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Abstract

Deaf and Hard-of-Hearing (DHH) users in-
creasingly utilize Large Language Models
(LLMs), yet face significant challenges due to
these models’ limited understanding of sign lan-
guage grammar, multimodal sign inputs, and
Deaf cultural contexts. Further, current ap-
proaches that try to address these limitations,
frequently reduce sign language processing
(SLP) to traditional translation tasks, neglect-
ing the multimodal and linguistic complexity
inherent in signed languages. In this paper, we
present an empirical investigation informed by
learning theory into natively integrating sign
language support within LLMs, directly ad-
dressing the documented needs of DHH users.
We introduce the first text-based and multi-
modal LLMs capable of sign language pro-
cessing called SignAlignl.M, and propose new
prompting and fine-tuning strategies incorpo-
rating sign linguistic rules and conventions. We
show that LLMs can be generalized interfaces
for both spoken and signed languages if trained
with a multitasking paradigm. Our code and

model checkpoints are open-source'.

1 Introduction

Communication inherently integrates symbols, ges-
tures, and sensory experiences, particularly evi-
dent in the rich, multimodal nature of sign lan-
guages. Despite technological progress, Deaf or
Hard-of-Hearing (DHH) individuals continue to
face significant barriers when engaging with com-
putational models (such as Large Language Models
(LLMs)), primarily due to the neglect of sign lan-
guages’ unique linguistic features. Even though
most signers find novel ways of interacting with
newly emerging technologies (Desai et al., 2024),

'"We make all our code available at https://github.
com/Merterm/signAlignlLM and model checkpoints available
at https://huggingface.co/merterm/signAlignLM. We

will update our model suite as newer open-source LLMs,
datasets, and SLP tasks become available.
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Figure 1: Deaf users have specific requests pertaining to
the development of LLMs, as shown above. We show that
text-based and multimodal open LLMs when prompted or
fine-tuned, can learn to perform sign language processing
tasks. Further, while fine-tuning, multitasking on both spoken
(OpenOrca) and signed (PHOENIX-14T) corpora alleviates
forgetting of spoken language capabilities (e.g., QA tasks in
English).

LLMs still have significant room for improvement
to be more accessible and useful for them. Cur-
rent computational approaches typically simplify
sign language processing (SLP) into a translation
problem, inadequately capturing their multimodal
complexity and interactive aspects.

Insights from cognitive science and linguistics
emphasize the importance of aligning computa-
tional models with the multimodal and spatial prop-
erties of sign languages to facilitate meaningful
interactions. A recent study by Huffman et al.
(2024) highlights the outcomes if this alignment
is not properly achieved: 44.1% of DHH LLM
users report difficulty asking questions, and 22.1%
are dissatisfied due to limited sign language sup-
port. Responding directly to the articulated needs
of the DHH community, this paper proposes a new
family of text-based and multimodal models capa-
ble of sign-language processing, with prompting
and fine-tuning strategies explicitly designed to em-
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bed these linguistic structures. Through rigorous
evaluations across diverse SLP tasks, our results
demonstrate substantial improvements in handling
sign language inputs without compromising spoken
language performance.

In this paper, we explore ways in which we can
natively integrate sign language support into LLMs
to be as useful to signers as they are for spoken
language users. We claim that current LLMs 1)
lack sign language-specific tasks in pre-training,
2) are not prompt-tuned with signing or glossing
rules, and 3) are overfit to spoken language tasks>.
To this end, we introduce the first family of LLMs
capable of sign language processing, called Sig-
nAlign.M. We also conduct an in-depth empirical
analysis of their performance, backed by a learning
theory-based account. We first start with prompt-
tuning as the basic algorithm of incorporating sign
language into LLMs. We include sign language
grammar rules with additional socio-linguistic con-
ventions in our prompt analysis. Backed by theo-
retical analysis, we further hypothesize that com-
bining spoken and signed capabilities is achievable
through multitasking—interleaving sign language
tasks with spoken language tasks during the fine-
tuning stage.

In more detail, our contributions are described
as follows,

1. We survey literature on Deaf user needs from
LLMs and how to integrate sign language into
them.

2. We fine-tune text-only and multimodal LLMs
on various sign language processing tasks for
the first time,

3. We empirically study the problem of catas-
trophic forgetting during fine-tuning on sign
language data, providing solutions to resolve
this issue.

4. We introduce multimodal and text-based
LLMs fine-tuned on SLP tasks and analyze in
detail whether they satisfy the requirements
set by signers.

Our results show that fine-tuning large, pre-trained
models offers new generalization capabilities com-
pared to previous sign recognition training strate-
gies, e.g., via in-context learning.

2Spoken languages may be considered semantically similar
to sign languages, but they have considerable differences such
as grammar, visual representation of the language, and the
language users’ approach to denoting their communication in
textual format.

2 Literature Survey: Understanding
Signer Needs from LLMs

From the personal interviews presented in Huffman
et al. (2024), there are three major areas that DHH
users would like to see improvements with LLMs:
1) LLMs should understand diverse spoken lan-
guage use by the Deaf, 2) LLMs should have
a deep understanding of the DHH community,
and 3) LLMs should accept visual sign language
as input. Essentially, signers want LLMs to un-
derstand SL grammar order, or at least the gloss
notation—an intermediary textual representation for
signs. Furthermore, signers want sign language-
specific datasets to be used in the training of the
LLMs. Also, they request that video-based sign
understanding be included in LLMs.

Here, it is necessary to distinguish reading and
writing in spoken versus sign languages. Most
bilingual signers default to reading and writing in
spoken languages or modified versions of them
instead of SLs while interacting with LLMs due
to lack of effective interfaces (Desai et al., 2024,
Inan et al., 2024; Bragg et al., 2020; Glasser et al.,
2020; Hariharan et al., 2018). We are specifically
interested in the problem of interfacing with sign-
ers using text-based or multimodal LL.Ms, which
helps signers to read and write in SLs while also
enhancing their reading and writing capabilities in
spoken languages (Samuel J. Supalla, 2021). As a
concrete example, we are aiming to create an LLM
that bilingual signers use to converse with using
text or videos, instead of using German to chat with
LLM:s.

These concrete requirements by DHH motivate
our work and open up the following several impor-
tant scientific questions and research areas:

1. How can LLMs understand signers better?

2. What are some possible ways of including

Deaf knowledge and contexts into LLMs?

3. Does in-context learning or supervised fine-
tuning make LLMs more capable of under-
standing Deaf culture and signing?

4. Does pretraining with sign language knowl-
edge affect spoken language capabilities of
LIMs?

5. Can these effects be mitigated in post hoc
model training?

To answer these questions in more detail, in-
spired from all of the prior work, we first look at
the problem from a theoretical lens, and then we
apply large pre-trained language models to tasks
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Figure 2: This figure presents a summary of all the inputs, outputs, tasks, and models we are using and introducing
in this paper. The box on the left contains a sample from the RWTH-PHOENIX-14T dataset. From top to bottom,
the sentences are English text, DGS glosses, intensified DGS glosses, and German text. Yellow knobs represent
tasks, in which the acronyms of the tasks are inlaid (please refer to Section §3 for detailed task names).

in SLP. To represent SLs in a textual environment,
we experiment with glosses (intermediary textual
representations of signs), which are also found to
be helpful with the spoken language reading skills
of signers (Luft, 2023a; Supalla, 2017)3. For the
visual modality of SLs, we use LLaVA-based mod-
els. This allows us to cover all modalities signers
use as input to an LLM.

Our results point to a future where language mod-
els can also be pre-trained on SLs without signif-
icant degradation of their spoken language capa-
bilities, marking an essential step for the wider
adoption of SLs into LLM pipelines. This has
broader implications for creating LLM-based tools
that meet the requests of signers.

3 Experimental Setup

In this section, we introduce the details of the data,
tasks, and the text-based and multimodal LLMs we
use in the experiments (see Figure 2).

DGS Data Due to widespread adoption as a
benchmark in the SLP community, we use the
RWTH-PHOENIX-14T* corpus of weather fore-
cast signs in German Sign Language (Deutsche
GebidrdenSprache, DGS). This dataset contains
around 7000 training samples, 500 validation sam-
ples, and 600 test samples. Each sample has a

3Even though the sign language translation research com-
munity does not recommend using glosses for model develop-
ment as it can lead to information loss, pedagogical literature
in SL suggests using glosses as an interface for signers is ad-
vantageous (Heather Gibson, 2021). For further discussion of
the limitations of glosses, please refer to §8, and Miiller et al.
(2023))

4https ://www-16.informatik.rwth-aachen.de/
~koller/RWTH-PHOENIX-2014-T/

video, a text in spoken German, and a gloss — which
is an intermediary textual representation of signs —
in German Sign Language. Video samples consist
of frames of multiple signers sampled at 25 fps,
with a size of 210 by 260 pixels. We also include
an enhanced version of this dataset, which contains
intensifier information in its gloss representations
as introduced by (Inan et al., 2022). Intensifiers in
SLs are depicted through non-manual markers and
can change the meaning of a sign, and this dataset
contains additional tokens to capture intensifier in-
formation. We also translate the German text to
English text to provide data for a cross-lingual task
(discussed next). We use Google Translate.

Tasks As RWTH-PHOENIX-14T is a parallel
corpus between spoken German and DGS, most
previous research has focused on translation tasks
between these languages. In this paper, we focus
on translating DGS to German (broadly consid-
ered as a sign understanding or recognition task)
and German to DGS (broadly considered as sign
generation). In addition to these, we introduce ad-
ditional tasks to test generalization. Specifically,
we consider:
¢ (G2T) DGS Gloss to German Text: a text-based
translation task from textual intermediary repre-
sentations of DGS (glosses) to German text.
¢ (T2G) German Text to DGS Gloss: the inverse
problem of the above and is text-based.
¢ (V2T) DGS Videos to German Text: a multi-
modal task where the input is a video of a signer
signing in DGS, and the output is German text.
¢ (I-G2T) Intensified DGS Gloss to German Text:

Shttps://cloud.google.com/translate/
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a text-based task with augmented DGS tokens.
Additional symbols <HIGH-INT> and <LOW-
INT> are wrapped around glosses to depict inten-
sity in the video that is not depicted in traditional
gloss representations (Inan et al., 2022).

¢ (T2I-G) German Text to Intensified DGS Gloss:
the inverse problem of (I-G2T), still text-based.

* (G2E) DGS Gloss to English Text: a novel task
of cross-modal translation, where DGS glosses
from the German Sign Language family are
translated to English text from the spoken Indo-
European language family. Without any pre-
training, this is a difficult test of generaliza-
tion and composition of contextualized meanings
across spoken and signed languages.

To test generalizability and in-context learning,

G2T is the only DGS task we use for any fine-

tuning (see § 4.2). All the other tasks are used to

evaluate the models’ performance.

Models In this paper, we use two main founda-
tion models: LLaMA3 8B Chat (Touvron et al.,
2023b) for text-based inputs and LLaVA1.5 7B
(Liu et al., 2023a,b) for multimodal inputs. To com-
pare with traditional SLP approaches, which use
smaller language models sans any foundational pre-
training, we also use a randomly initialized GPT2
model (Radford et al., 2019) trained on the G2T
task of the RWTH-PHOENIX-14T dataset. This
controlled difference allows us to quantify the util-
ity of concepts learned during foundational training
(e.g., in LLaMA and LLaVA) on SLP. Lastly, for
G2T task, we use LLaMA3 70B with 4-bit quan-
tization® to show how the number of parameters
affects the results.

4 Turning LLMs Into Sign Interfaces

In this section, we empirically and theoretically
explore ways of turning LLMs into sign language-
capable models using three algorithms: in-context
learning, supervised fine tuning, and multitask fine-
tuning. Many current proprietary or open-source
LLMs do not consider sign language data during
their training process (e.g., due to lack of signers
or expertise in Deaf culture). This is also noticed
by Deaf users and is requested to be mediated in
(Huffman et al., 2024). We believe this lack of
accessibility can be mitigated in two ways: 1) in-
cluding SL-specific data in pretraining or 2) using
techniques such as prompt-tuning or fine-tuning

®https://ollama.com/library/1lama3:70b

with various SLP tasks. In addition, sign languages
do not exist in isolation of spoken languages, so
in order to be a faithful interface, an LLM should
be able to communicate both in spoken and signed
forms. Hence, we investigate how these modalities
can be combined using multitasking.

4.1 In-Context Learning

Our initial set of experiments test whether SL-
specific information can be included in LLMs using
in-context learning. For this, we prompt language
models using linguistic and cognitive science rules
of glossing and signing. To evaluate their perfor-
mance, we use the tasks described in §3. We in-
corporate the following linguistic rules of SLs into
the design of the prompts that we provide to the
models:

* 0-shot prompt: The prompt is structured as,
"This is a sentence in German Sign Language
glosses: <glosses>. You MUST translate these to
spoken German. You MUST give the answer di-
rectly without any other text." It does not contain
any linguistic rules.

* rule-based prompt: The prompt is structured as
five rules of glossing semantics. These rules are
described in (Hanke et al., 2020).

* notation prompt: This is structured as a set of
rules about gloss morphologies. These rules are
borrowed from Stein et al. (2010).

¢ 1-shot prompt: This prompt gives a single exam-
ple of a DGS gloss and a corresponding German
text. This example is formatted following the
semantic and morphological rules above.

All prompts are given in Appendix B.

For the multimodal foundation model, we pro-
vide a single chat template. We use a mixed prompt-
ing strategy, where the video of signers is sampled
at 50 frame intervals, fed into a CLIP-based Image
Encoder (Radford et al., 2019), and then incorpo-
rated into the prompt tokenization by the use of
<image> for each frame. Then, the image por-
tion of the prompt is succeeded by the text-based
prompt “This video is in German Sign Language.
What is the sentence being signed in German?”

4.2 Supervised Fine-Tuning

Besides in-context learning via few-shot prompts,
we also consider fine-tuning LLaMA3 and
LLaVA1.5 models using Supervised Fine-Tuning 7,
which is a supervised training method in addition

7https://huggingface.co/docs/trl/main/en/sft_
trainer
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to the RLHF algorithm (Ouyang et al., 2022) for
chat-based model training, which aligns the mod-
els’ representations with human judgments. In this
case, the human annotations are either glosses or
text. For fast model training and reduced memory
consumption, we use Low-Rank Adaptation of Lan-
guage Models (LoRA) as introduced by Hu et al.
(2022). We give details of model hyperparameters
and training details in Appendix A.

Sign-Only Fine-Tuning As noted, for text-based
models we fine-tune on the G2T task from § 3, and
for multimodal we fine-tune on the V2T task. This
provides the model a simple introduction to the
meaning of signed glosses by grounding them to
their parallel German language context. We discuss
the results of these experiments, in detail, in § 5.

Multitasking Fine-Tuning As we discuss in the
next section, we hypothesize that the former (sign-
only) tuning strategy can lead to catastrophic for-
getting. Due to the shared token vocabulary, the
model may overwrite existing knowledge and se-
mantics in the contextualized representations of
spoken language tokens. Intuitively, we expect
that forcing the model to “replay” spoken language
tasks from pre-training will prevent forgetting. For
this, we train on an additional spoken language
dataset, OpenOrca.

4.3 Learning Theory: Multi-Tasking
Mitigates Forgetting

Motivated by neuroscience, experience replay has
been suggested as a strategy to reduce forgetting
in machine learning, with positive results (Rolnick
et al., 2019). Moreover, replay has been studied
in mathematical theories of how language models
learn with similar success (Sicilia and Alikhani,
2022). In this section, we re-frame our learning
environment using the theoretical tools provided
by Sicilia and Alikhani (2022) to motivate our
hypothesis. We show that multi-task fine-tuning
(i.e., replay) can help mitigate forgetting in shared-
vocabulary sign processing with LLMs.

Sign Language Processing Algorithm Our cur-
rent task setup is of a translation algorithm, where
the model learns how to translate from a sign lan-
guage to a spoken language and vice versa. Specif-
ically, in the case of LLMs learning this, the algo-
rithm contains two specific steps:
1. Pre-Training: LLMs are trained on multiple
tasks that do not include (many or any) sign-

language-specific tasks. Using the terminology
of Sicilia and Alikhani (2022), this process picks
the weights to minimize the test divergence or
“error” TD pr where PT is the pre-training data
distribution:

TDpr(0) = E[|¢(D, D)]]
D ~LM(X;6), D ~ ANOT(X)

where LM is the language model, ANOT is a hu-
man completion/annotation provided the same
context X (e.g., a prompt), and X ranges over
the dataset PT. The test £ compares any mea-
sure of the quality or other properties of the gen-
erated text between the LLM and human; e.g.,
it can represent automatic metrics like BLEU,
ROUGE, or error at next-word prediction as
well as abstract tests (e.g., human preference).

2. Fine-Tuning: In this stage, the LLM is fine-
tuned on SLP tasks such as gloss-to-text transla-
tion. For the sign-only fine-tuning, we call this
data distribution DG S. So, abstractly, our sign-
only fine-tuning process described previously
attempts to minimize TDpgs(0).

ey

Problem When we write out the pre-training and
fine-tuning objectives clearly in the terminology
of Sicilia and Alikhani (2022), it is clear that the
two processes optimize different objectives (e.g.,
over different datasets). There is no way to ensure
that picking 6 to minimize TD pgg will not have a
negative impact (i.e., increase) TD pr. This poten-
tial for increase in error on the pre-training tasks
characterizes the behavior we call “forgetting.”

Solution As mentioned, we also consider a multi-
tasking fine-tuning strategy where DGS data and
tasks similar to the pre-training data are mixed.
This multi-tasking data can be represented by the
mixture distribution:

MIX = a PT + (1 — a) FT )

where « € (0, 1) is a weighing factor between the
probabilities assigned by two datasets. Instead of
sampling X from only PT or only FT, we flip an
a-weighted coin to pick from which we sample.
Holding all else constant, this implies the equality:

TDumrx :OéTDpT—i-(l—CE) TDr7. (3)

By this choice, we can see:

|TDp1x — TDpr| “4)
= (l—a)’TDFT—TDPT’ (5)
< ’TDFT — TDPT’. (6)
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Since TDjsrx is always closer in magnitude to
TDpr than TDg7, we can see that minimizing
TDjsrx can better prevent large increases TDpr,
or “forgetting.” This simple inequality provides
a theoretical motivation for our multi-tasking sug-
gestion in § 4.2. Our empirical results in § 5 also
confirm our theoretical hypotheses.

Implementation To test the implications of this
theoretical analysis, in practice, we also train on an
additional dataset (OpenOrca®) randomly mixing
the signed and spoken language data during tuning.
This dataset consists of system prompts, questions,
and responses, augmented from the FLAN collec-
tion (Longpre et al., 2023). Our multi-tasking strat-
egy can be viewed as a type of experience replay
since many tasks from OpenOrca are presumed to
be similar to prior experience during pre-training.’
It is commonly used to fine-tune smaller open mod-
els such as LLaMA for better task success, sur-
passing proprietary models such as GPT3.5. The
dataset is mainly in English and consists of multi-
ple tasks: entailment and semantic understanding,
temporal and spatial reasoning, causal judgment,
multilingual understanding, world knowledge, log-
ical and geometric reasoning, and similar other
tasks (Mukherjee et al., 2023). While the original
dataset contains around 3 million samples, we use
the same split sizes as RWTH-PHOENIX-14T to
ensure balance in signed-spoken task prioritization.

5 Findings

In this section, we present our results and discuss
our findings under five research questions. We out-
line all of these questions in the following sections
and give answers to them with our findings. For
further discussion of these findings and their posi-
tion in the SLP research literature, please refer to
Appendix § E.

5.1 Automatic Metrics

For all the tasks, to compare the generated text
with the ground truth, we make use of automatic
metrics. We use both traditional n-gram metrics of
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and also use learned generation metrics such as
BERTScore (Zhang* et al., 2020). To implement
all of these, we use the Huggingface evaluate li-

8https ://huggingface.co/datasets/Open-0rca/
OpenOrca
“Most open-source models do not share training data.

brary!®. We do not include classification-based
metrics, as our language models generate full-
sentences of textual responses.

Prompt Strategy A BLEU; ROUGE; BS-F1
0-shot prompt 24.5 0.277 0.841
rule-based prompt | 22.8 0.255 0.836
notation prompt 243 0.277 0.840
1-shot prompt 27.1 0.309 0.851

Table 1: Performance of prompting strategies on sign-to-
text translation using the RWTH-PHOENIX-14T with Base
LLaMA3 8B. The prompts are given in Appendix § B. BS-F1
refers to BERTScore-F1. Surprisingly, in-context learning per-
forms the best among all prompting strategies, even compared
to prompts with sign language grammar rules.

How do different prompting strategies affect the
performance? To answer this question, we test
the sign-to-text performance of the Base LLaMA3
8B model using the prompting strategies given
in 4.1 (Table 1). We can observe that the 1-shot
prompt performs the best, where there is an exam-
ple sign-to-text translation from DGS to German
as an in-context example. We can also see that rule-
based prompting (with grammar rules of DGS) and
notation-based prompting (with explanations on
gloss notation) perform similarly to or less than the
0-shot prompts. This is an insightful finding, show-
ing prompt-tuning sign language grammar rules
is not necessarily enough to teach the model to
understand better sign language, but an example
can be more effective. These findings influence
the designing of off-the-shelf LLM-based systems
for the use of the DHH community, as it is also
echoed in recent findings of LLM prompting for
SL translation by (Zhang et al., 2025).

Gloss to Text Translation (G2T)

Models BiT B21T Rpsum?T BSp1?
1-shot GPT2 3.14 0.04 0.067 0.798
ft-LLaMA3 8B 271 114 0.275 0.851
multi-LLaMA3 8B | 22.7 9.46 0.294 0.851

Table 2: This table shows the comparison of small fine-tuned
models with Large Language Models and multitasking Large
Language Models. It can be seen that the performance of the
larger LLaMA-based models is higher overall compared to a
smaller model (GPT?2).

How do fine-tuned LLMs compare to
traditionally-used smaller transformer models?

Ohttps://huggingface.co/docs/evaluate/
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Models Bit BT RisumT BSp1 7
LLaMA3 8B | 12.057 1.968 0.144 0.764
LLaMA370B | 11.281 2.054  0.175 0.798

Table 3: This table shows the sign-to-text performance dif-
ferences between LLaMA3 8B, and LLaMA3 70B variants.
Based on qualitative observation, the bigger model generates
more intelligible sentences, yet can fail the translation task
which is measured by these metrics.

Multimodal Sign Understanding (SignVideo2Text)

Models BiT B2t RrsumT BSpit
LLaVA1.57B 2.140 0.006 0.022 0.658
ft-LLaVA1.57B | 12.776 2.404 0.103 0.779

Table 4: This table shows the automatic metric results for the
translation task of German Sign Language video to German
Text. ft-LLaVA1.5 7B is the fine-tuned model.

Until recently, most of the SLT models use small
transformer-based architectures''. To understand
the performance difference between a fine-tuned
LLM and smaller models of translation, we present
results comparing the baseline of a GPT2 model
pre-trained on the G2T task with our larger models
LLaMA3 8B and Multitasking LLLaMA3 8B in
Table 2. As is evident from the scores, LLaMA3
outperforms pre-trained GPT2 by a large margin.
This implies that fine-tuning larger models instead
of pre-training smaller transformer-based models
from scratch is an encouraging future direction.
This is due to LLMs intaking more semantic
information during their pretraining compared to

"There have been some newer models that use frozen
LLMs such as (Wong et al., 2024) and (Fang et al., 2024).
Their codes were not available at the time of this work. Thus,
we fine-tuned GPT2 as the best approximation.

® ARC HellaSwag Winogrande
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Figure 3: This is the bar plot showing the ablation study on
the multitasking/mixing model on the Open Language Model
Benchmarks of ARC (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), and WinoGrande (Sakaguchi et al., 2019), all
degrade (forgetting) when LLaMA3 is fine-tuned on the sign
and spoken language tasks it performs better.

smaller models that are only pre-trained on sign
datasets (which tend to be small corpora due to
difficulties in data collection).

How does the size of the model affect the per-
formance? We show the effects of the number
of parameters of the text-based model for the G2T
task in Table 3. It is observable that a higher num-
ber of parameters does not always correlate with
better performance. It is important to note that, due
to resource constraints we are comparing a quan-
tized large model outputs with a non-quantized
smaller version, and can increase fine-tuning du-
ration. When we qualitatively observe the output
from both of these models, LLaMA3 70B produces
more understandable sentences, which may not be
accurate translations. This shows that larger mod-
els can be fine-tuned but considering resources,
incorporating sign language information in smaller
model pre-training or fine-tuning can be sufficient.

How does the fine-tuned video-based model com-
pare to a text-based model? To answer this
question, we first need to verify that the fine-tuned
video-based model is performing better than the
non-finetuned video-based model (shown in Ta-
ble 4). Here, unsurprisingly, the fine-tuned model
is performing better than the base model across all
metrics. Then to compare text-based and video-
based models, we can observe the results in Table 2
and 4. We can see that the video-based model
performance scores are lower than its text-based
counterpart (e.g., ft-LLaMA3 8B scores 27.1 on
B4, while ft-LLaVA1.5 7B scores 12.8 on B1). This
may be due to multiple reasons: 1) model-based,
2) input-based. For the model-based reason, it may
be the case that the LLaVA model is not up to
date with the latest LLaMA weights. While for the
input-based reason, it is possible that the stitching
of video frames that are employed in the LLaVA,
are not ideal ways of representing the signs. This
shows that Deaf users’ requests for video input ca-
pabilities are not yet met and may require better
modality modeling efforts. The main bottleneck of
improving video LLMs in the task of sign under-
standing is the lack of high-quality data. However,
human annotations for sign language glosses can
also be costly to collect. We discuss more on this
matter in the Appendix section §D.

How does including multiple tasks during fine-
tuning affect spoken-language performance?
To answer this question, we use generic spoken

3697



Performance of All Models on All Tasks

P Finetuned GPT2 Base LLaMA3 8B Multitasking LLaMA3 8B
Task rompt
Strategy Bi1  Rpsum BSp1| Bi Risum BSp1 | Bi Risum BSm
T2G I-shot | 1.419 0.027 0.798 | 8556 0.127 0.818 | 10.921 0.165 0.794
T2G 0-shot | 1.879 0.030 0.810 | 8335 0.122 0.802 | 10.485 0.161 0.794
"'G2E  l-shot |[3.604 0.066 0822 9226 0084 0807 | 3.104 0.034  0.828
G2E 0-shot | 3.931 0.056 0.808 | 12.369 0.103 0.816 | 5442  0.064 0.83
I-G2T  1-shot | 2242 0.048 0.791 [ 9573 0.111 0.691 | 17.637 0.155  0.524
I-G2T  O-shot | 1.642 0.043 0.768 | 11.589 0.143  0.769 | 21.157 0.279 0.845
T2I-G  1-shot | 1.305 0.054 0.815[42277 0576 0.897 | 43.636 0.156  0.778
T2I-G  O-shot | 0.050 0.062 0.802 | 56.128 0.704 0910 | 43.229 0.155 0.778

Table 5: This table shows the performance of all the models for all the tasks that we introduce in Section §3 for the
test set. The 1-shot strategy contains an example for the task. B; corresponds to BLEU-1, Ry, g4, corresponds to

ROUGE, and BS ; corresponds to BERTScore.

language benchmarks by EleutherAl Evaluation
Harness (Gao et al., 2023) and test the performance
difference between the multitasking, finetuned, and
non-finetuned models. We show the results in the
bar plot in Figure 3. We can empirically observe
that there is a drop in performance between non-
finetuned and fine-tuned LLaMA3 models. This
shows the data shift that we have outlined in Sec-
tion §4.3 due to the differences in data distribu-
tion between the pretrained LLaMA3 and the sign-
finetuned LLaMA3. This strongly suggests that
there is forgetting of the original capabilities of the
pretrained model. This verifies our theoretical hy-
potheses, and the increase in performance during
multitasking suggests that signed and spoken lan-
guages can be introduced to models post hoc with
minor forgetting of the original spoken language
tasks.

Can the performance in G2T generalize to other
SLP tasks? To answer, we show the results for
all the sign language tasks in Table 5. Based on the
BLEU scores, the lowest-performing task is T2G
(the reverse of G2T, the task on which the model
was fine-tuned), and the best-performing task is
T2I-G. It can be seen that, to a certain degree, there
is some generalizability to different tasks, but most
tasks do not reach the same level of performance as
27.1 in the G2T task (Table 2). Curiously, T2I-G
performs much better than the G2T task, which
may indicate the importance of prosody and how
LLMs can recognize intensifications better than
they can generate translations directly. Another in-
teresting observation is that the multitasking model
performs better in all tasks except G2E than the
non-finetuned model. This shows that forgetting

of spoken language tasks is mitigated mostly, but
sometimes forgetting may still occur. All in all, this
analysis shows us that fine-tuning LLMs on an the
gloss-to-text task leads to better measurable per-
formance and some generalization in similar SLP
tasks. This is an encouraging result showing that
the requests of signers can be satisfied by including
sign language tasks in the fine-tuning stage.

6 Related Work

Besides text-based models like LLaMA (Touvron
et al., 2023a), Mixtral (Jiang et al., 2024), QWEN
(Bai et al., 2023), Orca (Mukherjee et al., 2023),
Phi (Gunasekar et al., 2023), multimodal models
have been gaining popularity, especially in com-
puter vision communities. Large Vision-Language
models such as LLaVA (Liu et al., 2023c¢), Video-
LLaMA (Zhang et al., 2023), Video-LLaVA (Lin
et al., 2023), LanguageBind (Zhu et al., 2024),
MultiModal-GPT (Gong et al., 2023), Mirasol3B
(Piergiovanni et al., 2023), LAVIS (Li et al., 2023),
LaVilLa (Zhao et al., 2023), and UniVL (Luo et al.,
2020) propose to align representations of combina-
tions of images, videos, text, and/or speech signals
with human judgments. Further details of these
and similar models have been discussed in a sur-
vey paper by Yin et al. (2023). However, none of
these models claim to include SLP tasks in their
pre-training or fine-tuning data. Through our the-
oretical and empirical studies, this paper aims to
address this gap.

The absence of literature using large models
for SLP is mainly due to the low-resource nature
of SLs (Yin et al., 2021). However, there have
been several lines of research applying transformer-
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based language models to sign language translation
(Camgoz et al., 2018; Yin and Read, 2020; Chen
et al., 2023b), sign language understanding (Hu
et al., 2023; Moryossef et al., 2021), sign gener-
ation (Stoll et al., 2020), SignWriting translation
(Jiang et al., 2023), incorporating facial expressions
(Viegas et al., 2023), modeling prosody (Inan et al.,
2022), and sign language segmentation (Moryossef
et al., 2023). Lee et al. provides an early work that
leverages (smaller, but still large) language models
with shared vocabularies for SLP. They focus on
older models (without RLHF, Ouyang et al., 2022).
Further, Gong et al. (2024); Wong et al. (2024)
give a more recent application of LLMs as part of
a translation pipeline, and Fang et al. (2024) fine-
tunes diffusion-based LL.Ms for sign avatar gen-
eration. However, none involves instruct-tuning
large language models (text-based or multimodal)
with both spoken and signed capabilities, which we
introduce in this paper for the first time.

In addition to the SLP and LLM literature, SL ed-
ucation works are important for this work. In the SL
pedagogy literature, some works focus on case stud-
ies of gloss-based intermediary textual constructs
as ways of ASL to English literacy (Cripps et al.,
2020), a formal distinction between sign and spo-
ken language reading (Supalla, 2017), and reading
assessments for DHH signers (Luft, 2023b). These
works have influenced our choice of glosses as in-
termediary representations for text-based LLMs.
We believe that text-based and video-based lan-
guage models can be helpful as reading and writing
companions that use glosses or videos to interface
with signers.

7 Conclusion

Incorporating the rich, multimodal aspects of sign
languages into language modeling requires consid-
ering the linguistic, cognitive and cultural contexts
of them. In this paper, we have introduced the
first family of LLMs capable of sign language pro-
cessing. We prompted, fine-tuned, and compared
these text-only and multimodal language models
for various sign language processing tasks. We
have provided language theory grounding and ana-
lyzed our results with implications on how much
LLMs can meet the needs of signers without losing
capabilities in spoken languages. From our find-
ings, it can be claimed that LLMs can be fine-tuned
to SLs, and in-context learning can help to create
an off-the-shelf LLLM tailored towards the Deaf

and Hard-of-Hearing community, which can be
accomplished without forgetting spoken language
capabilities.

Moving forward, training bigger models with
larger multilingual corpora is a promising next
step for a broader set of novel sign language
processing tasks. We hope this initial family
of LLMs, along with our exploration of linguis-
tically and cognitively-informed prompting nu-
ances, marks the first step toward making LLMs
equally accessible and capable in both signed and
spoken languages. We make all our code avail-
able at https://github.com/Merterm/signRep
and model checkpoints available at https://
huggingface.co/merterm/signrep. We will up-
date our model suite as newer open-source LLMs,
datasets, and SLP tasks become available.

8 Limitations

The major limitation of our work has been the com-
puting power required to fine-tune, test, and carry
out inference. Even with the smallest large lan-
guage models, it becomes quickly infeasible to test
multiple independent variables. Hence, our tech-
niques have been tested on the smaller end of the
large language family of models. Larger models
can have higher performance gains.

An additional limitation of our models is the
context length. With long linguistic rules added
to the prompt, certain samples of glosses made
the inference lengthy. The maximum number of
generated tokens has been a limiting factor of the
output of models as well, which resulted in poor
performance metrics. These can be alleviated with
higher computing powers.

Another major limitation is the dataset size and
number of available tasks in SLP. The SLP com-
munity has focused on translation tasks so far, and
not many other task definitions and datasets ex-
ist that can be useful for signers. This affects our
benchmarking, as the only tasks we can test the gen-
eralization on are either other translation tasks or
traditional NLP tasks that are non-specific to SLs.
Having diverse tasks and accompanying datasets is
needed for the future of SLP.

Certain other SL datasets exist, such as
How?2Sign (Duarte et al., 2021), CSLDaily (Zhou
et al., 2021), and BOBSL (Albanie et al.). These
datasets are larger and have diverse domains com-
pared to RWTH-PHOENIX-14T that we have used
in this work. The main reason that we chose to
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focus on RWTH-PHOENIX-14T is because the
glosses in it are annotated manually by signers
while in other datasets automated ways are used or
glosses are not available. Glossing is a core part
of our paper, as we are focusing on new ways of
interfacing with signers using LLMs instead of just
translation. This currently can be accomplished by
reading and writing in glosses.

9 Ethical Statement

We are using LLaMA3-based models for both our
text-only and multimodal setups, which are trained
on data acquired by Meta and are not made pub-
licly available; even though the model itself is
open-source, the pretraining dataset is not open.
This leads to unaccountable biases that have been
collected during the dataset formation and in the
pretraining, our models may have inherent biases
passed down from these pretraining setups. Our
RWTH-PHOENIX-14-T dataset contains the faces
of the signers, which is a piece of private informa-
tion. This private information is used in accordance
with the original dataset creator’s directions and
privacy concerns. Furthermore, sign language pro-
cessing can be a sensitive topic, especially when
the community-centric approach is not taken for
the design of systems. For this, we collaborate
with the Deaf and Hard-of-Hearing communities or
signers in general while developing such systems
as this one.
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A Hyperparameters & Training
Implementation Details

We trained all of the models on an Apple MacBook
Pro with an M3 Max chip. Libraries used were Py-
Torch, Huggingface TRL, Transformers, Datasets,
Evaluate, and W&B. The hyperparameters for the
LLaMA models are: learning rate of le-3, Ir sched-
uler type: "reduce Ir on the plateau”, per device
training batch size of 2, number of epochs of 5,
and weight decay of 0.01, and maximum sequence
length of 300 tokens. LoRA configuration for the
LLaMA model is: rank of 8, LoRA alpha of 32, and
LoRA dropout of 0.1. For the LLaVA model: mm
projector learning rate of 2e-5, one epoch, batch
size of 2, learning rate of 5e-5, linear Ir scheduler
type, maximum sequence length of 2048. LoRA
configuration for LLaVA model: LoRA rank: 128,
and LoRA alpha: 256.

B All Prompt Types

Here we present all the prompt types that have been
used in the experiments:

* zero-shot prompt: This is a sentence in Ger-
man Sign Language glosses: <glosses>. You
MUST translate these to spoken German. You
MUST give the answer directly without any
other text.

* rule-based prompt: "Instructions Here are
some basic rules of German GLOSSES: 1)
German signs correspond to meanings not to
words. 2) Some GLOSSes are formed from
more than one German word. In this case the
words are joined by a hyphen. The hyphen
indicates one single sign that is labeled with
two or more German words. 3) Glosses com-
bined with a plus sign are two separate signs
that are joined together to make what appears
to be a single sign 4) In DGS, some signs are
repeated for specific meaning. for instance
LEARN + LEARN changes the sign from the
VERB “To Learn” to the NOUN “Learning.”
5) Words that are to be Fingerspelled are in-
dicated in one of two ways: - Separated by
hyphens between each Fingerspelled letter: G-
L-A-D-Y-S - Preceded by the initials FS in
parenthesis: (fs) GLADYS. Task You MUST
translate <glosses> of DGS to German with-
out using any special characters, according to
these rules."

* notation-based prompt: "Instruction Below
is a list of common symbols used in the writ-
ing of DGS Glosses: - The Crosshatch: This
symbol indicates a loan sign, a sign originat-
ing from the fingerspelling of an English word.
- Parentheses: () Additional information about
the production of a sign is can added to the
written gloss between a set of parentheses.
Such information can be abbreviated as in
(Zh)DO++, or it may appear as German in-
structions to add information to a sign: GIVE
(left), or to a Classifier CL:1 (man hurries
past). - CL: The abbreviation CL: indicates
a classifier. The information following the
colon indicates the hand shape and number
of hands. - The Umlaut (two dots above a
given hand shape) ( indicate the bending of
the fingers of that hand. The 3 (called the
“bent three”) is the hand shape used in the
sign “INSECT”. This technique is only used
in reference to a specific handshape such as a
classifier.

Task You MUST translate <glosses> to Ger-
man according to these symbols."

one-shot prompt: "Example ""Here’s a sam-
ple DGS gloss: “ORT REGEN DURCH
REGEN KOENNEN UEBERSCHWEM-
MUNG KOENNEN” which translates to
""mancherorts regnet es auch lidnger und
ergiebig auch lokale iiberschwemmungen sind
wieder moglich"" in German

Task You MUST translate <glosses> to Ger-
man according to this example. "

C Towards Prosodic, Iconic and
Semantically-Rich Sign Language
Representations via LLMs

SLs and the current machine learning setups for
SLP systems have been constrained to multimodal
translation systems mostly, as can be seen from
our tasks as well. However, sign interpretation and
production by humans are not translation-based
processes between modalities. Cognitive science,
neuroscience, and linguistics research into the SLs
by Kubicek and Quandt (2019, 2021) show that
prosody during signing affects interpretation and
action recognition, and Karadoller et al. (2023);
Chen et al. (2023a); Campisi et al. (2023) show
that different SLs use different levels of iconicity
and iconic signs can facilitate interpretation. In
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Ground Truth Text

Intensified Gloss

Generated Text

woher soll die wirme derzeit auch kommen

WOHER <HIGH-INT>WARM </HIGH-INT>

wo es auch am wochenende warmer wird & & & ¢

where is the heat supposed to come from? WHERE WARM

where it gets warmer on the weekend too & & & ¢

morgen gibt es mal sonne mal wolken in
der nordhiilfte zeigt sich die sonne hiufiger

MORGEN SONNE WOLKE WECHSELHAFT
NORD <HIGH-INT>SONNE </HIGH-INT>OFT

morgen wird es auch wieder sehr sonnig
und teils auch wolkig und auch hochintensiv |

Tomorrow there will be clouds, in the north
half the sun will be more common

TOMORROW SUN CLOUD VARIABLE
NORTH <HIGH-INT>SUN </HIGH-INT>OFTEN

Tomorrow it will be very sunny and sometimes
also cloudy and also highly intensive ¢

Table 6: This table shows three samples of German Text, DGS Gloss, and the generated text by the LLaMA2 7b+
model. Each sample includes a translation in English as well. LLaMA learns to depict intensifier tokens as emojis

without any instructions or training data examples.

this section, we present a case study on the current
iconicity characteristics that are developed during
the fine-tuning of the LLaMA3 model by using
emojis as placeholders for intensifiers.

C.1 Iconicity Case Study: Emojis as
Intensifiers

During the fine-tuning of the LLaMA3 8b+ model,
it has been observed in the generated outputs for the
intensified tasks there are emojis, even though the
model is not instructed to include emojis, and the
training set does not contain emoji tokens for the
RWTH-PHOENIX-14-T. Some samples are shown
in Table 6. Here, it is observed that the model
is mapping the intensifier tokens that exist in the
intensified dataset to emojis. However, this is not
a one-to-one mapping, and it is more so using the
iconicity of the emoji to depict semantics that does
not exist in the textual glosses.

It can be claimed that iconicity, which is nor-
mally depicted in the spatial modality during the
signing, is now depicted with a different modality
in a semantically rich textual form. Also, in the last
sample, the generation directly includes "highly
intensive," which shows that sometimes the model
does not map the intensifier tokens directly to emo-
jis. Overall, it can be qualitatively claimed that this
mapping of semantics to icons via emojis is a prop-
erty of LLMs fine-tuned on multiple tasks. This
provides a paradigm shift in SLP, where including
prosodically-rich tasks of SLs can be accomplished
with the help of large foundation models instead of
seeing them as translation problems. Yet, new task
definitions and datasets specific to SLs should be
made available for further investigations of these
capabilities.

D The Glossing Trade-Off

This section presents a trade-off between using tex-
tual representations of signs such as glosses or Sign-

Writing that are linguistically-backed or directly
using video of signers. This trade-off may not be
an option most of the time, as having access to in-
termediary textual representations such as glosses
as part of the sign corpora is not prevalent across
all datasets available online. To decide whether to
use glosses or videos, we can use insights from the
linguistics literature and data collection experience
from the RWTH-PHOENIX-14-T dataset.

In the original data collection effort as described
by Forster et al. (2012) and Stein et al. (2010), the
annotations of glosses are done by a congenitally
Deaf person with no previous annotation experi-
ence. On average, they report that it took the an-
notator 24 hours to annotate 15 minutes of footage.
When we compare these statistics to the fine-tuning
statistics of the text-based and multimodal models,
we can observe the trade-offs better. This is pre-
sented in Table 7. It can be seen that the text-based
model has nearly double the performance of the
multimodal, and it needs less storage space and
leads to less carbon emissions, even though it takes
longer to annotate.

Trade-off Statistics

Ty Ter T; S E(lilal::l(())lllls Perf.
(h)  (h) (s/tok) (GB) (B1)
(kg)
Annotator +
Text-Based 2400 8 4 0.1 0.211 22.85
Multimodal 0 8 8 50 0.240 13.62

Table 7: This table shows different statistics comparing
the human annotation with the text-based model and
video-based multimodal model. Carbon emissions are
calculated using the US EPA’s greenhouse gas equiv-
alencies calculator. T 4: average time for annotation,
Trr: average time for fine-tuning, T;: average time for
inference, S: storage space needed for data.
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E Discussion of LLMs in SLP Research

After these detailed analyses, in our findings sec-
tion, we discuss the implications of these pretrained
and fine-tuned LLMs on SLP tasks. First, it is im-
portant to note that translation is not the only area
that needs attention under sign language processing.
With instruct-tuned end-to-end dialogue systems
like LLMs, it becomes ever more important to in-
clude SLs in the pretraining and fine-tuning if we
are to claim that they are truly universal large lan-
guage models. This can be achieved by including
SLP during the pretraining and fine-tuning stages
without losing performance in spoken language
tasks, as we have shown in this paper.

As noted in the glossing trade-offs in section
§ D, SLs have multiple ways of representation (text,
image sequences, graphs, skeletal position coordi-
nates), and deciding which modalities are linguis-
tically relevant for language models to be trained
on is important. Opening up the venue of fine-
tuned LLMs for SLs allows more development on
signed iconicity, phonology, prosody, and dialogue
for the future versions of these LLMs (please see
Appendix C for a case study on the representation
of iconicity of SLs with LLMs), just like some cur-
rent LLMs that are capable of some those aspects
for spoken languages.

The more we build separate translation systems
for SLs, the more we lose the universality of LLMs,
steal from the future integration of SLs into LLMs,
and turn away from the needs of the Deaf and Hard-
of-Hearing community. To prevent this, we pre-
sented the first universal LLM suite, which can
carry out language understanding tasks indepen-
dent of its modality (spoken or signed).
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