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Abstract

Dialogue text segmentation aims to partition
dialogue content into consecutive paragraphs
based on themes or logic, enhancing its com-
prehensibility and manageability. Current text
segmentation models, when applied directly to
STS (Streaming Text Segmentation), exhibit
numerous limitations, such as imbalances in
labels that affect the stability of model training,
and discrepancies between the model’s training
tasks (sentence classification) and the actual
text segmentation that limit the model’s seg-
mentation capabilities.

To address these challenges, we first imple-
ment STS for the first time using a sliding
window-based segmentation method. Sec-
ondly, we employ two different levels of slid-
ing window-based balanced label strategies to
stabilize the training process of the stream-
ing segmentation model and enhance train-
ing convergence speed. Finally, by adding
a one-dimensional bounding-box regression
task for text sequences within the window,
we restructure the training approach of STS
tasks, shifting from sentence classification to
sequence segmentation, thereby aligning the
training objectives with the task objectives,
which further enhanced the model’s perfor-
mance. 'Extensive experimental results demon-
strate that our method is robust, controllable,
and achieves state-of-the-art performance.

1 Introduction

With the advancement and widespread adoption of
Automatic Speech Recognition (ASR) technology,
along with the increasing societal demand for real-
time recording and processing of dialogue content,
Streaming Text Segmentation (STS) has become
a key task in real-time dialogue preprocessing and
has gained increasing attention. In scenarios such
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Figure 1: The dialogue content is segmented in real-
time into paragraphs, with each paragraph representing
a semantically complete conversation that implicitly
contains a specific topic.

as business meetings, academic seminars, consult-
ing services, training, and speeches, lengthy dia-
logue content frequently occurs, and handling this
massive streaming information poses a challenge.
Effectively segmenting dialogue content into co-
herent thematic paragraphs (Brants et al., 2002)
greatly facilitates subsequent understanding and
analysis, such as in dialogue summarization (Qi
et al., 2021; Schneider and Turchi, 2023; Li et al.,
2019), question answering (Yoon et al., 2018), and
information retrieval (Zhu et al., 2019).

Although text segmentation technology has
made significant progress, research on STS is still
relatively scarce. While some existing segmen-
tation techniques can be applied to STS, how to
further improve the accuracy of streaming segmen-
tation, optimize processing workflows, and reduce
latency remains an urgent issue to explore.

Segmenting based on sentence granularity us-
ing text transcribed by ASR is often impractical
because there may not be sufficient context to de-
termine whether the current utterance is a segmen-
tation boundary. To address this issue, we adopted
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self-adaptive sliding window (Zhang et al., 2021),
performing segmentation at the window level on
streaming text. Supervised text segmentation tasks
are commonly interpreted as sentence classifica-
tion tasks, Among these, the issue of imbalance
is particularly pronounced, especially within long
texts, resulting in sparse segmentation labels that
impair model performance and make the training
process slow and unstable. Furthermore, interpret-
ing text segmentation tasks merely as sentence clas-
sification tasks is insufficient because this perspec-
tive overlooks paragraph content, paragraph length
(Yoo and Kim, 2024), and the intrinsic structure of
the text, considering only boundary locations; more
importantly, there is a significant disparity between
text segmentation and sentence classification tasks.

In order to solve the existing problems and im-
prove the accuracy of STS, our research and contri-
butions can be summarized as follows:

* To our knowledge, our method is the first to
address the STS problem and resolve the issue
of imbalanced training labels in text segmen-
tation. First, we achieve STS by sampling
and segmenting dialogue texts using a sliding
window. Second, we introduce two levels of
balanced labels to replace conventional text
segmentation labels, enabling the model to
converge faster and more stably during train-
ing, while effectively controlling paragraph
lengths during inference.

* Inspired by object detection and semantic
segmentation in images, we implemented
a one-dimensional boundary-box regression
task for text sequences and applied it to
window-based STS, addressing the mismatch
between task objectives and training objec-
tives in text segmentation, thereby optimizing
task objectives more directly. We propose the
One-Dimensional Object Detection (1DOD)
method, which jointly optimizes the model
with a 1D boundary-box regression task and
a sentence classification task, to enhance the
performance of the text segmentation model.

¢ Our method has shown improvements over the
SOTA models on the AMC dataset by 11.87
and 10.86 on the A and B respectively, and
has reduced the traditional text segmentation
evaluation metrics WD and Py by 4.19 and
2.17 respectively. Furthermore, we have con-
tributed a large-scale and extensive dataset,

which has been used to validate our method.
The results demonstrate that the 1DOD model
possesses excellent generalization capability
and universality.

2 Related Work

2.1 Text Segmentation

The popularity of deep neural networks has greatly
propelled the development of the text segmenta-
tion field. Koshorek et al. (2018) and Wang et al.
(2018) used Bi-LSTM to predict segment bound-
aries; SECTOR (Arnold et al., 2019) employs
LSTM to predict sentence topics and merges them
into paragraphs; Barrow et al. (2020) proposed S-
LSTM for text segmentation; Xing et al. (2020)
added a coherence auxiliary task to enhance the
segmentation performance of the hierarchical atten-
tion BiLSTM; Yoo and Kim (2024) incorporated
segment distance information in the model to con-
trol the paragraph segmentation length in novel
texts; Glavas and Somasundaran (2020), Lo et al.
(2021), and Lukasik et al. (2020) use hierarchical
Transformer networks to extract sentence features
for segmentation; Yu et al. (2023) proposed Topic-
Aware Sentence Structure Prediction (TSSP) and
Contrastive Semantic Similarity Learning (CSSP)
to enhance topic-oriented text.

2.2 Dialogue Segmentation

Zhang and Zhou (2019) noted that speaker infor-
mation helps with dialogue segmentation; Xing
and Carenini (2021) and Solbiati et al. (2021) used
an unsupervised Bert model to determine the the-
matic relevance or coherence of utterances; Zhang
et al. (2021) utilized a self-adaptive sliding window
for efficient text segmentation; Xu et al. (2021)
proposed an unsupervised topic-aware segmenta-
tion algorithm and a Topic-Aware Dual Attention
Matching (TADAM) network for dialogue segmen-
tation; Xia et al. (2022) introduced the Neighbor
Smoothing Parallel Extraction Network (PEN-NS)
for dealing with segment boundary noise and ambi-
guity; (Gao et al., 2023) utilized neighboring utter-
ance matching and pseudo-segmentation to enable
the model to learn topic-aware utterance represen-
tations from unlabeled dialogue data.

Most existing works focus on incorporating addi-
tional topic information to aid segmentation, often
neglecting the intrinsic characteristics of the text
segmentation itself. In contrast, our approach does
not introduce additional topic information but in-

4119



Window Dialogue Text ¢—

Paragraph 7 - 1

Sentence 7 Sentence 7

Paragraph /

[Sentencel Sentence / ] 00
v v

v v

Window Dialogue Text ¢

e

-Sentencen [EOP] .
F Dialogue Text ¢+ /

i [ S
with loken-level = - - -
balanced label; | Zredicetionas |:> L

[ Predication,p ppox ] :> L1p bbox

Figure 2: In each window of STS, the training objective is to minimize classification loss and 1D bounding-box
regression loss. The labels used in the figure are at the token-level. It should be noted that our 1D bounding-box

regression task is single-edged.

stead focuses on enhancing the model’s semantic
understanding for the STS task.

3 Method

3.1 Problem Formulation

In text segmentation tasks, given a dialogue

text T = [s1,82,...,8,], we segment it into
consecutive paragraphs T' = [Py, P2, ..., Py] =
(15 8p]s [Sprdis -2 8palseos [Spm_idls- -
spl], where sp,,, i € [1,...,m] is the last sentence

of P;. In the STS based on a self-adaptive sliding
window, with a window size of z, for the j-th
window text Twm]. [Sj, Sjtly--es Sj—&—:c—l}’
the first paragraph of length [ is segmented out
as Tpara; = [5j,8j+1,---,8j41-1], with the
remaining as background paragraphs, where s;
is the first sentence of the background paragraph
from the previous window, and s;; is the start of
the next window.

3.2 Streaming Text Segmentation with
Balanced Labels

Traditional supervised text segmentation methods
select the last sentence of each paragraph as a clas-
sification task, while the self-adaptive sliding win-
dow method only selects the end sentence of the
first paragraph within each window range. How-
ever, these segmentation methods, when dealing
with lengthy dialogue texts, result in extremely
imbalanced sample labels. For example, when seg-
menting a conference dialogue text with a thousand
utterances into ten paragraphs, the direct segmenta-
tion ratio of positive to negative samples will reach
1:99; if the window size is set to 200, the ratio in
each window will reach 1:199.

Lin et al. (2017) pointed out that extreme cat-
egory imbalance can lead to inefficient training

and model degradation. To address this issue, un-
der the STS architecture, we propose two levels of
balanced labels to replace the original task labels,
based on sentence granularity and token granularity,
as shown in Figure 3.

In segmentation tasks, for utterance granular-
ity, we add the [EOP)] token at the end of each
sentence to indicate the end of a sentence. Typ-
ical text segmentation models classify each sen-
tence’s [EOP] token to determine whether the
sentence is the end of a paragraph. SeqModel
(Zhang et al., 2021) uses the average pooled fea-
tures of all tokens in the sentence for classification,
with the same level of label sparsity as the for-
mer; in our proposed sentence-level segmentation
task, within each window, the paragraph is deter-
mined by checking whether the [EO P] tokens of
the first [ sentences belong to the paragraph; simi-
lar to the sentence-level, the token-level adjusts by
judging all tokens in the first [ sentences, not just
the [EOP] tokens.

General [ Sentence i ] [ Senténcen ] [EOP]

00 || Neg {00 ] L[ s | La00 | [ Nee J

Sentence level [ Sentence i ] [ Sentence n ]
00 || pe (B ‘ a00 |, ‘ Neg
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Figure 3: General text segmentation labels, sentence-
level labels, and token-level labels. ‘Pos’ means it be-
longs to the target paragraph, while ‘Neg’ does not.
‘-100° refers to ignoring this label.

By pre-adjusting to obtain the appropriate win-
dow size, the overall ratio of positive to negative
labels in the training data can be made as close as
possible to 1:1. Training with balanced labels al-
lows the model to fully learn from both positive and
negative labels, and enables the training process to
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be quick and stable. Compared to sentence-level,
token-level training labels provide more and richer
balanced supervision signals, which we believe can
enable the model to acquire more comprehensive
information.

3.3 One-Dimensional Object Detection

In every step of STS, the task objective is to seg-
ment the first paragraph of the window text. In-
spired by object detection and image semantic seg-
mentation tasks, we treat the first paragraph as a 1D
target within serialized text, and adapt the object
detection task to one-dimension for application in
STS.

DETR (Carion et al., 2020) is the first model to
apply the Transformer to object detection, using a
combined loss function of L1 and GIoU (General-
ized Intersection over Union) (Rezatofighi et al.,
2019) for bounding-box regression training, and
additionally employs Dice (Milletari et al., 2016)
loss for panoptic segmentation. For STS, we re-
tain the cross-entropy loss for fine-grained category
discrimination, which is essential as it effectively
guides the model to capture and learn the semantic
information of the text. We replace it with Focal
(Lin et al., 2017) loss to better address imbalanced
labels:

N
1
Las =~ ;(a(l — pt)yelogpy

(1= a)pl (1 — yliog(1—p) (1)

Where, N is the number of samples, y; is the true
label of the ¢-th sample, p; is the probability of
predicting as the positive class, and « and -y are the
hyperparameters of F'ocal.

We apply the smooth L1 loss function to 1D
bounding-box regression, primarily modifying the
2D bounding boxes to 1D. Since the left bound-
ary of the paragraph always coincides with the left
boundary of the window, the segmentation point
coordinate is equivalent to the boundary width. For
the active label B of length [; and the segmentation
paragraph prediction B of length [,,, their bounding
boxes are (314, 1) and (31,,1,) respectively, result-
ing in the smooth L1 loss function:

N
1 .
Lsmooth L1 = 57 > ) smoothry(B] - BY)
t=1 ie{c,l}

2

Where B! and B! are the predicted and actual val-
ues of the ¢-th bounding box coordinate of the ¢-th
sample respectively.

Then, we performed dimensionality reduction
on the IoU (Yu et al., 2016) to one dimension and
derived the loss function:

=
E

Lrov = (1 — IOUt)
t=1
1 i(l Intersection(Bt,Et))
N~ Um'on(Bt,Et)

3

IoU has many variants, but most are not suit-
able for our 1D single-edge boundary regression,
such as GIoU, CloU (Zheng et al., 2020), and
SIoU(Gevorgyan, 2022), because there is always an
intersection when the predicted length is non-zero,
and there is no aspect ratio or angle distinction. To
accelerate training convergence, we have adapted
the DIoU loss function to one dimension:

B,B
Rprov = p(—)A “)
Union(B, B)

| X

Loy =+ Y _(1 = DIolh)
t=1
LN )
= N Z(l — IOUt + RDIOUt)

Where p(-) represents the Euclidean distance, i.e.,
the distance between the midpoints of the two
bounding boxes.

Target (2 JC 5 )
Predication 1 | 4 ( 3 ) ToU=0.5, DIoU=0.25, ADIoU=0.32
Predication2 (1 [ 6 ) IoU=0.5, DIoU=0.25, ADIoU=0.50

Figure 4: Comparison between the result of 1D IoU,
DIoU and ADIoU.

However, both 1D IoU and DIoU do not address
the issue of different scales having the same in-
tersection over union ratio (Figure 4). Although
cross-entropy loss and smooth L1 loss remain ef-
fective under such circumstances, we still explored
solutions based on IoU. We simply calculated the
average DIoU (ADIoU) between the segmented
paragraph and the background paragraph as a met-
ric and obtained the corresponding loss function:
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1

ADIoU = §(DIOU + DIOUbackground) (6)
1

LADIoU = v Z (1 — ADIoU;) (7

The 1D adaptation of the Dice loss function is
similar to IoU; specifically, when using the ADIoU
loss function, we use the corresponding average
Dice (ADice):

Intersection(B, B)
|B| + | B|

Dice =2 - (8)

‘ . .
ADice = i(che + Dicepackground)  (9)

N
1 .
Lpice = N E (1 — Dicey)

(10)
t=1
1 N
Lapice = 3 ;(1 — ADice;) (1)

Overall, we obtain the total 1D bounding-box
regression loss:

L1D vbox = ASL1LSmooth L1

MoUL 10U + ADiceLDice
+ S Ap1oULDIoU + ADiceLDice

Aap1oUL ADIOU + AADice L ADice
(12)

Where A\sr.1, Ajos AD1oU> AADIOU > ADice» and
AADice are hyperparameters. Adding classification
loss results in our final loss for 1IDOD-based STS
(Figure 2), which we apply in the training of the
segmentation model:

Lsts = Leis + L1D bbox (13)

3.4 Tail Processing

When the window slides to the bottom, if the length
of the background paragraph is less than the pre-
set segmentation stop threshold #,,,, the stream-
ing segmentation stops; otherwise, the background
paragraph continues to be segmented as the next
window text. But obviously, the last part of the
dialogue text is not detected. This leads to a prob-
lem: the tail paragraphs are prone to being seg-
mented too short, and setting a larger threshold

cannot prevent it; a larger threshold can also lead
to excessively long tail paragraphs.

In response, we propose a new retrieval-merge
process as a tail handling for STS: first, set an
appropriate stop threshold ¢, to prevent overly
long tail paragraphs; secondly, set a new minimum
tail length threshold ¢,,;,. After segmentation, if
the tail paragraph is shorter than ¢,,;,, a forward
merging algorithm is executed. In forward merging,
we use a pretrained model to determine whether
the consecutive segments are part of a continuous
piece or two independent paragraphs; if they are
continuous, they are merged.

4 Experimental Setup

Specific parameter settings can be found in the
Parameter Setting.

4.1 Dataset

Due to the specificity of conferences, publicly avail-
able conference dialogue datasets are extremely
scarce. The AMC corpus (AliMeetingdMUG Cor-
pus) (Zhang et al., 2023) is currently the largest
publicly available conference dialogue data set, and
we used its 589 publicly segmented conference
recordings for our experiments.

Furthermore, to validate the generalizability of
our method, we collected and manually annotated
1553 long dialogue texts (MDT1553) covering mul-
tiple domains and topics for experimentation. In
addition to conferences, MDT1553 also includes
various fields such as broadcasts, live streams,
speeches, and TV programs, covering multiple top-
ics (Figure 7), complementing the AMC corpus.
Statistical data for both datasets are shown in Table
5.

4.2 Evaluation Metric

Traditional text segmentation metrics Py, (Beefer-
man et al., 1999) and W D (Pevzner and Hearst,
2002) are sensitive to paragraph length and provide
unreasonable assessments of various types of errors
(Fournier and Inkpen, 2012; Fournier, 2013; Diaz
and Ouyang, 2022), making them unsuitable for
accurately evaluating long dialogue text segmenta-
tion tasks. B (Fournier, 2013) uses edit distance
as a penalty term, improving the shortcomings of
traditional metrics. A (Diaz and Ouyang, 2022) is
based on paragraph matching and uses the Jaccard
Index to calculate closeness, which is associated
with our 1DOD task. Additionally, it is length-
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independent, provides continuous penalties for seg-
mentation boundary shifts, and applies appropriate
penalties for different types of errors, which we
believe better matches human evaluation methods
for long dialogue texts. Therefore, we primarily
rely on the A metric for evaluating our experiments,
but we will also provide scores for P, W D, and
B for reference. For P, and W D, the sliding win-
dow size and the maximum distance for boundary
consistency in B are set to half the average real
paragraph length. For calculating the A index, we
use the original code, while the rest use the segeval.

4.3 Baseline Models

The average length of the dialogue data exceeds
10000, which is longer than the maximum length
supported by mainstream language models. To
better adapt to long contexts, we experimented
with two Chinese language models, Longformer
(Beltagy et al., 2020) and PoNet (Tan et al., 2022),
which support lengths up to 4096. Notably, the
experimental results in Table 1 show that PoNet
outperforms Longformer. Moreover, in the experi-
ments, using either the Longformer or SeqModel-
Longformer model failed to achieve effective seg-
mentation, which we believe is due to the labels
being too sparse for the model to be trained prop-
erly. Based on these results, we chose PoNet as the
primary model for our experiments. For tail pro-
cessing, we used Bert (Devlin et al., 2019) to deter-
mine whether to merge. Additionally, we selected
results from other high-performance text segmen-
tation models for comparison, where the context
length for Cross-segment Bert was set at 256, and
the settings for other models followed their original
publications.

5 Experimental Results and Analysis

In this section, we first present the test results on
AMC and the transfer test results on MDT1553,
then analyze the ablation experiments, and finally
demonstrate the stability of our method in various
aspects.

5.1 Main Results

Tables 1 and 2 respectively show the results on the
AMC test set and MDT1553. All models are su-
pervised and trained only on the AMC training set,
with the best model selected based on results from
the AMC validation set. Our proposed loU, DIoU,
and ADIoU methods yield comparable results, with
ADIoU performing best when using sentence-level

balanced labels, and IoU performing best when
using token-level balanced labels.

Models based on Bert perform poorly because
they are limited by length and imbalanced segmen-
tation labels. Furthermore, the quality of sentence
embedding in hierarchical models is very impor-
tant, Bert models are mainly pretrained on clas-
sification datasets, and their sentence embedding
representations differ significantly from the require-
ments of text segmentation tasks. TSSP+CSSL
results are poor, which we believe is due to the
complexity of long dialogues. The inherent noise
and thematic nestedness in dialogue texts make
data augmentation and contrastive learning lose
their original significance. SeqModel shows a sig-
nificant improvement over the base model, but the
imbalance in labels still restricts the performance
of the model. Our 1DOD STS method based on Se-
gModel and significantly improves over SeqModel,
with increases of 11.87 and 10.86 on the A and B
respectively, thus demonstrating the effectiveness
of balanced labels and 1DOD methods.

MDT1553 includes more diverse dialogue data,
which can reflect the model’s transferability across
different dialogue topics. Without fine-tuning, we
directly tested the MDT1553 dataset, and the best
results of 1DOD showed significant improvements
over SeqModel, with increases of 10.82 and 8.78
on the A and B respectively, still demonstrating
substantial progress and exhibiting excellent gener-
alization capabilities.

5.2 Ablation Study

Table 3 shows the results of the ablation stud-
ies. The accuracy of segmentation significantly
improved just by adding balanced labels, but note
that the 1 — P, and 1 — W D slightly decreased,
which we believe could be due to an increase in
near-misses errors as the classification task shifted
from predicting segmentation points to paragraphs;
when 1DOD task was added, the model’s perfor-
mance improved again. Horizontally comparing,
token-level balanced labels outperformed sentence-
level because they introduced more supervision
signals; vertically comparing, IoU and ADIoU per-
formed better than DIoU, indicating that IoU loss
was sufficient, and ADIoU performed better as
it balanced between target and background para-
graphs. Finally, appropriate tail processing com-
pensated for the shortcomings of 1DOD, further
improving the accuracy of STS based on the exist-
ing results.
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Methods A B 1-WD 1-PF;

C99 (Choi, 2000) 15.07 4.85 46.94 51.80

TopicTiling (Riedl and Biemann, 2012) 19.03  9.88 45.02 51.43
Transformer%ERT (Lo et al., 2021) 3292 21.61 53.89 56.07
Cross-segment BERT (Lukasik et al., 2020) 35.20 20.76 53.65 55.46
PoNet (Tan et al., 2022) 43.12 31.17 56.99 59.98
PoNet+TSSP+CSSL (Yu et al., 2023) 4248 30.16 56.21 58.79
SeqModel-PoNet (Zhang et al., 2021) 47.84 37.61 56.83 58.92

1DOD-Longformer-ADIoU (token-level)  58.41 43.88 58.34 58.78
1DOD-PoNet-IoU (token-level) 59.71 48.47 61.18 62.15

Table 1: Comparative experimental results based on the AMC dataset. We only listed the best results of 1DOD-
Longformer and 1DOD-PoNet models, and it can be seen that our method significantly outperforms other text
segmentation models. All metrics are better when higher.

Balanced Labels Methods A B 1-WD 1-P,
C99 10.07 2.23 51.28 54.30
TopicTiling 10.72  2.59 52.84 54.22

Transformerppr 2847 16.21 57.97 58.24
Cross-segment BERT 30.51 16.16  57.22 56.69

PoNet 36.83 27.78 60.28 61.35
PoNet+TSSP+CSSL 36.43 27.21 59.49 60.94
SeqModel-PoNet 39.74 29.41 58.19 59.88
w/o 1DOD 4791 35.27 52.48 54.10
1DOD-PoNet-IoU 48.30 34.91 54.76 56.07

Sentence-level 1DOD-PoNet-DIoU 4977 3675 5729 5854

1DOD-PoNet-ADIoU 49.13 3591 57.63 58.78

w/o 1DOD 48.28 3542  53.38 54.94
1DOD-PoNet-IoU 5035 3824  57.70 59.13
Token-level 1DOD-PoNet-DIoU 50.39 38.62  57.45 59.07

1DOD-Longformer-ADIoU  46.38  31.25 52.94 53.99
1DOD-PoNet-ADIoU 50.56 38.19 58.97 60.22

Table 2: Comparative experimental results for MDT1553. Models are trained only on the AMC training set to
demonstrate generalization capabilities. For the IDOD-Longformer, we only tested its best model.

Methods Sentence-level Token-level

A B 1-WD 1-P A B 1-WD 1-P;

Lels 5546 45.21 55.67 56.77 | 55.63 45.58 55.81 56.98
+tail process 56.23 45.63 56.60 57.67 | 56.24 45.82 56.64 57.78
Leis + L1D bbox—TIoU 58.70 46.73 59.19 59.80 | 59.17 48.21 60.29 61.26
+tazl process 59.69 47.20 60.26 60.87 | 59.71 48.47 61.18 62.15
Leis + L£1D bboz—DIoU 58.50 46.57 59.08 59.81 | 58.63 47.65 59.64 60.52
+tarl process 59.11 46.72 59.92 60.64 | 59.23 47.97 60.61 61.48
Les + LD vhor—aDIou 8.88  46.21 59.83 60.50 | 59.19 46.80 60.43 61.08
+tail process 59.29 46.22 60.67 61.32 | 59.62 46.83 61.29 61.92

Table 3: Ablation studies based on PoNet and AMC dataset, where L indicates that the model was trained only
on the classification task. The general method is shown in Table 1 "PoNet".
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5.3 Stability Analysis

5.3.1 Stability of Training

Figure 5: Evaluation results on the validation set dur-
ing the training of SeqModel-PoNet (left) and 1DOD-
PoNet-IoU (sentence-level, right), using the same train-
ing parameters.

In the experimental section, we selected the best
model based on the evaluation results of the val-
idation set for assessment. During training, the
evaluation results of SeqModel and 1DOD for each
round on the validation set are shown in Figure 5.
The 1DOD model demonstrated good stability dur-
ing training (with an A movement range of about
3), converging to the best level by only 2 epochs,
and achieving higher evaluation scores than Seq-
Model, whereas SeqModel exhibited fluctuations
in the early stages of training (with an A movement
range of about 20). The fundamental cause of these
fluctuations is the imbalance in training labels.

5.3.2 Stability of Segmentation

Tables 4 and Figure 6 display the statistical data
and distribution of segment paragraph lengths for
different models. The model’s direct segmentation
results differ most significantly from the actual la-
bels due to the imbalance of segmentation labels
and the irrelevance of paragraph length in sentence
classification tasks; the self-adaptive sliding win-
dow model slightly improved this by the limitation
of the window size, but it was still insufficient as
the model did not learn paragraph length informa-
tion. Models with added balanced labels resulted in
overly stable segmentation outcomes, still differing
from the actual distribution. The 1DOD method, by
incorporating a 1D bounding-box regression loss,
enhances the model’s understanding of the “target
area range", achieving an effect similar to that of
Yoo and Kim (2024), who directly incorporated
paragraph length information into the loss function,
yet in a more intuitive manner. This makes the
1DOD model’s predictions more consistent with
the actual labels’ distribution.

AMC-test MDT1553

Avg Std Avg Std
Label 31.25 19.20 31.10 29.23
PoNet 41.78 46.34 74.67 76.89
SeqModel 35.15 3521 4520 44.70
SeqModelrp;, 26.34 1540 29.36 16.57
IDOD-IoU  29.70 16.46 31.85 18.51
1DOD-DIoU  29.92 16.09 31.08 17.83
1IDOD-ADIoU 32.51 19.14 3433 23.52

Table 4: The average and standard deviation of the
paragraph lengths segmented by different models. ‘TBL’
refers to token-level balanced label.

500
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w00 el oL
300 \ ADIoU
— Label
£
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100 ~\
T \\.{
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Paragraph length

Figure 6: Comparison of segment paragraph length
distributions for different models.

6 Conclusion

In text segmentation tasks, the imbalance of labels
affects the stability and convergence of training,
and the discrepancy between task objectives and
training objectives impacts model performance. In
response, we proposed balanced labels and a IDOD
task under the STS framework to address these two
pain points. Experimental results show that our
method far surpasses previous text segmentation
models and possesses strong generalization capabil-
ities and stability. In the future, we plan to extend
this work to segmentation applications across vari-
ous types of streaming media.

Limitations

During the segmentation process of streaming di-
alogue texts, the model may model the same text
with different contexts multiple times, which re-
duces efficiency. Moreover, our method is suited
for data where the paragraph length distribution
follows a normal distribution, which is the case for
most dialogue text data. For other special distribu-
tions (such as U-shaped or J-shaped) of dialogue
texts, which is not the intended direction for STS as
a preprocessing task for dialogue texts. For these
special types of dialogue texts, our model is unable
to achieve better results.
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A Data Statistics and Distribution

No. #Utts. #Pars.

Train 295 469.72 11.06

AMC Validation 65 463.79 11.32
Test 229 326.79 10.46

MDT1553 All 1553 495.99 15.95

Table 5: Data statistics of AMC and MDT1553 datasets.
# means average.
Recruitment /
7%
|
Product

Other

8%
Health

3%

Promotion
11%

Figure 7: Topic distribution of MDT1553.

B Parameter Setting

Our experiments were conducted on the PyTorch
2.0.0. During training, we used the AdamW op-
timizer, with a batch size and learning rate set at
2 and 5e-5, respectively; a and v were set at 0.75
and 2; Asr1, Aou, and Ap;e. were set at 10, 0.5,
and 0.5 respectively, under this setting, the balance
between various losses can be maintained.

The hyperparameters for inference were ob-
tained through experiments on the validation set,
and since the AMC dataset and MDT1553 dataset
are similar in length and format, the same set of
parameters was used. The window size was set to
100, tst0p to 31, and 1,55, to 23. Our experiments
were conducted on GeForce RTX-4090 GPUs and
Linux OS.

C Ablation Study based on Longformer

The experimental results are shown in Table 6.

D Comparison with LLMs

We selected several mainstream online large lan-
guage models for comparison (Table 7). We con-
ducted experiments using the top 65 samples from
the AMC test set, with all LLMs operating in a
zero-shot setting.

E Time Consumption Comparison

We compared the baseline model and 1DOD on the
AMC test set in terms of average text segmenta-
tion time under identical hardware conditions and
parameter settings (batch size=1), with the results
shown in Table 8.
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Methods Sentence-level Token-level
A B 1-WD 1-P, A B 1-WD 1-PF,
Leols 56.29 42.33 54.86 5543 | 56.60 41.25 54.94 55.40
+tail process 56.68 42.24 55.76 56.32 | 56.83 41.06 55.95 56.41
Leis + L£1D bboz—IoU 5721 4291 56.74 57.29 | 57.03 43.68 56.30 56.91
+tail process 5791 43.17 57.83 58.37 | 57.34 43.53 57.20 57.80
Leis + LD bboz—DIoU 5691 42.94 55.93 56.48 | 57.10 43.63 56.52 57.34
+tail process 57.58 43.15 57.02 57.56 | 57.65 43.70 57.54 58.37
Leis + L1D bboz—aDIoy 56.57 44.85 56.11 57.14 | 58.08 43.91 57.33 57.78
+tail process 57.25 45.07 57.34 5820 | 58.41 43.88 58.34 58.78
Table 6: Ablation study based on longformer.

Methods A B 1-WD 1-PF;

GLM-4 24.59 20.19 18.16 47.80

Moonshot-v1-32k 32.05 26.75 28.60 48.89

GPT-4 Turbo 31.68 26.37 25.53 47.76

GPT-40 38.21 3041 34.71 47.81

Ours 59.10 48.08 60.75 61.84

Table 8: Experimental results of time consumption comparison.

Table 7: Comparison results with online large models.

Methods Avg. Time (s)
PoNet 0.86
SeqModel-PoNet 1.47
1DOD-PoNet-IoU (token-level) 1.54
GPT-40 5.84

4130



