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Abstract

Retrieval-augmented language models
(RALMs) aim to incorporate external
knowledge to address the issues of factual
hallucination and knowledge obsolescence
faced by large language models (LLMs).
Inevitably, the retrieved passages based on
similarity search may be irrelevant to the
given question, and the aggregation of these
passages can confuse the model to give a
correct answer. To improve the performance
of RALM in such conditions, we propose
layer-knowledge guided attention for RALMs,
which harnesses the layer-wise knowledge of
LLMs to optimize per-layer attention on useful
passages, making the model pay attention to
the most relevant content and ignore irrelevant
ones. Specifically, we first systematically study
LLM’s attention patterns and their relationship
with the accuracy of RALM responses, where
middle-focus attentions play a crucial role
in selectively gathering relevant information.
Based on this, a layer-wise passage estimator
leverages the varied knowledge encoded across
LLM layers to assess not only passage rele-
vance scores but also associated confidences.
Finally, a relevance-aware passage fusion
enables selective attention to relevant passages,
mitigating distractibility and positional bias
of causal attention. Experiments show that
our method outperforms existing methods on
RALM benchmarks.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable performance, scalability, and adaptabil-
ity in various natural language processing tasks
(Bang et al., 2023; Guo et al., 2023; Chowdhery
et al., 2022). However, LLMs encounter signifi-
cant challenges when tackling knowledge-intensive
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(a) Accuracy plateaus due to
attention’s distractibility.
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(b) U-shaped performance
due to positional bias.

Figure 1: Comparison of LLAMA’s and LKG-RALM’s
performance with retrieved passages.

tasks, including factual hallucination (Cao et al.,
2020; Raunak et al., 2021; Ji et al., 2023), knowl-
edge obsolescence (He et al., 2022), and a lack
of domain-specific expertise (Shen et al., 2023; Li
et al., 2023). To address these issues, retrieval-
augmented language model (RALM) has emerged
as a mainstream approach, which leverages a
retrieval-then-read pipeline to supply external in-
formation for the LLM answering questions.

Despite RALM’s potential, LLMs struggle to
handle retrieved passages, which contain irrelevant
ones, hindering performance in two aspects:

• Attention Distractibility: As shown in Fig-
ure 1(a), while increasing retrieved pas-
sages improves recall linearly, LLM accuracy
plateaus or declines due to attention disruption
from irrelevant content (Shi et al., 2023a). The
question tokens’ attention becomes scattered
across noisy information in the passages.

• Positional Bias: As illustrated in Figure 1(b),
LLM performance exhibits a U-shaped curve
based on passage position, with better han-
dling of information at the start and end while
missing crucial middle content (Liu et al.,
2024a). This stems from LLM attention’s
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over-reliance on positional information.

While RankRAG (Yoran et al., 2024) attempts to
address these issues by filtering irrelevant passages
and optimizing passage placement, these serve as
compromised strategies rather than fundamental
fixes to LLM attention processing retrieved pas-
sages.

In this paper, we propose Layer-Knowledge
Guided Attention for RALM (LKG-RALM), which
harnesses the layer-wise knowledge of LLMs to op-
timize attention on useful passages. To effectively
guide LLM’s attention, accurately assessing the
relevance of retrieved passages is crucial. Recent
works demonstrate that LLM-based embeddings
significantly outperform BERT-like models on the
MTEB leaderboard due to superior scaling and
comprehensive pre-training. Furthermore, Meng
et al. (2022); Chuang et al. (2023) indicate that
different LLM layers encode varied knowledge,
from grammatical understanding in lower layers
to reasoning capabilities in higher ones. Building
on these insights, we propose a layer-wise passage
estimator, which fully leverages varied knowledge
of LLM layers to accurately predict both relevance
and estimation confidence. Since not all layers’
knowledge contributes equally to relevance assess-
ment, an entropy-based layer-knowledge selection
is proposed to dynamically determine which layers’
knowledge is suitable for passages. To mitigate dis-
tractibility and positional bias from irrelevant pas-
sages, a relevance-aware passage fusion employs a
relevance-guided attention mask to enable question
tokens to selectively attend to retrieved passages
for middle-focused attention patterns. Experiments
demonstrate that LKG-RALM achieves substantial
performance improvements across RALM datasets.
Our contributions are summarized as:

• We present the first systematic study on the
relation between RALM’s attention patterns
and performance. Based on these, LKG-
RALM leverages layer-wise knowledge to
guide middle-focused attention toward rele-
vant passages, thereby enhancing the under-
standing of retrieved information.

• We propose a layer-wise passage estimator to
utilize LLM layer-specific knowledge to as-
sess reliable and adaptable passage relevance.

• We propose relevance-aware passage fusion
to enable question tokens to selectively attend

to relevant passages, mitigating distractibility
and positional bias.

2 Related Work

2.1 Retrieval-augmented Language Model
Retrieval-augmented language models (RALMs)
(Zhao et al., 2024, 2023; Gao et al., 2023) en-
hance generation by incorporating retrieved pas-
sages through three main approaches: query-based
fusion, which concatenates passages with input
queries (Shi et al., 2023b; Ram et al., 2023) or fea-
tures (Izacard and Grave, 2020; Liu et al., 2023);
logits-based fusion, which combines probability
distributions from input and retrieved passages
(Khandelwal et al., 2019; Huang et al., 2023); and
latent fusion, which integrates passages into hidden
states via attention (Wang et al., 2023a) or weighted
additions (Wu et al., 2024a).

Recent work has focused on addressing noise
in retrieved passages. Liu et al. (2024a) analyzed
position bias across model types and query posi-
tions, while Shi et al. (2023a); Wu et al. (2024b) at-
tempted to incorporate passage relevance into con-
text. Other approaches include filtering irrelevant
passages (Zhang et al., 2021; Yoran et al., 2024)
and developing noise-resistant fine-tuning strate-
gies (Liu et al., 2024c; Yu et al., 2024). However,
these methods remain constrained by reranking
accuracy and fail to address the fundamental limita-
tions of causal attention. Our work investigates the
relationship between attention patterns and RALM
performance, leading to our LKG-RALM approach
that leverages layer-wise knowledge for improved
passage attention.

2.2 Passage Relevance Assessment
While traditional methods like BM25 (Robertson
et al., 2009) and BERT-based models (Karpukhin
et al., 2020; Izacard et al., 2021; Chen et al., 2024)
have advanced text representation, they face scaling
challenges in representation training. Recent ap-
proaches (Wang et al., 2023b; BehnamGhader et al.,
2024; Springer et al., 2024) have shown promise
in adapting decoder-only LLMs as text encoders
through contrastive learning. However, even state-
of-the-art models achieve only 62% accuracy on
the MTEB leaderboard (Muennighoff et al., 2022),
highlighting the need for more nuanced relevance
assessment approaches.

Meng et al. (2022); Chuang et al. (2023); Zhang
et al. (2024) have shown that LLMs encode layer-
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Figure 2: Attention patterns of RALM.
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(c) Impact of manipulating
middle-focused attention pat-
terns on relevant passages

Figure 3: Impact of manipulating attention patterns on
RALM performance.

specific knowledge, ranging from grammatical
structures in lower layers to complex reasoning in
higher ones. Building on this insight, we propose
a layer-wise passage estimator that leverages this
hierarchical knowledge structure to provide com-
prehensive relevance assessments with reliability
measures.

3 Preliminaries

3.1 Problem Formalization

Our method is depicted under the open question-
answering (open-QA) settings, aiming to predict an
answer yans based on a question q and n retrieved
passages [p1, . . . , pn].

3.2 Analysis of Attention Patterns of RALM

To address the challenges of attention’s distractibil-
ity and positional bias in RALM, it is crucial to sys-
tematically investigate its attention patterns. The at-
tention mechanism selects specific tokens to gather
information from retrieved passages for the gen-
eration of next token. Following the Fu (2024)
methodology, we conducted a systematic study on
the attention distribution of LLAMA-3.1-8B using
2000 samples from the NQ and TriviaQA dataset
(details in Appendix A). Figure 2 reveals three dis-
tinct attention patterns that potentially impact the
model’s ability to process retrieved passages.

Edge-focused attention, observed in 78% of
attention heads, shows over 99% of attention con-
centrating on the beginning and end of the con-
text. Xiao et al. (2023) demonstrated that this phe-
nomenon persists even when replacing the initial
tokens with meaningless ones, indicating that the
model emphasizes absolute position rather than se-
mantic value. This pattern correlates strongly with
positional bias, hindering the model’s ability to pro-
cess crucial information in the middle of the input
sequence.

Uniform attention, accounting for 5.37% of pat-
terns, distributes attention almost uniformly across
all tokens in the context. While appearing to pro-
vide equal consideration to all information, this
pattern potentially contributes to the model’s dis-
tractibility by failing to focus on the most relevant
parts of the input.

Middle-focused attention, though present in
only 6% of attention heads, manifests in two vari-
ants: "scattered over middle" and "concentrated on
middle". The former distributes attention across
several tokens, while the latter concentrates on only
one or two tokens. This pattern plays a crucial
role in selectively gathering information from the
context, essential for comprehending retrieved pas-
sages.
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Figure 4: The architectures of LKG-RALM.

To analyze the relationship between these pat-
terns and RALM performance, we examined the
correlation between attention weight sums and
model accuracy. Figure 2(d) reveals that increased
attention on relevant passages in edge-focused and
uniform patterns yielded no performance gains,
while middle-focused patterns demonstrated a
strong positive correlation with RALM accuracy.
Manipulation experiments further supported these
findings: artificially replacing edge-focused and
uniform patterns with middle-focused attention
on relevant passages disrupted the model’s atten-
tion structure, leading to performance degradation.
As shown in Figure 3(c), deliberately redirecting
middle-focused patterns to irrelevant passages sig-
nificantly decreased performance, while concentrat-
ing this attention on relevant passages improved it.
These results suggest that guiding middle-focused
attention towards relevant passages could signifi-
cantly enhance RALM’s effectiveness.

4 Methodology

4.1 Overview
The vanilla attention of LLMs often suffers from
distractibility and positional bias, which is unsuit-
able for open-QA with retrieved passages. We take
advantage of layer-wise knowledge of LLMs to
assess passage relevance, then guide the LLM’s at-
tention to generate answers, effectively mitigating
these issues. The overall framework is illustrated
in Figure 4.

4.2 Adding Special Tokens
To clearly delineate the boundary of the given ques-
tion and each passage, we introduce trainable spe-
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Figure 5: The layer-wise passage estimator.

cial tokens into the sequence. Specifically, we add
[d] and [ei] tokens as boundary markers at the be-
ginning and end of each retrieved passage, respec-
tively, while [q] and [eq] tokens demarcate the ques-
tion.

4.3 Layer-wise Passage Estimator

Traditional passage estimators often rely on BERT-
like structures, but these methods typically yield
low accuracy and fail to leverage the rich, layer-
specific knowledge embedded in LLMs. We pro-
pose a layer-wise passage estimator as Figure 5,
which utilizes per-layer knowledge of LLM to
assess relevance scores from multifaceted views,
along with their associated confidence. Addi-
tionally, it incorporates an entropy-based layer-
knowledge selection, which analyzes the attention
distribution to determine the applicability of each
layer’s knowledge to the passages. By combin-
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ing these comprehensive estimations, our approach
provides trustworthy guidance for the LLM’s atten-
tion.

4.3.1 Layer-wise Relevance and Confidence
Estimation.

For a given layer l, we leverage the LLM’s internal
representations to compute relevance and confi-
dence scores. To adapt the LLM’s parameter to
relevance assessment, we add trainable low-rank
weights (LoRA) to each decoder layer. To enhance
contextual understanding within passages, we fol-
low previous work (BehnamGhader et al., 2024) to
adopt Blocked Bidirectional Attention Mask rather
than the causal attention. To aggregate sentence-
level information, we extract the hidden states of
the last special tokens as sentence embedding: ei
for each passage and eq for question. An adapter
and dropout components are then used to enhance
their robustness. Finally, two cross-attention com-
ponents compute the relevance scores r1, . . . , rn
and confidence scores c1, . . . , cn between passages
and the question, respectively.

4.3.2 Optimizing Estimator.

To optimize our layer-wise passage estimator, we
introduce three specialized loss functions, each ad-
dressing a crucial aspect of effective relevance esti-
mation:

Relevance Loss. To ensure the model accurately
identifies relevant passages, we employ a relevance
loss. This loss function encourages the estimated
relevance scores to closely align with the ground
truth, thereby improving the model’s ability to dis-
tinguish between relevant and irrelevant passages:

Lrelevance = − 1

n

n∑

i=1

[r̄i log(ri)+(1−r̄i) log(1− ri)]

(1)
where r̄i is the ground truth label, and ri is the
estimated relevance score.

Confidence Loss Recognizing that not all rele-
vance predictions are equally reliable, we introduce
a confidence loss. We posit that the model should
exhibit high confidence for easier samples to clas-
sify, while maintaining lower confidence for more
challenging and confusing cases. To this end, we
leverage external models (such as BGE (Chen et al.,

2024)) to assist in determining sample difficulty:

Lconfidence=−
n∑

i=1

(ci−[
1

K

K∑

k=1

I(Mk(ri|q)== r̄i)])

(2)
where ci is the estimated confidence score, Mk

represents K different external models, and I(·) is
the indicator function. This loss trains the model
to produce confidence scores that accurately reflect
the trustworthiness of its relevance predictions:

Diversity Loss. To ensure a comprehensive uti-
lization of layer-specific knowledge and avoid
overly homogeneous relevance guidance, we em-
ploy a diversity loss based on the entropy of the
final relevance guidance:

Ldiversity = −H(α1, . . . , αn) (3)

where H(·) is the entropy function, and α1, . . . , αn

are the final relevance guidance weights.
Combining these loss functions through simple

addition, our estimator learns to provide accurate,
confident, and diverse relevance assessments across
different layers of the LLM. The Relevance Loss
helps to quickly narrow down the search space to
the most pertinent passages, while the Diversity
Loss encourages a broader exploration of poten-
tially relevant information, increasing the chances
of recalling the correct answer. Although these two
losses may seem antagonistic, their balanced com-
bination leads to a more robust and comprehensive
relevance assessment.

4.3.3 Entropy-based Layer-Knowledge
Selection.

Inspired by Hyeon-Woo et al. (2023), to ensure the
effective utilization of layer-specific knowledge in
passage assessment, we propose an entropy-based
layer-knowledge selection to identify which layers
provide the most informative and contextually rich
representations for each passage.

Specifically, for each passage pi, we calculate
the entropy Hi of the attention distribution from
each passage’s last special token to other tokens in
the sequence:

Hi = −K

n∑

j=1

wj
i logw

j
i (4)

where wj
i denotes the attention weight from the last

special token ei to the j-th token in the sequence, n
is token number of passage pi, and K is the scaling
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factor. A higher entropy value indicates that the
sentence embedding gathers a broader range of
contextual information.

Finally, we use a selection weight to aggregate
the layer-wise relevance and confidence scores to
update the relevance guidance:

αl
i = β (log(1 +Hi) · log(1 + ri) · log(1 + ci))

+ (1− β)αl−1
i

(5)
where αl

i is the updated relevance guidance for
passage pi at layer l, and β balances current and
previous layer assessments. To mitigate numeri-
cal oversensitivity, we employ a logarithmic mul-
tiplication. This approach combines layer-wise
relevance and confidence estimation with entropy-
based layer-knowledge selection, enabling our esti-
mator to leverage diverse knowledge across LLM
layers and provide robust guidance for the LLM’s
attention mechanism.

4.4 Relevance-aware Passage Fusion

To mitigate the issues of distractibility and posi-
tional bias, we propose a Relevance-aware Passage
Fusion that selectively directs LLM attention to
relevant passages based on the relevance guidance
obtained from the Layer-wise Passage Estimator.

To effectively guide the LLM’s attention to-
wards relevant passages while mitigating the ef-
fects of distractibility and positional bias inher-
ent in traditional attention frameworks, we intro-
duce a relevance-guided attention mask. This
mask dynamically modulates query-passage inter-
actions based on estimated relevance, preserves
intra-passage context, and inhibits cross-passage
interference, thereby enhancing the model’s capac-
ity to prioritize salient information. The mask mod-
ulates the attention weights based on the estimated
relevance of each passage. Formally, for each layer
l, we define the attention mask M l as:

M l
ij =





αl
k, if i ∈ q and j ∈ pk

(middle-focused attention heads)

1, if i ∈ q and j ∈ pk

(other attention heads)

1, if i ∈ pk and j ∈ pk

(same passage)

0, if i ∈ pk and j ∈ pm where k ̸= m

(different passages)
(6)

where q represents the set of query token positions,
pk is the set of token positions for passage k, and
αl
k is the relevance guidance for passage k at layer l.

As our analysis of RALM attention, we selectively
apply relevance-guided attention mask to Middle-
focused attention heads only, while maintaining the
functionality of Edge-focused and Uniform atten-
tion patterns. Finally, we use the standard language
modeling loss to jointly fine-tune the LLM.

5 Experiments

5.1 Experimental Setting

5.1.1 Datasets

To assess performance across diverse data char-
acteristics, we employ a range of representative
datasets for RALM evaluation. These include Nat-
ural Question (NQ) (Kwiatkowski et al., 2019),
TriviaQA (Joshi et al., 2017), StrategyQA (Geva
et al., 2021), HotpotQA (Yang et al., 2018), PopQA
(Mallen et al., 2022), and 2WikiMQA (Ho et al.,
2020). Detailed descriptions are provided in Ap-
pendix B.

5.1.2 Baselines

We categorize our baselines into three groups:
closed-book LLM without retrieval, LLM with re-
trieval, and robust RALM. The first two groups in-
clude LLAMA-3.1 (Dubey et al., 2024), Qwen-2.5
(Yang et al., 2024), ChatGPT, GPT4, and Claude-
3-Sonnet. The third group comprises REPLUGE
(Shi et al., 2023b), Self-RAG (Asai et al., 2023),
RA-ISF (Liu et al., 2024b) Noise-Resistant (Yoran
et al., 2024), ChatQA-1.5 (Liu et al., 2024c) and
RankRAG (Yu et al., 2024). Comprehensive de-
scriptions of these baselines are provided in Ap-
pendix C.

5.1.3 Evaluation criteria

In evaluating the quality of the predicted answers,
we employ the standard exact match (EM) met-
ric on 5-shot, following previous work (Karpukhin
et al., 2020; Izacard et al., 2022). The generated
answer is first normalized by lowercasing, remov-
ing articles, punctuation, and duplicated whites-
pace. The EM score is binary for one question,
with a value of 1 if the predicted answer matches
the ground-truth answer exactly, and 0 otherwise.
Then we averaged the EM scores across all ques-
tions in the test set and then multiplied by 100 to
obtain final scores.
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Table 1: Overall Performance. Bold numbers indicate
the best score across all models, while underlined num-
bers represent the best score within each category.

Model NQ TriviaQA HotpotQA PopQA 2WikiMQA
General LLMs

LLAMA-3.1-8B 18.7 78.5 16.5 22.1 13.9
+ Retrieval 30.9 70.7 26.0 34.9 9.6
+ Fine-tuning 35.7 77.4 28.9 37.1 25.3

LLAMA-3.1-70B 21.8 89.7 24.1 27.5 21.6
+ Retrieval 42.7 82.4 35.5 45.3 13.5
+ Fine-tuning 44.9 89.1 38.5 50.3 28.4

Qwen-2.5-7B 37.5 80.2 20.3 24.8 16.2
+ Retrieval 44.3 83.5 29.7 37.8 17.8
+ Fine-tuning 46.1 86.3 30.8 40.6 28.8

Qwen-2.5-72B 39.9 90.5 26.3 29.8 24.1
+ Retrieval 45.1 90.6 37.2 47.9 27.7
+ Fine-tuning 47.6 90.5 39.4 52.2 36.0

ChatGPT 38.6 82.9 29.9 28.4 23.9
+ Retrieval 46.7 79.7 31.2 49.9 27.2

GPT-4 40.3 87.0 34.5 31.3 29.8
+ Retrieval 40.4 75.0 27.6 44.3 14.4

Claude-3-Sonnet 49.2 87.5 32.8 33.4 31.4
+ Retrieval 55.1 90.8 33.3 52.4 32.6

Robust RALM
REPLUGE 23.8 58.6 21.8 40.1 25.7
Self-RAG 28.4 61.6 25.4 44.8 30.2
RA-ISF 31.3 63.2 28.9 46.8 31.7
Noise-Resistant RALM 45.7 80.3 34.4 48.1 34.7
ChatQA-1.5 47.0 85.6 35.5 45.3 13.5
RankRAG 54.2 86.5 42.7 59.9 38.2

LKG-RALM
LLAMA-3-8B 53.6 87.9 42.4 56.5 38.7
LLAMA-3-70B 59.9 89.5 44.7 62.0 41.1
LLAMA-3.1-8B 55.3 88.6 43.1 57.2 39.0
LLAMA-3.1-70B 61.0 89.9 45.8 62.6 41.3
Qwen-2.5-7B 55.4 88.1 43.1 57.4 39.7
Qwen-2.5-72B 61.5 90.0 46.1 62.7 41.4

5.2 Overall Performance

The results in Table 1 demonstrate varying perfor-
mance across different model types. Closed-book
LLMs show strong baseline performance but face
limitations in their knowledge base. Adding re-
trieval generally improves performance, as seen
with LLAMA-3.1-70B improving from 21.8 to 42.7
on NQ, and further fine-tuning brings additional
gains (reaching 44.9). However, this improvement
isn’t consistent across all models and datasets. For
instance, GPT-4 with retrieval shows decreased per-
formance on TriviaQA (87.0 to 75.0).

The combination of retrieval and fine-tuning
shows promising results, particularly for larger
models. Qwen-2.5-72B benefits significantly from
both enhancements, with performance on NQ im-
proving from 39.9 (base) to 45.1 (+ retrieval) to
47.6 (+ retrieval & fine-tuning). Claude-3-Sonnet
with retrieval achieves strong results, reaching 55.1
on NQ and 90.8 on TriviaQA. Robust RALM meth-
ods, particularly RankRAG, demonstrate effective
utilization of retrieved passages, showing consis-
tent improvements across datasets. RankRAG
achieves strong performance with 54.2 on NQ and
59.9 on PopQA, outperforming many traditional
retrieval-augmented approaches.

Table 2: Ablation result of LKG-RALM, where "LPR",
"ELS", and "RPF" stand for Layer-wised Passage Rele-
vance, Entropy-based Layer-Knowledge Selection, and
Relevance-aware Passage Fusion, respectively.

Model Varient NQ TriviaQA HotpotQA PopQA 2WikiMQA
LKG-RALM-8B 55.3 88.6 43.1 57.2 39.0
w/o LPR 50.6 86.0 39.5 52.5 34.8
w/o ELS 53.1 87.7 41.8 55.8 37.2
w/o RPF 30.9 70.7 26.0 34.9 9.6
w/o Auxiliary Loss 54.2 87.3 42.3 56.4 37.8

LKG-RALM outperforms baseline models
across all datasets. Compared to closed-book
LLMs, it shows substantial gains of 12.3 percent-
age points on NQ to 10.0 on 2WikiMQA. When
compared to retrieval-augmented and fine-tuned
models, LKG-RALM still demonstrates superior
performance, with Qwen-2.5-72B based LKG-
RALM achieving the best results across most met-
rics (61.5 on NQ, 46.1 on HotpotQA). The perfor-
mance gap between 8B and 70B variants (2.3-5.7
percentage points) suggests that larger models can
better leverage our approach, particularly on com-
plex tasks like PopQA.

5.3 Ablation Results

5.3.1 Effect of Designed Components

Table 2 shows the ablation results of LKG-RALM
with LLAMA-3.1-8B as the backbone. All pro-
posed components contribute significantly to the
final performance. Replacing the Layer-wise Pas-
sage Estimator with a reranking model causes a sub-
stantial performance drop across all tasks, with an
average decrease of 3.96. This highlights its crucial
role in using layer-wised LLM knowledge to as-
sess passage relevance. The Entropy-based Layer-
Knowledge Selection mechanism proves effective,
as its removal leads to an average EM decrease
of 1.52, showing the importance of dynamically
selecting informative layer representations for each
passage. Ablating the Relevance-aware Passage Fu-
sion component results in significant performance
degradation, with an average EM decrease of 22.22.
This demonstrates our approach’s effectiveness in
reducing distractibility and positional bias when
processing multiple passages, compared to tradi-
tional attention mechanisms. Finally, the auxiliary
losses improve performance across most tasks by
1.06, indicating their value in guiding the model to
consider passage relevance, prediction confidence,
and diverse utilization of layer knowledge during
training.
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5.4 Robustness Analysis

5.4.1 Increased Number of Retrieved Passages

To assess the scalability and efficiency of LKG-
RALM in handling larger amounts of retrieved
information, we conducted experiments varying
the number of retrieved passages from 0 to 50.
Figure 6(a) illustrates the performance trends of
LKG-RALM compared to baseline models across
different datasets.

The experiment reveals that LKG-RALM
demonstrates superior scalability and maintains
high performance even as the number of retrieved
passages increases significantly. LKG-RALM
shows a steady increase in EM scores from 24.8 to
61.5 as the number of passages grows, with only
a slight plateau effect beyond 35 passages, indi-
cating effective utilization of additional informa-
tion without suffering from information overload.
In contrast, baseline models like RankRAG and
Self-RAG initially show improvements with more
passages, but their performance begins to degrade
or plateau beyond 25 passages. RankRAG reaches
a peak of 53.7 at 25 passages before slightly de-
clining to 54.2 at 50 passages, while Self-RAG
peaks at 43.5 at 25 passages before sharply declin-
ing to 28.4 at 50 passages. GPT-4 with Retrieval
shows remarkable stability, maintaining a nearly
constant performance (around 40.4) regardless of
the number of passages, indicating its strong innate
knowledge but potential limitations in effectively
utilizing additional retrieved information.

LKG-RALM maintains its edge, with a 6.8 EM
score advantage over RankRAG at 50 passages
(61.0 vs 54.2). Despite the increased potential for
irrelevant information with more passages, LKG-
RALM’s performance remains robust, underscor-
ing the effectiveness of its relevance-aware passage
fusion mechanism.

5.4.2 Higher Proportions of Irrelevant
Passages

Our method internally attends attention to rele-
vant passages for the given question, facilitating
evidence-seeking from noisy contexts. To evaluate
its robustness and noise tolerance, we conducted ad-
versarial testing by incrementally replacing the 50
retrieved passages with irrelevant passages, ranging
from 0% to 100% substitution.

From Figure 6(b), LKG-RALM showed strong
resilience against irrelevant information. When in-
creasing irrelevant passages to 100%, the EM score

0 10 20 30 40 50

30

40

50

60

Retrieved Passage Number

E
M

Sc
or

es

LKG-RALM RankRAG
Self-RAG GPT-4 with Retrieval

(a) Impact of Increasing Pas-
sage Number

0 20 40 60 80 100

20

40

60

Proportion of Irrelevant Passages (%)

E
M

Sc
or

es

LKG-RALM RankRAG
Self-RAG GPT-4 with Retrieval

(b) Impact of Irrelevant Pas-
sages

Figure 6: Robustness to the number of retrieved pas-
sages and the proportion of irrelevant passages.

only gradually decreased from 61.0 to 42.7, signifi-
cantly outperforming other retrieval-based models.
Even with 80% irrelevant input, LKG-RALM main-
tained a strong EM score of 54.8. In comparison,
models without explicit relevance modeling like
RankRAG saw sharp performance drops, falling
from 54.2 to 15.6 with fully irrelevant passages.
While GPT-4 with Retrieval showed high noise tol-
erance, dropping only from 40.4 to 31.5 under fully
irrelevant conditions, it did not leverage relevant in-
formation as effectively as LKG-RALM, as shown
in our earlier experiment. LKG-RALM’s superior
performance stems from its explicit relevance mod-
eling, which helps it focus on pertinent information
while filtering out noise. This allows it to effec-
tively balance the use of retrieved knowledge with
its inherent model capabilities.

6 Conclusion

In this work, we proposed LKG-RALM, which
leverages layer-wise knowledge within LLMs to
guide attention toward relevant passages, address-
ing distractibility and positional bias in handling
retrieved passages. A layer-wise passage estima-
tor evaluates passage relevance by utilizing diverse
layer knowledge within the LLM. Entropy-based
layer-knowledge selection dynamically identifies
the most relevant layers for accurate passage as-
sessment. Relevance-aware passage fusion selec-
tively prioritizes crucial content, reducing the im-
pact of irrelevant passages and overcoming posi-
tional bias. Extensive experiments across multiple
datasets demonstrate that LKG-RALM achieves
notable improvements in accuracy and robustness
for knowledge-intensive tasks.
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Limitations

Our work has several important limitations that
should be acknowledged:

First, while our layer-wise passage estimator sig-
nificantly improves RALM performance, it intro-
duces additional computational overhead. The need
to process passages through multiple layers for rel-
evance assessment increases both memory usage
and inference time. Although this overhead is rela-
tively small compared to the base LLM inference,
it may impact real-time applications or resource-
constrained environments. Future work could ex-
plore more efficient methods for leveraging layer-
wise knowledge without significant computational
costs.

Second, our approach relies heavily on the qual-
ity of retrieved passages. While LKG-RALM
shows improved robustness to irrelevant passages,
its performance still degrades when the retrieval
quality is poor or when dealing with queries requir-
ing information beyond the knowledge cutoff date
of the retrieval corpus. This limitation is particu-
larly evident in rapidly evolving domains where
the retrieved information may become outdated
quickly.

Third, the effectiveness of our layer-knowledge
selection mechanism may vary across different
LLM architectures and sizes. While we demon-
strated strong performance with LLAMA-3.1 and
Qwen-2.5, the optimal configuration of layer-wise
knowledge utilization might need to be adjusted for
different model architectures. Additionally, our cur-
rent approach to entropy-based layer selection may
not capture all aspects of layer-specific knowledge
representation.

Ethics Statement

Our work utilizes publicly available datasets and
pre-trained language models, adhering to estab-
lished data usage guidelines. However, several eth-
ical considerations deserve attention. While LKG-
RALM shows improved robustness in handling
retrieved information, it inherits potential biases
present in both the pre-trained language models
and the retrieval corpus, which could affect the
model’s responses across different demographic
groups or topic areas. We emphasize that our work
primarily focuses on technical improvements in
retrieval-augmented language modeling and should
be complemented with dedicated bias mitigation
strategies. Additionally, the improved performance

of our model in handling retrieved passages raises
questions about information authenticity and attri-
bution. While LKG-RALM can better identify and
utilize relevant information, users should be aware
that the model’s responses are based on retrieved
passages that may contain inaccuracies or outdated
information. We recommend implementing clear
attribution mechanisms and confidence indicators
in practical applications.
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A Attention Analysis Setting

A.1 Model and Dataset Selection
Our analysis of attention patterns in Retrieval-
Augmented Language Models (RALMs) was con-
ducted using LLAMA-3.1-8B-instruct as the base
model. We randomly selected a sample of 2000
queries from the Natural Questions and TraviaQA
datasets, which consist of real-world queries sub-
mitted to Google Search and Allen Institute along
with high-quality human-annotated answers ex-
tracted from Wikipedia pages.
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A.2 Attention Pattern Classification

In our study, we focused on three main categories
of attention patterns: edge-focused attention, uni-
form attention, and middle-focused attention. To
analyze these patterns, we examined the attention
distribution across all attention heads in the model.
For each attention head, we calculated the percent-
age of attention allocated to different parts of the
input sequence, specifically the beginning, middle,
and end. Based on this distribution, we classified
each attention head into one of the three main cate-
gories. We then quantified the prevalence of each
attention pattern type across all attention heads to
gain a comprehensive understanding of the model’s
attention behavior.

A.3 Correlation Analysis

To investigate the relationship between attention
patterns and model performance, we conducted a
correlation analysis. This involved calculating the
sum of attention weights for each pattern type and
measuring the model’s accuracy on the test set. We
then computed the correlation between these at-
tention weight sums and the model’s accuracy for
each pattern type. This analysis allowed us to iden-
tify which attention patterns were most strongly
associated with improved model performance.

A.4 Manipulation Experiments

To further validate our findings and explore the
causal relationships between attention patterns and
model performance, we conducted two types of
manipulation experiments. In the first experiment,
we artificially replaced edge-focused and uniform
attention patterns with middle-focused attention
on relevant passages. This allowed us to observe
how redirecting attention to potentially more in-
formative parts of the input affected the model’s
performance. In the second experiment, we deliber-
ately redirected middle-focused attention patterns
to both irrelevant and relevant passages. By com-
paring the model’s performance under these differ-
ent conditions, we were able to assess the impact
of focused attention on specific parts of the input.

Throughout our analysis, we created detailed
visualizations to illustrate the different attention
patterns and their impact on model performance.
These visualizations, presented in Figure 2 and Fig-
ure 3(b), provide a clear and intuitive representation
of our findings, helping to elucidate the complex
relationships between attention mechanisms and

RALM performance. By systematically examining
different types of attention patterns, their preva-
lence, and their relationship to model accuracy, we
have identified potential areas for improvement in
model design and training, particularly in guiding
attention to relevant parts of the input for enhanced
performance in open-domain question answering
tasks.

B Dataset Description

To comprehensively evaluate the performance of
Retrieval-Augmented Language Models (RALMs)
across diverse data characteristics, we employ a
range of representative datasets covering various
aspects of question-answering tasks, from fac-
toid questions to multi-hop reasoning and strategy-
based inquiries. Below, we provide detailed de-
scriptions of each dataset:

• Natural Questions (NQ): Developed by
Google Research (Kwiatkowski et al., 2019),
this dataset comprises real-world queries sub-
mitted to Google Search, accompanied by
high-quality human-annotated answers ex-
tracted from Wikipedia pages. NQ offers a
rich mixture of long and short answer formats,
reflecting authentic information-seeking be-
haviors across a broad range of subjects. Its
structure, featuring both comprehensive pas-
sages and concise answer spans, provides a
nuanced testing ground for RALMs.

• TriviaQA: Crafted by researchers at the Allen
Institute for AI (Joshi et al., 2017), Trivi-
aQA presents a formidable challenge with
its extensive collection of question-answer
pairs. These are sourced from trivia enthusi-
asts and paired with supporting evidence from
Wikipedia and web searches. The dataset’s
hallmark is its high lexical and syntactic vari-
ance between questions and answers, necessi-
tating robust retrieval and reasoning capabili-
ties from models. By spanning both web and
Wikipedia domains, it offers a comprehensive
evaluation landscape.

• StrategyQA: Developed by the Allen Institute
for AI (Geva et al., 2021), it focuses on multi-
hop reasoning questions that demand implicit
strategic thinking. StrategyQA’s questions of-
ten require common sense reasoning, with
answers typically being binary (yes/no) but
necessitating complex cognitive processes. It

3663



is specifically designed to challenge and eval-
uate models’ strategic thinking abilities, push-
ing the boundaries of AI reasoning.

• HotpotQA: A collaborative effort by Carnegie
Mellon University (Yang et al., 2018), Hot-
potQA features Wikipedia-based question-
answer pairs that explicitly require reason-
ing across multiple supporting documents. It
includes sentence-level supporting facts for
answer explanation and maintains a balance
across different reasoning types, such as bridg-
ing and comparison. This structure makes
HotpotQA particularly effective in assessing
multi-hop reasoning capabilities.

• PopQA: Created by researchers at the Uni-
versity of Washington (Mallen et al., 2022),
PopQA centers on questions about popular
culture, including movies, music, celebrities,
and current events. This dataset is crucial
for testing models’ ability to handle contem-
porary and rapidly evolving information. It
challenges RALMs to navigate ambiguity and
context-dependent information, reflecting the
dynamic nature of real-world knowledge.

• 2WikiMQA: Developed by the Graduate Uni-
versity for Advanced Studies (Ho et al., 2020),
2WikiMQA is a multi-hop open-domain
question-answering dataset constructed from
Wikipedia. It features questions that neces-
sitate reasoning across multiple Wikipedia
pages and includes complex queries that can-
not be answered by a single fact. This dataset
is designed to simultaneously test both re-
trieval accuracy and advanced reasoning capa-
bilities of RALMs.

By employing this diverse set of benchmarks, we
aim to provide a holistic assessment of model ca-
pabilities, from factual recall to complex reasoning
and strategic thinking.

C Baseline Settings

Our baseline methods for open-QA tasks repre-
sent a diverse range of approaches, from pure lan-
guage models to sophisticated retrieval-augmented
systems. We categorize these baselines into three
groups: closed-book LLM without retrieval, LLM
with retrieval, and robust RALM. Each group show-
cases different strategies for tackling RAG chal-
lenges.

C.1 Closed-book LLM without retrieval and
LLM with retrieval

The first two groups encompass state-of-the-art lan-
guage models that have demonstrated exceptional
capabilities in various natural language process-
ing tasks. For models in the LLM with retrieval
category, we employ a straightforward approach
of concatenating retrieved content to the context,
allowing the LLM to process the augmented input:

• LLAMA-3.1 (2024) (Dubey et al., 2024): The
latest iteration in the LLaMA series, LLAMA-
3.1 builds upon 15 trillion texts, achieving the
most effective open-source ability.

• Qwen-2.5 (2024) (Yang et al., 2024): Devel-
oped by Alibaba, Qwen-2.5 represents a sig-
nificant advancement in multilingual capabili-
ties, trained on 18 trillion data to achieve state-
of-the-art performance across various tasks.

• ChatGPT (2022): Developed by OpenAI,
this model has gained widespread recognition
for its conversational prowess and extensive
knowledge base across diverse domains.

• GPT-4 (2023) (Achiam et al., 2023): A large-
scale, multimodal model developed by Ope-
nAI, capable of accepting image and text in-
puts and producing text outputs. It exhibits
human-level performance on various profes-
sional and academic benchmarks.

• Claude-3-Sonnet (2024): An advanced AI
model from Anthropic, part of the Claude
3 model family, known for its strong perfor-
mance across a wide range of tasks.

C.2 Robust RALM
The third group comprises advanced retrieval-
augmented language models that enhance the ro-
bustness and effectiveness of RAG:

• REPLUG (2023) (Shi et al., 2023b): A
retrieval-augmented language modeling
framework that treats the language model
as a black box and augments it with a
tuneable retrieval model. It simply prepends
retrieved documents to the input for the
frozen black-box LM.

• Self-RAG (2023) (Asai et al., 2023): A frame-
work that enhances an LM’s quality and fac-
tuality through retrieval and self-reflection. It
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trains a single arbitrary LM that adaptively
retrieves passages on-demand, and generates
and reflects on retrieved passages and its own
generations using special tokens.

• RA-ISF (2024) (Liu et al., 2024b): A frame-
work that iteratively decomposes tasks and
processes them in three submodules to en-
hance the model’s problem-solving capabil-
ities. It aims to improve factual reasoning
capabilities and reduce hallucinations.

• Noise-Resistant RALM (2024) (Yoran et al.,
2024): This approach focuses on making
retrieval-augmented language models robust
to irrelevant context. It proposes two methods:
a simple baseline that filters out retrieved pas-
sages using an NLI model, and a method for
automatically generating data to fine-tune the
language model.

• ChatQA-1.5 (2024) (Liu et al., 2024c): An
evolution of the ChatQA model, this version
introduces refinements aimed at enhancing
effectiveness in question-answering tasks, par-
ticularly in conversational contexts.

• RankRAG (2024) (Yu et al., 2024): A instruc-
tion fine-tuning framework that instruction-
tunes a single LLM for the dual purpose
of context ranking and answer generation in
RAG.

In our experimental setup, the RankRAG re-
sults are referenced from the original paper using
LLaMA-3-70B in a zero-shot setting and are sup-
ported by the authors; ChatQA 1 leverages LLaMA-
3-70B in a five-shot setting; Noise-Resistant
RALM 2 is reproduced using LLaMA-3.1-8B; and
RA-ISF 3 is implemented with ChatGPT-3.5.

D Implementation Details

Our model foundation utilizes LLAMA and Qwen.
For retrieval, we follow ATLAS (Izacard et al.,
2022) by using the Wikipedia dump from Decem-
ber 20, 2018, as our external corpus, comprising 28
million passages. We adopt a hybrid retrieval (Ari-
vazhagan et al., 2023), where BM25 is grounded
on the Elastic Search (Gormley and Tong, 2015),
while the dense retriever is based on the FAISS

1https://huggingface.co/nvidia/Llama3-ChatQA-1.5-70B
2https://huggingface.co/datasets/Ori/strategyqa-ret-robust
3https://github.com/OceannTwT/ra-isf

index (Johnson et al., 2019). The training data is
followed by Self-RAG (Asai et al., 2023). The
trainable low-rank weights were implemented us-
ing LoRA (Hu et al., 2021), with a rank dimension
of 256. The hidden size of the adaptor is set to
4096. We optimized all trainable parameters using
the AdamW optimizer with a learning rate of 1e-5.
The batch size was set to 32, and a warmup ratio
of 0.1 was employed along with a cosine learning
rate scheduler. Three external relevance scores are
obtained from BGE-M3 4, E5-mistral-7b-instruct 5,
GTE-Qwen2-7B-instruct 6. The updating factor β
for layer-wised relevance guidance was set to 0.2.

Notice that we can use separate LLMs for pas-
sage estimation and answer generation in parallel.
A lighter estimator (e.g., 1.5B) paired with a larger
generator (e.g., 8B) minimizes overhead, where
the generator can share relevance guidance across
some layers due to differing layer counts.

For the attention pattern analysis, we define the
first 3 tokens as the head and the last 3 tokens as
the tail, with the remaining tokens classified as
the middle. We employ threshold-based metrics to
distinguish between attention patterns:

• Edge-focused: Combined attention weights of
head and tail exceed 75%.

• Uniform: Middle attention weights exceed
90%, with over 40% of tokens having atten-
tion weights greater than 1/(input length), and
no single token’s attention weight exceeding
10%. The term "uniform" is somewhat hyper-
bolic. What it actually represents is a pattern
where no single token receives exceptionally
high attention.

• Middle-focused: Middle attention weights ex-
ceed 90%, with either one or two tokens hav-
ing attention weights above 30%, or three or
more tokens having attention weights above
10%.

E Performance on general NLP tasks

Beyond open-QA, we assess the capabilities of
LKG-RALM architecture on broader NLP bench-
marks. Specifically, we evaluate on Multitask
Language Understanding (MMLU) and Language

4https://huggingface.co/BAAI/bge-m3
5https://huggingface.co/intfloat/e5-mistral-7b-instruct
6https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-

instruct
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Model Hum. Social. STEM Other All
LLAMA-3-8B 73.8 75.2 69.5 73.5 73.0
ChatGPT 71.2 73.6 65.8 69.4 70.0
GPT4 85.7 87.9 84.2 87.8 86.4
Self-RAG 64.5 65.8 63.1 65.4 64.7
RankRAG 74.1 75.6 70.8 73.5 73.5
LKG-RALM-8B 75.3 77.2 71.9 74.8 74.8

Table 3: Performance on MMLU task.

Modeling, standing challenging tasks covering
both understanding and generation.

E.1 MMLU

We evaluated LKG-RALM on the Multi-task
Language Understanding (MMLU) benchmark
(Hendrycks et al., 2020), a comprehensive mul-
tiple choice QA dataset consisting of 57 natural
language understanding tasks, including elemen-
tary mathematics, US history, computer science,
law, and more. Following previous work (Shi et al.,
2023b), We grouped these tasks into four cate-
gories: Humanities, Social Science, STEM, and
Other. We still use the Wikipedia dump as an ex-
ternal corpus for retrieving information to improve
the performance on the MMLU task.

As shown in Table 3, the results demonstrate that
LKG-RALM outperforms the original LLAMA
model by a significant margin across all tasks.
Specifically, we observe an average accuracy im-
provement of 1.5% on Humanities, 7.2% on So-
cial Science, 2.8% on STEM, and 4.4% on other
tasks over LLAMA-3.1-8B. Moreover, compared
to other models, we have achieved competitive per-
formance. LKG-RALM-8B outperforms ChatGPT
by 4.8% on average and surpasses Self-RAG by
10.1%. Compared with RankRAG, we obtain 1.3
absolute improvements on average. This substan-
tial performance boost can be attributed to two
key factors. Firstly, the retrieved passages from
Wikipedia provide useful external knowledge and
context for the model to better understand the input
texts. Secondly, the relevance-guided architecture
enables more effective encoding and reasoning over
lengthy context-like passages, facilitating passage
understanding for solving complex MMLU tasks.

E.2 Language Modeling

As a crucial touchstone for evaluating general lan-
guage generation capabilities, we assess the LKG-
RALM architecture on language modeling bench-
marks spanning diverse domains including web-
sites, academic writing, code, and dialogue on

Model # Params Original +LKG-RALM Gain %

GPT-2

117M 1.33 1.22 8.27
345M 1.20 1.13 10.83
774M 1.19 1.14 4.20
1.5B 1.16 1.01 12.93

Qwen-2.5
7B 0.95 0.90 5.26
14B 0.88 0.84 4.54
72B 0.70 0.66 5.71

LLAMA-3.1 8B 0.97 0.93 4.12
70B 0.72 0.70 2.77

Table 4: Performance on language modeling task

the Pile dataset. These benchmarks require pre-
dicting subsequent tokens based on preceding tex-
tual context, and evaluating model fluency, coher-
ence and grounding. A key challenge arises from
lengthy context segmentation across long docu-
ments, which hinders encoding the full history to
produce logically consistent continuations. To en-
able relevance-aware passage fusion component,
we segment lengthy sequences into 100-token pas-
sages.

Following prior work (Shi et al., 2023b), we re-
port the standard bits-per-byte (BPB) metric which
measures cross-entropy reduction to evaluate per-
plexity improvements. A smaller value of BPB
means better performance. As shown in Table 4,
LKG-RALM substantially enhances base LLMs
like GPT-2, Qwen, and LLAMA across all cate-
gories of the Pile benchmark by 9.06% (GPT-2),
5.17% (Qwen), and 3.45% (LLAMA) BPB on av-
erage. This demonstrates LKG-RALM success-
fully encodes rich multi-granularity semantics to
produce logical and human-like text continuations.
The significant perplexity reductions validate that
hierarchical encoding mechanisms enhance the lan-
guage model’s context capacity to track lengthy
precedings for coherent generation. By effectively
navigating long-range dependencies, LKG-RALM
generates higher-quality and better-grounded natu-
ral language.

F Efficiency and Accuracy Trade-off

To contextualize our method’s efficiency, we com-
pared LKG-RALM’s performance with existing
models in Table 5. Self-RAG and RA-ISF re-
quire multiple rounds of retrieval and question
decomposition-based multi-turn dialogue, respec-
tively. Their low parallelism results in approxi-
mately 3.7x inference time compared to LLAMA-
3.1-8B, with Self-RAG taking 3.07 seconds per
query and RA-ISF requiring 3.44 seconds per query.
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Table 5: Efficiency and Accuracy Trade-off for LKG-
RALM and Baseline Models under 1024 Context To-
kens.

Model EM Speed (s/query) TFLOPs
Self-RAG 28.4 3.07 20.5
RA-ISF 31.3 3.44 63.8
Robust-RALM 45.7 0.74 14.6
RankRAG 54.2 1.25 145.4

LKG-RALM with Different Passage Estimator
LLAMA-3.1-8B 30.9 0.82 16.3

+ Qwen-2.5-500M 53.6 0.83 18.1
+ Qwen-2.5-1.5B 54.8 0.85 20.0
+ Qwen-2.5-7B 55.3 0.91 30.9

LLAMA-3.1-70B 42.7 1.24 142.6
+ Qwen-2.5-500M 60.0 1.24 144.4
+ Qwen-2.5-1.5B 60.7 1.25 146.3
+ Qwen-2.5-7B 61.0 1.27 157.2

Noise-Resistant-8B and RankRAG-70B use BERT-
based NLI models and Reranking Models, respec-
tively, to assist in passage filtering or sorting. This
introduces an additional 0.8% inference latency
and 1.9% computational overhead for RankRAG-
70B, increasing its processing time to 1.25 sec-
onds per query and its computational cost to 145.4
TFLOPs for 1024 tokens. Similarly, LKG-RALM-
70B employs the Qwen-2.5-7B model for passage
relevance analysis, resulting in a 2.4% increase in
inference latency (from 1.24 to 1.27 s/query) and a
10.2% increase in computational cost (from 142.6
to 157.2 TFLOPs). The low latency is attributed to
the layer-wise passage estimator’s ability to operate
in high parallelism with LLM inference.

To further evaluate the trade-off between effi-
ciency and accuracy, we conducted experiments
using different LLM sizes for the layer-wise pas-
sage estimator. Table 5 shows that increasing the
size of the passage estimator from Qwen-2.5-500M
to Qwen-2.5-7B yields consistent improvements in
EM scores for both LLAMA-3.1-8B and LLAMA-
3.1-70B base models. For LLAMA-3.1-8B, the
EM score improves from 53.6 to 55.3 as we scale
up the estimator, with a modest increase in process-
ing time from 0.83 to 0.91 seconds per query. The
computational cost rises from 18.1 to 30.9 TFLOPs.
Notably, even with the largest Qwen-2.5-7B es-
timator, LKG-RALM-70B maintains competitive
efficiency compared to RankRAG-70B (1.27 vs
1.25 s/query) while achieving superior EM scores
(61.0 vs 54.2). LKG-RALM’s flexible framework
allows users to balance accuracy and efficiency by
selecting appropriate estimator sizes. For example,
Qwen-2.5-1.5B with LLAMA-3.1-70B improves
EM score by 0.7 over the 500M version, with min-
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Figure 7: Effects of training data size.

imal increases in query time and computational
cost.

G Effects of Training Data Size

We conducted an analysis to understand how the
scale of training data affects the model’s perfor-
mance. Specifically, we randomly sampled 30k,
60k, 90k, 160k, and 220k instances from our orig-
inal 440k training instances and fine-tuned five
LKG-RALM-70B variants on these subsets. We
then compared the model performance on NQ
and HotpotQA with our final LKG-RALM trained
on the full 440k instances. We also evaluated
LLAMA-3.1-70B fine-tuned on the same data sub-
sets as a baseline. Figure 7 shows the models’
performance trained on different amounts of data.
For NQ, LKG-RALM-70B’s accuracy improves
from 50.5 with 30k training instances to 61.0 with
the full 440k dataset. In contrast, LLAMA-3.1-
FineTune shows minimal improvement, from 44.6
to 45.7 with a mere 1.1 increase. The performance
gap between LKG-RALM-70B and LLAMA-3.1-
FineTune widens significantly, from 5.9 at 30k in-
stances to 15.3 at 440k instances.

The model’s strong performance largely comes
from its effective pre-training parameter space.
With only 30k fine-tuning examples, LKG-RALM-
70B shows impressive results, reaching 50.5 EM on
NQ and 37.1 on HotpotQA. This indicates that min-
imal fine-tuning data can activate the model’s core
capabilities in passage estimation and robustness.
The performance difference between LKG-RALM-
70B and LLAMA-3.1-FineTune is clear even with
limited data, showing our approach’s effectiveness.
As training data increases, LKG-RALM-70B’s ac-
curacy steadily improves, though gains slow after
220k examples. For NQ, the improvement from
220k to 440k is just 0.7, versus 1.8 from 160k to
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Table 6: Distribution of Distinct Relevance Scores
Across Model Layers

Number of Scores 1 2 3 4 5 6 7 Others
Percentage (%) 4.2 17.2 21.8 35.9 10.4 5.6 3.2 1.7

Table 7: Model Performance with Different Numbers of
Relevance Scores

Model NQ TriviaQA HotpotQA PopQA 2WikiMQA
LLAMA-3.1-8B 18.7 78.5 16.5 22.1 13.9
+ Retrieval & Fine-tuning 35.7 77.4 28.9 37.1 25.3
+ LKG-RALM (k=1) 36.4 77.3 29.6 38.6 26.2
+ LKG-RALM (k=2) 40.7 78.5 31.3 42.3 26.5
+ LKG-RALM (k=3) 47.2 85.4 37.4 48.0 33.4
+ LKG-RALM (k=4) 50.1 86.0 39.3 51.6 34.6
+ LKG-RALM (k=5) 51.6 86.0 40.5 52.3 35.0
+ LKG-RALM (k=6) 51.9 86.1 40.5 53.2 35.4
+ LKG-RALM (k=7) 51.8 86.2 40.1 53.3 35.5
+ LKG-RALM (all) 55.3 88.6 43.1 57.2 39.0

220k. This shows that while more data helps per-
formance, the benefits decrease with larger datasets.
The model’s architecture and pre-training are key
to its success, enabling strong results with limited
fine-tuning data, while additional training data has
diminishing returns.

H Impact of Relevance Score Quantity

To investigate how the number of relevance scores
affects model performance, we conducted experi-
ments that preserved only the first k distinct rele-
vance scores (k ranging from 1 to 7). Any sub-
sequent relevance scores that were either simi-
lar or appeared later in the sequence were over-
written by these values. In our analysis of a 32-
layer LLMAMA-3.1-8B, we observed significantly
different relevance scores (L1 distance >0.3) dis-
tributed across layers. The distribution of these
distinct scores is presented in Table 6.

The impact of varying k values on model perfor-
mance across different datasets is shown in Table
7. The result reveals that LKG-RALM’s accuracy
consistently improved across metrics as more rele-
vance scores were incorporated into the attention
guidance mechanism. Notably significant perfor-
mance improvements were observed at several key
transitions. When increasing from k=2 to k=3, we
observed substantial gains across all datasets, with
NQ accuracy improving by 6.5 points (from 40.7
to 47.2) and TriviaQA showing a remarkable 6.9-
point increase (from 78.5 to 85.4). The transition
from k=3 to k=4 brought further improvements,
particularly in NQ (2.9 points) and PopQA (3.6
points). Interestingly, while incremental improve-
ments continued beyond k=4, they became more
modest, with gains typically under 1.5 points per

step.
The most striking performance boost was

achieved when utilizing all relevance scores in-
stead of limiting to the first seven distinct scores.
This configuration led to substantial improvements
across all datasets: NQ improved by 3.5 points
(from 51.8 to 55.3), TriviaQA by 2.4 points (from
86.2 to 88.6), and 2WikiMQA by 3.5 points (from
35.5 to 39.0). These results strongly suggest that
while the first few distinct relevance scores con-
tribute significantly to model performance, the ad-
ditional nuanced guidance from higher layers plays
a crucial role in maximizing the model’s capabili-
ties.

While our experimental design focused on retain-
ing the first k relevance scores, this approach may
not be optimal as higher-layer knowledge represen-
tations could provide essential guidance for com-
plex reasoning tasks. The superior performance
achieved when utilizing all attention guidance sig-
nals validates their collective importance in enhanc-
ing model accuracy and demonstrates the value of
maintaining a diverse set of relevance scores across
different layers of the model architecture.
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