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Abstract

To assist humans in efficiently validating RAG-
generated content, developing a fine-grained
attribution mechanism that provides supporting
evidence from retrieved documents for every
answer span is essential. Existing fine-grained
attribution methods rely on model-internal sim-
ilarity metrics between responses and docu-
ments, such as saliency scores and hidden state
similarity. However, these approaches suffer
from either high computational complexity or
coarse-grained representations. Additionally, a
common problem shared by the previous works
is their reliance on decoder-only Transformers,
limiting their ability to incorporate contextual
information after the target span. To address
the above problems, we propose two techniques
applicable to all model-internals-based meth-
ods. First, we aggregate token-wise evidence
through set union operations, preserving the
granularity of representations. Second, we en-
hance the attributor by integrating dependency
parsing to enrich the semantic completeness
of target spans. For practical implementation,
our approach employs attention weights as the
similarity metric. Experimental results demon-
strate that the proposed method consistently
outperforms all prior works.

1 Introduction

Retrieval-augmented generation (RAG) enhances
the factual recall of LLMs and has been applied
in knowledge-intensive NLP tasks such as open-
domain question answering (Lewis et al., 2020).
However, the generated content may still deviate
from the retrieved documents (Niu et al., 2024),
necessitating careful verification, especially when
used in safety-critical domains like finance. To as-
sist users in validating LL.M-generated responses,
QA systems must provide supporting evidence,
also referred to as attribution or citation (Li et al.,
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Figure 1: An example of fine-grained attribution, i.e.,
finding evidence from the retrieved documents for arbi-
trary target spans. Each highlighted span in the answer
is a target, with evidence in the same background color.

2023a). Furthermore, developing a fine-grained
attribution mechanism that supplies evidence for
arbitrary answer spans (as illustrated in Fig. 1) is
particularly beneficial, as it allows users to effi-
ciently verify the accuracy of individual segments
within complex, long-form answers.

Fine-grained attribution has been addressed by
only two model-internals-based approaches: CCI
(Yin and Neubig, 2022; Sarti et al., 2023; Qi et al.,
2024) and HSSAVG (Average Hidden State Simi-
larity method, Phukan et al., 2024). CCI leverages
saliency scores for attribution but requires gradient
back-propagation for each target token, resulting
in high computational complexity. HSSAVG op-
erates by (1) measuring the similarity between the
average hidden states of the token span and those
of a sliding window with a fixed size W over the
documents, and (2) selecting the highest-scoring
window as the evidence. However, the averaging
operation over the target span introduces coarse
granularity, limiting the precision of its representa-
tions. A further challenge common to both methods
lies in their reliance on the internal representations
of decoder-only Transformers, which lack access to
tokens that appear after the target span, constrain-
ing their contextual understanding (see Sec. 3.3 for
details).
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Building on insights into the limitations of pre-
vious methods, we propose a novel, effective, and
efficient model-internals-based approach. This ap-
proach consists of two techniques applicable to all
model-internals-based approaches. The first tech-
nique involves aggregating token-wise evidence
using set unions, addressing the coarse-granularity
issue in averaging hidden states while eliminating
the need to recompute these averages for each new
target span (see Sec. 3.2 for details). The second
technique incorporates dependency parsing to en-
hance the attributor by integrating related tokens
into the attribution of the target token, as illustrated
by Fig. 2 (see Sec 3.3 for details). For practical
implementation, we utilize attention weights as
the similarity metric due to their faster computa-
tion compared to gradient back-propagation and
superior empirical performance over hidden state
similarity. Our experiments demonstrate that the
proposed method surpasses all baseline approaches
and generalizes effectively to sentence-level attri-
bution, highlighting its practical value.

We also address two practical challenges in im-
plementing our method: (1) the inaccessibility of
attention weights from black-box sources and (2)
the high GPU memory consumption required for
their computation. To tackle the first challenge, we
approximate attention weights using open-source
LLMs. For the second, we apply engineering opti-
mizations to enable more efficient attention weight
calculations, achieving significantly faster perfor-
mance than prior approaches.

In summary, our contributions are:

1. We propose a novel model-internals-based
fine-grained attributor that aggregates token-wise
evidence through set unions, addressing the coarse
granularity induced by averaging hidden states.

2. We propose leveraging dependency parsing
to enhance decoder-based attributors by enriching
the semantics of the target span.

3. The proposed method utilizes LLM attention
weights for attribution and incorporates an opti-
mized routine for efficient computation.

4. Our method sets a new state-of-the-art in
fine-grained attribution and demonstrates strong
generalization to sentence-level attribution.

2 Related Work

This section reviews related work across four as-
pects: (1) attribution, (2) non-faithfulness detec-
tion, (3) fact verification, and (4) other works using

attention weights.

Attribution. Attribution methods can be catego-
rized into three classes: self-generated attribution
(or self-citation) (Thoppilan et al., 2022; Nakano
et al., 2021; Menick et al., 2022; Slobodkin et al.,
2024), retrieval-based attribution (Gao et al., 2023a;
Sancheti et al., 2024), and model-internals-based at-
tribution (Qi et al., 2024; Cohen-Wang et al., 2024;
Phukan et al., 2024). The self-generated approach
prompts or fine-tunes the LLM to produce citations
during answer generation, but it does not guaran-
tee that each statement has adequate citations (Gao
et al., 2023b). The retrieval-based approach pro-
vides sentence-level citations by retrieving rele-
vant results from external documents, ensuring ade-
quate citations for each sentence. Model-internals-
based attribution relies on similarity metrics such as
saliency scores or hidden state similarities to align
the response with the prompt, retrieving evidence
from prompt tokens with the highest similarity. Of
these three approaches, the first two primarily tar-
get sentence-level attribution, while some methods
from the third category explore fine-grained attri-
bution (Phukan et al., 2024; Qi et al., 2024), which
has been discussed in the Introduction.
Non-Faithfulness Detection. Attribution plays
a valuable role in detecting non-faithfulness (He
et al.,, 2022; Niu et al., 2024), a type of hallu-
cination detection (Wang et al., 2020; Muhlgay
et al., 2024) that assesses whether the generated
text is inconsistent with the input documents. Many
non-faithfulness detection methods are black-box
(Feng et al., 2023; Yue et al., 2023; Bazaga et al.,
2024; Mishra et al., 2024; Zhang et al., 2024a), re-
sembling traditional Natural Language Inference
(NLI) models but operating with longer contexts
and greater complexity. In these methods, attribu-
tion can be integrated into the detection pipeline
to break down the complex NLI task, enhancing
interpretability by providing supporting evidence
for each statement. An alternative approach to hal-
lucination detection involves the model-internals
methods (Li et al., 2023b; Hu et al., 2024; Chuang
et al., 2024), which offer the potential to unify at-
tribution and non-faithfulness detection within a
single model. However, these methods have so far
overlooked attribution.

Fact Verification. Fact verification integrates hal-
lucination detection with attribution, requiring not
only an assessment of whether a claim is hallu-
cinated but also evidence that supports or contra-
dicts the claim (Guo et al., 2022). In this domain,
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retrieval-based attribution is commonly used (Min
et al., 2023). While early studies (before the LLM
era) employed attention weights from GNNs or
other small models for attribution (Yang et al.,
2019; Liu et al., 2020; Chen et al., 2022), using
LLM attention weights for attribution remains un-
explored in fact verification literature.

Other Works Using Attention Weights. In attribu-
tion, attention weights have been utilized in small
models like BERT (Clark et al., 2019; Kobayashi
et al., 2020). However, with the advent of LLMs,
their use for attribution remains unexplored due to
high memory costs and the lack of support from
popular inference frameworks and proprietary mod-
els. For hallucination mitigation, Huang et al.
(2024) introduces a method that retrospects LLM
generation whenever a hallucination-related “ag-
gregate pattern” appears in the attention weights.

3 Method

We begin by outlining the problem settings in
Sec. 3.1, followed by a description of the attention-
based method in Sec. 3.2 and the dependency pars-
ing augmentation in Sec. 3.3. Finally, we introduce
our approach to addressing challenges in real-world
applications in Sec. 3.4.

3.1 Problem Settings

Suppose an LLM generates a response r given the
prompt composed of the retrieved documents d
and the question q. The goal of fine-grained attri-
bution is, given an arbitrary target span t C r, to
identify evidence from d that supports the atomic
facts (short statements that each contain one piece
of information, Min et al., 2023) that involves t.
An example is provided in Fig. 1, where for target
span “one million dollars”, the atomic fact is “The
company earned one million dollars in 2012”, and
the evidence is “The company earned $1,0000,00
in 2012” in the first document.

3.2 The Basic Algorithm

To solve fine-grained attribution, we propose at-
tributing each target token in the span and then
aggregating the attributions of tokens by the union
of sets. Formally, let the documents, question, and
response of the LLM be three sequences of tokens
d = (di,do,...,dc), a = (q1,92, ..., qm), and r =
(r1,72, ..., Ty), respectively. Assume the LLM can
output a similarity metric S € R™*(¢+™) petween
response tokens and prompt tokens (e.g., atten-
tion weights, hidden state similarity, and saliency

scores). Then the attribution scores are defined as!

( d ) S@j, if Si,j > tOp-k(SZ‘)
W r;, dj) =
! 0, otherwise

ey

where 1 < ¢ < n, 1 < j < ¢ top-k(x)
is the k-th largest component in vector x, and
k is a hyper-parameter. With these attribution
scores, each response token r; is attributed to
e(r;) = {dj|lw(r;,d;) > 0}, and the aggre-
gated evidence for the target span t is e(t) :=
Uneeelr) = {djl 3, eqw(ri,dj) > 0} with
each token d; € e(t) associated with an attribution
score w(t,d;) == ), -y w(ri, d;). Furthermore,
to avoid noisy and fragmented attribution?, we re-
move the isolated evidence tokens that are at least
7 tokens away from other evidence tokens. The
pseudo-code of the whole algorithm is provided in
Algorithm 1. In addition, the token-wise attribu-
tions e(r;) with scores w(r;, ), 7 = 1,2, ...,n, can
be reused by any target span in the same response,
saving computational cost. We utilize this trick but
omit it in the pseudo-code for brevity.

3.3 Dependency Parsing Augmentation

We observe a common defect in previous works:
the representations of decoder-only models cannot
see the context that follows the target span, po-
tentially missing relevant factual information that
appears later. For instance, as shown in Fig. 1,
decoder-only attributors cannot see “million dol-
lars” or “in 2012” at the position of “one”, increas-
ing the difficulty of fine-grained attribution. A
straightforward solution is to allow the attributor
to access subsequent context. However, extending
the accessible scope to the entire context or full
sentence is empirically shown to be ineffective in
fully addressing the issue (see Sec. 4.2.1).

To address this issue, we propose DEpendency
Parsing augmentation (DEP). This method first
recognizes key elements — such as subject, object,
and predicate — within atomic facts that contain
the target span using dependency parsing. For ex-
ample, as illustrated in Fig. 2, given the target token
“one”, the method collects atomic fact elements as

"Here we assume the documents are located at the start of
the prompt. If not, we need to replace S;; with S; ;1,, where
o is the offset of the documents in the prompt.

2An example of noisy attribution is the widely-known at-
tention sink (Kobayashi et al., 2020; Xiao et al., 2024; Huang
et al., 2024; Zhang et al., 2024b) where a large amount of
response tokens distribute a lot of attention weights to several

isolated meaningless prompt tokens (e.g., BOS and punctua-
tion marks), hindering the word alignment of attention weights

374
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The company earned Mmillion dollars and two million dollars in 2012 and 2013 , respectively

L) find the closest verb ancestor "earned"

Figure 2: An illustration of dependency parsing augmentation. Suppose the target span is the token “one”. The
method first finds the closest verb ancestor of “one”, i.e., “earned”, and then collects successors of “earned”,
excluding unrelated coordinating constituents “two million dollars” and “2013”. The resulting augmentation tokens
are in red. Lastly, the attribution of “one” is updated by summing the attributions of the augmentation tokens.

shown in red: “The company earned one million
dollars ... in 2012 ... respectively.” It then lever-
ages the attributions of these atomic fact elements
to enhance the attribution of the target span. The
detailed algorithm proceeds as follows.

1. Recognizing Atomic Fact Elements. We as-
sume that the elements of atomic facts can be ex-
tracted from the text. For each token r;, let these
elements be A(r;) C r. This extraction is approx-
imated by leveraging the dependency parse tree,
constructed using the LAL-Parser (Mrini et al.,
2020), applied to the local sentence, as shown in
Fig. 2. Since each node in this tree corresponds
to a word while the attribution pertains to tokens,
we need to align the two. For simplicity, we tem-
porarily assume they are the same, with align-
ment details provided in Appendix B. Initially,
we set A(r;) < {r;}. Then, the algorithm ap-
pends A(r;) with 7;’s closest verb ancestor v and
all v’s successors except punctuation marks. If
A(r;) contains coordinating structures (e.g., tokens
connected by “and” or “or”), we use a rule-based
subroutine (described in Appendix C) to eliminate
irrelevant coordinating constituents. For example,
in Fig. 2, A(“one”) includes the closest verb an-
cestor “earned” and all its successors except the
irrelevant coordinating constituents “two million
dollars” and “2013.”

2. Augmenting Attribution. Using A(r;), the
attribution of token r; is augmented as e(r;) <+
Usear,) €(a), with attribution scores updated to
w(ri,dj) < Y@ w(a,dj). The aggregate
attribution is then computed based on the up-
dated token-wise attribution, following the same
approach as the basic algorithm.

3.4 Attention and its Computational
Challenges

We choose attention weights as similarity scores
due to their strong empirical performance. The
method is outlined as follows. Let the attention
weights between the response and the prompt at
the [-th layer and the h-th head of the LLM be
AGR) e Rrx(etm) \where the LLM has L layers
and H heads. Specifically, Agl’h) is the attention
weights used to predict ;. For a Transformer de-

coder, Ag’h) is the attention weight from r;_1 to

d;. For a Transformer encoder, Ag»’h) is the atten-
tion weight from 7; to d;. Based on these attention
weights, the similarity score is computed by aver-
aging the attention weights from a selected layer
L* across all heads: S := & 371 A7),
Another potential similarity metric is cosine sim-
ilarity among hidden states. Let h? e R(ctm)xd
and h" € R™? denote the hidden states of the
prompt and the response, respectively, where d is
the dimension of hidden states. The hiddenr state
cosine similarity is computed as: S;; := %
We will empirically show that attention-based sim-
ilarity is better than hidden state cosine similarity.
However, the attention-based approach has the
following two challenges in real-world application.
Inaccessible Attention Weights. The attention
weights are inaccessible under the following con-
ditions: (1) the LLM is proprietary, such GPT-4
(Achiam et al., 2023); (2) the inference framework,
such as vLLM (Kwon et al., 2023), does not sup-
port outputting attention weights; (3) the response
may be generated by other black-box sources, e.g.,
humans. To address this, we leverage open-sourced
LLMs to approximate the attention weights. Em-
pirical results demonstrate that these approximate
attention weights offer reliable attribution.

High Memory Overload. In the Huggingface (Wolf
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et al., 2020) implementation?, attention weights
and the KV cache are stored simultaneously in
GPU memory when calculating attention weights
from the response to the prompt. This dual mem-
ory load can quickly exhaust the GPU memory.
Therefore, we propose a specialized routine for cal-
culating attention weights. We calculate attention
weights after the generation process. The model
processes the concatenation of the response and
the prompt with FlashAttention (Dao et al., 2022)
and NF4 quantization (Dettmers et al., 2023), ex-
iting early after the (L* — 1)-th layer without pro-
ducing attention weights or storing the KV cache.
From the resulting hidden states, we calculate the
attention weights from the response to the prompt,
yielding the desired similarity metric.

4 [Experiments

We begin by evaluating our methods on fine-
grained attribution in Sec. 4.1, with the correspond-
ing ablation study presented in Sec. 4.2. We then
assess the faithfulness of our methods to the gener-
ators in Sec. 4.3. The evaluation of sentence-level
attribution is in Sec. 4.4. Lastly, we compare the
latency of all fine-grained attributors in Sec. 4.5.

4.1 Evaluating Fine-Grained Attribution

Benchmark. Following Phukan et al. (2024), we
use two datasets QuoteSum (Schuster et al., 2024)
and VERI-GRAN (Phukan et al., 2024) to evalu-
ate fine-grained attribution. Each instance of these
two datasets contains a question, retrieved passages,
and an answer, where the question and the retrieved
passages combine to form the prompt*. The task is
to identify the evidence passage (or evidence sen-
tence in the case of VERI-GRAN) corresponding
to each context-sensitive span in the answer, where
the span is determined based on the similarity of
LLM hidden states (Phukan et al., 2024), and the
evidence passage is labeled by human annotators.
Additional details about the datasets are provided
in Table 6. The evaluation metric is the accuracy
of the predicted evidence passage for these spans.
To apply our method and CCI to this benchmark,
we predict the passage with the highest cumulative
attribution score, i.e., argmaxd, Y _geq, w(t,d),
where d; is the i-th passage and t is the target span.
For HSSAVG, we select the passage containing the
highest-scoring sliding window as the prediction.

3The implementation details are provided in Appendix D.
*We use the same prompt template as Phukan et al. (2024).

Baselines. We include the only two prior works
on fine-grained attribution as our baselines, CCI
(Sarti et al., 2023; Qi et al., 2024), also known
as contrastive feature attribution (Yin and Neubig,
2022), and HSSAVG (Phukan et al., 2024). Addi-
tionally, we include the reported results of GPT-4
from Phukan et al. (2024).

Models. We conduct experiments using two mod-
els: Llama2 7B Chat(Touvron et al., 2023) and
Qwen2 7B Instruct (Yang et al., 2024). For
HSSAvVG, hidden states are extracted from the
L%J—th layer, as Phukan et al. (2024) report that
this method performs well across different models
when using hidden states from the middle layers.
For our methods, the attention weights are from the
(L% ] + 1)-th layer — just above the hidden states
used for HSSAVG — due to their strong empirical
performance on validation sets. To address GPU
memory limitations, we apply NF4 quantization to
CCP.

Hyperparameters. We set the token-wise evi-
dence size k = 2 and the threshold for recognizing
isolated tokens 7 = 2 for our method (experiments
on sensitivity to hyperparameters are presented in
Appendix F). For HSSAvVG, we configure the win-
dow size W = 8, as this setting yields good per-
formance on validation sets. For CCI, following
the original paper, we choose the top-scoring three
tokens as the evidence for each target token.
Results. The accuracy of fine-grained attribution is
reported in Table 1, where we refer to our basic al-
gorithm and its augmented version as ATTNUNION
and ATTNUNIONDEP, respectively. Across both
datasets, ATTNUNION achieves comparable per-
formance to HSSAVG, while ATTNUNIONDEP
consistently outperforms HSSAvVG and GPT-4, set-
ting a new SOTA in fine-grained attribution and
demonstrating the effectiveness of DEP.

4.2 Ablation Study

In this section, we conduct ablation studies about
DEP, ATTN, and UNION.

4.2.1 Ablating DEP

Research Question. Previous results have con-
firmed the effectiveness of DEP. However, an im-
portant question remains: Are there any simpler
alternatives to DEP that allow the model represen-
tations to see the context following the target span?
Experiment Setting. We empirically compare two

>Qur methods also use NF4 quantization, as Sec. 3 states.
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Model QuoteSum VERI-GRAN Model QuoteSum VERI-GRAN
Baselines UNION vs. AVG w/o DEP
2-SHOT GPT-4f 90.6 62.1
HSSUNION Qwen2 80.0 73.1
Qwen2 80.4 67.1 Llama?2 80.1 65.3
HSSAvG Llama2 77.1 64.5 Qwen2 80.4 67.1
Llama2t 87.5 77.3 HSSAVG Llama2 77.1 64.5
ccI Qwen2 71.3 64.5 UNION vs. AVG w/ DEP
Llama2 72.2 59.0 Qwen2 89.4 81.9
H D
Our Methods SSUNIONDEP Llama2 88.6 80.3
Qwen2 79.4 70.9
ATTNUNION Qwen2 79.3 62.8
Llama2 813 667 HSSAVGDEP [} ma2 722 60.7
Qwen2 933 84.6
ATTNUNIONDEP Llama2 94.0 782

Table 1: Accuracy (%) of fine-grained attribution on
QuoteSum and VERI-GRAN. The best and the second-
best entries are marked in bold and underlined, respec-
tively. Cited results are marked by 7.

alternatives with DEP®: 1. extending the span to
the entire local sentence (SENTCOMP); 2. lever-
aging representations from bidirectional attention
models, such as BERT, for attribution. The bench-
marks, backbones, and hyper-parameters remain
consistent with those used in the previous experi-
ment.

Specifically, the second alternative leverages Jin-
aBERT’s (Giinther et al., 2023) attention weights
or hidden state similarity (HSS) as the similar-
ity metric. We refer to the HSS-based method as
HSSUNION. The attention weights are from the
5th layer, while the hidden state similarities are
from the final layer, as these configurations demon-
strated strong performance on the validation sets.
Results & Insights. The results are shown in Fig. 3,
demonstrating that all alternatives consistently un-
derperform compared to DEP. The results indicate

8 Another more complicated alternative of DEP is discussed
in Appendix I, which is empirically not as good as DEP.

Table 2: Accuracy (%) of UNION vs. AVG on QuoteSum
and VERI-GRAN.

that recognizing atomic facts via DEP is more ef-
fective than extending the accessible context to the
entire context or full sentence.

4.2.2 ATTN vs. HSS

Research Question. While calculating attention
weights is significantly faster than gradient back-
propagation, it incurs a similar computational cost
to computing hidden state similarity. This raises the
question: Is using attention weights more effective
than hidden state similarity?

Results. We analyze the results from Fig. 3
by comparing adjacent bars of ATTNUNION and
HSSUNION. Excluding the underperforming JIN-
ABERT and VANILLA settings, ATTNUNION out-
performs HSSUNION in most cases, highlighting
the effectiveness of using attention weights as attri-
bution scores.

4.2.3 UNION vs. AVG

Research Question. The final component to ex-
amine is the aggregation by union. We pose the
question: Is UNION more effective than AVG?

Experiment Setting. We compare UNION and
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Model QuoteSum VERI-GRAN
Qw. L1. Qw. L1.
Baselines
RANDOM 0.81 1.09 0.13 0.30
Qwen2 585 794 347 569
HSSAvG Llama2 597 805 350 576
Qwen2 5.77 774 326 529
HSSAVGDEP || ma2 539 762 3.18 552
el Qwen2 570 739 347 539
Llama2 543 7.76 3.19  5.66
ORACLE 6.41 849 4.03 6.60
Our Methods
Qwen2 408 553 239 440
ATTNUNION Llama2 4.60 596 261 451
Qwen2 6.17 809 348 579
ATTNUNIONDEP ') 2 618 813 347 576

Table 3: Log probability drops on QuoteSum and VERI-
GRAN with generator Qwen2 (Qw.) and Llama2 (L1.).
The best and the second best (except ORACLE) entry is
marked in bold and underlined, respectively.

AVG both with and without the integration of DEP.
To incorporate DEP with HSSAVG, we first expand
the target span using DEP, i.e., t « |J, c¢ A(7i),
and then apply HSSAVG to the new span. All other
experimental settings remain consistent with those
used in the previous experiment.

Results. The results, presented in Table 2, show
that while UNION underperforms AVG without
DEP, it surpasses AVG by a significant margin —
at least 9.0 percent points — when DEP is applied.
Insights. The results suggest that UNION is most
effective when used in conjunction with DEP. Con-
versely, combining the results of Table 1 and Ta-
ble 2, we conclude that DEP also works best with
UNION, as HSSAVGDEP performs worse than
HSSAvVG. This outcome is reasonable since the
expanded target spans in HSS AVGDEP introduce
more context semantics, resulting in averaged hid-
den states that dilute fine-grained information.

4.3 Faithfulness of fine-grained Attribution

Research Question. We have shown that the
proposed method accurately identifies the human-
labeled evidence passages, indicating a strong
alignment between our approach and human anno-
tations. Howeyver, it remains to be verified whether
our method is faithful to the generation model —
specifically, does the attributed evidence directly
influence the generator to produce the target span?
Experiment Setting. To quantify the causal ef-
fect, we follow the approach of Cohen-Wang et al.

(2024), which involves removing the evidence from
the prompt, rerunning the generator, and measur-
ing the log predictive probability drop of the target
span before and after the removal. First, We use
Llama2 or Qwen2 to generate answers with greedy
decoding on QuoteSum and VERI-GRAN. Next,
in each generated answer, we apply CTI (Qi et al.,
2024) to identify context-sensitive tokens, which
serve as target spans. We then use the attributor
to locate evidence for each target span. Finally,
we calculate the log probability drops as follows.
Let the documents be d1, ..., d¢ with the attributed
document d;. The log probability drop is

pLLM(t’dla ceey dCa q, r<t)
pum(t|dy, ..., di—1,diy1,....do, g, r<¢)’

log

where pr 1M is the output probability of the LLM,
t is the target span, and ry is the response prefix
preceding t. A larger log probability drop indi-
cates greater faithfulness of the attribution to the
generation process.

We include HSSAvG, HSSAVGDEP, and CCI

as baselines. Additionally, we introduce two ex-
tra baselines, RANDOM and ORACLE. RANDOM
randomly selects an evidence passage, with the
experiment repeated three times to calculate the
average performance. ORACLE, on the other hand,
performs a brute-force search to identify the pas-
sage that results in the highest log-probability drop,
using that passage as the evidence.
Results & Insights. The results in Table 3 show
that DEP significantly enhances the faithfulness of
ATTNUNION. In most cases, ATTNUNIONDEP
outperforms baselines except ORACLE and closely
approaches its performance, indicating that ATT-
NUNIONDEP offers greater faithfulness than previ-
ous methods. Interestingly, all methods maintain
their faithfulness even when using different models
from the generator, showing their flexibility and
independence from the generator’s backbone.

4.4 Sentence-level Attribution

Fine-grained attribution can be easily applied to
sentence-level attribution, as long as we select sen-
tences as the target spans. In the following, we eval-
uate the performance of sentence-level attribution
of ATTNUNION on commonly used benchmarks
and compare it with the current SOTA”.

Benchmarks. Following Gao et al. (2023b), we
conduct experiments on datasets ASQA (Stelmakh

"We do not use ATTNUNIONDEP because DEP does not
change the output evidence of ATTNUNION in this experiment.
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ELI5 ASQA QuoteSum VERI-GRAN ASQA
R P F1 R P F1 Baselines

P ccr 2921.8 72137  21780.5)
SELFCITATION 311 30.1 306 574 533 553 [SSAVG b il Tos
+ HSSAvG 245 224 234 350 259 29.8 o r Methods . -
+ CCI 357 189 247 594 33.6 429 v
£ ATINUNION 394 293 336 657 49.0 561 ‘- INUNION 221 2650 1234

’ ’ ’ ’ ’ ’ ATTNUNIONDEP 54.0 427.4 -

ATTRFIRST 693 69.1 692 634 699 665
+ATTNUNION 819 648 723 872 60.7 71.6  Taple 5: Average Latency per target span (ms) with

il backbone of Qwen2 7B. By default, we ran this exper-
SELFCITATION 20.1 153 174 554 519 53.6 . . .

iment on a single GPU, except for entries that met the

+ HSSAvG 180 16.1 17.0 33.7 22.6 27.1 OOM bl The OOM entri ltiol
+ CCl 2620 2001 2760 423 226 29.5 problem. The entries were run on multiple

+ ATTNUNION 281 269 275 621 52.6 57.0

Table 4: The citation quality of sentence-level attribu-
tion (R and P are citation recall and precision, respec-
tively). “+X” means using X to attribute the generation
of the SELFCITATION/ATTRFIRST with the original ci-
tations removed. Cited results are marked by f.

et al., 2022) and ELI5 (Fan et al., 2019). In these
datasets, each question is attached with 100 doc-
uments, and the top 5 documents are used as the
retrieved documents (the vanilla setting of Gao et al.
(2023b)). Following ALCE (Gao et al., 2023b), we
use metrics MAUVE (Pillutla et al., 2021), EM/-
claim recall, citation recall, and citation precision.
The first two measure the generation quality, and
the last two measure the citation quality.

Baselines. The baselines include all previously
introduced baselines and two baselines of sentence-
level attribution, the vanilla version of self-citation
(Gao et al., 2023b) and Attribute First Then Gener-
ate (ATTRFIRST for short, Slobodkin et al., 2024).
To rule out the effect of different prompts, fol-
lowing Qi et al. (2024), all fine-grained baselines
share the prompt and the generated response of
self-citation (with the original citations removed)
to attribute. To compare our method with ATTR-
FIRST, we separately evaluate our method on the
generated results of ATTRFIRST.

Backbones. The backbones are by default Qwen2
7B and Llama2 7B. However, due to the context
length required by ATTRFIRST exceeds the max
context length of Llama2 7B, we only evaluate
ATTRFIRST on Qwen2 7B.

Hyperparameters. For fine-grained methods,
because the benchmarks allow outputting multi-
ple citations for a target sentence, ATTNUNION,
HSSAVG, and CCI output all passages possessing
attribution scores above a threshold. The thresh-
old is zero for ATTNUNION and CCl, and is 0.55

GPUs, marked by a subscript indicating the number of
GPUs used. The best entry is marked in bold and the
second best entry is underlined. The Hugginface imple-
mentation of ATTNUNION is marked by é.

for HSSAVG. The other hyperparameters of these
fine-grained attribution methods are the same as
the previous experiments.

For sentence-level methods, self-citation gener-
ates with 2-shot, temperature of 1.0, and top-p of
0.95; ATTRFIRST generates with 1-shot for content
selection, 4-shot for fusion in context, temperature
of 0.3, max retry number of 5.

Results. We repeat all experiments three times
with different seeds (except ATTRFIRST and CCI
due to their heavy computational overload) and
take the average results. ATTRFIRST failed on 355
and 448 instances on ELIS and ASQA, respectively,
and we report the results measured on the success-
ful instances. The generation quality and citation
quality results are shown in Table 4 and Table 7,
respectively. As the results show, ATTNUNION
consistently outperforms other fine-grained attribu-
tors and improves the citation quality of SELFCI-
TATION and ATTRFIRST, suggesting its application
for improving various attributors.

4.5 Attribution Latency

Research Question. From a practical point of view,
we ask: is our method faster than previous works?

Experiment Setting. We compare our method
with all fine-grained attribution baselines and AT-
TNUNION based on Huggingface implementation
of calculating attention weights. The experiments
are conducted on QuoteSum, VERI-GRAN, and
ASQA with the backbone of an NF4-quantized
Qwen?2 7B and the device of a single NVIDIA RTX
3090 24GB GPU. HSSAVG uses the same early
exit as ATTNUNION for a fair comparison. We
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input instances of the datasets® one by one to the
methods. The latency is measured by the average
time consumed per target span.

Results. The results are shown in Table 5. Our im-
plementation of ATTNUNION largely outperforms
other methods, with an average latency of 265.0
ms on the long-context dataset VERI-GRAN, and
ATTNUNIONDEP is the second.

Insights. Considering the early exits of ATT-
NUNION and HSSAVG are the same, ATTNUNION
should have a similar latency to HSSAvVG. How-
ever, the latency of ATTNUNION is much less than
HSSAVG. This is because the ATTNUNION does
not need to recompute average hidden states for
each new target token as HSSAVG; instead, ATT-
NUNION reuses token-wise attribution for all target
spans in the same response.

5 Conclusion

This work proposes a novel fine-grained attribu-
tion method, leveraging attention weights and de-
pendency parsing. The experiments show that our
method is the new SOTA fine-grained attributor
and generalizes well to sentence-level attribution.
Moreover, our method is much faster than previ-
ous works, showing its potential to be applied in
real-time attribution systems.

6 Limitations

A limitation of our evaluation is that the target
spans of QuoteSum and VERI-GRAN are selected
by models, which might not reflect the real appli-
cation scenario where target spans are selected by
human users. This limitation could be resolved
by collecting user-selected target spans in the fu-
ture. Another limitation is that QuoteSum and
VERI-GRAN benchmarks focus on attributing ver-
batim spans from the documents. Although Phukan
et al. (2024) observe that LLMs tend to produce
verbatim answers, it is interesting to evaluate at-
tribution with more abstractive answers in future
work. In addition, in dependency parsing augmen-
tation, the expansion on the dependency parse tree
is rule-based (e.g., recognizing coordinating com-
ponents by relation "conj"), which could be im-
proved by machine learning in the future. Finally,
our work only considers attribution in English. Al-
though the attention-based method can be easily
adapted to LLMs of other languages, it may take

80n ASQA, the response is the generation of self-citation
with citations removed.

effort (but not difficult, as we show in Appendix
H) to adapt our dependency parsing augmentation
to other languages since dependency parsing is
language-specific.

Acknowledgments

This work has been supported by National Natu-
ral Science Foundation of China (No. 62206265,
62076231) and National Key Research and Devel-
opment Program of China (No.2022YFB2702502).

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Adridn Bazaga, Pietro Lio, and Gos Micklem. 2024.
Unsupervised pretraining for fact verification by lan-
guage model distillation. In The Twelfth Interna-
tional Conference on Learning Representations.

Jiangjie Chen, Qiaoben Bao, Changzhi Sun, Xinbo
Zhang, Jiaze Chen, Hao Zhou, Yanghua Xiao, and
Lei Li. 2022. Loren: Logic-regularized reason-
ing for interpretable fact verification. Proceedings
of the AAAI Conference on Artificial Intelligence,
36(10):10482—-10491.

Yung-Sung Chuang, Linlu Qiu, Cheng-Yu Hsieh, Ran-
jay Krishna, Yoon Kim, and James Glass. 2024.
Lookback lens: Detecting and mitigating contextual
hallucinations in large language models using only
attention maps. arXiv preprint arXiv:2407.07071.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276-286.

Benjamin Cohen-Wang, Harshay Shah, Kristian
Georgiev, and Aleksander Madry. 2024. Contextcite:
Attributing model generation to context. arXiv
preprint arXiv:2409.00729.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
35:16344-16359.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. In Advances in Neural Information
Processing Systems, volume 36, pages 10088—10115.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. 2019. ELI5:

380


http://arxiv.org/abs/2303.08774
https://doi.org/10.1609/aaai.v36i10.21291
https://doi.org/10.1609/aaai.v36i10.21291
http://arxiv.org/abs/2407.07071
http://arxiv.org/abs/2407.07071
http://arxiv.org/abs/2407.07071
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
http://arxiv.org/abs/2409.00729
http://arxiv.org/abs/2409.00729
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://doi.org/10.18653/v1/P19-1346

Long form question answering. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3558-3567.

Shangbin Feng, Vidhisha Balachandran, Yuyang Bai,
and Yulia Tsvetkov. 2023. FactKB: Generaliz-
able factuality evaluation using language models en-
hanced with factual knowledge. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 933-952.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony
Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vincent
Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and
Kelvin Guu. 2023a. RARR: Researching and revis-
ing what language models say, using language mod-
els. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume

1: Long Papers), pages 16477-16508.

Tianyu Gao, Howard Yen, Jiatong Yu, and Dangi Chen.
2023b. Enabling large language models to generate
text with citations. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6465-6488.

Michael Giinther, Jackmin Ong, Isabelle Mohr, Alaed-
dine Abdessalem, Tanguy Abel, Mohammad Kalim
Akram, Susana Guzman, Georgios Mastrapas, Saba
Sturua, Bo Wang, Maximilian Werk, Nan Wang, and
Han Xiao. 2023. Jina embeddings 2: 8192-token
general-purpose text embeddings for long documents.
arXiv preprint arXiv:2310.19923.

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vla-
chos. 2022. A survey on automated fact-checking.
Transactions of the Association for Computational
Linguistics, 10:178-206.

Hangfeng He, Hongming Zhang, and Dan Roth. 2022.
Rethinking with retrieval: Faithful large language
model inference. arXiv preprint arXiv:2301.00303.

Haichuan Hu, Yuhan Sun, and Qunjun Zhang. 2024.
Lrp4rag: Detecting hallucinations in retrieval-
augmented generation via layer-wise relevance prop-
agation. arXiv preprint arXiv:2408.15533.

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang,
Conghui He, Jiagi Wang, Dahua Lin, Weiming
Zhang, and Nenghai Yu. 2024. Opera: Alleviating
hallucination in multi-modal large language models
via over-trust penalty and retrospection-allocation. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
13418-13427.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2020. Attention is not only a weight:
Analyzing transformers with vector norms. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7057-7075.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Dongfang Li, Zetian Sun, Xinshuo Hu, Zhenyu Liu,
Ziyang Chen, Baotian Hu, Aiguo Wu, and Min
Zhang. 2023a. A survey of large language models
attribution. arXiv preprint arXiv:2311.03731.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2023b. Inference-
time intervention: Eliciting truthful answers from a
language model. In Advances in Neural Information
Processing Systems, volume 36, pages 41451-41530.

Zhenghao Liu, Chenyan Xiong, Maosong Sun, and
Zhiyuan Liu. 2020. Fine-grained fact verification
with kernel graph attention network. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7342-7351.

Jacob Menick, Maja Trebacz, Vladimir Mikulik,
John Aslanides, Francis Song, Martin Chadwick,
Mia Glaese, Susannah Young, Lucy Campbell-
Gillingham, Geoffrey Irving, and Nat McAleese.
2022.  Teaching language models to support
answers with verified quotes.  arXiv preprint
arXiv:2203.11147.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis,
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle-
moyer, and Hannaneh Hajishirzi. 2023. FActScore:
Fine-grained atomic evaluation of factual precision
in long form text generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 12076—12100.

Abhika Mishra, Akari Asai, Vidhisha Balachandran,
Yizhong Wang, Graham Neubig, Yulia Tsvetkov, and
Hannaneh Hajishirzi. 2024. Fine-grained hallucina-
tion detection and editing for language models. arXiv
preprint arXiv:2401.06855.

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran,
Trung Bui, Walter Chang, and Ndapa Nakashole.
2020. Rethinking self-attention: Towards inter-
pretability in neural parsing. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 731-742.

Dor Muhlgay, Ori Ram, Inbal Magar, Yoav Levine,
Nir Ratner, Yonatan Belinkov, Omri Abend, Kevin
Leyton-Brown, Amnon Shashua, and Yoav Shoham.
2024. Generating benchmarks for factuality evalua-
tion of language models. In Proceedings of the 18th

381


https://doi.org/10.18653/v1/P19-1346
https://doi.org/10.18653/v1/2023.emnlp-main.59
https://doi.org/10.18653/v1/2023.emnlp-main.59
https://doi.org/10.18653/v1/2023.emnlp-main.59
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.18653/v1/2023.emnlp-main.398
https://doi.org/10.18653/v1/2023.emnlp-main.398
http://arxiv.org/abs/2310.19923
http://arxiv.org/abs/2310.19923
https://doi.org/10.1162/tacl_a_00454
http://arxiv.org/abs/2301.00303
http://arxiv.org/abs/2301.00303
http://arxiv.org/abs/2408.15533
http://arxiv.org/abs/2408.15533
http://arxiv.org/abs/2408.15533
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
http://arxiv.org/abs/2311.03731
http://arxiv.org/abs/2311.03731
https://proceedings.neurips.cc/paper_files/paper/2023/file/81b8390039b7302c909cb769f8b6cd93-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/81b8390039b7302c909cb769f8b6cd93-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/81b8390039b7302c909cb769f8b6cd93-Paper-Conference.pdf
https://doi.org/10.18653/v1/2020.acl-main.655
https://doi.org/10.18653/v1/2020.acl-main.655
http://arxiv.org/abs/2203.11147
http://arxiv.org/abs/2203.11147
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
http://arxiv.org/abs/2401.06855
http://arxiv.org/abs/2401.06855
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://aclanthology.org/2024.eacl-long.4
https://aclanthology.org/2024.eacl-long.4

Conference of the European Chapter of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 49—66.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2021. Webgpt: Browser-
assisted question-answering with human feedback.
arXiv preprint arXiv:2112.09332.

Cheng Niu, Yuanhao Wu, Juno Zhu, Siliang Xu,
KaShun Shum, Randy Zhong, Juntong Song, and
Tong Zhang. 2024. RAGTruth: A hallucination cor-
pus for developing trustworthy retrieval-augmented
language models. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 10862—
10878.

Anirudh Phukan, Shwetha Somasundaram, Apoorv Sax-
ena, Koustava Goswami, and Balaji Vasan Srinivasan.
2024. Peering into the mind of language models: An
approach for attribution in contextual question an-
swering. In Findings of the Association for Compu-
tational Linguistics ACL 2024, pages 11481-11495.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. Mauve: Measuring the gap be-
tween neural text and human text using divergence
frontiers. In Advances in Neural Information Pro-
cessing Systems, volume 34, pages 4816—4828.

Jirui Qi, Gabriele Sarti, Raquel Ferndndez, and Arianna
Bisazza. 2024. Model internals-based answer attribu-
tion for trustworthy retrieval-augmented generation.
arXiv preprint arXiv:2406.13663.

Abhilasha Sancheti, Koustava Goswami, and Balaji
Srinivasan. 2024. Post-hoc answer attribution for
grounded and trustworthy long document comprehen-
sion: Task, insights, and challenges. In Proceedings
of the 13th Joint Conference on Lexical and Compu-
tational Semantics (*SEM 2024), pages 49-57.

Gabriele Sarti, Nils Feldhus, Ludwig Sickert, and Os-
kar van der Wal. 2023. Inseq: An interpretability
toolkit for sequence generation models. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 3: System
Demonstrations), pages 421-435.

Tal Schuster, Adam Lelkes, Haitian Sun, Jai Gupta,
Jonathan Berant, William Cohen, and Donald Met-
zler. 2024. SEMQA: Semi-extractive multi-source

Aviv Slobodkin, Eran Hirsch, Arie Cattan, Tal Schuster,

and Ido Dagan. 2024. Attribute first, then gener-
ate: Locally-attributable grounded text generation.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3309-3344.

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-

Wei Chang. 2022. ASQA: Factoid questions meet
long-form answers. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8273-8288.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,

Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-
Ching Chang, Igor Krivokon, Will Rusch, Marc
Pickett, Pranesh Srinivasan, Laichee Man, Kathleen
Meier-Hellstern, Meredith Ringel Morris, Tulsee
Doshi, Renelito Delos Santos, Toju Duke, Johnny So-
raker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Co-
hen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-
Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc
Le. 2022. Lamda: Language models for dialog appli-
cations. arXiv preprint arXiv:2201.08239.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-

bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Can-
ton Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu,
Brian Fuller, Cynthia Gao, Vedanuj Goswami, Na-
man Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez,
Madian Khabsa, Isabel Kloumann, Artem Korenev,
Singh Koura, Marie-Anne Lachaux, Thibaut Lavril,
Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning
Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poul-
ton, Jeremy Reizenstein, Rashi Rungta, Kalyan Sal-
adi, Alan Schelten, Ruan Silva, Eric Michael, Smith
Ranjan, Subramanian Xiaoqing, Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan,
Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Au-
relien Rodriguez, Robert Stojnic, Sergey Edunov,
and Thomas Scialom. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

question answering. In Proceedings of the 2024 Con-  Alex Wang, Kyunghyun Cho, and Mike Lewis. 2020.

ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
1363-1381.

382

Asking and answering questions to evaluate the fac-
tual consistency of summaries. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5008-5020.


http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
https://aclanthology.org/2024.acl-long.585
https://aclanthology.org/2024.acl-long.585
https://aclanthology.org/2024.acl-long.585
https://aclanthology.org/2024.findings-acl.682
https://aclanthology.org/2024.findings-acl.682
https://aclanthology.org/2024.findings-acl.682
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
http://arxiv.org/abs/2406.13663
http://arxiv.org/abs/2406.13663
https://doi.org/10.18653/v1/2024.starsem-1.4
https://doi.org/10.18653/v1/2024.starsem-1.4
https://doi.org/10.18653/v1/2024.starsem-1.4
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.18653/v1/2024.naacl-long.74
https://doi.org/10.18653/v1/2024.naacl-long.74
https://aclanthology.org/2024.acl-long.182
https://aclanthology.org/2024.acl-long.182
https://doi.org/10.18653/v1/2022.emnlp-main.566
https://doi.org/10.18653/v1/2022.emnlp-main.566
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2020.acl-main.450
https://doi.org/10.18653/v1/2020.acl-main.450

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In International
Conference on Learning Representations.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
gin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, Zhihao Fan, Qwen Team, and Alibaba
Group. 2024. Qwen?2 technical report. arXiv preprint
arXiv:2407.10671.

Fan Yang, Shiva K. Pentyala, Sina Mohseni, Meng-
nan Du, Hao Yuan, Rhema Linder, Eric D. Ragan,
Shuiwang Ji, and Xia (Ben) Hu. 2019. Xfake: Ex-
plainable fake news detector with visualizations. In
The World Wide Web Conference, WWW ’19, page
3600-3604.

Kayo Yin and Graham Neubig. 2022. Interpreting lan-
guage models with contrastive explanations. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 184—198.

Xiang Yue, Boshi Wang, Ziru Chen, Kai Zhang, Yu Su,
and Huan Sun. 2023. Automatic evaluation of attri-
bution by large language models. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 4615-4635.

Dongxu Zhang, Varun Gangal, Barrett Lattimer, and
Yi Yang. 2024a. Enhancing hallucination detection
through perturbation-based synthetic data generation
in system responses. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
13321-13332.

Xiaofeng Zhang, Yihao Quan, Chaochen Gu, Chen
Shen, Xiaosong Yuan, Shaotian Yan, Hao Cheng,
Kaijie Wu, and Jieping Ye. 2024b. Seeing clearly

Algorithm 1 The Basic Algorithm

Input: Document tokens d = (dy, ..., d.), ques-
tion tokens q = (g1, ..., gm ), Response tokens
r = (ry,...,m,), the target span t C r, and the
model M that outputs similarity metric.
Output: The evidence tokens of the target span
T and their scores.
S «+ M(d + q+r) € R™(e+m)
w < dictionary() > The attribution scores
for r; € t do > Aggregate evidence and scores
for j € range(d) N arg top-k(S;) do
if j € w.keys() then
w[j] < wlj] + Sy
else
w[j] <= Sy
end if
end for
end for
new_w < dictionary/()
for i € w.keys() do > Remove isolated tokens
1solated < T'rue
for jini — 7 toi+ 7 do
if j #iand j € w.keys() then
1solated < False
break
end if
end for
if —isolated then
new_w(i] < wli]
end if
end for
return new_w

by layer two: Enhancing attention heads to al-
leviate hallucination in lvlms.  arXiv preprint
arXiv:2411.09968.

A Pseudo-code for ATTNUNION

The pseudo-code for ATTNUNION is Algorithm 1.

B Word-Token Alignment in DEP

With words and tokens distinguished, the atomic-
fact recognition method A should be updated to

U Aw) |,

weP(r;)

A(ri) <9

where A is the atomic fact recognition method in-
troduced in Sec. 3.3, ¢ is the token-to-words map-
ping, and 1) is words-to-tokens mapping. The ¢
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Target Evidence #instance #target #tevidence = Document Question Answer
Granularity Granularity per instance per instance Len. Len. Len.
Fine-grained Attribution
QuoteSum span passage 1319 4.6 34 1958.1 43.6 275.4
VERI-GRAN span sentence 197 1.2 69.1 8211.3 52.9 398.9
Sentence-level Attribution
ELI5 sentence passage 1000 6.7 5.0 2906.3 92.3 699.2
ASQA sentence passage 948 35 5.0 3005.6 47.2 427.0

Table 6: Statistics of datasets used in experiments, where lengths are measured by the numbers of characters.

ELI5 ASQA
MAUVE Claim Rec.  MAUVE EM Rec.
QOwen?2
SELFCITATION 23.5 12.4 80.5 39.6
ATTRFIRST 55.0 4.5 55.9 35.2
Llama2
SELFCITATION 32.9 12.3 56.9 30.1

Table 7: The generation quality results of SELFCITA-
TION and ATTRFIRST.

Figure 4: An illustration of reforming the coordinate
structures, where the words framed by dash lines are
coordinate components.

maps a token to the minimum set of words that
cover the token. The ¥ maps a set of words to the
minimum set of tokens that covers these words.

C Details of Excluding Irrelevant
Coordinating Constituents

This section describes how to exclude irrelevant
coordinating constituents, given that A(r;) has in-
cluded all successors of v (the closest verb ancestor
of r;). In a dependency parse tree, a coordinating
structure is multiple words wy, wi, ..., Wi, K > 1
that satisfy

label(wy) = ... = label(wx_1),
label(w g ) = “conj”, ()
head(ws) = ... = head(wg ) = wy,

where head(w;) represent the parent of w;, and
label(w;) represent the corresponding relation type
between the parent and w;. Considering that the

first component is special, we name the first com-
ponent as the leader of the coordinating structure.
The algorithm is outlined as follows.

Input. r;: the word to augment; v: the closest verb
ancestor of 7;; A(r;): the atomic fact elements that
have collected v and its successors; the heads and
labels of all words.

Output. The A(r;) with irrelevant coordinate com-
ponents removed.

1. Identify coordinating structures. The coordi-
nating structures are searched by enumerating the
potential leaders (shown as follows).

def (

dep_head,
dep_label

coordinations = []
in_coordination_words = set()
for j in range(len(dep_head)-1):
if j in in_coordination_words:
continue
new_coordination = [j]
for k in range(j+1, len(dep_head)):
casel = get_head(dep_head, k) == j
and dep_label[k] == dep_label[j]
case2 = get_head(dep_head, k) == j
and dep_labell[k] == ’conj’
if casel or case2:
new_coordination.append(k)

if len(new_coordination) > 1:
coordinations.append(sorted(
new_coordination))
in_coordination_words.update(
new_coordination)

return coordinations

2. Reform the tree. For the convenience of the
following process, we temporarily reform the local
structures for all coordinate structures, as Fig. 4
shows. We replace the heads of non-leader com-
ponents with the head of the leader, ending the
asymmetric relationship between the leader and the
other components. For other children of the leader,
we retain its head if it precedes the first non-leader
component (as the upper half of Fig. 4 shows);
otherwise, we replace its head with the head of the
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leader (as the lower half of Fig. 4 shows).

3. Identify the path from v to r;.

4. Process Coordinating Structures that inter-
sect with v — r;. For coordinating structures that
intersect with v — 7, the tree retains the intersec-
tion and removes all other components.

5. Process Coordinating Structures that do not
intersect with v — r;. For non-intersecting coor-
dinating structures G, the algorithm first determines
whether there is a parallel coordinating structure of
it, where parallel coordinating structures are those
that have the same number of constituents, e.g.,

(“one million dollars,” “two million dollars™) and

(“2012,” “2013”). If so, denoting the parallel coor-
dinating structure as G’ and its i-th component is
retained, then the algorithm deletes all components
of G except the i-th component from the depen-
dency parse tree.

6. Recollect. The algorithm recollects all v’s suc-
cessors (except punctuation marks) with the new
tree, yielding the final A(r;).

D Details of Huggingface Implementation
of ATTNUNION

def (self, batch):
"""stage 1: do not output attention, output
kv cache on prompt_ids
outputs = self.model(
input_ids=batch[’prompt_ids’][:,:-1].to(
self.device), # leave the last prompt
token to forward in stage2
attention_mask=batch[’prompt_mask’
1[:,:-1].to(self.device),
output_attentions=False,
use_cache=True,
return_dict=True,

)

return outputs.past_key_values

def (self, batch, past_key_values)

nnn

stage2: output response-to-prompt
attentions

attention_mask = torch.cat([batch[’
prompt_mask’][:,:-11, batch[’
response_mask’]], dim=1).to(self.device)

input_ids = torch.cat([batch[’prompt_ids’
1[:,-1:1, batch[’response_ids’][:,:-111,

dim=1).to(self.device)

outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
output_attentions=True,
use_cache=True,
return_dict=True,

)

return outputs.attentions

def (self, batch):
"""output response-to-prompt attentions for
causal LMs
with torch.no_grad():
past_key_values = self. (
batch)
attentions = self.
past_key_values)
attentions = attentions[self.
output_attentions_layer]
return attentions

(batch,

Using Huggingface Transformers to output self-
attention weights on the concatenation of the
prompt and the response is impractical since this
approach will incur tremendous memory overload
of O((c+m +n)?).

A more memory-efficient approach is to use
the response as the query and the concatenation
of prompt and response as the key, which incurs
a memory overload of O(n x (¢ + m)) and re-
quires the KV cache. We choose the latter memory-
efficient approach as our baseline in Sec. 4.5, which
is illustrated by the method in the code
above.

E Statistics of Datasets

The statistics of datasets are shown in Table 6.

F Experiments on ATTNUNIONDEP’s
Sensitivity to Hyperparameters

Here, we consider the following hyperparameters:
1. L*: the layer to extract attention weights;

2. k: how many top-scored prompt tokens are
selected as evidence for each response token;

3. 7: the threshold for recognizing isolated to-
kens.

The experiments are conducted on validation
sets of QuoteSum and VERI-GRAN, with the met-
ric of accuracy (%), the attributor of ATTNUNION-
DEP, and the models of Qwen2 7B and Llama 7B.
The results are shown in Fig. 5, 6, and 7. The
performance is relatively stable across a range of
hyperparameters. Note that our choice of hyper-
parameters may not be optimal, because we did
not extensively tune them but qualitatively chose
them by human evaluation. We found under these
hyperparameters, the proposed method provides
the most human-friendly (neat and fragmentless)
attribution.
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Figure 5: The validation accuracy of ATTNUNIONDEP
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Figure 6: The validation accuracy of ATTNUNIONDEP
against k (fixing 7 = 2, L* = 15 and 17 for Qwen2 7B
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Figure 7: The validation accuracy of ATTNUNIONDEP
against 7 (fixing k = 2, L* = 15 and 17 for Qwen2 7B
and Llama?2 7B, respectively). Here, 7 = oo means no
filtering out isolated evidence tokens.

G Generation Qualities of
SELFCITATOIN and ATTRFIRST

The generation qualities of SELFCITATION and
ATTRFIRST are shown in Table 7.

H Evaluating Attribution on Chinese
Synthetic Datasets

We conducted experiments on Chinese synthetic
datasets to show that our method can be migrated
to languages other than English. The synthetic
Chinese datasets are constructed by translating the
answers from QuoteSum and VERI-GRAN to Chi-
nese and maintaining the questions and the pas-
sages in English. Specifically, each answer is pro-
cessed as follows (during this process, the annota-
tions of the target spans are maintained):

1. segmenting the answer by the boundaries of
target spans;

2. separately translating each segment into Chi-
nese;

3. concatenating all translated segments to build
the translated answer.

We adapt the dependency parsing augmentation
to Chinese without modifying the rules (except for
mapping Chinese dependency parsing labels to the
English counterpart). We compare HSSAVG, AT-
TNUNION, and ATTNUNIONDEP using the back-
bone of Qwen2 7B. For all methods, we use the
same hyperparameters as in Sec. 4.1. The results
are shown in Table 8, which shows that our method
ATTNUNIONDEP still outperforms HSSAVG and
ATTNUNION.

Method Translated Translated
QuoteSum VERI-GRAN
HSSAvG 76.1 61.6
ATTNUNION 76.0 65.3
ATTNUNIONDEP 87.0 72.5

Table 8: Accuracy (%) on the synthetic Chinese datasets,
where the best entries are marked in bold.

I An Additional Alternative of DEP

During the review of this paper, a reviewer pro-
posed an interesting alternative of DEP: consider-
ing the self-attention among response tokens, the
latter response tokens can be attributed to previous
response tokens and this might also reveal some
relationship between them (as what DEP does). For
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instance, “2012” might be attributed to “one mil-
lion dollars”. Then the attribution of “one mil-
lion dollars” could be updated with the attribution
scores from “2012”.

We implemented the attribution among the re-
sponse tokens using the same hyperparameters (ex-
cept 7; no filtering out isolated evidence tokens in
this attribution) as the attribution between response
and prompt tokens. The results are shown in Table
9. Here we name the alternative AUGMENTB Y-
ATTN. We also evaluate a variant of AUGMENT-
BYATTN that limits the augmentation tokens in the
target span’s local sentence, to ensure the augmen-
tation tokens are more relevant to the target span.
As the results show, AUGMENTBYATTN and its
variant improve ATTNUNION but are not as good
as dependency parsing augmentation, indicating
dependency parsing augmentation is more accurate
in recognizing semantically relevant tokens to the
target span.

QuoteSum VERI-GRAN

ATTNUNION 79.4 70.9
AUGMENTBYATTN 86.0 78.4
AUGMENTBYATTN variant 86.2 77.8
ATTNUNIONDEP 93.3 84.6

Table 9: Evaluation results for addition alternatives of
DEP, i.e., AUGMENTBYATTN and its variant, where the
backbone is Qwen2 7B.
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