
Findings of the Association for Computational Linguistics: ACL 2025, pages 3993–4015
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

AceMath: Advancing Frontier Math Reasoning with Post-Training
and Reward Modeling

Zihan Liu† * 1, Yang Chen† * 1, Mohammad Shoeybi1, Bryan Catanzaro1, Wei Ping† 1

1NVIDIA

Abstract

In this paper, we introduce AceMath, a suite
of frontier math models that excel in solving
complex math problems, along with highly ef-
fective reward models capable of evaluating
generated solutions and reliably identifying
the correct ones. To develop the instruction-
tuned math models, we propose a supervised
fine-tuning (SFT) process that first achieves
competitive performance across general do-
mains, followed by targeted fine-tuning for
the math domain using a carefully curated
set of prompts and synthetically generated re-
sponses. The resulting model, AceMath-72B-
Instruct greatly outperforms Qwen2.5-Math-
72B-Instruct, GPT-4o and Claude-3.5 Sonnet.
To develop math-specialized reward model, we
first construct AceMath-RewardBench, a com-
prehensive and robust benchmark for evaluat-
ing math reward models across diverse prob-
lems and difficulty levels. After that, we
present a systematic approach to build our math
reward models. The resulting model, AceMath-
72B-RM, consistently outperforms state-of-the-
art reward models. Furthermore, when com-
bining AceMath-72B-Instruct with AceMath-
72B-RM, we achieve the highest average rm@8
score across the math reasoning benchmarks.

1 Introduction

Over the past year, the open large language
model (LLM) community has made remarkable
progress in advancing the key capabilities of LLMs,
including multi-turn conversation (Chiang et al.,
2023; Dubey et al., 2024), coding (Guo et al., 2024;
Hui et al., 2024), multimodal functionalities (Dai
et al., 2024; Chen et al., 2024), retrieval-augmented
generation (RAG) (Liu et al., 2024c), and mathe-
matical reasoning (Azerbayev et al., 2023; Shao
et al., 2024; Mistral, 2024; Yang et al., 2024b).

*Equal contribution. † Correspondence to: Zihan Liu <zi-
hanl@nvidia.com>, Yang Chen <yachen@nvidia.com>, Wei
Ping <wping@nvidia.com>

Among these capabilities, mathematics is recog-
nized as a fundamental aspect of intelligence. It
can serve as a reliable benchmark due to its objec-
tive, consistent, verifiable nature. Consequently,
solving math problems is widely regarded as a criti-
cal testbed for evaluating an LLM’s ability to tackle
challenging tasks that require complex, numerical
and multi-step logical reasoning (e.g., Hendrycks
et al., 2021a; Lightman et al., 2023).

Previous studies have convincingly demon-
strated that math-specialized LLMs significantly
outperform general-purpose LLMs on challeng-
ing mathematical benchmarks (Shao et al., 2024;
Mistral, 2024; Yang et al., 2024b). These math-
specialized models, including the corresponding re-
ward models (a.k.a. verifiers), are not only valuable
to the mathematics and science communities (e.g.,
Tao, 2023), but they also provide valuable insights
into data collection and serve as synthetic data gen-
eration tools, contributing to the advancement of
future iterations of general-purpose LLMs.

In this work, we push the limits of math rea-
soning with post-training and reward modeling
based on open weights base LLMs and math base
LLMs. We establish state-of-the-art supervised
fine-tuning (SFT) and reward modeling (RM) pro-
cesses for building math-specialized models, while
also sharing key insights gained from our compre-
hensive studies. Our contributions are as follows:

1. We introduce a SFT process designed to first
achieve competitive performance across gen-
eral domains, including multidisciplinary topics,
coding, and math. Building on this, the general
SFT model is further fine-tuned in math domain
using a meticulously curated set of prompts
and synthetically generated responses. Lever-
aging the high-quality training data, the result-
ing model, AceMath-7B-Instruct, largely outper-
forms the previous best-in-class Qwen2.5-Math-
7B-Instruct (67.2 vs. 62.9) on a variety of math

3993

AceMath
72B-Instruct

AceMath
7B-Instruct

AceMath
1.5B-Instruct

Qwen2.5-Math
72B-Instruct

Qwen2.5-Math
7B-Instruct

LLama3.1
405B-Instruct

GPT-4o*
2024-08-06

Claude 3.5
Sonnet 2024-10-22

GSM8K
Grade school math

96.4
97.1 (rm@8)

93.7
96.4 (rm@8)

87.0
93.9 (rm@8)

95.9
96.4 (rm@8)

95.2
97.9 (rm@8) 96.8 92.9 96.4

MATH
High school math
competition

86.1
89.4 (rm@8)

83.1
87.8 (rm@8)

76.8
84.9 (rm@8)

85.9
89.8 (rm@8)

83.6
88.5 (rm@8) 73.8 81.1 78.3

Minerva Math
Undergraduate-level
quantitative reasoning

57.0
59.9 (rm@8)

51.1
55.2 (rm@8)

41.5
49.3 (rm@8)

44.1
47.4 (rm@8)

37.1
42.6 (rm@8) 54.0 50.7 48.2

Gaokao 2023 English
College-entry math exam

72.2
76.1 (rm@8)

68.1
76.1 (rm@8)

64.4
71.4 (rm@8)

71.9
76.9 (rm@8)

66.8
75.1 (rm@8) 62.1 67.5 64.9

Olympiad Bench
Olympiad-level math
reasoning

48.4
52.0 (rm@8)

42.2
50.2 (rm@8)

33.8
46.2 (rm@8)

49.0
54.5 (rm@8)

41.6
49.9 (rm@8) 34.8 43.3 37.9

College Math
College-level mathematics

57.3
59.6 (rm@8)

56.6
59.5 (rm@8)

54.4
58.3 (rm@8)

49.5
50.6 (rm@8)

46.8
49.6 (rm@8) 49.3 48.5 48.5

MMLU STEM
Undergraduate-level STEM
knowledge

85.4
89.4 (rm@8)

75.3
86.0 (rm@8)

62.0
81.6 (rm@8)

80.8
80.1 (rm@8)

71.9
78.7 (rm@8) 83.1 87.9 85.1

Average 71.8
74.8 (rm@8)

67.2
73.0 (rm@8)

60.0
69.4 (rm@8)

68.2
70.8 (rm@8)

62.9
68.9 (rm@8) 64.8 67.4 65.6

* OpenAI’s o1 model family is excluded in this table due to dependency on extensive pre-response computation mechanism.

Figure 1: AceMath versus leading open-weights and proprietary LLMs on math reasoning benchmarks. Additionally,
we report rm@8 accuracy (best of 8) with our reward model AceMath-72B-RM and use the official reported numbers
from Qwen2.5-Math.

reasoning benchmarks (see Figure 1), while
coming close to the performance of 10× larger
Qwen2.5-Math-72B-Instruct (67.2 vs. 68.2).

2. We conducted a systematic investigation of train-
ing techniques for building math-specialized
reward models, focusing on key aspects such
as the construction of positive-negative pairs,
training objectives, and the elimination of stylis-
tic biases. Leveraging the insights gained
from this exploration, our AceMath-72B-RM
consistently outperforms state-of-the-art re-
ward models, including Qwen2.5-Math-RM-
72B and Skywork-o1-Open-PRM-Qwen-2.5-
7B (Skywork-o1, 2024), in the math domain.
Moreover, when combining AceMath-72B-
Instruct with AceMath-72B-RM, we achieve the
highest average rm@8 score across seven math
reasoning benchmarks (see Figure 1), setting a
new standard for performance in this field.

3. We open source the model weights for AceMath-
Instruct and AceMath-RM, along with the com-
plete training data used across all stages of
their development. We also release AceMath-
RewardBench, a comprehensive and diverse
benchmark for evaluating math reward models.

2 Related Work

2.1 Math Post-Training
Math-instructed models have been developed to
advance LLM performance in the mathematics do-

main (Shao et al., 2024; Toshniwal et al., 2024;
Yang et al., 2024b; Muennighoff et al., 2025) by
utilizing math-specific pretrained models as back-
bones and vast amounts of synthetic post-training
data tailored to mathematics. Reinforcement learn-
ing (RL) has recently emerged as a pivotal tech-
nique in enhancing the math reasoning perfor-
mance, which allows models to iteratively refine
their outputs based on the correctness of generated
solutions (Team et al., 2025; Guo et al., 2025).

2.2 Math Reward Modeling

Generative outcome reward models, such as LLM-
as-a-judge (Zheng et al., 2023) prompt LLMs to act
as verifiers using predefined rubrics and grading
templates (Bai et al., 2022; Zhang et al., 2024c; Yu
et al., 2024). In contrast, process reward models
(PRMs) provide step-by-step evaluations of model
responses (Uesato et al., 2022; Lightman et al.,
2023). For example, Math-Shepherd (Wang et al.,
2024b) introduces an automated sampling method
to construct large-scale process supervision data for
training, following by further developments in step-
wise supervision labeling (Dong et al., 2024), in-
cluding PAV (Setlur et al., 2024), OmegaPRM (Luo
et al., 2024), ER-PRM (Zhang et al., 2024b), Au-
toPSV (Lu et al., 2024) and ProcessBench (Zheng
et al., 2024). More details on related work can be
found in Appendix C.

3994

1.22B Used
for General

SFT

0.95B Used
for General SFT

1.29B Used
for Math

SFT

Figure 2: The proportion of total SFT tokens for math,
coding, and other categories.

3 Supervised Fine-tuning

3.1 Overview

Providing a strong initialization point is crucial
for the model to begin math-focused SFT effec-
tively. Previous works (Shao et al., 2024; Yang
et al., 2024b) have demonstrated that continual pre-
training of LLMs with a large math corpus pro-
vides a more effective initialization for subsequent
math post-training. Taking this further, we explore
whether conducting general SFT on pre-trained
LLM can serves as a even better initialization for
the subsequent math-specific SFT. The idea is that
performing SFT on general-purpose tasks helps the
model develop strong capabilities for following in-
structions and reasoning (e.g., knowledge-related).
This foundation, in turn, makes it easier for the
model to acquire math problem-solving skills from
math-focused SFT data. We call the resulting gen-
eral SFT model “AceInstruct”. The details of curat-
ing general SFT data can be found in §3.2.1.

The next-step is constructing math-specific SFT
data. It is crucial to develop a diverse set of math
prompts accompanied by unified, step-by-step, and
accurate solutions. The details of curating math
SFT data can be found in §3.2.2.

Figure 2 depicts the summary of the SFT data.
The details of how we leverage general and math
SFT data for the training can be found in §3.3.

3.2 Data Curation

3.2.1 General SFT Data
Our goal is to build a general SFT model that serves
as a strong starting point for the subsequent math-
specific SFT. This general SFT model should excel
at following instructions and answer a wide range
of questions (e.g., math and coding).

Prompt Construction To achieve this goal, we
collect prompts from a diverse range of open-

source datasets, categorized as follows:
▷ General domain: ShareGPT (Chiang et al.,

2023; The-Vicuna-Team, 2023), SlimOrca (Lian
et al., 2023; Mukherjee et al., 2023), EvolIn-
struct (Xu et al., 2024), GPTeacher (Teknium,
2023), AlpacaGPT4 (Peng et al., 2023), and Ul-
traInteract (Yuan et al., 2024);
▷ Coding domain: Magicoder (Wei et al., 2024),

WizardCoder (Luo et al., 2023), GlaiveCodeAssis-
tant (Glaive-AI, 2023), and CodeSFT (Adler et al.,
2024);
▷ Math domain: NuminaMath (Li et al., 2024b),

OrcaMathWordProblems (Mitra et al., 2024), Math-
Instruct (Yue et al., 2024a), MetaMathQA (Yu et al.,
2023), and our synthetic data (details in §3.2.2).

Since different data sources could have prompt
overlaps, we conduct data deduplication to elimi-
nate duplicate prompts that are identical when con-
verted to lowercase. After deduplication, we retain
the prompt set unfiltered to preserve the diversity
of prompts.

Response Construction After collecting the
prompts, our goal is to construct high-quality re-
sponses in a consistent format so that models can
learn more effectively. Therefore, we avoid us-
ing the original open-source responses for these
prompts, as they may lack quality and have incon-
sistent formats due to being sourced from different
curators or generated by different models. We use
GPT-4o-mini (2024-0718) to generate responses
for collected prompts in coding and general do-
mains. GPT-4o-mini is selected for its strong per-
formance across different tasks and instructions, as
well as its compact size, which makes it both time-
efficient and cost-efficient for producing a large
volume of generated responses. Details of getting
responses for math SFT prompts are in §3.2.2.

We generate a single response for each prompt
using greedy decoding, ultimately accumulating
around 1.2 million coding SFT samples (0.67 bil-
lion tokens) and 0.7 million samples (0.55 billion
tokens) in the general domain. And, we take around
1.2 million samples (0.95 billion tokens) from the
math SFT data for conducting general SFT.

3.2.2 Math SFT Data
The goal is to construct a diverse set of math
prompts accompanied by unified, step-by-step, and
accurate solutions.

Initial Prompts We first take math prompts from
general SFT data, drawing specifically from open-

3995

source datasets: NuminaMath (Li et al., 2024b),
OrcaMathWordProblems (Mitra et al., 2024), Math-
Instruct (Yue et al., 2024a), and MetaMathQA (Yu
et al., 2023). These prompts cover a wide range of
math problems, spanning grade school, high school,
college-level, and Olympiad-level math challenges.
After that, we perform data deduplication to re-
move duplicate prompts as before. Finally, we
collect over 1.3 million initial prompts.

Synthetic Prompt Generation Furthermore, we
generate additional synthetic prompts to enrich the
diversity of our math prompt collection. We select
NuminaMath as our seed prompt source due to its
broad coverage of math questions across various
difficulty levels. Then, we apply the strategies in-
spired by Xu et al. (2024) and construct another
1 million synthetic prompts. More details can be
found in Appendix D.1.

Response Construction We utilize Qwen2.5-
Math-72B-Instruct for generating responses to
math prompts, given its remarkable performance
across various math benchmarks. Eventually, we
obtain a total of around 2.3 million math SFT sam-
ples (1.83 billion tokens), of which around 1.2 mil-
lion are utilized in the general SFT. Details of the
response construction and the data filtering process
can be found in Appendix D.2. In addition, we dis-
cuss data contamination details in Appendix D.3.

3.3 Training Strategy

3.3.1 General SFT Strategy
Among general tasks, solving complex coding and
math problems stands out as particularly challeng-
ing, and many general instruct models often strug-
gle with them. To address this and develop a more
effective general SFT model, we introduce a two-
stage training approach. In stage-1, the model is
trained on a large dataset specifically curated for
code and math SFT tasks, providing a strong foun-
dation in these areas. Stage-2 expands the scope by
incorporating a balanced mix of code, math, and
other general SFT data, broadening the model’s
capabilities and enhance the overall performance.
See details in Appendix D.4.

3.3.2 Math SFT Strategy
We take the base (or math-base) model trained on
our general SFT data as the starting point for the
math SFT. In order to achieve diverse and high-
quality math SFT data, we merge all samples from

NuminaMath (Li et al., 2024b), a subset of sam-
ples from our synthetic prompts, and the 800K
math SFT samples that are cross-checked between
GPT-4o-mini and Qwen2.5-Math-72B-Instruct (as
described in §3.2.2). We remove duplicate samples
with identical prompts, resulting in a total of 1.6
million samples for math SFT. We find that this
training blend leads to better results than directly
utilize all 2.3 million math SFT samples for train-
ing (this ablation study can be found in §3.6.3).

3.3.3 SFT Data Summary
Figure 2 provides an overview of the distribution of
total SFT tokens across math, coding, and other cat-
egories, along with details on the utilization of math
SFT samples. In total, there are approximately 2.3
million math SFT samples (1.83 billion tokens), 1.2
million coding SFT samples (0.67 billion tokens),
and 0.7 million samples in other categories (0.55
billion tokens). Among the math SFT samples, 1.2
million (0.95 billion tokens) are used for general
SFT, while 1.6 million (1.29 billion tokens) are
utilized for math SFT. The SFT training hyperpa-
rameters are in Appendix D.5.

3.4 Benchmarks

3.4.1 General SFT Benchmarks
We evaluate our general SFT models on
a diverse set of widely used benchmarks.
These benchmarks consist of coding tasks, in-
cluding HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021), mathematical rea-
soning, including GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021b), as
well as general knowledge domains, including
MMLU (Hendrycks et al., 2020) and MMLU
Pro (Wang et al., 2024c).

3.4.2 Mathematical Benchmarks
We follow the evaluation setting in Qwen2.5-
Math (Yang et al., 2024b) for assessing En-
glish mathematical tasks. Beyond the com-
monly used GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021b) benchmarks,
we also evaluate our models on a broader set
of mathematical benchmarks, including Minerva
Math (Lewkowycz et al., 2022), GaoKao 2023
En (Liao et al., 2024), Olympiad Bench (He et al.,
2024), College Math (Tang et al., 2024), and
MMLU STEM (Hendrycks et al., 2020). These
benchmarks comprehensively assess a wide range
of mathematical reasoning capabilities, from grade

3996

Models HumanEval MBPP GSM8K MATH MMLU MMLU Pro Avg.

DeepSeek-Coder-7B-Instruct-v1.5 64.10 64.60 72.60 34.10 49.50 - -
AceInstruct-7B-DeepSeekCoder (Ours) 78.05 73.54 82.56 55.62 54.65 33.28 62.95

Llama3.1-8B-Instruct 72.60 69.60 84.50 51.90 69.40 48.30 66.05
AceInstruct-8B-Llama3.1 (Ours) 81.10 74.71 90.45 64.42 68.31 43.27 70.38

Qwen2.5-1.5B-Instruct 61.60 63.20 73.20 55.20 58.37 32.40 57.33
AceInstruct-1.5B-Qwen2.5 (Ours) 73.17 65.76 80.44 60.34 58.17 33.78 61.94

Qwen2.5-7B-Instruct 84.80 79.20 91.60 75.50 74.51 56.30 76.99
AceInstruct-7B-Qwen2.5 (Ours) 85.37 74.32 93.10 76.40 74.68 54.50 76.40

Qwen2.5-72B-Instruct 86.60 88.20 95.80 83.10 84.67 71.10 84.91
AceInstruct-72B-Qwen2.5 (Ours) 89.63 83.66 96.36 84.50 83.88 66.10 84.02

Table 1: Results of our AceInstruct general SFT models. We apply our proposed two-stage training strategy to
conduct SFT on various base models from DeepSeekCoder, Llama3.1, and Qwen2.5. These finetuned models are
then compared against the corresponding instruct baselines that are built upon the same base models.

school arithmetic to advanced college-level prob-
lems and Olympic-level challenges. For all bench-
marks except for Math and GSM8K, we do not
use any training dataset or synthetic dataset derived
from it. This ensures a more reliable and valid
evaluation of our models on these benchmarks.

3.5 AceInstruct Results
As shown in Table 1, we apply our proposed two-
stage training strategy to conduct SFT on various
base models, including DeepSeekCoder-7B (Guo
et al., 2024), Llama3.1-8B (Dubey et al., 2024), and
Qwen2.5-1.5B/7B/72B (Yang et al., 2024a). We
compare our finetuned general AceInstruct mod-
els to the corresponding instruct baselines that are
built upon the same base models. We observe that
our general SFT brings significant improvements
across different models, such as DeepSeek-Coder-
7B, Llama3.1-8B, and Qwen2.5-1.5B, with an av-
erage score improvement of over 4%. Notably,
results on DeepSeek-Coder show that AceInstruct
achieves particularly pronounced gains, with an
average score increase of approximately 10% or
more in coding and math tasks. When compared to
more advanced models like Qwen2.5-7B-Instruct
and Qwen2.5-72B-instruct, our SFT delivers com-
parable performance. These findings highlight the
effectiveness and strong generalization capabilities
of our constructed general SFT dataset.

We also study the effectiveness of two-stage
training strategy for AceInstruct. The results can
be found in Appendix A.1.

3.6 AceMath-Instruct Results
3.6.1 Main Results
In Figure 1, we compare our AceMath-Instruct
models against several strong baselines for greedy

decoding, including Qwen2.5-Math-7B/72B-
Instruct (Yang et al., 2024b), GPT-4o (OpenAI,
2024b), Llama3.1-405B-Instruct, and Claude-3.5
Sonnet (Anthropic, 2024). Specifically, our
AceMath-1.5B/7B/72B-Instruct models are built
upon the Qwen2.5-Math-1.5B/7B/72B-base
models, which also serve as the foundation for
Qwen2.5-Math-1.5B/7B/72B-Instruct. We find
that AceMath-1.5B/7B/72B-Instruct achieve sig-
nificantly better performance compared to the cor-
responding Qwen2.5-Math-1.5B/7B/72B-Instruct
models. Our best model, AceMath-72B-Instruct,
achieves a significant average improvement of 3.68
over the previous state-of-the-art, Qwen2.5-Math-
72B-Instruct. This highlights the superior quality
and generalizability of our math SFT data.

Moreover, we find that our 7B model, AceMath-
7B-Instruct, demonstrate superior or comparable
performance compared to several advanced instruct
models, including Llama3.1-405B-Instruct, GPT-
4o, and Claude-3.5 Sonnet. And, it comes close
to matching the performance of the significantly
larger Qwen2.5-Math-72B-Instruct, with only a
slight difference in the average score (68.16 vs.
67.17). We put several chain-of-thought reasoning
examples generated by AceMath-72B-Instruct in
Appendix E.

3.6.2 Backbone Model: Base vs. Math-Base
In Figure 3, we study the impact of using either
the base model (e.g., Qwen2.5-7B-Base) or the
math base model (e.g., Qwen2.5-Math-7B-Base) as
the backbone on the performance of our AceMath-
Instruct models. This study is crucial, as it helps us
understand the importance of continual pre-training
on a large math corpus (i.e., building math base
models) for improving the performance on solving

3997

45

55

65

75

DeepSeek-7B Qwen2.5-1.5B Qwen2.5-7B Qwen2.5-72B

Baselines (Math-Instruct) Ours (Base) Ours (Math Base)

Figure 3: Studies on the impact of using either the
base model or the math base model as the backbone on
the performance of our AceMath-Instruct models. We
compare our models against the corresponding math-
instruct baselines across different model types and sizes.
Results are the average scores of greedy decoding over
the math benchmarks.

math questions after post-training.

For DeepSeek-7B, “Ours (Base)” uses the
DeepSeek-Coder-7B-Base (Guo et al., 2024) as
the backbone model, while “Ours (Math Base)”
uses the DeepSeek-Math-7B-Base (Shao et al.,
2024) as the backbone model, which continues
the pre-training of DeepSeek-Coder-7B-Base us-
ing a large math corpus. The math instruct base-
line is DeepSeek-Math-7B-RL (Shao et al., 2024),
which is developed from DeepSeek-Math-7B-Base.
For Qwen2.5-1.5/7B/72B, the base models are
Qwen2.5-1.5/7B/72B-Base, while the math base
models are Qwen2.5-Math-1.5/7B/72B-Base, with
the baselines being Qwen2.5-Math-1.5/7B/72B-
Instruct.

We find that as the model size increases, the per-
formance of our models with base models as back-
bones approaches that of models with math base
as backbones. Specifically, when the Qwen2.5-
(Math)-72B-Base is used, the performance gap
between “Ours (Base)” and “Ours (Math Base)”
becomes very marginal (71.84 vs. 71.13). We
conjecture that larger models inherently possess
better math problem-solving and generalization
capability, which diminishes the need for contin-
ual pre-training. This finding extends across dif-
ferent model families. Additionally, when com-
paring models of sizes between 1.5B and 7B,
the performance gap between “Ours (Base)” and
“Ours (Math Base)” is smaller for 7B models
(i.e., DeepSeek-7B and Qwen2.5-7B) than it is
for Qwen2.5-1.5B. We put more details in Ap-
pendix A.2.

Models Average

AceMath-Instruct 64.19
▷ Removing all synthetic data 62.53
▷ Using extra low-quality synthetic data 62.95

Table 2: Ablation studies on the synthetic data, ex-
ploring the effects of removing all synthetic math SFT
data and incorporating additional low-quality synthetic
math SFT data. The backbone of AceMath-Instruct is
Qwen2.5-7B-Base. Results are average across the seven
math benchmark.

3.6.3 Ablation Studies on Training Data
As shown in Table 2, we study how synthetic math
SFT data affects the results. We compare AceMath-
Instruct against two scenarios: one where all one
million synthetic data samples are removed and
another where an additional 500K low-quality syn-
thetic data are included for training (e.g., lengthy
prompts and one type of in-depth evolution that
adds constraints). Details of the synthetic math
SFT data can be found in §3.2.2. In both scenarios,
we observe a decline in results, underscoring the
importance of not only generating synthetic data
but also carefully selecting it for training. Effec-
tively leveraging appropriate synthetic data proves
essential for achieving optimal performance.

Further more, we conduct ablation studies on
more training data (e.g., math SFT samples) and
strategies (e.g., the impact of conducting general
SFT) across various backbone models for training
our AceMath-Instruct models. We put all the de-
tails in Appendix A.3.

4 Reward Model Training

We train a math reward model for AceMath-
Instruct, aiming to select more accurate solutions
and better reasoning paths. To ensure broad appli-
cability across a variety of language models, we
curate a diverse training dataset. The following sec-
tions detail our training methodology, evaluation
protocols, and empirical results.

4.1 Reward Training Data Synthesis

4.1.1 Initial Dataset Construction
We utilize a portion of the math SFT dataset
(350K) from §3.2.2 to use the prompts and the an-
swers generated by gpt-4o-mini (OpenAI, 2024a)
as reference labels. To capture the diversity of
model-generated reasoning steps and potential
different kinds of reasoning mistakes, we sam-

3998

ple four model responses per LLM from a set
of 14 LLMs, including Llama2-7b-chat (Touvron
et al., 2023), Llama3.1-8/70B-Instruct (Dubey
et al., 2024), DeepSeek-math-7b-instruct (Shao
et al., 2024), Mistral-7B/Mathstral-7B (Jiang et al.,
2023), Gemma-2/27b-it (Gemma et al., 2024), and
Qwen2/2.5-1.5/7/72B-Instruct (Yang et al., 2024b).
We then annotate the model solutions as correct or
incorrect by comparing them against the referenced
labels using the Qwen-math evaluation toolkit. 1

This process initializes a pool of correct and incor-
rect candidate responses for each problem, which
we treat as positive and negative samples that can
be further sampled to create paired responses for
training.

4.1.2 Response Scoring and Selection
Mathematical problem answers encompass a wide
range of formats with diverse representations (e.g.,
[\frac{1}{2}, 1/2, 0.5] and [1e-5, 1×10^{-5}]), and
heuristic math evaluation toolkits using SymPy and
latex2sympy2 may inevitably result in false nega-
tive candidates (i.e., correct answers annotated as
incorrect). Such examples in the negative candi-
dates could introduce noise and adversely affect
model training. Therefore, instead of randomly
sample responses from all candidates, we rank the
candidates and apply a score-sorted sampling strat-
egy. Specifically, we use the math reward model
Qwen2.5-Math-RM-72B to rank positive and neg-
ative candidates for each problem based on their
scores. We then randomly sample from top-k posi-
tive and bottom-k negative candidates, with k set
to 14 based on preliminary experiments. In con-
clusion, we sample a total of six response candi-
dates (positive + negative) for each problem, en-
suring a balanced number of positive and negative
responses, and filter out problems where all re-
sponses are either correct or incorrect.

4.1.3 Addressing Stylistic Biases
LLMs can generate different styles of chain-of-
thought reasoning paths when prompted in the zero-
shot setting or with few-shot examples (Wei et al.,
2022). We observe significant shorter and simple
reasoning paths in model outputs for datasets such
as MMLU (Hendrycks et al., 2021a) as the model
follows the simple 5-shot examples provided in the
instruction. To improve reward model performance
on such output styles, we create training data us-

1https://github.com/QwenLM/Qwen2.5-Math/tree/
main/evaluation

ing the few-shot prompting approach to generate
simple and short reasoning paths for 2,000 multiple-
choice problems. In addition, as our ultimate goal
is to develop a reward model for the AceMath-
Instruct model family, we sample a set of 30,000
problems and use AceMath-(1.5/7/72B)-Instruct
checkpoints to generated responses to create posi-
tive and negative pairs for training. In conclusion,
our final training dataset consists of 356K prob-
lems, each paired with a total of six responses (k
positive and 6− k negative).

4.2 Reward Training Strategy

Our reward model architecture adopts a outcome
reward approach, which introduces a linear layer
at the top of the language model to project the
last token representation into a scalar value. We
initialize the backbone of the reward model using
AceMath-Instruct. Following the training objective
in Qwen2.5-Math (Yang et al., 2024b), we con-
struct problem-response pairs with k positive (cor-
rect) candidates and 6− k negative (incorrect) can-
didates. We compute the list-wise Bradley-Terry
loss (Bradley and Terry, 1952), which demonstrates
computational efficiency compared to pair-wise ap-
proaches as shown in Table 9.

Lrm(θ) =

− 1

k · (6 − k)
E(x,ypos,yneg)

[
log

(
σ(rθ(x, ypos) − rθ(x, yneg))

)]

Here, rθ(x, y) represents the output score of the
reward model rθ, where x denotes the problem and
y represents the response candidate.

4.3 Reward Evaluation Benchmarks

4.3.1 AceMath-RewardBench
Existing math reward benchmarks lack diversity,
both in the types of candidate solutions and the
range of difficulty levels in the math questions. To
address this, we construct a math reward model
evaluation benchmark, AceMath-RewardBench,
which contains 7 datasets and use 8 different LLMs
to generate solutions for robust evaluation. The
benchmark use the best-of-N (BoN or rm@n)
metric, a methodology extensively used in liter-
ature (Cobbe et al., 2021; Lightman et al., 2023;
Yang et al., 2024b). The primary objective of the
reward model is to select the highest reward scored
model response from a candidate set of n and cal-
culate the corresponding problem-solving rate for
each math benchmark (7 datasets) used in §3.4.2.

3999

https://github.com/QwenLM/Qwen2.5-Math/tree/main/evaluation
https://github.com/QwenLM/Qwen2.5-Math/tree/main/evaluation

Model GSM8K MATH500
Minerva

Math
GaoKao
2023 En

Olympiad
Bench

College
Math

MMLU
STEM

Avg.

majority@8 96.22 83.11 41.20 68.21 42.69 45.01 78.21 64.95
Internlm2-7b-reward 95.26 78.96 36.25 67.51 40.49 43.88 75.42 62.54
Internlm2-20b-reward 95.10 76.53 37.69 66.63 40.12 42.57 70.60 61.32
Skywork-Reward-Llama-3.1-8B-v0.2 95.64 74.16 39.11 67.16 39.10 44.58 76.52 62.32
Skywork-Reward-Gemma-2-27B-v0.2 95.94 74.90 39.37 66.96 39.07 45.46 78.20 62.84
Skywork-o1-Open-PRM-Qwen-2.5-7B 96.92 86.64 41.00 72.34 46.50 46.30 74.01 66.24
Qwen2.5-Math-RM-72B 96.61 86.63 43.60 73.62 47.21 47.29 84.24 68.46

AceMath-7B-RM (Ours) 96.66 85.47 41.96 73.82 46.81 46.37 80.78 67.41
AceMath-72B-RM (Ours) 97.23 86.72 45.06 74.69 49.23 46.79 87.01 69.53

pass@8 (Oracle) 98.86 91.84 56.18 82.09 59.00 56.38 96.15 77.21

Table 3: Reward model evaluation on AceMath-RewardBench. The average results (rm@8) of reward models on
math benchmarks, randomly sample 8 responses from 64 candidates with 100 random seeds. Response candidates
are generated from a pool of 8 LLMs (Qwen{2/2.5}-Math-{7/72}B-Instruct, Llama-3.1-{8/70}B-Instruct, Mathtral-
7B-v0.1, deepseek-math-7b-instruct).

We adopt rm@8 metric following the Qwen2.5-
Math evaluation protocol, optimizing computa-
tional efficiency during the inference stage. To en-
sure robust and statistically reliable benchmark per-
formance, we implement two design principles: 1)
diverse model distribution: we sample 8 responses
from each model in a set of mathematical and
general-purpose LLMs (see Table 3), mitigating
potential model-specific style biases; 2) we com-
pute accuracy metrics by averaging results across
100 random seeds, reducing result variance and
enhancing reproducibility. In total, each problem
in the benchmark contains a total of 64 candidate
responses from 8 LLMs. We then randomly sample
8 responses from these 64 candidates, compute the
rm@8 result, and average the final accuracy over
100 random seeds.

4.3.2 RewardBench and RewardMath

Apart from our own benchmarks, we also eval-
uate on RewardBench (Lambert et al., 2024)
(MATH500) and RewardMath (Kim et al., 2024)
to report the accuracy of selecting the correct solu-
tion from a list of candidates for each problem in
MATH500 (Lightman et al., 2023). The primary
difference between these two benchmarks lies in
the candidate sets: RewardBench uses one correct
(human-written) solution and one incorrect candi-
date (generated by GPT-4), while RewardMath uses
one correct (a GPT-4 rewrite) and nine incorrect
candidates (generated by models).

4.4 Experiments of Reward models
4.4.1 Hyperparameters
We use the AceMath-7B/72B-Instruct model as
the backbone to train the outcome reward model:
AceMath-RM-7/72B. The model is trained using
AdamW (Kingma, 2014; Loshchilov, 2017) for 2
epochs with a learning rate of {5e-6, 2e-6}, using
a cosine learning rate scheduler and an effective
batch size of 256.

4.4.2 Baselines
For mathematical reward modeling, we compare
with current state-of-the-art outcome reward model
Qwen2.5-Math-RM-72B (Yang et al., 2024b) and
a process reward model Skywork-o1-Open-PRM-
Qwen-2.5-7B (Skywork-o1, 2024). We also in-
clude majority@8 (majority voting) baseline and
the pass@8 (any one of the 8 is correct) as an or-
acle reward model to measure the upper bound of
this benchmark. Additionally, we incorporate gen-
eral reward models top-ranked on RewardBench,
including Skywork-Reward (Liu et al., 2024a) and
Internlm2-reward (Cai et al., 2024). It is notewor-
thy that while these models are not exclusively
trained for mathematical domains, a substantial
portion of their training data encompasses mathe-
matical content.

4.4.3 AceMath-RewardBench Results
In Table 3, we show that our AceMath-72B-RM
achieves the state-of-the-art rm@8 accuracy on av-
erage of AceMath-RewardBench, outperforming
the Qwen2.5-Math-RM-72B by 1% absolute (69.53
vs 68.46) and on 6 out of 7 datasets. We show
the 7B variant achieves 67.41 accuracy on average

4000

Model
RewardBench

MATH500

RewardMath
MATH500

Random 50.00 10.00

LLM-as-a-Judge
Claude-3.5-Sonnet† 70.70 15.32
GPT-4o-2024-05-13† 72.50 25.98

Classifier-based
Math-Shepherd-Mistral-7B† 94.41 17.18
ArmoRM-Llama3-8B-v0.1† 98.70 20.50
Skywork-Reward-Llama-3.1-8B† 96.87 22.15
Internlm2-20b-reward† 95.10 33.95
Internlm2-7b-reward† 94.90 37.27
Skywork-o1-Open-PRM-7B 78.52 51.34
Qwen2.5-Math-RM-72B 95.97 68.53

AceMath-7B-RM (Ours) 92.62 57.76
AceMath-72B-RM (Ours) 97.09 68.94

Table 4: The accuracy of reward models on Reward-
Bench (MATH500) (Lambert et al., 2024) and Reward-
MATH (Kim et al., 2024). †: Results are copied from
RewardMATH. Bold: top-1. Underline: top-2 accuracy.

and demonstrates the benefits of model size scal-
ing from 7B to 72B, especially on datasets require
college-level STEM knowledge such as Minerva
Math (41.96 → 45.06) and MMLU STEM (80.78
→ 87.01). Comparing to other reward model base-
lines, the 7B outperform Internlm2 and Skywork-
Reward by a large margin as our benchmark reveal
these reward model even underperform the major-
ity voting baseline. Nevertherless, we note that
there remains considerable room for improvement
as indicated by the gap between the reward model
and pass@8 oracle accuracy.

4.4.4 RewardBench & RewardMath Results

In Table 4, we demonstrate that our AceMath-
72B-RM achieves state-of-the-art accuracy on Re-
wardMATH. While many reward models (e.g., Ar-
moRM (Wang et al., 2024a), Internlm2) achieve
95%+ accuracy on the RewardBench MATH500
split, their accuracy drops significantly on Reward-
MATH, ranging from only 20% to 37%. We found
Skywork-PRM model performs much better on Re-
wardMATH (51.34) but worse on RewardBench
(78.5). This may be due to the lack of reason-
ing steps typically found in human-written solu-
tions, and as a result, our AceMath-7B-RM outper-
forms it on both benchmarks. In conclusion, these
evaluation results highlight the benefits of training
on diverse, model-generated solutions to mitigate,
though not entirely eliminate, out-of-distribution
generalization challenges.

4.4.5 Ablation Studies & rm@k

Due to the space limit, we present ablation stud-
ies on model backbone, data sampling, and loss
functions for training the reward model in Ap-
pendix B.1. In addition, a comparison between
AceMath-72B-RM and Qwen2.5-Math-RM-72B
on rm@k can be found in Appendix B.2.

5 Conclusion

In this work, we present AceMath, a series of
frontier-class math instruct and reward models.
We demonstrate that our AceMath-7B-Instruct
significantly surpasses the previous best-in-class
Qwen2.5-Math-7B-Instruct across comprehensive
math reasoning benchmarks, and it performs
slightly worse than a 10× larger Qwen2.5-Math-72-
Instruct (67.2 vs. 68.2). Remarkably, our AceMath-
72B-Instruct greatly outperforms Qwen2.5-Math-
72-Instruct, GPT-4o and Claude-3.5 Sonnet. Ad-
ditionally, we construct AceMath-RewardBench,
a comprehensive benchmark designed to evalu-
ate math reward models across a diverse range
of datasets and difficulty levels. We show that
our AceMath-72B-RM consistently outperforms
state-of-the-art reward models, including Qwen2.5-
Math-RM-72B on various math reward bench-
marks. Furthermore, when combining AceMath-
72B-Instruct with AceMath-72B-RM, we achieve
the highest average rm@8 score across the math
reasoning benchmarks. To advance open research
in the field, we will open source both AceMath-
Instruct and AceMath-RM, along with the complete
training data used throughout their development.

Limitation

AceMath models are specialized in math problems
but not for other domains. Additionally, AceMath-
Instruct models are trained using short Chain-of-
Thought (CoT) datasets, limiting their ability to
perform long Chain-of-Thought reasoning. This
constraint reduces their effectiveness on highly
complex math problems that require extensive rea-
soning. To overcome these limitations, our fu-
ture work introduces AceReason-Nemotron (Chen
et al., 2025), which leverages reinforcement learn-
ing (RL) on a SFT model to significantly enhance
its long CoT reasoning capabilities in both mathe-
matical and coding tasks.

4001

References
Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh,

Pallab Bhattacharya, Annika Brundyn, Jared Casper,
Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al.
2024. Nemotron-4 340b technical report. arXiv
preprint arXiv:2406.11704.

Syeda Nahida Akter, Shrimai Prabhumoye, John Ka-
malu, Sanjeev Satheesh, Eric Nyberg, Mostofa Pat-
wary, Mohammad Shoeybi, and Bryan Catanzaro.
2024. Mind: Math informed synthetic dialogues for
pretraining llms. arXiv preprint arXiv:2410.12881.

Anthropic. 2024. Introducing claude 3.5 sonnet.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. 2023.
Llemma: An open language model for mathematics.
arXiv preprint arXiv:2310.10631.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Ralph Allan Bradley and Milton E. Terry. 1952. Rank
analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–
345.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi
Chen, Pei Chu, et al. 2024. Internlm2 technical re-
port. arXiv preprint arXiv:2403.17297.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Yang Chen, Zhuolin Yang, Zihan Liu, Chankyu Lee,
Peng Xu, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. 2025. Acereason-nemotron: Advanc-
ing math and code reasoning through reinforcement
learning. arXiv preprint arXiv:2505.16400.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye,
Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, et al. 2024. How far
are we to gpt-4v? closing the gap to commercial
multimodal models with open-source suites. arXiv
preprint arXiv:2404.16821.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Wenliang Dai, Nayeon Lee, Boxin Wang, Zhuolin
Yang, Zihan Liu, Jon Barker, Tuomas Rintamaki, Mo-
hammad Shoeybi, Bryan Catanzaro, and Wei Ping.
2024. NVLM: Open frontier-class multimodal LLMs.
arXiv preprint arXiv:2409.11402.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang,
Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. 2024. Rlhf work-
flow: From reward modeling to online rlhf. TMLR.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The Llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Gemma, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard,
Bobak Shahriari, Alexandre Ramé, et al. 2024.
Gemma 2: Improving open language models at a
practical size. arXiv preprint arXiv:2408.00118.

Glaive-AI. 2023. GlaiveCodeAssistant.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
YK Li, et al. 2024. Deepseek-coder: When the large
language model meets programming–the rise of code
intelligence. arXiv preprint arXiv:2401.14196.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. 2024. Olympiad-
bench: A challenging benchmark for promoting agi
with olympiad-level bilingual multimodal scientific
problems. arXiv preprint arXiv:2402.14008.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

4002

https://www.anthropic.com/news/claude-3-5-sonnet
http://www.jstor.org/stable/2334029
http://www.jstor.org/stable/2334029
http://www.jstor.org/stable/2334029
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v2

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021a. Measuring mathemati-
cal problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Sunghwan Kim, Dongjin Kang, Taeyoon Kwon,
Hyungjoo Chae, Jungsoo Won, Dongha Lee, and
Jinyoung Yeo. 2024. Evaluating robustness of reward
models for mathematical reasoning. arXiv preprint
arXiv:2410.01729.

Diederik P Kingma. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison,
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi,
et al. 2024. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint
arXiv:2403.13787.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843–
3857.

Chengpeng Li, Zheng Yuan, Hongyi Yuan, Guanting
Dong, Keming Lu, Jiancan Wu, Chuanqi Tan, Xi-
ang Wang, and Chang Zhou. 2024a. Mugglemath:
Assessing the impact of query and response augmen-
tation on math reasoning. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 10230–
10258.

Jia Li, Edward Beeching, Lewis Tunstall, Ben
Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju
Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu.
2024b. Numinamath. [https://huggingface.
co/AI-MO/NuminaMath-CoT](https://github.
com/project-numina/aimo-progress-prize/
blob/main/report/numina_dataset.pdf).

Wing Lian, Guan Wang, Bleys Goodson, Eugene Pent-
land, Austin Cook, Chanvichet Vong, and "Teknium".
2023. Slimorca: An open dataset of gpt-4 augmented
flan reasoning traces, with verification.

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and
Kai Fan. 2024. Mario: Math reasoning with code
interpreter output–a reproducible pipeline. arXiv
preprint arXiv:2401.08190.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Ju-
jie He, Chaojie Wang, Shuicheng Yan, Yang Liu,
and Yahui Zhou. 2024a. Skywork-reward: Bag of
tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451.

Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou,
and Juanzi Li. 2024b. Rm-bench: Benchmarking
reward models of language models with subtlety and
style. arXiv preprint arXiv:2410.16184.

Zihan Liu, Wei Ping, Rajarshi Roy, Peng Xu, Chankyu
Lee, Mohammad Shoeybi, and Bryan Catanzaro.
2024c. ChatQA: Surpassing gpt-4 on conversational
QA and RAG. In NeurIPS.

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

Jianqiao Lu, Zhiyang Dou, Hongru Wang, Zeyu Cao,
Jianbo Dai, Yingjia Wan, Yinya Huang, and Zhijiang
Guo. 2024. Autocv: Empowering reasoning with
automated process labeling via confidence variation.
arXiv preprint arXiv:2405.16802.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-
cal reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Mistral. 2024. MathΣtral.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and
Ahmed Awadallah. 2024. Orca-math: Unlocking
the potential of slms in grade school math. arXiv
preprint arXiv:2402.14830.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

4003

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://https://huggingface.co/Open-Orca/SlimOrca
https://https://huggingface.co/Open-Orca/SlimOrca
https://mistral.ai/news/mathstral/

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707.

OpenAI. 2024a. GPT-4o mini: advancing cost-efficient
intelligence.

OpenAI. 2024b. Hello GPT-4o.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang
Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh
Agarwal, Jonathan Berant, and Aviral Kumar.
2024. Rewarding progress: Scaling automated pro-
cess verifiers for llm reasoning. arXiv preprint
arXiv:2410.08146.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300.

Jia Tracy Shen, Michiharu Yamashita, Ethan Prihar,
Neil Heffernan, Xintao Wu, Ben Graff, and Dongwon
Lee. 2021. Mathbert: A pre-trained language model
for general nlp tasks in mathematics education. In
NeurIPS 2021 Math AI for Education Workshop.

Skywork-o1. 2024. Skywork-o1 open series. https:
//huggingface.co/Skywork.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and
Furu Wei. 2024. Mathscale: Scaling instruction tun-
ing for mathematical reasoning. In Forty-first Inter-
national Conference on Machine Learning.

Terence Tao. 2023. Embracing change and resetting
expectations.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. 2025.
Kimi k1. 5: Scaling reinforcement learning with llms.
arXiv preprint arXiv:2501.12599.

Teknium. 2023. GPTeacher-General-Instruct.

The-Vicuna-Team. 2023. ShareGPT-Vicuna.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav
Kisacanin, Alexan Ayrapetyan, and Igor Gitman.
2024. Openmathinstruct-2: Accelerating ai for math
with massive open-source instruction data. arXiv
preprint arXiv:2410.01560.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao,
and Tong Zhang. 2024a. Interpretable preferences
via multi-objective reward modeling and mixture-of-
experts. In EMNLP.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024b. Math-shepherd: Verify and reinforce LLMs
step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), Bangkok, Thailand. Association for Computa-
tional Linguistics.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, et al. 2024c.
Mmlu-pro: A more robust and challenging multi-task
language understanding benchmark. arXiv preprint
arXiv:2406.01574.

Zengzhi Wang, Rui Xia, and Pengfei Liu. 2023. Gen-
erative ai for math: Part i–mathpile: A billion-token-
scale pretraining corpus for math. arXiv preprint
arXiv:2312.17120.

Zhilin Wang, Alexander Bukharin, Olivier Delal-
leau, Daniel Egert, Gerald Shen, Jiaqi Zeng, Olek-
sii Kuchaiev, and Yi Dong. 2024d. Helpsteer2-
preference: Complementing ratings with preferences.
Preprint, arXiv:2410.01257.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi
Zeng, Gerald Shen, Daniel Egert, Jimmy J. Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev.
2024e. Helpsteer2: Open-source dataset for
training top-performing reward models. Preprint,
arXiv:2406.08673.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2024. Magicoder: Empowering
code generation with oss-instruct. In Forty-first Inter-
national Conference on Machine Learning.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei

4004

https://openai.com/index/hello-gpt-4o/
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://unlocked.microsoft.com/ai-anthology/terence-tao/
https://unlocked.microsoft.com/ai-anthology/terence-tao/
https://huggingface.co/datasets/teknium/GPTeacher-General-Instruct
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://arxiv.org/abs/2410.01257
https://arxiv.org/abs/2410.01257
https://arxiv.org/abs/2406.08673
https://arxiv.org/abs/2406.08673

Lin, and Daxin Jiang. 2024. WizardLM: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. 2024b.
Qwen2.5-math technical report: Toward mathemat-
ical expert model via self-improvement. arXiv
preprint arXiv:2409.12122.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou,
Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong,
Kuikun Liu, Ziyi Wang, et al. 2024. InternLM-Math:
Open math large language models toward verifiable
reasoning. arXiv preprint arXiv:2402.06332.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Yue Yu, Zhengxing Chen, Aston Zhang, Liang Tan,
Chenguang Zhu, Richard Yuanzhe Pang, Yundi Qian,
Xuewei Wang, Suchin Gururangan, Chao Zhang,
et al. 2024. Self-generated critiques boost reward
modeling for language models. arXiv preprint
arXiv:2411.16646.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding,
Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, et al. 2024. Advancing llm
reasoning generalists with preference trees. arXiv
preprint arXiv:2404.02078.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao
Huang, Huan Sun, Yu Su, and Wenhu Chen. 2024a.
Mammoth: Building math generalist models through
hybrid instruction tuning. ICLR.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen.
2024b. Mammoth2: Scaling instructions from the
web. NeurIPS.

Fan Zhang, Chenglu Li, Owen Henkel, Wanli Xing,
Sami Baral, Neil Heffernan, and Hai Li. 2024a. Math-
llms: Ai cyberinfrastructure with pre-trained trans-
formers for math education. International Journal of
Artificial Intelligence in Education, pages 1–24.

Hanning Zhang, Pengcheng Wang, Shizhe Diao, Yong
Lin, Rui Pan, Hanze Dong, Dylan Zhang, Pavlo
Molchanov, and Tong Zhang. 2024b. Entropy-
regularized process reward model.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024c.
Generative verifiers: Reward modeling as next-token
prediction. arXiv preprint arXiv:2408.15240.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024. Processbench:
Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595–46623.

4005

https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH

A Additional Analysis of AceInstruct and
AceMath-Instruct

A.1 Effectiveness of the Two-Stage training
for AceInstruct

As shown in Table 5, we study the effectiveness of
two-stage training strategy. For comparison, we use
two base models from distinct families (Qwen2.5
and Llama3.1) and conduct single-stage training
using either all general SFT data or only the stage-2
SFT data.

We observe that our two-stage training (AceIn-
struct) consistently outperforms single-stage train-
ing. Interestingly, we find notable improvements
(more than 3% average score) on a relatively
weaker base model (e.g., Llama3.1-8B) compared
to a stronger one (e.g., Qwen2.5-7B). This high-
lights the importance of incorporating extensive
coding and math data during training to enhance
the model’s ability to handle complex coding and
math tasks. We conjecture that the Qwen2.5 mod-
els already leverage substantial math and coding
SFT data during pretraining, which reduces the ef-
fectiveness of an additional stage-1 SFT focused
on these areas.

A.2 AceMath-Instruct Using Different
Backbone Models

Moreover, in Figure 3, we observe that except for
Qwen2.5-1.5B, all the models from “Ours (Base)”
outperform the corresponding math-instruct mod-
els that use stronger math base models as back-
bones. This further indicates that smaller models
(e.g., 1.5B) rely more on continual pre-training
with a large math corpus to enhance their math
problem-solving capability.

Table 6 shows the full results of AceMath-
Instruct using various models as backbone models.
Additionally, we include the results for Llama3.1-
8B-Base as the backbone model and compare
our model to OpenMath2-Llama3.1-8B (Toshni-
wal et al., 2024) that also uses Llama3.1-8B-Base
as its backbone model. We find that except for our
1.5B model based on Qwen2.5-1.5B-Base, all our
models, including those built on base models, out-
perform their respective strong baselines, often by
a significant margin.

A.3 Ablation Studies on Training Data and
Strategies for AceMath-Instruct

In Table 7, we conduct ablation studies on training
data and strategies across various backbone models

for training our AceMath-Instruct models.
First, we explore the effectiveness of using ei-

ther GPT-4o-mini responses or Qwen2.5-Math-
72B-Instruct responses individually. Given that our
best-performing models leverage responses from
both, we analyze the impact of relying solely on
one model when constructing general and math
SFT data. Notably, even when only GPT-4o-
mini responses are available, we achieve strong
performance, with just a 1% average score drop
when Qwen2.5-7B-Base serves as the backbone
model. Furthermore, with Llama3.1-8B-Base as
the backbone, using responses from GPT-4o-mini,
Qwen2.5-Math-72B-Instruct, or their combination
(AceMath-Instruct) yields comparable results. This
indicates that the robustness of our data construc-
tion process which minimizes dependence on super
powerful math expert models for generating syn-
thetic data.

Second, we analyze the effectiveness of different
math-specific samples for math SFT. To study this,
we compare AceMath-Instruct trained with 1.6 mil-
lion math SFT samples (details in §3.3.2) to models
trained using all available math SFT samples (2.3
million) or only cross-checked high-quality sam-
ples (800K). We find that simply increasing the
quantity of data or exclusively using high-quality
samples does not yield better outcomes. Instead,
combining cross-checked high-quality data with
additional samples that include a diverse range of
math questions produces superior results.

Third, we study the impact of conducting general
SFT before transitioning to math SFT. To explore
this, we skip the general SFT step, and conduct
math SFT directly using all math-specific samples.
We observe that skipping general SFT typically re-
sults in an average score drop of approximately
1%, even when using a math-base model (e.g.,
Qwen2.5-Math-72B-Base) as the backbone. The
results highlight the effectiveness of conducting
general SFT prior to math SFT.

A.4 AIME 2024 & AMC 2023 Results

We further evaluate our models on AMC 20232

and AIME 20243. Although these benchmarks are
highly challenging math competition benchmarks,
they are quite limited in size, with AMC 2023 con-
taining only 40 test samples and AIME 2024 com-

2https://huggingface.co/datasets/AI-MO/
aimo-validation-amc

3https://huggingface.co/datasets/AI-MO/
aimo-validation-aime

4006

https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime

Models HumanEval MBPP GSM8K MATH MMLU MMLU Pro Avg.

AceInstruct-8B-Llama3.1 81.10 74.71 90.45 64.42 68.31 43.27 70.38
▷ Single-Stage SFT w/ all general SFT data 78.66 69.26 87.79 56.80 67.62 42.64 67.13
▷ Single-Stage SFT w/ only stage-2 data 73.78 67.32 88.17 55.84 67.48 42.85 65.91

AceInstruct-7B-Qwen2.5 85.37 74.32 93.10 76.40 74.68 54.50 76.40
▷ Single-Stage SFT w/ all general SFT data 83.54 75.49 91.96 75.04 73.96 53.36 75.56
▷ Single-Stage SFT w/ only stage-2 data 83.54 73.15 92.27 75.12 74.26 53.06 75.23

Table 5: Ablation studies of our AceInstruct general SFT models regarding the effectiveness of the two-stage
training strategy.

Models GSM8K MATH
Minerva

Math
GaoKao
2023 En

Olympiad
Bench

College
Math

MMLU
STEM

Avg.

DeepSeek-Math-7B-RL 88.20 52.40 20.60 43.60 19.00 37.50 64.80 46.59
AceMath-Instruct (backbone: DeepSeek-Coder-7B-Base) 83.85 59.72 29.78 53.51 24.59 44.64 55.95 50.29
AceMath-Instruct (backbone: DeepSeek-Math-7B-Base) 85.06 66.86 40.07 56.62 29.63 48.94 65.53 56.10

Llama-3.1-8B-Instruct 84.50 51.90 21.70 38.40 15.40 33.80 60.50 43.74
OpenMath2-Llama3.1-8B 91.70 67.80 16.91 53.76 28.00 46.13 46.02 50.08
AceMath-Instruct (backbone: Llama3.1-8B-Base) 91.51 69.06 31.99 59.74 32.00 49.08 67.94 57.33

Qwen2.5-Math-1.5B-Instruct 84.80 75.80 29.40 65.50 38.10 47.70 57.50 56.97
AceMath-Instruct (backbone: Qwen2.5-1.5B-Base) 80.89 64.59 30.51 53.25 27.11 47.80 58.62 51.82
AceMath-Instruct (backbone: Qwen2.5-Math-1.5B-Base) 86.95 76.84 41.54 64.42 33.78 54.36 62.04 59.99

Qwen2.5-Math-7B-Instruct 95.20 83.60 37.10 66.80 41.60 46.80 71.90 63.29
AceMath-Instruct (backbone: Qwen2.5-7B-Base) 93.56 77.10 43.38 65.19 37.78 54.90 77.41 64.19
AceMath-Instruct (backbone: Qwen2.5-Math-7B-Base) 93.71 83.14 51.11 68.05 42.22 56.64 75.32 67.17

Qwen2.5-Math-72B-Instruct 95.90 85.90 44.10 71.90 49.00 49.50 80.80 68.16
AceMath-Instruct (backbone: Qwen2.5-72B-Base) 95.99 85.06 54.04 73.25 46.96 57.10 85.48 71.13
AceMath-Instruct (backbone: Qwen2.5-Math-72B-Base) 96.44 86.10 56.99 72.21 48.44 57.24 85.44 71.84

Table 6: Greedy decoding results of AceMath-Instruct across different backbone models.

prising just 30. Following Yang et al. (2024b), we
evaluate these benchmarks separately and present
the results as follows.

Table 8 shows the greedy decoding results on
AIME 2024 and AMC 2023. We find that the
AceMath-1.5B/7B-Instruct models slightly out-
perform Qwen2.5-Math-1.5B/7B-Instruct on both
datasets, while AceMath-72B-Instruct falls short
of Qwen2.5-Math-72B-Instruct’s performance on
AIME 2024. Given that AIME 2024 contains
challenging math problems comparable to pre-
Olympiad levels, these results indicate that there
is room to improve AceMath-Instruct to better ad-
dress varying levels of mathematical difficulty.

B Additional Analysis of AceMath-RM

B.1 Ablation Studies on AceMath-RM

In Table 9, we conduct ablation studies on the
model backbone, data sampling method, and differ-
ent loss functions used to train the reward model.
First, we found that using AceMath-7B-Instruct as
the backbone model for training the model consis-
tently outperforms Qwen2.5-Math-7B-Instruct on
average of 7 datasets, with a similar performance
gap observed at the 72B scale. Secondly, we ob-

served that employing reward score-sorted sam-
pling (§4.1.2) during the data construction process
improves average accuracy compared to random
sampling. This highlights the benefits of filtering
out noisy labels when heuristic evaluation toolkits
produce false negative errors. Lastly, we experi-
mented with different loss functions. We found
that using pairwise Bradley-Terry loss achieves
comparable accuracy to the listwise loss approach,
however requiring 3.7× more training time using
8 H100 GPUs. Additionally, training a classifier
using cross-entropy loss or a regression model us-
ing mean squared error (MSE) loss both resulted
in lower accuracy. A similar performance gap
was also observed at the 72B scale for the cross-
entropy classification approach. Since the data is
constructed for the listwise BT approach, where
each problem consists of six responses, this also
leads to 3.8 times more compute hours on 8 GPUs.

B.2 AceMath-RM Results on rm@k

In Figure 4, we present a comparison between
AceMath-72B-RM and Qwen2.5-Math-RM-72B
on rm@k (k = 8, 16, 32, 64, 128) across the seven
datasets listed in Table 3, using samples generated

4007

Models GSM8K MATH
Minerva

Math
GaoKao
2023 En

Olympiad
Bench

College
Math

MMLU
STEM

Avg.

Backbone: Llama3.1-8B-Base
AceMath-Instruct 91.51 69.06 31.99 59.74 32.00 49.08 67.94 57.33
▷ Only Qwen2.5-Math-72B-Instruct 91.13 69.66 33.82 60.26 30.37 49.86 66.21 57.33
▷ Only GPT-4o-mini 90.83 68.12 36.03 60.26 31.70 48.05 66.50 57.36
▷ Skipping general SFT 91.81 68.70 31.99 59.48 31.11 48.40 62.76 56.32

Backbone: Qwen2.5-7B-Base
AceMath-Instruct 93.56 77.10 43.38 65.19 37.78 54.90 77.41 64.19
▷ Only Qwen2.5-Math-72B-Instruct 92.80 76.96 41.91 63.64 38.07 54.93 75.64 63.42
▷ Only GPT-4o-mini 91.66 74.14 43.75 64.42 39.26 52.27 76.03 63.08
▷ Math SFT with all math samples 93.40 77.12 42.28 65.19 37.78 54.05 75.33 63.59
▷ Math SFT with only cross-checked samples 92.72 76.76 41.54 65.97 36.74 54.33 76.78 63.55
▷ Skipping general SFT 93.03 77.52 40.44 62.86 37.19 54.58 75.77 63.06

Backbone: Qwen2.5-Math-72B-Base
AceMath-Instruct 96.44 86.10 56.99 72.21 48.44 57.24 85.44 71.84
▷ Math SFT with all math samples 96.29 86.06 55.15 70.13 46.67 57.49 84.96 70.96
▷ Skipping general SFT 95.75 85.52 56.25 71.43 45.33 56.71 84.42 70.77

Table 7: Ablation Studies on training data and strategies across various backbone models for training our AceMath-
Instruct models. The ablation studies can be categorized into three parts: 1) evaluating the effectiveness of using
either GPT-4o-mini responses or Qwen2.5-Math-72B-Instruct responses individually; 2) analyzing the effectiveness
of different math-specific samples for math SFT; and 3) assessing the impact of conducting general SFT prior to
math SFT.

Models AIME 2024 AMC 2023

Llama-3.1-405B-Instruct 5/30 20/40
Claude 3.5 Sonnet (2024-1022) 4/30 21/40
OpenMath2-Llama3.1-8B 3/30 16/40
OpenMath2-Llama3.1-70B 4/30 20/40
Qwen2.5-Math-1.5B-Instruct 3/30 24/40
Qwen2.5-Math-7B-Instruct 5/30 25/40
Qwen2.5-Math-72B-Instruct 9/30 28/40

AceMath-1.5B-Instruct 4/30 25/40
AceMath-7B-Instruct 6/30 26/40
AceMath-72B-Instruct 6/30 28/40

Table 8: Greedy decoding results of AceMath-Instruct
on AIME 2024 and AMC 2023.

by AceMath-7B-Instruct. We report the average
accuracy across these seven datasets, each with 10
different random seeds.

First, we find that using AceMath-72B-RM to
score the outputs from AceMath-7B-Instruct con-
sistently improves the average accuracy, increasing
from 72.6 to 74.4 as k rises from 8 to 128.

Second, we observe that AceMath-RM consis-
tently outperforms Qwen2.5-Math-RM in scoring
outputs generated from AceMath-7B-Instruct, and
this improvement becomes larger as k increases.

Furthermore, we compare the performance of
AceMath-72B-RM paired with AceMath-Instruct
to Qwen2.5-Math-RM-72B paired with Qwen2.5-
Math-Instruct. As shown in Figure 1, the AceMath
combination consistently outperforms its Qwen2.5
counterpart in terms of rm@8, on average, for both
the 7B and 72B models. Remarkably, we find that
the our AceMath-7B model even outperforms the

Model AceMath-RewardBench

AceMath-7B-RM 67.41
▷ Backbone: Qwen2.5-Math-7B-Instruct 66.93
▷ Data: Random sampling 67.07
▷ Loss: Pairwise BT 67.33
▷ Loss: Cross-entropy Classification 66.93
▷ Loss: MSE Regression 66.79

AceMath-72B-RM 69.53
▷ Backbone: Qwen2.5-Math-72B-Instruct 69.09
▷ Loss: Cross-entropy Classification 68.66

Table 9: Ablation study of AceMath-7/72B-RM on
AceMath-RewardBench (Backbone: AceMath-7/72B-
Instruct; Data: reward score-sorted sampling; Loss: list-
wise Bradley-Terry.

Qwen2.5-Math-72B in rm@8, showing the poten-
tial of a smaller model when paired with a carefully
designed reward model.

B.3 Learning curves of reward model training
for AceMath-RM

In Figure 5, we aim to understand how reward mod-
eling accuracy improves as we increase model size
and use additional data. We find distinct patterns in
the interplay between model size and data scaling.
In general on simpler dataset such as GSM8K, all
model sizes (ranging from 0.5B to 32B parameters)
exhibit steady improvements as training proceeds,
with larger models achieving higher accuracy. In
contrast, on the more challenging datasets, which
requires college-level knowledge, such as Minerva
Math, MMLU STEM, and OlympiadBench, model
size emerges as a critical factor: smaller models
(e.g., 0.5B, 1.5B) show negligible improvement de-

4008

8 16 32 64 128
Number of Samples

72.0

72.5

73.0

73.5

74.0

74.5
RM

@
K

(A
cc

ur
ac

y)

AceMath-72B-RM

Qwen2.5-Math-RM-72B

Figure 4: rm@k evaluation on average accuracy of 7
datasets for AceMath-7B-Instruct.

spite increased data, whereas larger models (e.g.,
14B, 32B) achieve better accuracy gains. These
results suggest that increasing model size provides
the greatest benefit, whereas the advantages of in-
creasing data appear less pronounced. Our exper-
iments use Qwen2.5-Instruct (Yang et al., 2024a)
model family. instead of Qwen2.5-Math-Instruct,
as it provides a more comprehensive set of models
with different sizes. All models are trained for one
epoch only.

C Related Work

C.1 Continued Pre-training on Math Corpus
Many studies have investigated the integration
of large-scale mathematical data for pre-training
LLMs to enhance their math capabilities (Shen
et al., 2021; Wang et al., 2023; Zhang et al., 2024a;
Ying et al., 2024; Akter et al., 2024; Hui et al.,
2024). Additionally, some research has focused
on developing math-specialized LLMs by contin-
uing the pre-training of a general-purpose LLM
with an extensive math corpus, sourced from math-
related web texts, encyclopedias, exam questions,
and synthetic mathematical data (Shao et al., 2024;
Yang et al., 2024b). These works demonstrate that
this additional math-focused pre-training signifi-
cantly enhances the model’s ability to solve math
problems, benefiting not only the pre-trained base
model but also subsequent instruct models after
post-training.

C.2 Supervised Fine-Tuning
Numerous supervised fine-tuning (SFT) datasets
have been developed to enhance pretrained LLMs

with versatile capability, such as instruction follow-
ing (Chiang et al., 2023; The-Vicuna-Team, 2023;
Lian et al., 2023; Mukherjee et al., 2023; Teknium,
2023; Peng et al., 2023; Yuan et al., 2024), cod-
ing (Glaive-AI, 2023; Wei et al., 2024; Luo et al.,
2023), and mathematical problem-solving (Yue
et al., 2024a,b; Yu et al., 2023; Mitra et al., 2024;
Li et al., 2024b). Due to the high cost of human-
annotated data, synthetic data generation has be-
come an essential component of SFT data construc-
tion, including both prompt and response augmen-
tation (Yu et al., 2023; Xu et al., 2024; Luo et al.,
2023; Li et al., 2024a; Toshniwal et al., 2024).

Taking this further, math-instructed models have
been developed to advance LLM performance in
the mathematics domain (Shao et al., 2024; Tosh-
niwal et al., 2024; Yang et al., 2024b) by utiliz-
ing math-specific pretrained models as backbones
and vast amounts of synthetic post-training data
tailored to mathematics. For example, OpenMath-
Instruct (Toshniwal et al., 2024) shows that math-
specialized SFT with extensive synthetic data on
the Llama3.1 base model significantly outperforms
the corresponding Llama3.1 instruct model on
mathematical benchmarks. In addition, Qwen2.5-
Math (Yang et al., 2024b) demonstrates that a 7B
math-instruct model can achieve math reasoning
capabilities comparable to GPT-4o. Reinforcement
learning (RL) has recently emerged as a pivotal
technique in enhancing the math reasoning perfor-
mance, which allows models to iteratively refine
their outputs based on the correctness of generated
solutions (Team et al., 2025; Guo et al., 2025).

C.3 Reward Modeling
Training reward models for mathematical verifica-
tion often involves discriminative approaches, such
as binary classification to distinguish correct so-
lutions from incorrect ones (Cobbe et al., 2021).
Alternatively, preference-based methods are em-
ployed, leveraging techniques like the Bradley-
Terry loss (Bradley and Terry, 1952; Ouyang et al.,
2022) or regression loss to rank solutions, as
demonstrated in models like HelpSteer (Wang et al.,
2024e,d). In contrast, generative reward mod-
els, such as LLM-as-a-judge (Zheng et al., 2023)
prompt LLMs to act as verifiers using predefined
rubrics and grading templates (Bai et al., 2022),
GenRM (Zhang et al., 2024c) leverages Chain-of-
Thought reasoning (Wei et al., 2022), and Critic-
RM (Yu et al., 2024) uses critic before predicting
a reward. Our work on outcome reward model

4009

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

94.5

95.0

95.5

96.0

96.5

97.0

RM
@

8
Ac

cu
ra

cy
GSM8K

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

79

80

81

82

83

84

85

86

87

RM
@

8
Ac

cu
ra

cy

Math 500

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

36

38

40

42

44

RM
@

8
Ac

cu
ra

cy

Minerva Math

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

67

68

69

70

71

72

73

74

RM
@

8
Ac

cu
ra

cy

Gaokao2023EN

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

40

41

42

43

44

45

46

47

48

RM
@

8
Ac

cu
ra

cy

Olympiad Bench

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

43.0

43.5

44.0

44.5

45.0

45.5

46.0

46.5
RM

@
8

Ac
cu

ra
cy

College Math

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

76

78

80

82

84

86

RM
@

8
Ac

cu
ra

cy

MMLU STEM

0.0 0.2 0.4 0.6 0.8 1.0
Training Progress

63

64

65

66

67

68

69

RM
@

8
Ac

cu
ra

cy

Average

0.5b

1.5b

3b

7b

14b

32b

M
od

el
 S

ize
s

0.5b

1.5b

3b

7b

14b

32b

M
od

el
 S

ize
s

Figure 5: Learning curves for reward model training. All models are trained from Qwen2.5-Instruct family.

mainly focuses on robustness against style bi-
ases (Liu et al., 2024b) by sampling diverse model
responses for training. Beyond outcome-based re-
ward models, process reward models (PRMs) pro-
vide step-by-step evaluations of model responses
(Uesato et al., 2022; Lightman et al., 2023). For ex-
ample, Math-Shepherd (Wang et al., 2024b) intro-
duces an automated sampling method to construct
large-scale process supervision data for training,
following by further developments in step-wise su-
pervision labeling (Dong et al., 2024), including
PAV (Setlur et al., 2024), OmegaPRM (Luo et al.,
2024), ER-PRM (Zhang et al., 2024b), AutoPSV
(Lu et al., 2024) and ProcessBench (Zheng et al.,
2024).

D Details of General and Math SFT Data
and Training Strategies

D.1 Synthetic Prompt Generation for Math
SFT

We generate additional synthetic prompts to en-
rich the diversity of our math prompt collection.
This process involves two key steps: 1) leverag-
ing diverse seed prompts to inspire a powerful in-
struct model to generate entirely new, potentially
more challenging or uncommon prompts, and 2)
ensuring that the generated prompts are solvable,
as unsolvable prompts can lead to incorrect an-
swers, which may degrade performance when used
for training. Therefore, we select NuminaMath as
our seed prompt source due to its broad coverage
of math questions across various difficulty levels.
Then, we apply two strategies inspired by Xu et al.
(2024): in-breadth evolution for generating more

rare prompts and in-depth evolution for generat-
ing more challenging ones. For synthetic prompt
generation, we utilize GPT-4o-mini (2024-0718).

It is crucial to filter out low-quality synthetic
prompts. In particular, we find that one type of in-
depth evolution, which involves adding constraints
to existing prompts to generate new ones, can some-
times produce unsolvable or overly challenging
questions. This, in turn, may result in incorrect
answers being included in the training data, ulti-
mately degrading model performance (see ablation
studies in §3.6.3). As a result, we exclude this type
of prompt augmentation. Moreover, we filter out
the synthetic prompts exceeding 300 words, as ex-
cessively lengthy math-related prompts are often
problematic or unsolvable. Finally, we refine the
synthetic math prompts to approximately one mil-
lion by filtering out 500K, ensuring a more curated
dataset for training. As a result, we have a total
collection of over 2.3 million math prompts (1.3M
initial prompts + 1M synthetic prompts).

In the next parts, we describe the prompt we pro-
vided to GPT-4o-mini (2024-0718) for generating
synthetic prompts tailored to math SFT. We uti-
lize the in-breath evolution and in-depth evolution
prompts inspired from Xu et al. (2024).

D.1.1 In-Breath Evolution
We use the following prompt to generate more di-
verse math questions.

You are a good math question creator.

Your objective is to draw inspiration
from the #Given MATH Question# to create

4010

a brand new math question. This new
math question should be distinctly
different from the #Given MATH Question#
and be even more unique.

The length and difficulty level of the #
Created MATH Question# should be similar
to those of the #Given MATH Question#.

The #Created MATH Question# must be
solvable and understandable by humans.

#Given MATH Question#:
{given_math_question}

#Created MATH Question#:

D.1.2 In-Depth Evolution
We use the following prompt to generate more chal-
lenging math questions.

You are a good math question creator.

Your objective is to draw inspiration
from the #Given MATH Question# to create
a brand new math question. This new

math question should be more complex and
challenging than the #Given MATH

Question#.

The #Created MATH Question# must be
solvable and understandable by humans.

#Given MATH Question#:
{given_math_question}

#Created MATH Question#:

Moreover, we find that the following prompt
that requires to add constraints to the given prompt
could result in unsolvable or overly challenging
math questions. This, in turn, can lead to incor-
rect answers being included in the training data,
ultimately degrading model performance.

You are a good math question creator.

Your objective is to rewrite the #Given
MATH Question# into a brand new but more
complex version. You can complicate the
#Given MATH Question# by introducing

additional constraints and requirements.

The #Created MATH Question# must be
solvable and understandable by humans.

#Given MATH Question#:
{given_math_question}

#Created MATH Question#:

D.2 Response Construction for Math Prompts

We utilize Qwen2.5-Math-72B-Instruct for gener-
ating responses to math prompts, given its remark-
able performance across various math benchmarks.
We add the instruction, “Please reason step by step,
and put your final answer within \\boxed{}.” to the
prompt to ensures the responses are presented in a
clear, step-by-step format with a consistent style.

We generate a single response for each of the
over 2.3M prompts and ensure consistency in the
response format by selecting only those responses
(along with their prompts) that adhere to a uniform
structure (e.g., starting the response with a sum-
mary of the question and having the final answer
within \\boxed). Additionally, responses exceeding
2,500 words are excluded, along with their prompts,
as excessive response length often indicates a ver-
bose or incorrect solution, or an unfinished re-
sponse. Furthermore, while Qwen2.5-Math-72B-
Instruct demonstrates strong capabilities, it occa-
sionally produces repetitive strings (e.g., repeating
the same text until reaching the maximum output
length). We detect and remove such patterns, along
with their corresponding prompts. Although these
cases represent only a small fraction of the dataset,
they can negatively impact the final performance
and are carefully filtered during the curation pro-
cess. After filtering, we obtain a total of around 2.3
million math SFT samples (1.83 billion tokens), of
which around 1.2 million are utilized in the general
SFT.

Qwen2.5-Math-72B-Instruct can still generate
incorrect solutions which may negatively impact
model training. To mitigate this, we focus on identi-
fying samples with accurate final answers to create
a higher-quality dataset for training.

Our approach involves cross-checking answers
generated by different models and treating solu-
tions with consistent outcomes as highly likely
to be correct. Specifically, we leverage another
strong model, GPT-4o-mini (2024-0718), to gener-
ate responses. Since GPT-4o-mini is comparatively
weaker in mathematics than Qwen2.5-Math-72B-

4011

Instruct, we generate two responses per prompt
and consider answers consistent across both re-
sponses as potentially correct. Finally, we compare
these answers with those from Qwen2.5-Math-72B-
Instruct, and select matched final answers as high-
quality solutions for training, which results in a
total size of 800K math SFT samples.

D.3 Data Decontamination

Data decontamination is essential in SFT to en-
sure unbiased evaluation and to prevent models
from memorizing test samples. Following Yang
et al. (2024b), we conduct data decontamination
for math SFT prompts. The process begins with
text normalization and the removal of irrelevant
punctuation for each math prompt. Next, we filter
out the prompt that has a 13-gram overlap with
the test data and the longest common subsequence
exceeding 60% of its length. For the rest of non-
math SFT prompts, we simply filter out those with
a 13-gram overlap with test samples.

D.4 General SFT Training Strategy

We organize the constructed general SFT data
(around three million samples) to support this two-
stage training. For stage-1, the majority of the cod-
ing and math samples are selected, leading to a total
of around 2 million SFT samples. Stage-2 training
utilizes the remaining coding and math SFT sam-
ples, a subset of the stage-1 data, along with all
other general SFT samples, resulting in a total of
around 1.6 million samples. For math SFT samples
used in stage-2 training, we select only the cross-
checked high-quality data where the final answers
provided by GPT-4o-mini and Qwen2.5-Math-72B-
Instruct align, as detailed in §3.2.2. This strategy
ensures that stage-2 training integrates additional,
diverse, and high-quality coding and math SFT
samples, thereby fostering a more robust model.

D.5 SFT Training Hyperparameters

All SFT models are trained using the AdamW op-
timizer (Kingma, 2014; Loshchilov, 2017). We
use a learning rate of 5e-6 for the general SFT and
3e-6 for the math SFT. A global batch size of 128
is used across all model sizes, except for the 72B
model, where it is increased to 256. We conduct
one epoch of training with a maximum sequence
length of 4096 for both general SFT and math SFT.

E Chain-of-Thought Reasoning Examples

Below, we present several Chain-of-Thought
reasoning examples generated by AceMath-72B-
Instruct.

SAMPLE 1

Question:
For each positive integer N , let P (N) denote
the product of the digits of N . For example,
P (8) = 8, P (451) = 20, and P (2023) = 0.
Compute the least positive integer n such that
P (n+ 23) = P (n) + 23.

AceMath-72B-Instruct:
To find the least positive integer n such that
P (n + 23) = P (n) + 23, we need to analyze
the properties of the function P , which gives the
product of the digits of a number. Let’s start by
considering the possible values of n and their
corresponding values of P (n) and P (n+ 23).

First, note that if n has a digit of 0, then P (n) =
0. In this case, P (n + 23) = 23, which means
n+23 must have digits whose product is 23. Since
23 is a prime number, the only way to achieve this is
if n+23 is either 23 or a number with 2 and 3 as its
only digits. However, n must be a positive integer,
so n+23 cannot be 23. Therefore, n+23 must be
a number like 230, 203, 320, 302, etc. The smallest
such number is 230, so n = 230−23 = 207. Let’s
verify this solution:

- P (207) = 2 · 0 · 7 = 0

- P (230) = 2 · 3 · 0 = 0

This does not satisfy the equation P (n+ 23) =
P (n) + 23. Therefore, we need to consider other
possibilities. Next, let’s consider the case where n
does not have a digit of 0. We need to find n such
that the product of the digits of n+ 23 is 23 more
than the product of the digits of n. Let’s try some
small values of n:

- If n = 1, then P (1) = 1 and P (24) = 2·4 = 8.
8 ̸= 1 + 23.

- If n = 2, then P (2) = 2 and P (25) = 2 · 5 =
10. 10 ̸= 2 + 23.

- If n = 3, then P (3) = 3 and P (26) = 2 · 6 =
12. 12 ̸= 3 + 23.

- If n = 4, then P (4) = 4 and P (27) = 2 · 7 =
14. 14 ̸= 4 + 23.

- If n = 5, then P (5) = 5 and P (28) = 2 · 8 =
16. 16 ̸= 5 + 23.

- If n = 6, then P (6) = 6 and P (29) = 2 · 9 =

4012

18. 18 ̸= 6 + 23.
- If n = 7, then P (7) = 7 and P (30) = 3·0 = 0.

0 ̸= 7 + 23.
- If n = 8, then P (8) = 8 and P (31) = 3·1 = 3.

3 ̸= 8 + 23.
- If n = 9, then P (9) = 9 and P (32) = 3·2 = 6.

6 ̸= 9 + 23.
- If n = 10, then P (10) = 1 · 0 = 0 and

P (33) = 3 · 3 = 9. 9 ̸= 0 + 23.
- If n = 11, then P (11) = 1 · 1 = 1 and

P (34) = 3 · 4 = 12. 12 ̸= 1 + 23.
- If n = 12, then P (12) = 1 · 2 = 2 and

P (35) = 3 · 5 = 15. 15 ̸= 2 + 23.
- If n = 13, then P (13) = 1 · 3 = 3 and

P (36) = 3 · 6 = 18. 18 ̸= 3 + 23.
- If n = 14, then P (14) = 1 · 4 = 4 and

P (37) = 3 · 7 = 21. 21 = 4 + 17.
- If n = 15, then P (15) = 1 · 5 = 5 and

P (38) = 3 · 8 = 24. 24 = 5 + 19.
- If n = 16, then P (16) = 1 · 6 = 6 and

P (39) = 3 · 9 = 27. 27 = 6 + 21.
- If n = 17, then P (17) = 1 · 7 = 7 and

P (40) = 4 · 0 = 0. 0 ̸= 7 + 23.
- If n = 18, then P (18) = 1 · 8 = 8 and

P (41) = 4 · 1 = 4. 4 ̸= 8 + 23.
- If n = 19, then P (19) = 1 · 9 = 9 and

P (42) = 4 · 2 = 8. 8 ̸= 9 + 23.
- If n = 20, then P (20) = 2 · 0 = 0 and

P (43) = 4 · 3 = 12. 12 ̸= 0 + 23.
- If n = 21, then P (21) = 2 · 1 = 2 and

P (44) = 4 · 4 = 16. 16 ̸= 2 + 23.
- If n = 22, then P (22) = 2 · 2 = 4 and

P (45) = 4 · 5 = 20. 20 = 4 + 16.
- If n = 23, then P (23) = 2 · 3 = 6 and

P (46) = 4 · 6 = 24. 24 = 6 + 18.
- If n = 24, then P (24) = 2 · 4 = 8 and

P (47) = 4 · 7 = 28. 28 = 8 + 20.
- If n = 25, then P (25) = 2 · 5 = 10 and

P (48) = 4 · 8 = 32. 32 = 10 + 22.
- If n = 26, then P (26) = 2 · 6 = 12 and

P (49) = 4 · 9 = 36. 36 = 12 + 24.
- If n = 27, then P (27) = 2 · 7 = 14 and

P (50) = 5 · 0 = 0. 0 ̸= 14 + 23.
- If n = 28, then P (28) = 2 · 8 = 16 and

P (51) = 5 · 1 = 5. 5 ̸= 16 + 23.
- If n = 29, then P (29) = 2 · 9 = 18 and

P (52) = 5 · 2 = 10. 10 ̸= 18 + 23.
- If n = 30, then P (30) = 3 · 0 = 0 and

P (53) = 5 · 3 = 15. 15 ̸= 0 + 23.
- If n = 31, then P (31) = 3 · 1 = 3 and

P (54) = 5 · 4 = 20. 20 = 3 + 17.

- If n = 32, then P (32) = 3 · 2 = 6 and
P (55) = 5 · 5 = 25. 25 = 6 + 19.

- If n = 33, then P (33) = 3 · 3 = 9 and
P (56) = 5 · 6 = 30. 30 = 9 + 21.

- If n = 34, then P (34) = 3 · 4 = 12 and
P (57) = 5 · 7 = 35. 35 = 12 + 23.

Thus, the least positive integer n such that
P (n+ 23) = P (n) + 23 is 34 .

SAMPLE 2

Question:
Consider the function f(x) = x2 − 2x. Determine
all real numbers x that satisfy the equation
f(f(f(x))) = 3.

AceMath-72B-Instruct:
To solve the equation f(f(f(x))) = 3 where
f(x) = x2 − 2x, we need to determine the values
of x that satisfy this equation step by step.

First, let’s find the values of x that satisfy
f(x) = 3. We start with the equation:

x2 − 2x = 3

Rearranging terms, we get:

x2 − 2x− 3 = 0

This quadratic equation can be factored as:

(x− 3)(x+ 1) = 0

So, the solutions are:

x = 3 or x = −1

This means that f(x) = 3 if and only if x = 3 or
x = −1.

Next, we need to find the values of x such that
f(f(x)) = 3. From the previous step, we know
that f(f(x)) = 3 if and only if f(x) = 3 or
f(x) = −1.

We already know the solutions to f(x) = 3,
which are x = 3 and x = −1. Now, let’s find the
solutions to f(x) = −1:

x2 − 2x = −1

Rearranging terms, we get:

x2 − 2x+ 1 = 0

This quadratic equation can be factored as:

(x− 1)2 = 0

4013

So, the solution is:

x = 1

Therefore, the solutions to f(f(x)) = 3 are x = 3,
x = −1, and x = 1.

Finally, we need to find the values of x such that
f(f(f(x))) = 3. From the previous step, we know
that f(f(f(x))) = 3 if and only if f(f(x)) = 3 or
f(f(x)) = −1.

We already know the solutions to f(f(x)) = 3,
which are x = 3, x = −1, and x = 1. Now, let’s
find the solutions to f(f(x)) = −1:

f(f(x)) = −1

From the previous step, we know that f(x) = 3 or
f(x) = −1 or f(x) = 1 will satisfy f(f(x)) = 3.
We already know the solutions to f(x) = 3, which
are x = 3 and x = −1. We also know the solution
to f(x) = −1, which is x = 1. Now, let’s find the
solutions to f(x) = 1:

x2 − 2x = 1

Rearranging terms, we get:

x2 − 2x− 1 = 0

This quadratic equation can be solved using the
quadratic formula x = −b±

√
b2−4ac
2a , where a = 1,

b = −2, and c = −1:

x =
2±

√
4 + 4

2
=

2±
√
8

2
=

2± 2
√
2

2
= 1±

√
2

So, the solutions are:

x = 1 +
√
2 or x = 1−

√
2

Therefore, the solutions to f(f(f(x))) = 3 are
x = 3, x = −1, x = 1, x = 1 +

√
2, and x =

1−
√
2.

The final answer is:

3,−1, 1, 1 +
√
2, 1−

√
2

SAMPLE 3

Question:
Alice chooses a set A of positive integers. Then
Bob lists all finite nonempty sets B of positive
integers with the property that the maximum
element of B belongs to A. Bob’s list has 2024

sets. Find the sum of the elements of A.

AceMath-72B-Instruct:
To solve the problem, we need to determine the
set A such that the number of finite nonempty
sets B of positive integers, where the maximum
element of B belongs to A, is 2024. Let’s
denote the elements of A as a1, a2, . . . , an where
a1 < a2 < · · · < an.

For each element ai in A, the sets B that have
ai as their maximum element are all subsets of
{1, 2, . . . , ai} that include ai. The number of such
subsets is 2ai−1 because we can either include or
exclude each of the ai−1 elements 1, 2, . . . , ai−1.

Therefore, the total number of sets B is the sum
of 2ai−1 for all i from 1 to n:

2a1−1 + 2a2−1 + · · ·+ 2an−1 = 2024.

We need to find a set A such that the above
sum equals 2024. Notice that the sum is a sum
of distinct powers of 2, which means it is the bi-
nary representation of 2024. Let’s convert 2024 to
binary:

202410 = 111111010002.

This binary number can be expanded as:

2024 = 210 + 29 + 28 + 27 + 26 + 25 + 23.

Thus, the corresponding set A is:

A = {11, 10, 9, 8, 7, 6, 4}.

The sum of the elements of A is:

11 + 10 + 9 + 8 + 7 + 6 + 4 = 55.

Therefore, the sum of the elements of A is 55 .

SAMPLE 4

Question:
How many ’r’ in ’strawberry’?

AceMath-72B-Instruct:
To determine how many ’r’ letters are in the word
"strawberry," we can follow these steps:

1. Write down the word: "strawberry."
2. Identify each ’r’ in the word.
3. Count the number of ’r’s.
Let’s go through the word "strawberry" step by

step:

4014

- The first letter is ’s’.
- The second letter is ’t’.
- The third letter is ’r’.
- The fourth letter is ’a’.
- The fifth letter is ’w’.
- The sixth letter is ’b’.
- The seventh letter is ’e’.
- The eighth letter is ’r’.
- The ninth letter is ’r’.
- The tenth letter is ’y’.
Now, let’s count the ’r’s:
- There is one ’r’ in the third position.
- There is one ’r’ in the eighth position.
- There is one ’r’ in the ninth position.
So, the total number of ’r’s in the word "straw-

berry" is 1 + 1 + 1 = 3.
Therefore, the number of ’r’ in ’strawberry’ is 3 .

4015

