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Abstract

When confronting long document informa-
tion retrieval for Query-Focused Summariza-
tion(QFS), Traditional Retrieval-Augmented
Generation(RAG) frameworks struggle to re-
trieve all relevant chunks, and the chunking and
retrieve strategies of existing frameworks may
disrupt the connections between chunks and the
integrity of the information. To address these
issues, we propose TreeRAG, which employs
Tree-Chunking for chunking and embedding
in a tree-like structure , coupled with "root-
to-leaves" and "leaf-to-roots" retrieve strategy
named Bidirectional Traversal Retrieval. This
approach effectively preserves the hierarchi-
cal structure among chunks and significantly
enhances the ability to retrieve while mini-
mizing noise inference. Our experimental re-
sults on the Finance, Law, and Medical sub-
sets of the Dragonball dataset demonstrate that
TreeRAG achieves significant enhancements in
both recall quality and precision compared to
traditional and popular existing methods and
achieves better performance to corresponding
question-answering tasks, marking a new break-
through in long document knowledge retrieval.

1 Introduction

In the domain of Natural Language Process-
ing(NLP). RAG, initially proposed by Lewis et al.
(2021), has emerged as a pivotal strategy for en-
hancing the text generation capabilities of Large
Language Models(LLMs) by integrating informa-
tion from external knowledge bases, leading to out-
standing performance across a variety of NLP tasks
(Ji et al., 2023; Izacard and Grave, 2021; Borgeaud
et al., 2022). This technique incorporates special-
ized books or documents related to particular do-
main into the knowledge base, thereby enhancing
domain-specific expertise and accuracy of model
in specific fields.

*Corresponding author.

Across various general domains, with the in-
crease of knowledge base content due to iteration or
the emergence of large-scale documents as knowl-
edge base content, structured or semi-structured
long documents have gradually become an vital car-
rier or knowledge storage and information retrieval.
However, traditional RAG frameworks struggle
with effectively chunking documents to ensure the
integrity of information, especially when dealing
with QFS (Dang, 2006) and how to effectively re-
trieve all relevant chunks. In summary, when using
long documents as knowledge bases in general do-
mains, several major issues arise:(1)Naive Chunk-
ing methods are highly destructive to chunks (Dong
et al., 2023); (2)Chunks become difficult to retrieve
once their integrity of information is compromised
(Dong et al., 2023); (3)The association between rel-
evant chunks is disrupted due to suboptimal vector
distances, leading to difficulties in finding all the
correct chunks for QFS.

In recent years, advanced retrieval frameworks
have emerged one after another. For instance, Late-
Chunking (Günther et al., 2024) has proposed a
"embedding then chunking" approach that cleverly
generates embeddings for each text chunk that con-
sider the entire text. Meta-Chunking (Zhao et al.,
2024), on the other hand, introduces the concepts of
Margin Sampling Chunking and Perplexity Chunk-
ing to the segmentation of text chunks, making the
length of the chunks more flexible and coherent.
However, the aforementioned frameworks fail to ef-
fectively exert their performance when confronted
with long documents. To address this situation,
Sarthi et al. (2024) proposed the RAPTOR frame-
works, which treats text chunks as nodes and con-
structs a tree structure from the bottom up using
soft clustering to strengthen the connections be-
tween different text chunks within long documents.
Nevertheless, when the subject words in the text
chunks are ambiguous, the bottom-up summariza-
tion may lead to erroneous clustering issues due
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Figure 1: Framework of TreeRAG: In this framework figure, A “knowledge point” refers to the chunk that has
been segmented.

to the lack of clear subject. GraphRAG designed
by Edge et al. (2024) enhances the association be-
tween information by constructing a graph struc-
ture of chunks, integrating the retrieved entities
with thier related content as context input to the
LLM. However, overly lengthy content may intro-
duce excessive noise, causing the LLM to "lost in
the middle (Liu et al., 2023; Yan et al., 2024; Shi
et al., 2023)".

To address the aforementioned issues, in this pa-
per, we propose a novel RAG framework called
TreeRAG, which comprises two components: the
chunking method dubbed Tree-Chunking and the
retrieve strategy termed Bidirectional Traversal Re-
trieval.

The Tree-Chunking method employs a LLM
to process the original documents, analyzing the
general-to-specific structure within the documents
in a tree-like fashion. While maintaining semantic
coherence, this structure is used to hierarchically
categorize the entire document, adding subtitles
and index numbers. A corresponding index table
dictionary is also generated for subsequent vec-
tor storage and integration with the Bidirectional
Traversal Retrieval. When performing vector em-
bedding of chunks, the original text chunk obtains
the title of its immediate higher level based on its
unique index number and concatenate it as a prefix.
This method has been proven to effectively enhance

semantic similarity (Liu et al., 2021; Karpukhin
et al., 2020; Thakur et al., 2021). The rewritten text
chunk is then used as the chunk embedding, with
the original text chunk and index number serving
as the metadata.

Before utilizing the Bidirectional Traversal Re-
trieval, we first employ a LLM with strong com-
prehension capabilities, such as GPT-4o (OpenAI
et al., 2024), Qwen-max (Bai et al., 2023), Gemini
(Team et al., 2024),GLM4 (Du et al., 2022) and so
on, to perform a "step-back" (Zheng et al., 2024)
analysis on the user’s input query. It only needs
to identify whether the query contains intents like
summarization or concept enumeration, and based
on this, decide whether to adopt this specialized
retrieve strategy. Within this procession, we extract
the index numbers of the TopK retrieved chunks
then use the hierarchical positions in the tree-like
index table to extract the content of their peer leaf
nodes or all their subordinate leaf nodes. Finally,
we rerank all the chunks to serve as the final re-
trieved results.

To demonstrate the reliability and underlying
principles of Tree-Chunking and the effectiveness
of the TreeRAG framework, we conduct ablation
and comparative experiments on the Dragonball
dataset (Zhu et al., 2024). The results show that
Tree-Chunking effectively preserves information’s
integrity and connectivity in long documents, while
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Figure 2: Chunking Example.

the TreeRAG framework achieves good recall and
generation performance with minimal noise.

Main contributions of this paper are as follows:
(1)We propose a novel text chunking method

called Tree-Chunking, which chunks and stores
text in a tree-like structure, thereby reducing the
information disruption caused by chunking, and
enhancing the retrieval effectiveness by completing
hierarchical prefixes.

(2)We design a retrieve strategy named Bidirec-
tional Traversal Retrieval, which adopts the phi-
losophy of "from root to leaves" and "from leaf
to roots" to comprehensively identify chunks in
search results, addressing to a certain extent the
challenge of relevant chunks being distant in vector
space.

(3)Experiments conducted on the Finance, Med-
ical and Law subsets of Dragonball dataset demon-
strate that TreeRAG, compared to other frame-
works, has better recall quality, achieving a good
recall rate while minimizing the introduction of
noise.

2 Related Work

As the number of parameters and the volume
of training data for LLM increase, these mod-
els have demonstrated unprecedented capabilities
in handing complex language understanding and
generation tasks. However, for domain-specific
knowledge-intensive tasks such as open-domain
question answering and fact verification, LLM still
face challenges in terms of professionalism and
accuracy. Consequently, RAG has emerged, com-
bining the generative capabilities of large-scale pre-
trained models with the retrieval capabilities to re-
trieve relevant information from a vast array of doc-
uments to assist in generation tasks.Current RAG
research primarily focuses on three core stages

(Gao et al., 2024) :“Retrieval,” “Generation,” and
“Augmentation.” During the retrieval stage, orig-
inal documents are processed and chunked into
sizes, then stored in vector databases through em-
bedding models, and chunks are obtained by cal-
culating the similarity between users’ queries and
document chunks in the knowledge base. In the
generation stage, the retrieved chunks are passed
to the model as contexts to assist in generating re-
sponses. The augmentation stage involves optimiz-
ing the retrieval workflow to address more complex
problems. This paper focuses on the "Retrieval"
and "Augmentation" stages.

Langchain1 (Chase, 2024) offers various conve-
nient traditional chunking strategies, such as Recur-
siveCharacterTextSplitter and CharacterTextSplit-
ter. While these text splitters have their applicabil-
ity in certain scenarios, they are no longer effec-
tive in meeting the increasing demand for precise
knowledge recall. Particularly in long documents,
a rough chunking method implies more informa-
tion loss, more noise and poorer retrieval outcomes
(Xu et al., 2023).

To address the aforementioned challenges, ad-
vanced frameworks have emerged. Late-Chunking
employs chunking on documents after embedding
and before mean pooling, allowing the resulting
chunks to capture complete contextual information.
Meta-Chunking introduces two chunking meth-
ods: one that identifies potential splitting points
through perplexity and another that involves LLMs
in sentence chunking decisions. The RAPTOR
framework uses Uniform Manifold Approxima-
tion and Projection(UMAP) (McInnes et al., 2020)
and Gaussian clustering (Bishop, 2006) to generate
nodes from the bottom up through summary gen-
eration, thereby enhancing retrieval effectiveness.
GraphRAG optimizes final generation quality by
integrating data into graph structures.

However, when facing long document knowl-
edge bases, the challenge of effective retrieval re-
mains. This paper argues that greater focus should
be places on the connectivity between chunks and
the preservation of hierarchical contextual infor-
mation. Therefore, we propose a RAG framework
called TreeRAG which consists of the chunking
method named Tree-Chunking and the retrieve
strategy termed Bidirectional Traversal Retrieval
, which is designed to address these issues and
enhance the performance of RAG.

1https://www.langchain.com/
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Figure 3: Prefix Add.

3 TreeRAG

In this section, we will elaborate on the chunking
method of Tree-Chunking and the construction of
the index table, that is, how it chunks the text and
enhances its embedding form for better retrieval
effectiveness. Bidirectional Traversal Retrieval,
based on Tree-Chunking, incorporates the use of
LLM for intent identification of users’ queries and
the use of a tree-shaped index table for node com-
pletion. The framework of TreeRAG is shown in
Figure 1.

3.1 Tree-Chunking
Tree-Chunking focuses on the "Retrieval" and
"Augmentation" stages of RAG, consisting of two
major components: the chunking method and the
index table. These two components work in tan-
dem to generate text chunks with more distinct and
complete semantic features and stronger associa-
tions, as well as to create a tree-shaped index table
for subsequent use in the Bidirectional Traversal
Retrieval.

3.1.1 Chunking Method & Index
Construction

Traditional chunking methods and text embedding
often chunk the text based on a fixed size, and
after adding a certain context window, they di-
rectly embed the chunks into local knowledge base.
More advanced chunking methods that have re-
cently emerged, such as Late-Chunking and Meta-
Chunking, aim to preserve the text’s association
with the original document by adopting a "embed-
ding first, then chunking" approach or by finding

potential splitting points. However, their effec-
tiveness declines as the length of the document
increases. Therefore, the chunking method and em-
bedding used in Tree-Chunking focus on explicitly
demonstrating the relationship between chunk and
its preceding text.

After performing a certain level of cleaning on
the original document, an LLM with strong com-
prehension capabilities, like GPT-4o, is used to
hierarchically categorize and add titles to the docu-
ment while respecting semantic coherence and the
original document’s structure. The titles consist of
a title index number and title content. These index
numbers, generated based on the document’s hier-
archy, naturally form a tree-like structure from top
to bottom. We represent the newly obtained chunk
as Ni , which is composed of the original chunk
content and the title. The original chunk content
is represented as R (Ni), the index number in the
title is represented as T (Ni), and the title content
within the title is represented as C (T (Ni)). An
example of chunking is shown in Figure 2 .

This chunking strategy flexibly divides the origi-
nal document into appropriately sized and coherent
text chunks, rather than using a fixed-size chunking
method. To explicitly demonstrate the connection
between each text chunk and the higher levels of
the document, this study firstly constructs a tree-
shaped index table based on the Ni . The connec-
tions and levels between nodes are determined by
the title index number in the new chunk, and the
content of the nodes is the original content of the
new chunk. We represent this index table as D .
Through this index table D , we can clearly obtain
the higher-level index numbers for each title index
number. Then we add the title contents within the
higher-level index numbers as prefixes to Ni to
enhance the accuracy of similarity retrieval. The
prefix P (Ni) is determined by the following for-
mula:

P (Ni) =
l−1⋃

i=1

C(Ti(Ni)), (1)

where
⋃

represents concatenation, l represents
the level of the title index number, and C(Ti(Ni))
represents the i-th level title index number of
T (Ni).

The prefix P (Ni) is merged with Ni to yield
Ni

′. This augmented chunk Ni
′ is then subjected

to vector embedding as a chunks, with the corre-
sponding title index T (Ni) and the original chunk
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content R (Ni) being utilized as metadata. The pro-
cedure for concatenating the chunks is depicted in
Figure 3.

3.1.2 Approaching for solving demonstrative
pronoun

One of the original intentions of Late-Chunking
is to address the ambiguity of referents for pro-
nouns such as"It," "He," and "She" within sen-
tences through a clever chunking method. Tree-
Chunking, on the other hand, explicitly incorpo-
rates preceding text information as a prefix, which
also alleviates to the situation where demonstrative
pronouns and their corresponding antecedents are
too far apart in the document to be understood by
LLMs. A detailed comparison and experiments
will be presented in the "Experiment & Analysis"
section.

3.2 Bidirectional Traversal Retrieval

Facing QFS, such as "Please list the effects of a
certain medication", for embedding models that
have not undergone fine-tuning and have not added
special tokens, the multiple concepts describing
the same entity may not be ideally distant from the
user’s query in terms of vector space, leading to the
inability to fully retrieve the correct chunks in the
ground truths. As illustrated in Figure 4, Dataset
consists of user’s queries (Query) and the correct
chunks (Ground Truths). The Ground Truths is
composed of several chunks from the Knowledge
Base that can answer the Query. In the example,
G_1,G_2,G_3 are all correct chunks for the Query,
presenting a parallel relationship at the document
hierarchy and belonging to the same node. How-
ever, in the vector space, G_2 is close to Q in terms
of vector distance, while G_2 and G_3 are not ideal.
Therefore, during the retrieval process, only G_2
may be included in the TopK retrieval results.

Therefore, we propose Bidirectional Traversal
Retrieval, which utilizes LLM with strong com-
prehension capabilities to perform intent recogni-
tion on users’ queries before retrieval. It identi-
fies whether the queries contain concept-listing in-
tentions such as "Summarization," as in the query
"What are the symptoms of disease A ?" This query
includes an intent to summarize and requires re-
trieving multiple chunks. If such an intention is
detected, the process enters this special retrieve
strategy; otherwise, it proceeds with the normal
retrieval process. The problems of cross-paragraph
retrieval, such as summary type problems, are of-

Figure 4: Unsatisfactory Vector Distance.

ten one of the most important problem types in
the context of long documents. The purpose of
intent recognition is that although our framework
is designed for QFS, we hope it can also perform
well on general problems, such as factual problems,
without being negatively impacted by chunks re-
trieved through Bidirectional Traversal Retrieval.
Therefore, before the retrieval phase, we use LLM
with a certain level of comprehension as the agent
to identify.

In Algorithm 1, we show this retrieval strategy.
Here, T refers to the Knowledge Tree Index Table
derived from Tree-Chunking, R represents the ini-
tial set of retrieved chunks. Tleaves (Ri) refers to
the process of obtaining all the leaf node contents
associated with Ri, while Troot (Ri) refers to the
process of extracting the unique immediate root
node of Ri.

Within Bidirectional Traversal Retrieval, the
core concepts of "From Leaf to Roots" and "From
Root to Leaves" enable the system to retrieve all rel-
evant chunks even in extreme cases where only one
of the corresponding ground truths is initially re-
trieved. This is achieved through the relationships
between root and leaf nodes. Finally, all retrieved
chunks are re-ranked to further enhance the recall
performance.

4 Experiments & Analysis

We measure TreeRAG’s performance on the Drag-
onball dataset (Zhu et al., 2024) through three ma-
jor experiments in this section: The Principle of
Tree-Chunking, Comparative Experiments and Ab-
lation Studies.

The Dragonball dataset is a multilingual and
multi-domain dataset consisting of multi-hop rea-
soning questions, summary questions, factual ques-
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Algorithm 1: Bidirectional Traversal Re-
trieval
Input: Query Q; Knowledge Tree Index

Table T ; LLM with strong
comprehension LLM(·); initially
retrieved chunks R

Output: Final chunks F
1 I ← LLM(Q)
2 F ← ∅
// Initialize F as an empty set

3 if I = 0 then
4 F ← R
5 else
6 for i = 1, 2, . . . do
7 if Ri is a root node then
8 F ← F ∪ Tleaves(Ri)

// Union with leaf nodes

9 else
10 F ← F ∪ Tleaves(Troot(Ri))
11 end if
12 end for
13 end if
14 Description: The LLM(·) determines

whether the input involves a
"summarization" intent. If true, it outputs
1; otherwise, it outputs 0.

tions, and corresponding long original documents
from the domains of Finance, Medical and Law.
This dataset does not contain any real-world in-
formation. For more details, please refer to A.1.
We select parts of dataset that contains Chinese
non-multi-document questions, and in all three ex-
periments, we use BGE-M3 (Chen et al., 2023) as
embedding model which performs excellently on
Chinese language tasks and utilize bold and under-
line formatting to indicate the highest and second-
highest scores. Additionally, all pre-trained models
used in experiments employ the default parameter
settings.

In the The Principle of Tree-Chunking experi-
ment, we use similarity as the evaluation metirc.
In the Comparative and Ablation Studies, we use
Recall (Musgrave et al., 2020), Precision and Ef-
fective Information Rate(EIR) Zhu et al. (2024) as
metrics for retrieval quality, and ROUGE-L (Lin,
2004), METEOR (Banerjee and Lavie, 2005) and
BLEU (Papineni et al., 2002) for generation quality
evaluation.

For more details of the experimental part, please

refer to Appendix A.6.

4.1 The Principle of Tree-Chunking

In the experiments of this subsection, we will
demonstrate that the method of adding explicit pre-
fixes adopted by Tree-Chunking can alleviate the
confusion of demonstrative pronouns, thereby prov-
ing the reliability of Tree-Chunking in terms of
preserving the integrity and connectivity of infor-
mation. We selected two long documents from the
Dragonball dataset and extracted a coherent seg-
ment from each of them. The characteristic of each
segments is that only the first sentence contains an
explicit subject, while subsequent sentences use
demonstrative pronouns such as "it" and "the com-
pany" to refer to that subject. To conduct a compar-
ative experiment, this subsection will evaluate three
different approaches: Naive RAG, Late-Chunking,
and Tree-Chunking.

The metric for the experimental results is the
cosine similarity (Zhang et al., 2020) between the
subject in the first sentence of the document and
each sentence in the vector space. The experimen-
tal results are presented in Table 4 and Table 5 in
A.2.

In the experiments presented in Table 4,
from the perspective of similarity scores, both
Late-Chunking (Günther et al., 2024) and Tree-
Chunking have yielded promising results.

The experiments shown in Table 5, which differ
from those in Table 4 by featuring a greater number
of sentences and longer sentence lengths, the supe-
riority of Tree-Chunking becomes more apparent.
This also theoretically demonstrates the reliability
of Tree-Chunking in preserving the integrity and
connectivity of information.

4.2 Ablation Studies & Comparative
Experiments

To evaluate the performance of TreeRAG in ad-
dressing these challenges, we select the processed
Dragonball dataset (Zhu et al., 2024) for our exper-
iments, conducting tests across its Finance, Law,
Medical subsets.

4.2.1 Comparative Experiment on Retrieval
Quality

We compare TreeRAG with popular recall-focused
RAG frameworks such as Late-Chunking, Meta-
Chunking and RAPTOR. Among these frame-
works, Late-Chunking and Meta-Chunking en-
hance embedding effectiveness through optimiza-
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Methods
Finance Medical Law

Recall Precision EIR Recall Precision EIR Recall Precision EIR
Late-Chunking 0.541 0.249 0.440 0.087 0.061 0.145 0.024 0.016 0.266

RAPTOR-GLM4-flashx 0.837 0.383 0.486 0.132 0.143 0.578 / / /
RAPTOR-GLM4-airx 0.835 0.382 0.492 0.119 0.150 0.540 / / /
Meta-Chuking-Margin 0.833 0.460 0.493 0.503 0.256 0.233 0.646 0.456 0.391

Meta-Chuking-PPL 1.513 0.609 0.321 0.594 0.325 0.171 1.331 0.639 0.298
TreeRAG 1.983 0.888 0.630 0.669 0.415 1.183 1.078 0.575 0.807

Table 1: Comparative Experiment on Retrieval Quality: The RAPTOR framework uses two different LLMs from
the GLM4 series for summarizing nodes in its internal preocess.However, due to the presence of sensitive or unsafe
content in the original documents of the Law subset, LLMs cannot be used for summarization. The Meta-Chunking
framework, offers two different chunking logics: Margin Sampling Chunking and Perplexity Chunking.

Methods
TreeRAG

nano-
GraphRAG

TreeRAG
nano-

GraphRAG
Finance Medical

ROUGE-L 0.313 0.255 0.238 0.241
METEOR 0.405 0.321 0.319 0.301
BLEU-1 0.253 0.131 0.171 0.101
BELU-2 0.200 0.106 0.129 0.081
BLEU-3 0.162 0.086 0.105 0.067
BLEU-4 0.134 0.070 0.089 0.056

Table 2: Comparative Experiment on Generation
Quality: Due to the presence of unsafe and sensitive
content in the Law subset, we conduct experiments on
Finance and Medical subsets.

tions in the chunking method, while RAPTOR im-
proves the storage structure and retrieval strategy.
TreeRAG innovates across chunking method, stor-
age structure and retrieval strategy to achieve better
retrieval performance. The experimental results
are shown in Table 1 and original results is shown
in Table ?? in A.4. The final metric scores are
calculated using the following formula:

Metric = Metric@3 +Metric@5 +Metric@10
(2)

From this perspective reveals that TreeRAG,
while always maintaining a great recall rate,
achieves the best precision and EIR metrics, mean-
ing it maintains the integrity and connectivity of
information to the great extent while introducing
the least amount of noise.

4.2.2 Comparative Experiment on Generation
Quality

GraphRAG stores chunks in the form of a knowl-
edge graph, integrating the various attributes the
retrieved entities and presenting them to the LLM,
there by enabling high-quality answer generation
for QFS tasks. To ensure a fair comparison of

answer generation quality across different frame-
works, we choose nano-GraphRAG (gusye1234,
2024), which enhances the customizability of
GraphRAG and is configured for Chinese QA tasks.
In this experiment, we use Qwen-max as the gen-
eration model. For TreeRAG, we use the retrieved
chunks, augmented with prefixes, as the context
input to the LLM. We use ROUGE-L, METEOR
and BLEU on Finance and Medical subsets to eval-
uate the generation quality of nano-GraphRAG and
TreeRAG. The experimental results are shown in
Table 2.

The results show that TreeRAG achieves better
comprehensive results, demonstrating its ability to
introduce minimal noise while accurately recalling
relevant chunks in QFS tasks, ultimately improving
the quality of the LLM’s answers.

4.2.3 Ablation Studies

TreeRAG is formed based on Tree-Chunking with
the addition of a special retrieval strategy called
Bidirectional Traversal Retrieval. To validate the
effectiveness of each component within this frame-
work, this subsection conducts ablation studies
by evaluating Naive RAG, Tree-Chunking, and
TreeRAG on Dragonball dataset.

Table 3 presents the final results of the abla-
tion studies. The introduction of Tree-Chunking
has yielded a noticeable enhancement in the met-
rics, offering a more intuitive demonstration of this
chunking method’s reliability. Importantly, as the
components of the framework are refined step by
step, there is a pronounced upward trend in the
Recall@k. However, it is noteworthy that during
this process, neither Precision@k nor EIR@k de-
crease as result of the framework modifications.
This means that TreeRAG not only enhances the
recall rate but also further reduces the introduction
of noise. This capability sufficiently demonstrates
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Dragonball-Finance Dragonball-Medical Dragonball-Law
Method Naive Tree-Chunking TreeRAG Naive Tree-Chunking TreeRAG Naive Tree-Chunking TreeRAG

Top-3
Recall 30.49% 47.75% 50.51% 1.56% 7.38% 14.30% 6.98% 7.64% 26.22%

Precision 23.11% 36.59% 38.65% 2.53% 10.79% 15.38% 10.17% 14.03% 22.67%
EIR 26.18% 27.67% 27.96% 26.97% 38.76% 54.48% 20.39% 24.97% 38.48%

Top-5
Recall 40.09% 60.65% 64.14% 2.13% 9.11% 19.55% 12.32% 11.07% 33.79%

Precision 19.10% 28.33% 29.99% 2.08% 8.82% 13.45% 9.12% 11.77% 19.53%
EIR 18.20% 19.92% 20.98% 21.39% 24.05% 38.78% 15.46% 18.93% 25.59%

Top-10
Recall 53.41% 79.82% 83.63% 2.65% 14.13% 33.05% 26.35% 19.10% 47.76%

Precision 12.34% 19.10% 20.11% 1.37% 6.62% 12.66% 8.46% 9.84% 15.27%
EIR 10.90% 13.18% 14.04% 11.99% 17.41% 25.08% 10.09% 10.88% 16.60%

Table 3: Ablation Studies: In the table, Naive represents Naive RAG. The Naive RAG in the study uses the same
chunking method as Tree-Chunking, but it lacks the prefix addition step, instead opting to include a context window
as a substitute. In the metrics, EIR quantifies the proportion of relevant information within the retrieved passages,
ensuring that the retrieval process is both accurate and efficient in terms of information content.

the effectiveness of TreeRAG and its components
in preserving the integrity and connectivity of in-
formation when addressing QFS tasks.

5 Conclusion

In this paper, we propose a tree-like structure for
chunking and embedding called Tree-Chunking.
Building upon this foundation, we introduce a RAG
framework named TreeRAG that integrates Bidi-
rectional Traversal Retrieval with the concepts of
"from root to leaves" and "from leaf to roots". We
conduct experiments across Dragonball dataset to
demonstrate the principle of Tree-Chunking in pre-
serving the integrity and connectivity of informa-
tion, thereby validating its reliability in this re-
gard. Most importantly, we have demonstrated that
TreeRAG can maintain the integrity and connectiv-
ity of chunks when tackling the QFS task on long
documents, achieving high recall rates whit mini-
mal noise introduction and ultimately facilitating
the generation of high-quality answers.

Additionally, it is independent of specific em-
bedding models and LLMs, and does not require
additional training, making it applicable to a wide
rage of application scenarios.

Limitations

In fact, during our research, we identified limita-
tions: TreeRAG does not have a particular advan-
tage when it comes to recalling chunks from differ-
ent documents due to the independence of each con-
structed tree. Moreover, we have not yet focused
on further optimizing the retrieved chunks before
using them as context for input like GraphRAG.
In the future, we plan to improve the framework’s

versatility and enhance its performance in QA tasks
by focusing on "knowledge aggregation" and "gen-
eration enhancement".
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A Appendix

A.1 Schema examples of Dragonball dataset

In this section, we will present the specific contents
of the Dragonball dataset in Figures 5, 6 and 7.

A.2 The principle of Tree-Chunking

For detailed information, please refer to Table 4
and Table 5.

A.3 Retrieved Chunks

In this section, we will demonstrate what the
chunks retrieved by TreeRAG and GraphRAG look
like for the same problem. For the specific content,
please refer to Figure 8.

A.4 Complete Results of Comparative
Experiment on Retrieval Quality

In this section, we will present the complete experi-
mental data results. For the specific content, please
refer to Table 6.

A.5 Prompts Used in TreeRAG

In this section, we present the prompts for intent
recognition and chunk in Figures 9 and 10. Among
them, the prompt used for chunk may not be the
most suitable prompt and should be adjusted ac-
cording to the document currently in use.

A.6 Detailed Information of Experiments

Dataset. Compared to most datasets like SQUAD
/QuALITY that focus on factual questions and
short documents, the Dragonball dataset includes
a variety of question types, such as summariza-
tion, factual, and multi-hop reasoning, all based on
long documents. Therefore, the Dragonball dataset
is more relevant and comprehensive for this prob-
lem scenario. We selected subsets from various
domains, such as Finance, Law and Medical, to en-
sure the framework’s applicability across different
fields.

Embedding Model and Reranker. We choose
BGE-M3 as the embedding models for exper-
iments. The batch_size is set to 32, and
normalize_embeddings is set to True, meaning
generated embedding vectors were normalized. In
the experiments, we use the bge-reranker-large as
the reranker model, with all model parameters be-
ing the default parameters of the BCERerank func-
tion in the BCEmbedding repository 2.

LLM. We use the Tongyi model interface based
on LangChain to call Qwen-max, which has strong
understanding and performance capabilities, for
TreeRAG and comparative experiments on gener-
ation quality, with all parameters set to default.

2https://github.com/netease-youdao/
BCEmbedding
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Figure 5: A schema example of Finance subsets.

Text Sim.NG Sim.LC Sim.TC
In terms of governance structure, during the reporting period,
TuoYuan Technology Co., Ltd. experienced several
ethical and integrity issues.

0.8206 0.7615 0.8077

First, the company revealed an internal fraud case involving
senior executives, who took advantage of their positions to
engage in financial misconduct. This incident severely damaged
the company’s reputation and shareholder trust.

0.6223 0.7393 0.7328

Additionally, the company exposed issues of conflicts of
interest among senior executives, including cases where
executives used company resources for personal gain. These
conflicts of interest further weakened the effectiveness of
the company’s governance.

0.6054 0.7315 0.7164

Table 4: Similarity to TuoYuan Technology Co., Ltd.: The "embedded-first, then-chunk" method in Late-Chunking
enables each sentence’s embedding vector to incorporate information from other sentences, leading to superior
similarity results. In the Tree-Chunking, explicit prefixes are added to the embedded sentences, directly incorporating
prior context, which also yields favorable outcomes. In this table, Sim.NG, Sim.LC, and Sim.TC respectively
represent the similarity scores when using Naive RAG, Late-Chunking, and Tree-Chunking.
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Figure 6: A schema example of Law subsets.
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Figure 7: A schema example of Medical subsets.
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Figure 8: Chunks Retrieved by RAG frameworks.

369



Text Sim.NG Sim.LC Sim.TC
The year 2019 was a pivotal year in the development of
ACME R&D Co., Ltd., during which the company underwent
a series of significant events in its financial affairs, events that had
a profound impact on the company’s financial status and
performance.

0.7600 0.7288 0.7663

First, in June 2018, the company launched a large-scale financing
plan aimed at supporting its expansion and development. After
several months of preparation and negotiations, the company
finalized the financing plan in September 2018 and officially
signed the financing agreement in January 2019. This financing
plan provided the company with sufficient funds, helping to drive
its business growth and innovation in R&D.

0.6046 0.6775 0.7522

However, in March 2019, the company faced the challenge of debt
restructuring. Due to the large scale of its debt, the company
decided to undertake debt restructuring to reduce financial risks
and ease the burden of liabilities. This measure helped to
optimize the company’s capital structure and improve its financial
stability.

0.5454 0.6728 0.7259

In June 2019, the company made a significant investment to further
expand its business scale and market share. This investment brought
new growth opportunities to the company and laid a solid foundation
for its future development.

0.5389 0.6794 0.7444

Table 5: Similarity to ACME R&D Co., Ltd.: In scenarios with extensive contents and sparse explicit subjects,
although Late-Chunking can still perform well, the concentration of information tends to dilute as the number of
sentences increases and their lengths become longer. Tree-Chunking, due to its explicit expression of prior context,
can better maintain the association between chunks and the preceding texts, thereby offering a greater advantage in
resolving demonstrative pronouns. In this table, Sim.NG, Sim.LC, and Sim.TC respectively represent the similarity
scores when using Naive RAG, Late-Chunking, and Tree-Chunking.

For Meta-Chunking, we deploy Qwen-2.5-14B-
Instruct locally for text chunking. In the RAPTOR
framework, since qwen-max would cause the tree
structure construction to fail, we adopt GLM4-airx
and GLM4-flashx as the LLM components, both
of which are called via the ZhipuAI model inter-
face, with all parameters set to default. For infor-
mation about the prompts used for intent recog-
nition and chunking in TreeRAG, please refer to
Appendix A.5.

Chunk Size. To maintain consistency with the
average chunk length in TreeRAG, the chunk size
for all baselines is set to 100.

Figure 9: Detailed Prompt For Intent Recognition.

Figure 10: Detailed Prompt For Chunking.

370



Method Late
Chunking

RAPTOR
GLM4-flashx

RAPTOR
GLM4-airx

Meta
Chunking

Margin

Meta
Chunking

PPL
TreeRAG

Finance subset of Dragonball dataset
Top-3

Recall 9.19% 20.99% 21.49% 20.64% 40.66% 50.51%
Precision 8.56% 16.74% 12.71% 20.18% 27.96% 38.65%

EIR 21.25% 23.39% 24.09% 23.36% 15.24% 27.96%
Top-5

Recall 15.85% 26.72% 26.68% 27.01% 49.64% 64.14%
Precision 8.75% 12.85% 16.95% 15.72% 20.32% 29.99%

EIR 14.46% 16.01% 15.84% 16.48% 10.62% 20.98%
Top-10

Recall 29.02% 35.99% 35.30% 35.66% 61.02% 83.63%
Precision 7.58% 8.74% 8.57% 10.11% 12.58% 20.11%

EIR 8.27% 9.23% 9.31% 9.43% 6.27% 14.04%
Medical subset of Dragonball dataset

Top-3
Recall 1.61% 3.75% 3.69% 11.94% 13.09% 14.30%

Precision 2.19% 6.06% 6.33% 9.56% 12.72% 15.38%
EIR 7.36% 26.49% 25.46% 11.89% 8.18% 54.48%

Top-5
Recall 2.54% 4.95% 4.04% 15.97% 20.70% 19.55%

Precision 2.05% 4.32% 4.60% 8.11% 10.56% 13.45%
EIR 4.70% 17.92% 16.10% 7.75% 6.23% 38.78%

Top-10
Recall 4.50% 4.50% 4.21% 22.43% 25.61% 33.05%

Precision 1.84% 3.94% 4.04% 7.95% 9.26% 12.66%
EIR 2.39% 13.37% 12.39% 3.63% 2.68% 25.08%

Law subset of Dragonball dataset
Top-3

Recall 0.07% / / 11.92% 26.75% 26.22%
Precision 0.17% / / 16.30% 25.00% 22.67%

EIR 13.91% / / 17.16% 12.70% 38.48%
Top-5

Recall 0.59% / / 18.77% 42.23% 33.79%
Precision 0.55% / / 15.59% 22.49% 19.53%

EIR 8.25% / / 13.29% 10.27% 25.59%
Top-10

Recall 1.71% / / 33.93 64.16% 47.76%
Precision 0.85% / / 13.71% 16.41% 15.27%

EIR 4.48% / / 8.64% 6.82% 16.60%

Table 6: Complete Results of Comparative Experiment on Retrieval Quality.
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