, aims
to fool a dense retrieval system to return adversarial
passages for a broad set of user queries by trans-
forming corpus passages (i.e., sequences of tokens)
into adversarial passages a that exhibit maximal
similarity to a query set associated with the corpus.

Unfortunately, even if we fix the token length of
a passage |a| to be m, for a language model with
vocabulary size |V|, the total size of the search
space is |V|m. For instance, if m = 30, and
|V| = 32, 500, then the total number of sequences
to evaluate is about 10135, which is computation-
ally infeasible.

Thus, we need a method to identify a subset of
the most promising perturbation sequences. The
corpus poisoning attack by (Zhong et al., 2023) ad-
dresses this problem using the HotFlip approach in
a greedy search over candidate token perturbations.
HotFlip (Ebrahimi et al., 2018) first randomly sam-
ple a token position, and then determines a can-
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Algorithm 1 Approximate Greedy Gradient De-
scent (AGGD)

Input: The token length m of the adversar-
ial passage; Initialized adversarial passage a =
[t1, · · · , tm]; Total number of iterations N ; Size
of the candidate set n; Search depth d = 0.
Let k = n

m to be the per token candidate set size.

for j = 0, 1, 2, · · · , N do
for i = 1, · · · ,m do

Let Vo = R(s(a)) where s(a) =
−eTv ∇ℓ(a), ℓ(a) = − 1

|Q|
∑

q Sim(q, a)

and R(·) is a rank function.
Let Xi = Vo[(d− 1)k, dk] be the truncated
top-(d− 1)k to top-dk candidates.

end for
Construct candidate set at iteration j as
D(j) = ∪i∈[m]Xi

Let a
′
= argmina′∈D(j) ℓ(a

′
) // Check if a

better adversarial passage exists in candidate
set
if ℓ(a′

) < ℓ(a) then
Update a = a

′
, reset depth d = 0. // Up-

date the adversarial passage if find a better
one

else
Update d = d + 1 // If no update, search
from top-(d−1)k to top-dk in next iteration

end if
end for
Return Final adversarial passage a

didate set of promising token replacements based
on the gradient of their respective one-hot input
vector1 representations. Each iteration of search
involves: (1) selecting a random position in a; (2)
use gradient information to determine the top-k to-
ken perturbation candidates; and (3) applying the
perturbation (a token swap) that increases the simi-
larity (decreases the loss) the most.2. This process
continues for a fixed number of iterations.

3.3 Drawbacks of HotFlip

Although HotFlip usually works well in practice,
there are some noticeable problems with this ap-
proach. For instance, it is less efficient due to its
reliance on randomness for the search. Moreover,
it is possible to try all token positions without find-

1The embedded version of the token is used.
2If no candidate increases the loss, no change to a is made.

ing any updates, causing HotFlip to get stuck and
repeatedly search the same perturbation candidates.
For example, consider an adversarial text with only
two tokens (see Figure 1). If we first sample to-
ken position t1 and observe no improvement for
all candidates, there is still a 1/2 probability of
sampling the same token t1 in the next iteration.
Furthermore, if both token t1 and token t2 have
been searched and show no improvement, the pro-
cess would be stuck in a loop.

Motivated by these existing problems, we pro-
pose a new algorithm called Approximate Greedy
Gradient Descent (AGGD) that uses a deterministic
greedy search that makes better use of gradient in-
formation by utilizing lower-ranked tokens(i.e., the
overall most promising token swap candidates) to
improve the quality of the candidate set. As shown
in Figure 3, most high quality potential candidates
are concentrated in the low-rank area. Suppose we
aim to find a text with a token length m = 30 by
maintaining a candidate set of size n = 150. Se-
lecting as the candidate set the top-5 ranked gradi-
ents across all token positions is likely to result in
better quality than selecting the top-150 ranked gra-
dient candidates for only one token position. In the
next section, we formally introduce our algorithm
Approximate Greedy Gradient Descent (AGGD).

4 Approximate Greedy Gradient Descent

Similar to other gradient-based search algorithms,
we fist initialize the adversarial passage to be
a = [t1, · · · , tm]. We then iteratively update a
based on the best candidate that maximizes the sim-
ilarity over batches of queries. Formally, at each
step, we compute a first-order approximation of the
change in the loss when swapping the ith token in
a with another token v ∈ V . In contrast to Hotflip,
AGGD identifies a candidate set for each of the
m tokens in a: for each token i, the candidate set
contains the top k = n

m ranked tokens from V ac-
cording to the scoring function s(v) = −eTv ∇ℓ(a),
i.e., Xi = top-kv∈V [−eTv ∇ℓ(a)], where ev is the
token embedding and the gradient is taken over the
the embedding of the current adversarial passage
a. Combining all the Xi leads to our overall candi-
date set D(j) = ∪i∈[m]Xi (as illustrated in Figure
2). For each candidate in the set D, the loss is
re-evaluated and a is updated to the candidate with
lowest loss for the next step. This requires n passes
of the model, which constitutes the primary compu-
tational effort. If a doesn’t update at iteration i, i.e.,
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Dataset Method Retriever
Contriever Contriever-MS ANCE DPR-mul DPR-nq

NQ
AGGD 92.5(2.68) 63.45(8.68) 80.92(4.82) 6.88(1.72) 2.19(0.98)

Hot Flip 91.08(0.9) 58.43(4.53) 65.68(2.5) 5.4(0.36) 2.03 (0.25)
Random 80.24(0.92) 32.5(2.61) 31.0(4.3) 3.7(0.93) 1.66 (0.14)

MS MARCO
AGGD 85.47(3.81) 24.42(17.44) 93.6(1.01) 12.79(3.86) 5.23 (1.01)

Hot Flip 83.72(5.93) 22.67(12.01) 76.16(9.21) 9.88(1.93) 5.81(2.01)
Random 66.86(7.24) 13.95(13.46) 49.42(11.2) 6.4(2.53) 2.91 (1.93)

Table 1: In-domain attack success rate (ASR) of AGGD on NQ and MS MARCO datasets with 5 retrievers by
injecting 1 adversarial passage. We highlight the best performing attacking method in bold (Higher ASR indicates
better attack performance). Results are from 4 random runs with standard deviation in parenthesis.

Target Domain Source Domain Methods Retriever
Contriever Contriever-MS ANCE DPR-mul DPR-nq

FiQA-2018

NQ
AGGD 64.93(15.9) 4.94(1.68) 6.33(1.91) 0.15(0.11) 0.12(0.13)

Hot Flip 69.68(8.66) 3.05(0.6) 4.13(0.77) 0.46(0.55) 0.62(0.15)
Random 41.05(2.73) 0.35(0.13) 1.66(0.49) 0.27(0.17) 0.46(0.19)

MS MARCO
AGGD 86.54(1.88) 15.66(22.54) 17.98(1.44) 3.59(1.34) 3.36(1.79)

Hot Flip 78.51(6.96) 4.59(2.89) 11.5(0.79) 2.16(1.13) 3.2(1.72)
Random 62.81(6.07) 0.42(0.57) 5.48(1.36) 0.73(0.2) 0.93(0.24)

NFCorpus

NQ
AGGD 46.83(8.1) 17.1(4.3) 37.69(4.2) 8.51(1.29) 12.23(0.46)

Hot Flip 42.34(10.96) 10.91(2.77) 34.68(1.71) 10.22(2.62) 12.85(0.99)
Random 24.38(5.02) 6.58(1.43) 18.34(4.09) 7.43(1.3) 11.3(0.56)

MS MARCO
AGGD 52.55(13.94) 18.73(16.3) 69.81(3.57) 26.16(4.51) 28.17(4.02)

Hot Flip 49.92(5.26) 14.24(8.46) 52.55(6.86) 19.27(2.31) 23.06(7.02)
Random 30.03(6.42) 6.42(6.45) 42.26(6.23) 14.47(3.59) 14.78(1.06)

Quora

NQ
AGGD 73.92(12.16) 25.1(7.03) 77.72(5.57) 4.85(1.13) 6.39(2.1)

Hot Flip 78.99(3.56) 18.92(5.84) 72.37(2.13) 3.36(1.02) 7.2(1.45)
Random 49.44(4.18) 6.12(0.63) 53.09(4.89) 2.52(0.47) 6.66(1.51)

MS MARCO
AGGD 86.92(2.49) 18.83(21.47) 91.11(1.48) 22.29(4.24) 25.96(5.05)

Hot Flip 83.26(5.87) 12.82(7.64) 84.18(2.25) 15.38(4.14) 23.07(3.67)
Random 62.57(6.63) 3.81(4.12) 74.06(0.75) 8.82(1.14) 12.29(3.33)

SCIDOCS

NQ
AGGD 21.05(7.78) 11.95(7.99) 9.78(1.97) 0.88(0.29) 0.38(0.08)

Hot Flip 27.02(13.4) 14.32(4.48) 7.1(0.87) 1.18(0.4) 0.35(0.11)
Random 12.88(3.76) 0.78(0.61) 3.05(0.93) 0.6(0.37) 0.3(0.07)

MS MARCO
AGGD 23.22(6.99) 14.3(20.69) 31.9(7.2) 3.88(1.62) 1.08(0.42)

Hot Flip 24.98(6.33) 12.25(7.52) 21.88(4.33) 3.12(1.4) 0.85(0.32)
Random 15.0(1.53) 1.27(1.83) 10.62(5.11) 2.48(1.38) 0.2(0.07)

SciFact

NQ
AGGD 22.92(4.46) 1.0(0.62) 6.75(1.92) - -

Hot Flip 24.5(12.16) 0.92(0.72) 3.58(0.98) 0.17(0.29) -
Random 8.25(3.42) - 0.5(0.37) - -

MS MARCO
AGGD 29.08(10.43) 2.67(4.43) 30.33(6.47) 2.42(0.6) 0.5(0.29)

Hot Flip 21.58(6.52) 1.25(1.11) 16.5(4.78) 2.0(0.24) 0.67(0.71)
Random 9.83(5.46) - 7.33(4.96) 1.17(0.96) 0.17(0.17)

Table 2: Out-of-domain top-20 attack success rate with only 1 adversarial passage. Results are averaged over 4
random runs with standard deviation shown in parenthesis. The combinations of attack and source dataset that
achieve the highest ASR on each target domain and retriever are highlighted in bold.

no candidate in D(j) achieves a lower loss, then in
the next iteration, instead of searching over the top
k = n

m , we search over the second tier of candi-
dates, i.e., tokens from V with scores between top
n
m and the top 2n

m , since the top n
m candidates were

already evaluated in the previous iterations. The
search proceeds methodically as described above
until a better candidate is found and a is updated.
The whole process is described in Algorithm 1.

5 Experiments

5.1 Experimental Details

Datasets We primarily use two popular question-
answering datasets: Natural Questions (NQ)
(Kwiatkowski et al., 2019) and MS MARCO
(Nguyen et al., 2016) for our attack. NQ, con-
taining 132,803 question-answer pairs, is collected
from Wikipedia, while MS MARCO, containing
532,761 question answer pairs, is collected from
web documents. For in-domain attacks, we eval-
uate the attack on the unseen queries on held-out
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test queries of these two datasets. To test the trans-
ferability of our attack, we also evaluate it on 5
out-of-domain datasets: NFCorpus (Boteva et al.,
2016), Quora, SCIDOCS (Cohan et al., 2020), Sci-
Fact (Wadden et al., 2020), FiQA-2018 (Maia et al.,
2018). These datasets contain unseen queries and
corpora that are out of distribution or from entirely
different domains such as biomedicine, scientific
articles, and finance. Statistics of these datasets can
be found in Appendix C.1.

Retrievers In our main experiments, we con-
duct attacks on 5 state-of-the-art retrieval models:
Contriever, Contriever-MS (Contriever fine-tuned
on MS MARCO) (Gautier et al., 2022), DPR-
nq (trained on NQ), DPR-mul (trained on multi-
ple datasets) (Karpukhin et al., 2020) and ANCE
(Xiong et al., 2020).

Evaluation Metrics After generating the ad-
versarial passages on the training set and inject-
ing them into the corpus, we evaluate the effec-
tiveness of our attack using the top-k attack suc-
cess rate (ASR) on test queries. Top-k ASR is
defined as the percentage of queries for which
at least one adversarial passage is retrieved in
the top-kr results, i.e., ASR = 1

nq

∑nq

i=1 1{a ∈
Rr(q

test
i , kr, Ctest)}, where nq is the total number

of test queries and Rr(q
test
i , kr, Ctest) is the retriever

that returns the top-kr most relevant passages for
the test query qtest

i . 1{a ∈ Rr(q
test
i , kr, Ctest)}

is the indicator function, which equals to 1 if
a ∈ Rr(q

test
i , kr, Ctest) and 0 otherwise. A higher

ASR indicates that the model is more vulnerable
to attacks, and thus, the attack is more effective.
We use kr = 20 to present our result. Since ASR
depends on the size the the test corpus, to make fair
comparisons across different dataset, we randomly
sample |Ctest| = 10, 000 passages from the overall
corpus pool.

Additionally, we use retrieval accuracy on the
validation data, which is defined as

RetAcc =
1

nval

nval∑

i=1

1{Sim(qval
i , pval

i ) > Sim(qval
i , a)}

where a is the adversarial passage, nval is the total
number of query-passage pairs in the validation set,
and pval

i is most semantically relevant passage that
should have been retrieved by query pval

i . Lower
retrieval accuracy indicates a higher chance of the
model being fooled into choosing the adversarial
texts a over the most semantically relevant pas-
sage in the corpus. Note that the Success Rate

during training (on validation data) can be de-
fined through retrieval accuracy, which is simply
1− RetAcc.

Hyperparameters For all baselines, we use
adversarial passages of m = 30 tokens and perform
the token replacement for 2000 steps. We fix the
candidate set size at n = 150. All the experiments
are conducted on NVIDIA A100 GPU (with total
memory 40G).

5.2 Main Results
In-Domain Attack We show the in-domain at-
tack performance of AGGD and the other two base-
lines (HotFlip and random perturbation) in Table
1, evaluating the injection of only one adversar-
ial passage. Our findings are as follows: (1) The
pretrained Contriever model is more vulnerable
to attacks. All three attack baselines achieve the
highest ASR compared to other retrieval models.
Poisoning with AGGD achieves 92.5% ASR on
NQ dataset and 85.47% on MS MARCO dataset,
respectively. Even using Random perturbation can
achieve a relatively high ASR of 80.24% on NQ
dataset and 66.86% on MS MARCO dataset. (2)
Besides achieving comparable results in Contriever
and DPR, AGGD is extremely effective in attacking
ANCE, improving over the second-best baseline
by 15.24% and 17.44% on NQ and MS MARCO,
respectively. The effectiveness of AGGD in at-
tack ANCE can also be clearly observed during
the training. Due space limitations, we provide
training accuracy in Appendix A.2 (Figure 10). (3)
Supervised retriever models such as DPR are more
challenging to attack. Attacking DPR-nq on NQ
with only 1 adversarial passage are just slightly
better than random perturbation.

Out-of-Domain Attack We found that the
generated adversarial passages can transfer across
different domains. In Table 2, we use adversarial
passages generated from training set of NQ and
MS MARCO and insert them into the corpora of
retrieval tasks in other domains. We found that
(1) Compared to adversarial passages generated
from NQ dataset, those trained from MS MARCO
generally perform better in out-of-domain attacks,
possibly because MS MARCO contains more train-
ing data. (2) Contriever models are still the most
vulnerable to corpus poisoning attacks. For exam-
ple, inserting a single adversarial passage generated
by AGGD into FiQA-2018 achieves a top-kr = 20
ASR of 86.54%, and inserting it into Quora can
trick the model into returning the adversarial pas-
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Figure 4: The effect of candidate set size n on the attack success rate.

(a) Attack Success rate of candidates sets collected by different
methods. (Averaged over 400 candidate sets sampled.)

(b) The proportion of times the best candidate occurs in the
candidate sets collected by AGGD, HotFlip, and Random.

Figure 5: Experiments on Contriever with NQ dataset
illustrate that the candidate set collected by AGGD has
higher overall quality (left) and is more likely to contain
the best candidate (right).

sage in the top-20 retrieved passage for 86.92% of
the queries. (3) Quora are easier domains to attack.
AGGD achieves over 20% ASR even in DPR-mul
and DPR-nq, which is surprising since, as shown
in the in-domain attack results in Table 1, attack-
ing DPR-mul and DPR-nq is extremely hard , even
with adversarial passage trained from in-domain
data. (Though NFCorpus has high attack success
rate, NFCorpus also has a smaller testing corpus).

5.3 Analysis and Ablation Study

Candidate Set Quality Our results indicate that
candidate sets selected using AGGD have better
quality than those selected using HotFlip and Ran-
dom perturbation. To demonstrate this, we ran-
domly sampled a passage and used AGGD, HotFlip

and random perturbation to select their respective
candidate sets with m = 150 candidates. We then
evaluated the success rate (i.e., 1− RetAcc) on the
validation set for all the candidates. The results,
averaged from 400 random samples, are shown in
Figure 5a. We can observe that the candidate set
from AGGD has higher mean success rate on val-
idation data. Additionally, the higher confidence
bound in the AGGD candidate set signifies that
AGGD’s candidate set not only has higher over-
all quality, but is also more likely to contain the
best candidate when compared horizontally across
candidate sets from other methods. To verify this,
we counted how often the best candidate occurs in
candidate sets selected by these methods and found
that more than 85% of the time, the AGGD candi-
date set contains the best candidate, while less than
13% show up in HotFlip candidate set, as shown
in Figure 5b. More experiments on other retrievers
models further verify that the AGGD candidate set
has higher quality (Figure 13 in Appendix B.1).

The Effects of Candidate Set Size n

In Figure 4, we show how the candidate set size
n affects the ASR evaluated on NQ dataset with
three retrievers. Generally, we can observe that
increasing size of the candidate set improves the
ASR. The effect of the candidate set size would be
more pronounced when a larger range of candidate
set sizes is considered.

The effect of the token length m

In Figure 6, we show the attack success rate
for varying token lengths m = {5, 10, 25, 50, 100}
while fixing the candidate set size n = 100. Gen-
erally, we find that larger token lengths result in
higher attack success rate upon convergence. This
is intuitive since larger m indicates a larger sub-
space in the continuous dense embedding space,
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LLaMa-2-7B LLaMa-2-13B Vicuna-7B Vicuna-13B Vicuna-33B GPT-3.5 GPT-4
MS MARCO

AGGD 0.81(0.00) 0.79(0.01) 0.73(0.01) 0.72(0.01) 0.67(0.01) 0.80(0.01) 0.88(0.01)
HotFlip 0.80(0.02) 0.77(0.02) 0.69(0.02) 0.73(0.04) 0.69(0.02) 0.79(0.01) 0.86(0.01)

NQ
AGGD 0.85(0.00) 0.94(0.00) 0.81(0.00) 0.82(0.00) 0.68(0.00) 0.92(0.00) 0.97(0.00)
HotFlip 0.83(0.00) 0.95(0.00) 0.80(0.00) 0.81(0.00) 0.67(0.00) 0.87(0.01) 0.96(0.01)

Table 3: Comparing Attack success rate of PoisonedRAG (white-box) using HotFlip and AGGD to find the
adversarial texts.

Figure 6: The effect of the number of tokens, with fixed candidate set size n = 100 and varying adversarial passage
token length m = {5, 10, 25, 50, 100}.

thus providing a higher lower bound on the effec-
tiveness of the adversarial passage we can find.

5.4 Extending AGGD to Knowledge Poisoning
Attacks

Similar to Hot Flip, which can be used for many
other adversarial attacks such as adversarial prompt
generation (Zou et al., 2023) and knowledge poi-
soning in RAG (Zou et al., 2024). AGGD can also
be conveniently used as a plug-in replacement for
HotFlip in these attacks. In Table 3, we experiment
with PoisonedRAG (Zou et al., 2024) in their white
box setting, where Hot Flip was originally used
to craft adversarial texts. The details in reproduc-
ing Table 3 are given in Appendix D. We find that
AGGD achieves a comparable or better attack suc-
cess rate than Hot Flip in both MS MARCO and
NQ dataset on multiple LLMs.

6 Conclusion

In this paper, we propose a new adversarial attack
method called AGGD, a gradient-based search al-
gorithm that systematically and structurally finds
potential perturbations to optimize the objective
function. We use the corpus poisoning attacks as
the main example to demonstrate the effectiveness
of our algorithm. Experiments on multiple datasets
and retrievers show that the proposed approach is
effective in corpus poisoning attacks, achieving
high attack success rate in both in-domain and out-
of-domain scenarios, even with an extremely low
poison rate. Additional experiments on other adver-

sarial attacks indicate the potential of AGGD as a
competitive alternative to the widely used HotFlip.
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Limitations and Future Work

While we use corpus poisoning attacks to showcase
our AGGD algorithm, the proposed attack frame-
work is versatile and applicable to a wide range of
adversarial attack scenarios, as many of these can
be formulated as discrete optimization problems.
However, the generated output sequences often lack
semantic coherence, making the adversarial corpus
easily detectable and filterable. A promising direc-
tion for future work is to reformulate the problem
as a constrained optimization problem, focusing on
producing semantically meaningful adversarial pas-
sages that are more difficult to defend against, even
if this may compromise the overall attack success
rate.

Ethics Statement

Our work studies the vulnerability of dense re-
triever and corpus poison attack. The propose at-
tack AGGD shows higher attach success rate espe-
cially for ANCE model, compared to previous Hot-
Flip attack, which could be used for spread garbage
information. Future research based on this paper
should be exercised with caution and consider the
potential consequences.
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A Additional Experiments

A.1 Comparing HotFlip with Random Perturbation
As illustrated in Figure 7, HotFlip first randomly selects a token position for replacement and identifies
n potential alternatives for that position. It updates the adversarial passage with the most effective
perturbation from this candidate set if it improves attack performance. If no perturbation enhances
performance, HotFlip progresses to the next iteration by randomly selecting another token position and
repeating the process. It is useful then to compare Hotflip vs. a natural black box Random approach to
candidate generation. As depicted in Figure 7), the Random approach creates a candidate set by randomly
sampling from the vocabulary.

Figure 7: Comparing HotFlip attack and the random perturbation attack. The main difference is how they select the
candidate set. HotFlip uses the gradient information to enhance the quality of the candidate set, whereas random
perturbation selects candidates uniformly from V without leveraging gradient information.

HotFlip is more Efficient Than Random Perturbation In experiments using three dense retrievers
on the widely used Natural Questions (NQ) dataset, we find that HotFlip outperforms the Random
perturbation baseline, as shown in Figure 8. Specifically, HotFlip consistently achieves low retrieval
accuracy on the validation set while maintaining candidate sets of the same size or smaller. (Red lines are
mostly lower than the blue lines.) Equivalently, to achieve the same degree of attack effect, HotFlip is
more efficient because it requires a smaller candidate set. For example, as depicted in Figure 9, Random
perturbation needs to maintain a candidate set of size n = 900 to match the performance of HotFlip with
only n = 30 candidates. This means that the size of Random perturbation candidate set is 30 times larger
and consequently, Random perturbation is 30 times slower.

HotFlip and Random perturbation share the same intuition of maintaining a candidate set and then
take a greedy token swap based on this set. Though many factors can influence the efficiency and the
effectiveness the greedy search, one of the major factors is the quality of the candidate set. If the candidate
set is of high quality, we can maintain a smaller size candidate set, reducing the number of searches
at each greedy step. For example, HotFlip filters down the most likely potential tokens from |V| to n
based on the gradient information, while random perturbation samples n tokens from V . As a result,
random perturbation has a lower quality candidate set. Therefore, it is crucial to improve the quality of
the candidate set.

A.2 Retrieval Accuracy during Training
Retrieval Accuracy for 1 Adversarial Passage In Figure 10, we plot the Retrieval accuracy during
training on both NQ and MS MARCO datasets for all 5 retrievers as a complement to the results in Table
1. During training, at each iteration, we evaluate the retrieval accuracy of the best adversarial passage ai
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Figure 8: Retrieval accuracy of HotFlip and random perturbation on the NQ dataset with varying candidate set size
n = {30, 60, 90, 150}. Lower retrieval accuracy suggests a more successful adversarial passage attack, as evaluated
on the validation set during greedy search iterations.

Figure 9: Retrieval accuracy of HotFlip and random perturbation. Hot Flip only needs to maintain a candidate set of
size n = 30 to achieve the same performance of random perturbation with a candidate set size n = 900.

from the candidate set, and compare it with the current adversarial passage to decide whether to update
it. Due to the greedy nature of these attacks, Retrieval accuracy is guaranteed to descend. Figure 10
shows that, for both NQ and MS MARCO dataset, the harder-to-attack models such as ANCE, DPR-mul
and DPR-nq converge with high retrieval accuracy. In contrast, for the easier-to-attack models such as
Contriever, the attack methods have not yet converged, even though the retrieval accuracy is as low as
around 0.2.

Effect of the Candidate Set Size to Retrieval Accuracy In Figure 11, we illustrate the retrieval
accuracy during training with varying candidate set sizes on NQ dataset and 3 retrievers. Larger candidate
set sizes generally lead to lower retrieval accuracy.

Effect of Token Length on Retrieval Accuracy In Figure 12, we show the training retrieval accuracy
with various token length settings. We find that, within a proper range, longer token lengths lead to more
effective adversarial passages.

B Experimental Results with 10 Adversarial Passages

To generate multiple adversarial passages, we follow (Zhong et al., 2023) by clustering similar queries
based on their embeddings using the k-means algorithm. We then generate one adversarial passage for
each cluster.
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Figure 10: Retrieval accuracy (the portion of the queries that have higher similarity to the adversarial passage than
the gold passage) on validation data during training. Lower retrieval accuracy indicates higher chance of adversarial
passage being retrieved.

Dataset Methods Retriever
Contriever Contriever-MS ANCE DPR-mul DPR-nq

NQ
AGGD 91.57(3.5) 69.42(1.38) 82.08(2.01) 8.23(1.48) 1.9 (0.07)

Hot Flip 91.6(0.87) 57.37(5.95) 63.46(1.55) 5.08(0.1) 2.19(0.25)
Random 80.49(0.83) 33.73(2.27) 27.3(2.74) 3.94(1.22) 1.65 (0.06)

MS MARCO
AGGD 83.72(4.65) 13.95(13.95) 93.02(0.0) 11.63(2.33) 5.81 (1.16)

Hot Flip 88.37(2.33) 13.95(11.63) 67.44(2.33) 10.46(1.16) 6.98(2.33)
Random 65.12(9.3) 1.16(1.16) 52.33(15.12) 8.14(1.16) 3.49 (1.16)

Table 4: In-domain attack success rate (ASR) of AGGD on NQ and MS MARCO dataset with 5 retrievers by
injecting 10 adversarial passages). The best-performing attacking method is highlighted with in bold (higher ASR
indicates better attack performance).

B.1 Candidate Set Quality

In Figure 13, we present additional experiments with two more retriever models: Contriever-MS and
ANCE. We observed a similar trend, over the 400 random samples, with more than 92% of the best
candidate belonging to AGGD candidate set. This further supports the conclusions in Section 5.3.

In-Domain Attack with 10 Adversarial Passages Table 4 shows the in-domain attack results of
inserting 10 adversarial passages into the NQ and MS MARCO datasets. Similar to injecting only 1
adversarial passage, we found that (1) The pretrained Contriever model is easy to attack: even with just 10
adversarial passages, all three baselines (AGGD, HotFlip and Random perturbation) successfully attack
more than 80% of the queries in both NQ and MS MARCO datasets, tricking the Contriever into returning
the adversarial passage among the top-20 retrieved results. For NQ dataset, even random perturbation
achieves a high ASR of 80%, while the other two methods using gradient information achieves higher
ASR of > 91%. (2) AGGD still outperforms HotFlip on ANCE, with improvements of 18.62% and
25.58% on NQ and MS MARCO datasets, respectively.

Out-of-Domain Attack with 10 Adversarial Passages In Table 5, we perform the out-of-domain attack
by inserting more adversarial passages. We find that, inserting more adversarial passages significantly
improves the attack transferability of HotFlip, enabling it to outperform AGGD in models such as
Contriever-MS, DPR-mul and DPR-nq. However, AGGD still performs much better than HotFlip when
using ANCE as the retriever.
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Figure 11: The retrieval accuracy during training with various candidate set sizes. (n = 30, 60, 90, 150).

B.2 In-domain attack success rate with different k.
B.3 Transferability over different retrievers.

C Experimental Detail

C.1 Dataset
• MS MARCO (Nguyen et al., 2016) contains a large amount of queries with annotated relevant

passages from Web documents.

• Natural Questions (NQ) (Kwiatkowski et al., 2019) contains Google search queries with annotations
from the top-ranked Wikipedia pages.

These two datasets have been widely used for evaluating dense retrieval models.
The statistics of all the datasets used in evaluation are summarized in Table 8.

C.2 Retrievers
We experimented with the following retrievers:

• Dense Passage Retriever(DPR) (Karpukhin et al., 2020) is a two-tower bi-encoder trained with a
single BM25 hard negative and in-batch negatives. It has been used as the retrieval component of

4289



Figure 12: The retrieval accuracy during training with various token lengths (m ∈ {5, 10, 25, 50, 100}) and a fixed
candidate set size n = 100.

many Retrieval-Augmented Generation (RAG) models (Lewis et al., 2020). In our paper, we use
both the open-sourced Multi model (DPR-mul), which is a bert-base-uncased model trained on four
QA datasets (NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), WebQuestions (Berant
et al., 2013) and CuratedTREC (Baudiš and Šedivỳ, 2015)) and the single NQ model (DPR-nq).

• ANCE (Xiong et al., 2020) is a bi-encoder that generates hard negatives using an approximate
Nearest Neighbor (ANN) index of the corpus. The index is continuously updated in parallel to
identify challenging negative examples for the model during fine-tuning.

• Contriever (Gautier et al., 2022) is an unsupervised dense retriever using contrastive learning. It
leverages the BERT architecture to encode both queries and documents. Contriever-MS (Contriever
fine-tuned on MS MARCO) is a version of the Contriever model that has been fine-tuned using the
MS MARCO dataset, which provides large-scale, supervised training data.

D Knowledge Poisoning Attacks to RAG

Retrieval-Augmented Generation (Karpukhin et al., 2020; Lewis et al., 2020; Borgeaud et al., 2022;
Thoppilan et al., 2022) augments LLMs with external knowledge retrieved from a knowledge base to
improve their ability to generate accurate and up-to-date content. There are three components in RAG:
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(a) Attack Success rate of candidate sets collected by different methods.
(Results are averaged over 400 candidate sets sampled when training with
Contriever-MS (left) and ANCE (right) on NQ dataset.)

(b) The portion of the times the best candidate occurs in the candidate sets
collected by AGGD, HotFlip and Random, respectively, when training on
NQ dataset with Contriever-MS (left) and ANCE (right).

Figure 13: Additional experiments on Contriever-MS and ANCE with NQ dataset illustrate that candidate sets
collected by AGGD (a) has higher overall quality and (b) are more likely to contain the best candidate.

Target Domain Source Domain Methods Retriever
Contriever Contriever-MS ANCE DPR-mul DPR-nq

FiQA-2018

NQ
AGGD 92.67(0.23) 30.86(7.87) 19.52(1.47) 6.02(0.15) 4.71(1.47)

Hot Flip 84.1(0.77) 24.23(2.31) 13.35(2.7) 3.94(2.55) 3.24(1.23)
Random 83.1(0.39) 17.82(5.32) 8.26(0.54) 2.7(0.23) 2.31(0.46)

MS MARCO
AGGD 97.69(0.31) 50.54(25.23) 37.19(0.31) 27.31(7.87) 20.6(7.64)

Hot Flip 95.22(1.08) 56.48(3.4) 28.16(2.08) 19.37(6.4) 28.47(1.31)
Random 86.73(0.15) 6.94(0.15) 13.27(1.39) 15.66(7.48) 7.25(4.63)

NFCorpus

NQ
AGGD 78.02(1.24) 35.76(3.25) 64.55(3.87) 18.11(4.8) 18.89(3.1)

Hot Flip 85.45(0.31) 37.0(3.87) 48.76(1.08) 20.43(0.31) 20.59(1.39)
Random 63.78(1.86) 24.46(3.41) 35.6(0.62) 16.72(1.55) 15.79(1.55)

MS MARCO
AGGD 95.36(0.62) 57.9(26.01) 88.39(0.15) 57.89(8.05) 52.01(3.72)

Hot Flip 87.62(5.88) 70.28(12.69) 80.34(1.39) 59.75(10.84) 66.72(4.8)
Random 85.45(3.1) 51.39(5.57) 65.17(2.63) 34.98(1.24) 52.48(8.2)

Quora

NQ
AGGD 96.18(0.03) 63.14(3.93) 91.52(0.89) 20.96(3.63) 25.8(5.81)

Hot Flip 92.22(1.08) 57.88(10.45) 84.9(2.27) 24.82(0.15) 32.19(1.7)
Random 87.85(2.18) 46.28(7.64) 81.72(0.25) 15.84(0.97) 22.28(3.28)

MS MARCO
AGGD 97.87(0.93) 61.72(7.29) 94.52(0.17) 45.92(1.0) 51.5(3.35)

Hot Flip 98.13(0.79) 69.88(3.63) 91.5(0.16) 43.86(2.64) 51.6(3.73)
Random 83.97(3.6) 35.24(4.43) 85.48(2.07) 32.88(0.31) 38.36(6.64)

SCIDOCS

NQ
AGGD 53.75(7.05) 46.4(17.7) 33.75(1.25) 1.7(0.3) 0.45(0.05)

Hot Flip 49.75(2.45) 40.7(5.4) 26.45(6.05) 3.35(0.15) 0.95(0.15)
Random 37.8(4.3) 18.25(1.75) 13.3(0.9) 2.3(0.4) 0.6(0.2)

MS MARCO
AGGD 65.5(2.6) 41.65(9.85) 46.2(1.9) 24.9(2.2) 6.7(0.2)

Hot Flip 51.45(4.75) 68.1(8.3) 36.95(0.35) 22.4(2.9) 8.3(1.1)
Random 39.2(4.5) 13.9(4.3) 20.9(0.6) 15.55(3.35) 2.45(1.05)

SciFact

NQ
AGGD 60.33(6.0) 12.5(7.17) 39.33(9.33) 0.5(0.5) 0.17(0.17)

Hot Flip 58.83(12.83) 11.83(2.17) 16.5(3.5) 1.67(0.67) 0.5(0.17)
Random 34.33(4.33) 3.17(2.17) 8.17(1.5) 0.33(0.0) 0.5(0.17)

MS MARCO
AGGD 91.5(4.5) 41.5(8.5) 58.17(0.83) 12.0(5.0) 12.0(7.67)

Hot Flip 85.83(5.17) 29.17(9.5) 42.33(4.0) 15.17(0.5) 14.67(7.33)
Random 75.5(9.5) 8.0(1.33) 21.5(6.5) 5.67(1.67) 10.33(1.0)

Table 5: Out-of-domain top-20 attack success rate with 10 adversarial passages. Due to the computational constraints,
results are averaged over 2 random runs, with standard deviations shown in parentheses. The combinations of attack
and source dataset that achieve the highest ASR for each target domain and retriever are highlighted in bold.
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Dataset Method Retriever
Contriever Contriever-MS ANCE DPR-mul DPR-nq

Top-1

NQ
AGGD 85.06(5.06) 44.84(12.65) 16.36(1.52) 0.39(0.15) -

Hot Flip 83.77(1.43) 39.74(7.81) 8.66(0.62) 0.21(0.08) 0.03 (0.02)
Random 66.64(2.61) 8.82(0.87) 1.89(0.5) 0.07(0.04) 0.04(0.03)

MS MARCO
AGGD 69.19(6.65) 11.05(12.67) 24.42(7.45) 1.16(1.16) 2.91(1.93)

Hot Flip 71.51(4.15) 12.79(8.47) 10.47(2.01) 2.33(1.64) 0.58 (1.01)
Random 52.33(6.26) 1.74(1.93) 5.23(4.47) - 0.58 (1.01)

Top-5

NQ
AGGD 89.84(3.53) 55.63(10.96) 49.56(3.78) 1.9(0.55) 0.27 (0.16)

Hot Flip 88.69(0.72) 50.64(5.96) 31.36(1.16) 1.29(0.26) 0.28(0.1)
Random 75.28(1.8) 20.07(1.44) 10.12(1.82) 0.71(0.28) 0.24 (0.11)

MS MARCO
AGGD 81.98(5.03) 20.35(16.72) 66.28(5.33) 8.72(3.02) 3.49(1.16)

Hot Flip 80.23(6.04) 19.77(10.2) 36.05(9.08) 3.49(1.16) 2.33 (0.0)
Random 62.21(7.6) 8.14(7.07) 20.93(4.03) 3.49(2.01) 0.58 (1.01)

Top-10

NQ
AGGD 91.28(3.03) 59.39(9.83) 66.43(4.42) 3.62(1.02) 0.82(0.38)

Hot Flip 89.85(0.82) 54.52(5.41) 47.55(1.73) 2.69(0.24) 0.72 (0.2)
Random 77.8(1.45) 25.91(2.07) 18.8(3.26) 1.61(0.45) 0.66 (0.1)

MS MARCO
AGGD 84.88(3.86) 22.67(17.35) 85.47(2.53) 9.3(3.68) 4.07(1.01)

Hot Flip 81.4(5.45) 20.35(10.58) 57.56(9.36) 4.65(1.64) 2.91 (1.01)
Random 65.12(7.89) 11.63(10.78) 35.47(8.28) 4.65(2.85) 1.16 (1.16)

Top-20

NQ
AGGD 92.5(2.68) 63.45(8.68) 80.92(4.82) 6.88(1.72) 2.19(0.98)

Hot Flip 91.08(0.9) 58.43(4.53) 65.68(2.5) 5.4(0.36) 2.03 (0.25)
Random 80.24(0.92) 32.5(2.61) 31.0(4.3) 3.7(0.93) 1.66 (0.14)

MS MARCO
AGGD 85.47(3.81) 24.42(17.44) 93.6(1.01) 12.79(3.86) 5.23 (1.01)

Hot Flip 83.72(5.93) 22.67(12.01) 76.16(9.21) 9.88(1.93) 5.81(2.01)
Random 66.86(7.24) 13.95(13.46) 49.42(11.2) 6.4(2.53) 2.91 (1.93)

Top-50

NQ
AGGD 93.87(2.26) 68.69(6.66) 93.7(3.21) 15.59(3.41) 7.31(2.02)

Hot Flip 92.56(0.82) 63.28(3.64) 85.93(2.4) 13.37(1.1) 6.84 (1.1)
Random 83.01(0.46) 42.35(3.55) 53.01(5.31) 9.6(1.76) 5.46 (0.51)

MS MARCO
AGGD 87.21(5.33) 31.98(20.3) 99.42(1.01) 22.67(5.55) 13.37(3.02)

Hot Flip 84.88(4.19) 32.56(18.16) 95.35(1.64) 19.77(3.49) 10.46 (5.07)
Random 69.19(4.47) 19.19(17.35) 75.58(5.33) 12.79(3.49) 4.65 (1.64)

Top-100

NQ
AGGD 94.77(2.08) 72.59(5.28) 98.2(1.31) 27.94(5.7) 18.0(3.6)

Hot Flip 93.58(0.66) 67.27(2.97) 94.94(1.63) 24.48(2.26) 16.8 (1.79)
Random 85.11(0.41) 50.86(4.34) 71.57(5.81) 18.6(3.15) 12.81 (1.34)

MS MARCO
AGGD 89.54(4.79) 40.12(24.36) 100.0(0.0) 41.28(5.03) 20.93(4.35)

Hot Flip 86.05(4.93) 40.12(18.12) 100.0(0.0) 31.98(5.04) 18.02 (5.78)
Random 70.93(2.6) 23.26(18.09) 90.12(6.01) 18.02(2.53) 9.88 (4.47)

Table 6: In-domain attack success rate (ASR) of AGGD on NQ and MS MARCO datasets with 5 retrievers by
injecting 1 adversarial passage with varying k = {1, 5, 10, 20, 50, 100}. Results are from 4 random runs with
standard deviation in parenthesis.For the ease of presentation, we omit the results through ‘-’ if top-k ASR is smaller
than 0.1%.

Source Retriever Method Target Retriever
Contriever Contriever-MS ANCE DPR-mul DPR-nq

contriever
AGGD 97.14 26.51 - - 1.2

Hot Flip 96.05 20.9 - 0.18 0.48
Random 90.5 11.8 - 0.14 1.39

contriever-msmarco
AGGD 27.76 83.71 - - 0.28

Hot Flip 25.23 79.05 - 1.02 2.28
Random 26.24 78.38 - 2.05 7.16

ance
AGGD 26.43 4.88 100.0 - -

Hot Flip 28.48 4.92 99.99 - -
Random 9.86 6.39 99.3 - -

dpr-multi
AGGD 15.78 3.67 - 87.84 22.47

Hot Flip 23.43 7.7 - 84.18 38.41
Random 18.43 4.15 - 79.35 10.41

dpr-single
AGGD 10.85 9.99 - 29.16 89.46

Hot Flip 11.87 9.45 - 27.91 87.72
Random 22.02 7.37 - 20.5 82.55

Table 7: Attack transferability across models on NQ dataset.

knowledge base, the retriever and the LLM. The knowledge base contains a large corpus collected from
various domains such as Wikipedia (Thakur et al., 2021), Fiance (Loukas et al., 2023) and Biomedical
articles (Roberts et al., 2020). Given a user question, the retriever uses a text encoder to compute the
embedding vector. A set of k retrieved texts from the knowledge base with the highest similarity to the
question are then retrieved, which can be used by the LLM to generate content.

RAG enables LLMs to incorporate more current knowledge by regularly updating the knowledge base.
However, this also introduces potential security concerns: maliciously crafted content could be injected
into the database during updates, which might then be retrieved by the LLM to generate false, biased or
harmful output.
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Domain Dataset Train Dev Test
# Pair # Query # Query # Corpus

In-domain Web MS MARCO (Nguyen et al., 2016) 532,761 - 6,980 8,841,823
Wikipedia NQ (Kwiatkowski et al., 2019) 132,803 - 3,452 2,681,468

Bio Medical NFCorpus (Boteva et al., 2016) 110,575 324 323 3,633

Out-of-domain

Quora Quora - 5,000 10,000 522,931

Scientific SCIDOCS (Cohan et al., 2020) - - 1,000 25,657
SciFact (Wadden et al., 2020) 920 - 300 5,183

Finance FiQA-2018 (Maia et al., 2018) 14,166 500 648 57,638

Table 8: Dataset Statistics. More statistics can be found in (Zhao et al., 2024; Thakur et al., 2021). In our experiments,
we use MS MARCO and NQ datasets to train the adversarial passages and evaluate the attack on the unseen test
queries from these two datasets for in-domain attack evaluation. The remaining 5 datasets (NFCorpus, Quora,
SCIDOCS, SciFact, FiQA-2018) are used for out-of-domain evaluation when injecting the adversarial passages
generated from the MS MARCO and NQ dataset into the corpora of these out of domain datasets.

LLaMa-2-7B LLaMa-2-13B Vicuna-7B Vicuna-13B Vicuna-33B GPT-3.5 GPT-4
MS MARCO

AGGD 0.92(0.00) 0.92(0.00) 0.92(0.00) 0.92(0.00) 0.92(0.00) 0.92(0.00) 0.92(0.00)
HotFlip 0.90(0.01) 0.90(0.01) 0.90(0.01) 0.90(0.01) 0.90(0.01) 0.90(0.01) 0.90(0.01)

NQ
AGGD 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
hotflip 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

Table 9: PoisonedRAG performance on multiple dataset and LLMs using Hot Flip and AGGD evaluated using F1
score.

Threat Model We consider a scenario where the attacker does not have direct access to the database,
but can access the weights of the retrieval model. This scenario is realistic, as the database is likely hosted
on a secure system, while the retriever used may be an open-access LLM. We assume the attacker can
inject a few carefully crafted corpus into the knowledge base.

Metric We use the same metrics, Attack Success Rate (ASR) and F1, as used in (Zou et al., 2024).
However, since ASR is task-specific, it might not be exactly the same as defined for corpus poisoning
attacks. In PoisonedRAG, the definitions are given as follows.

• ASR The fraction of target questions whose answers are the attacker-chosen target answers.

Additionally, we report average F1-Score over different target questions in Table 9, which measures the
trade-off between Precision and Recall. Specifically,

F1 score =
2 · Precision · Recall
Precision + Recall

(2)

where Precision is defined as the fraction of poisoned texts among the top-k retrieved ones for the target
question and Recall is defined as the fraction of poisoned texts among the N poisoned ones that are
retrieved for the target question. A higher F1-Score means more poisoned texts are retrieved.

Hyperparameters We inject 1 adversarial poisoned text for each target question and test on all 100 test
data. The results are averaged over 4 random runs.

E Examples of the output passage from AGGD
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Examples from attacking Contriever Examples from attacking contriever-MS

["##nius", "half", "melting",
"definite", "[MASK]", "favor",
"gma", "who", "should", "jew",
"rain", "##pi", "##ntial", "upper",
"kevin", "perrin", "##gren",
"blew", "demonstrators", "remnants",
"shelters", "that", "##ntial", "hue",
"lest", "rainfall", "where", "rains",
"rain", "heavy"]

["hostage", "tightly", "handful",
"herbs", "where", "packets", "were",
"##ssen", "dealers", "overnight",
"symbol", "##atic", "##ised",
"adventure", "bail", "##alis",
"##kari", "[CLS]", "convicted",
"ga", "##oit", "peace", "restore",
"lifespan", "discrimination", "(",
"maha", "##ter", "bank", "##ees"]

Table 10: Examples of adversarial passages
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