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Abstract

Evaluating the performance of LLMs in multi-
turn human-agent interactions presents sig-
nificant challenges, particularly due to the
complexity and variability of user behavior.
In this paper, we introduce HammerBench,
a novel benchmark framework for assessing
LLMs’ function-calling capabilities in real-
world, multi-turn dialogues. HammerBench
simulates diverse mobile assistant use cases,
incorporating imperfect instructions, dynamic
question-answer trajectories, intent and argu-
ment shifts, and the indirect use of external in-
formation through pronouns. To construct this
benchmark, we curate a comprehensive dataset
derived from popular mobile app functionalities
and anonymized user logs, complemented by
a cost-effective data generation pipeline lever-
aging open-source models. HammerBench is
further augmented with fine-grained interaction
snapshots and metrics, enabling detailed evalu-
ation of function-calling performance across in-
dividual conversational turns. We demonstrate
the effectiveness of HammerBench by evaluat-
ing several leading LLMs and uncovering key
performance trends. Our experiments reveal
that different types of parameter name errors
are a significant source of failure across differ-
ent interaction scenarios, highlighting critical
areas for further improvement in LLM robust-
ness for mobile assistant applications1.

1 Introduction

The mobile assistant built on large language models
(LLMs), where users interact with agents to pro-
vide indispensable context for accurate API calling
(Lin et al., 2024), often needs to handle multiple
rounds of user interaction to complete complex
task requests from users (Yan et al., 2024). For

∗Equal Contribution, +Corresponding Author
1The code and datasets are publicly available at https:

//github.com/MadeAgents/HammerBench.

instance, tasks like ticket purchasing typically de-
mand multiple interactions to gather and provide
complete context and information for accurate deci-
sions. Such multi-turn interactions pose challenges
for LLM-based agents in understanding user in-
tent and making correct function calls due to the
uncertainty of user intent and behavior.

To help detect the defects of LLM agents in per-
sonal assistant scenarios, many automated dataset
evaluation methods driven by LLMs have been de-
veloped by the community including multi-turn
dialogue (Ou et al., 2023; Bai et al., 2024) and func-
tion call evaluation(Yan et al., 2024; Wang et al.,
2024b). These function call benchmarks are typi-
cally built based on virtual environments to support
quantifiable automated evaluation. However, in
complex multi-turn interactions, conversations and
function calls are often closely intertwined (Wang
et al., 2023a), and current benchmarks struggle to
evaluate this complex relationship. And we still
lack a fine-grained benchmark built in real-world
scenarios data to identify the practical application
flaws of the agent.

Based on the analysis of logs from anonymized
real users, we found that in the real-world scenario,
users may frequently change their intent during
interactions, requiring the agent to accurately rec-
ognize these changes for successful task comple-
tion. Current benchmarks are unable to capture this
process dynamic and lack the granularity needed
to detect process defects or subtle issues in task
execution. Additionally, in different scenarios, the
references to external information and the differ-
ences in the information provided by users vary
greatly, so the evaluation needs to cover a broader
range of scenarios to help detect these differences.
Therefore, We argue that a comprehensive evalu-
ation of mobile personal assistant agent has three
key principles:

Authenticity of test data for capturing capabili-
ties in satisfying the needs of real users.
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Benchmark Construction
Method

Single-turn Multi-turn External
Individual

InformationPerfect Imperfect Irrelevant Intent Shifts Diverse Q&A
Trajectories

Argument
Shifts

API-Bank Human ✘ ✘ ✘ ✘ ✘ ✘ ✘
BFCL LLM+Human ✔ ✘ ✔ ✔ ✘ ✘ ✔

NoisyToolBench Human ✘ ✔ ✔ ✔ ✘ ✘ ✘
ToolSandBox Human ✔ ✘ ✔ ✔ ✘ ✘ ✘

HammerBench (Ours) LLM+Human ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 1: Comparison between existing benchmarks and ours. Table 2 provides detailed descriptions for each column.

Diversity of scenarios for capturing more situa-
tions that users may encounter in daily use.

Granularity of evaluation for capturing poten-
tial process defects.

In this paper, we introduce HammerBench, a
fine-grained, multi-turn function-calling bench-
mark. To better reflect real-world user experi-
ences, we curated the dataset based on popular
mobile app functionalities from major app stores
and queries derived from anonymized user logs.
We expanded the dataset with open-source models,
creating a cost-effective data generation pipeline.
Table 1 shows HammerBench’s superior diversity
and coverage across various interaction scenarios.
HammerBench supports a wider range of com-
plexities in both single-turn and multi-turn dia-
logues, addressing key aspects often overlooked in
previous benchmarks, such as handling imperfect
responses, supporting diverse Q&A trajectories,
and dealing with indirect references or vague de-
scriptions. HammerBench further introduces fine-
grained metrics to evaluate function-calling perfor-
mance across individual conversational snapshots.
These included metrics such as Function Name Ac-
curacy, Parameter Name Hallucination and Missing
Rate, Progress Rate and Success Rate, offering a
detailed assessment of the model’s ability to han-
dle function calls and track progress throughout
multi-turn interactions.

To validate the effectiveness of HammerBench,
we benchmark 10 LLMs with HammerBench
and analyze their performance. Our experiments
demonstrate that HammerBench can perform more
fine-grained evaluations in richer scenarios to as-
sess the agent’s performance in a broader range
of real-world tasks. Specifically, HammerBench
reveals significant challenges in multi-turn inter-
actions, particularly in tracking argument shifts
and handling external information, which affect
the accuracy and consistency of function-calling
performance across models. Furthermore, Ham-
merBench’s fine-grained metrics, such as Progress

Rate and Parameter Hallucination Rate, effectively
highlight specific model issues, like hallucinations
and parameter name errors, providing deeper in-
sights into model performance across different con-
texts. These results demonstrate that Hammer-
Bench can provide a comprehensive and in-depth
evaluation for LLM agents in mobile assistant sce-
narios and offer valuable insights for optimizing
robust function-calling LLMs.

2 Related Works

2.1 LLM Agent Evaluation
Evaluating LLM Agents is challenging due to the
open-ended nature of human conversation, making
traditional rule-based evaluations difficult. Early
dialogue system evaluations, such as topic-based
evaluations (Guo et al., 2017), used topic classifiers
to assess dialogue quality by evaluating sub-topics
individually. With the rise of large language mod-
els (LLMs), newer methods leverage these models
as evaluators. For example, (Zheng et al., 2023)
discussed the advantages of using large models for
dialogue assessment. Recent frameworks like MT-
Bench (Bai et al., 2024) and MT-Eval (Kwan et al.,
2024) apply GPT-based models to evaluate multi-
turn dialogues by decomposing them into sub-tasks.
MT-Bench evaluates dimensions such as Context
Memory, Anaphora Resolution, and Reasoning,
while MT-Eval focuses on Recollection, Expan-
sion, Refinement, and Follow-up. Some bench-
marks evaluate diverse capabilities of LLM Agents.
For example, AppBench (Wang et al., 2024a) eval-
uates the planning capabilities of LLMs by incor-
porating combinations of single/multiple apps or
APIs with multi-step tool calls across applications.
Mobile-bench (Deng et al., 2024) considers the
performance of LLM-based mobile agents in multi-
APP interactions. Visualwebarena (Koh et al.,
2024) evaluates the planning and autonomous ex-
ploration abilities of multimodal web agents. Web-
canvas (Pan et al., 2024) serves as a dynamic bench-
mark capable of adapting to the ever-changing land-
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scape of web content and UI structures. Similar
to the evaluation above, in function-calling scenar-
ios, evaluating dialogue dynamics—rather than just
the function call itself—adds a layer of complexity,
requiring a nuanced approach to assessment.

2.2 Function Calling Benchmark

Function-calling benchmarks can be broadly cat-
egorized into single-turn and multi-turn evalua-
tions. Single-turn benchmarks like ToolAlpaca
(Tang et al., 2023), ToolLLM (Qin et al., 2023), and
NexusRaven (team, 2023) use automatic data gener-
ation based on LLM world knowledge. In contrast,
benchmarks such as ToolBench (Xu et al., 2023)
and RestGPT (Song et al., 2023) rely on manually
labeled data to ensure quality. Some benchmarks,
including BFCL-V1 and SealTool (Wu et al., 2024),
use the self-instruct method (Wang et al., 2023b) to
generate data, while BFCL-V2 refines datasets by
cleaning online user logs. Despite these advance-
ments, single-turn benchmarks struggle to capture
the diversity of real-world user interactions and fail
to fully assess function-calling capabilities.

Multi-turn function-calling benchmarks, such as
API-Bank (Li et al., 2023) and NoisyToolBench
(Wang et al., 2024b), are manually curated, ensur-
ing high-quality dialogue data. MINT (Wang et al.,
2023a) focuses on interactive tools and external
tools in question answering, while BFCL-V3 and
ToolSandBox (Yan et al., 2024; Lu et al., 2024)
offer comprehensive multi-turn evaluations. How-
ever, gaps remain in these benchmarks, especially
regarding argument shifts.

In the broader landscape of agent evaluations,
multi-turn frameworks like AgentBoard (Ma et al.,
2024) and Agent as Judge (Zhuge et al., 2024)
provide general evaluation systems for agent capa-
bilities. However, these systems do not specifically
target the challenges of multi-turn function-calling
scenarios. To address the limitations of existing
benchmarks, we propose a more targeted evalua-
tion system that focuses on the fine-grained aspects
of multi-turn function calling, including argument
shifts and external information handling.

3 Principles of HammerBench

Based on the analysis of anonymized user logs and
existing benchmarks, we identify three key princi-
ples for designing an ideal benchmark: authenticity,
diversity, and granularity. Below, we discuss how
HammerBench incorporates these principles.

Authenticity of test data: Queries should re-
flect real user behavior. However, user logs often
exhibit a long-tail distribution, where rare but im-
pactful scenarios may be underrepresented. To
ensure comprehensive evaluation, we supplement
the dataset with additional instances from these
rare scenarios. Moreover, traditional API designs
prioritize developer-centric parameters, which may
not be intuitive for end users. HammerBench pri-
oritizes user-friendly tools, abstracting API com-
plexities to maintain operational integrity while
providing a seamless experience. The benchmark
dataset is curated from real Apps’ functionalities
and anonymized user logs, capturing a wide range
of common and rare user intents.

Diversity of scenarios: A diverse range of
tools, queries, and user behaviors is essential for
assessing LLM agents’ function-calling abilities.
HammerBench tests agents across multiple do-
mains through a diverse range of tools, from ticket
buying to daily schedules. It also includes vari-
ous query types, from simple requests to complex
tasks, and captures diverse user behaviors, such as
detailed vs. vague queries and single-turn vs. multi-
turn interactions. This diversity enables the bench-
mark to evaluate how well the agent adapts to dif-
ferent contexts and user expectations. In short, our
benchmark encompasses four categories in multi-
turn interactive tasks: 1) Imperfect instructions
(e.g., unclear or vague queries), 2) Varied question-
answer trajectories (e.g., differing conversational
paths), 3) Intent and argument shifts (e.g., changing
goals or inputs), and 4) External individual infor-
mation (e.g., implicit user context or background).

Granularity of evaluation: Granularity refers
to the level of detail in the evaluation metrics used
to assess system performance. HammerBench
adopts fine-grained metrics to evaluate both indi-
vidual function-calling tasks and multi-turn inter-
actions. Key metrics include Function Name Accu-
racy, Parameter Name Hallucination and Missing
Rate, and Argument Accuracy. These metrics en-
able a detailed assessment of specific performance
aspects, such as correct function invocation and
handling of incomplete information. In addition,
HammerBench tracks the Progress Rate, which
measures how well the model progresses toward
task completion, and the Success Rate, which eval-
uates the final outcome. This granular approach
allows us to identify subtle deficiencies in model
behavior, such as mismanagement of dependencies
or errors in reasoning, providing valuable insights
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Evaluation Type Data Type Abbr. Description

Single-turn

Single-turn perfect instruction Perfect The user query that clearly gives all required parameter values.
Single-turn imperfect instruction Imperfect The user query that only gives few required parameter values.
Single-turn with pronouns External There are anaphoric pronouns that refer to external individual information in the user query.
Single-turn irrelevant Irrelevant There is no tool in the candidate tools list that can solve the user query.

Diverse
question-answer

trajectories

Single-question-single-answer sQsA The agent asks and the user answers with parameter values one by one.
Multi-question-multi-answer mQmA The agent asks for multiple parameter values, the user also answers the corresponding value.
Multi-question-single-answer mQsA The agent asks for multiple parameter values, but the user only answers one value.
Single-question-multi-answer sQmA The agent only asks for one parameter value, but the user answers multiple values.

Intent shifts User intent has changed IS
The agent should output some special tags to terminate the ongoing session when a user
expresses a new intent unrelated to the current slot filling process, allowing for the
subsequent handling of the new intent.

Argument shifts Slots overriding SO The user repeatedly modifies the value of the same slot before tool execution.
Multiple slot values mSv The user repeatedly modifies the value of the same slot after tool execution.

External
individual

information
Answering with pronouns External The user does not answers directly, but gives the external individual information pronoun.

Table 2: Descriptions of test data in HammerBench at different granularities.

Toolset construction

Popular 
Apps

Categories

Tools

Parameters

Tool description

Select few
parameters

Perfect 
instruction 
generation

Imperfect 
instruction 
generation

Slot filling 
trajectories 

Format Check LLM Check Human Check

Diverse Q&A 
trajectories

Single-turn dataset
Intent shifts Argument 

shifts

Fine-grained dataset

Intent / 
Argument 

shifting 

Data generation pipline

External individual information

Query-label 
pairs

 Recognize pairs
with entities

Specified 
entities

 Simulate 
information

Rewrite 
query

External knowledge generation

Basic and fine-grained dataset 

Check 
module

Tool Descriptions

Generated 
tools&instances

Figure 1: HammerBench construction pipeline: toolset collection, data generation, external knowledge generation,
and validation. Blocks with GPT icons indicate the use of LLMs, while orange blocks represent verification modules,
and green blocks denote various data types corresponding to each phase.

for further optimization.

4 HammerBench

In this section, we describe the methodology and
workflow for constructing the datasets used in Ham-
merBench. To provide a more concise overview,
the overall structure of test data generated for Ham-
merBench is summarized in Table 2, with detailed
statistics and analysis in Appendix A.

4.1 Test Data Construction

HammerBench’s dataset construction follows a
four-stage systematic process: toolset collection,
API generation, validation, and manual refinement,
as shown in Figure 1.

Tool Collection and API Generation: The
toolset is based on functionalities from popular
mobile apps sourced from major manufacturers’
app stores. We categorize these apps into 60 func-
tional groups, for which we create prompts (see
Appendix E.1) to generate APIs using LLMs. This

process involves creating function names, descrip-
tions, parameters, and return values, with human
oversight to ensure simplicity, user-friendliness,
and minimal redundancy.

Validation and Refinement: Generated APIs
undergo manual review for quality, resulting in
1,063 final selections. The review process priori-
tizes completeness (covering typical usage scenar-
ios) and rationality (clarity and simplicity without
losing functionality). Function-calling instances
are generated using the self-instruct method (Wang
et al., 2023b), producing three types of instructions:
(1) complete function calls, (2) incomplete calls
(missing key parameters), and (3) irrelevant calls
(triggering rejection). This ensures both practical-
ity and usability for effective evaluation.

4.1.1 Multi-Turn Interactions with Imperfect
Instructions

As 76% of queries in user logs contain fewer than
10 tokens, we designed a workflow to generate
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Diverse Q&A 

trajectories

Argument shifts

External individual information

Multi-turn basic dataset

Do you still have tickets for the train?

Where is your departure station?

My departure station is Grand Central Station.

Where is your arrival station?

My arrival station is Boston South Station.

When do you take the train?

The date of the trip is April 10th.

Please provide the type of seat you would like to inquire about

I would like to inquire about second class seats.

{"name":"queryTrainTicket", "arguments":{"departure_station": 

"Grand Central Station","destination_station": "Boston South 

Station","ride_date": "April 10th","seat_type": "Second class"}}

When do you take the train?

I’m sorry, the destination is Boston South Station.

It is Washington Union Station. I’m sorry, 

the destination is Boston South Station.

case1

case2

When do you take the train?

user0:

user1:

user2:

user3:

user4:

agent1:

agent2:

agent3:

agent4:

case3 I also want to see the destination of Hoboken 

Terminal.

Hey friend, do you have time to go out and play 

together? Around April 10th, we can go anywhere. 

Let's discuss and take a look, mainly because we're 

a bit tired of work and want to go out for some fresh 

air. What do you think?

The time mentioned in the FaceBook.

Randomly 

merge Q&A 

trajectories

Intent shifts

Session terminated

Oh no, I need to add alarm.

I also want to see the destination of Hoboken Terminal.

{"name":"queryTrainTicket", "arguments":{"departure_station": 

"Grand Central Station","destination_station": " Hoboken Terminal 

","ride_date": "April 10th","seat_type": "Second class"}}

Figure 2: Examples of four types of test cases in HammerBench: 1) Diverse Q&A trajectories generated by merging
user-agent interactions; 2) Intent shifts: agent terminates the session when users change their intent; 3) Argument
shifts: three cases of changing slot values during interactions; 4) External individual information: users use pronouns
instead of exact details, common in real-world interactions.

datasets that reflect typical query lengths. First,
we use LLMs to identify the most commonly used
parameters in daily applications, with the prompt
for parameter selection provided in Appendix E.3.
LLMs then generate queries including these pa-
rameters (see Appendix E.2). If parameters are
missing or extraneous, the model regenerates the
query until it aligns with the preset list.

This process produces imperfect instances that
pass basic format verification, but hallucinations
remain a concern. To mitigate this, we introduce
a semantic validation step (Li et al., 2024), check-
ing if the function call generated by the LLM is
consistent across zero-shot and one-shot in-context
settings. Consistency is evaluated with two metrics:
1) Rouge-L, using a predefined threshold, and 2) se-
mantic alignment, by re-assessing the function call
with the LLM. Instructions that are consistent in
zero-shot settings are deemed more reliable, reduc-
ing hallucination risk. Instances that pass valida-
tion are further refined through manual inspection
and sampling review. This results in 3,240 imper-
fect instances, forming the basis for the multi-turn
function-calling scenarios discussed in the follow-
ing sections, as exampled in Figure 2.

4.1.2 Diverse Question-Answer Trajectories

Building on the imperfect instructions from the
previous section, we extend these to multi-turn
function-calling dialogues with interactive slot-
filling. To assess the model’s ability to handle di-
verse conversational flows, we design four types of
question-answer trajectories:

Single-Question-Single-Answer: The model
queries a single argument, and the user provides a
corresponding value. This tests the model’s ability
to accurately elicit a piece of information.

Multi-Question-Multi-Answer: The model
asks multiple questions, and the user answers each.
This evaluates the model’s ability to process multi-
ple inputs within a conversation.

Single-Question-Multi-Answer: The model
asks one question, and the user gives multiple re-
sponses. This challenges the model to interpret
multiple answers for a single argument.

Multi-Question-Single-Answer: The model
asks multiple questions, but the user only answers
one. This scenario tests the model’s ability to
handle incomplete information and adapt to un-
expected behavior.

We generate these trajectories by first creating
single-question-single-answer instances using the
prompts in Appendix E.7, which undergo semantic
and manual review (Section 4.1.1). The remaining
trajectories are formed by randomly combining
questions and answers from this dataset, resulting
in 2,310 distinct instances for evaluation.

4.1.3 Intent and Argument Shifts
In real-world interactions, users often shift their
intentions or modify slot values unexpectedly. The
distinction between intent shifts and argument
shifts is whether the new user content can be han-
dled by the previously retrieved candidate func-
tions. As the candidate functions retrieved by the
initial user query cannot solve the new intentions,
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we need to start a new session to handle intent
shifts.

Users may abandon a complex request or switch
goals mid-conversation. This section evaluates
whether the model can recognize intent shifts and
respond accordingly, such as by issuing a rejec-
tion signal to terminate the conversation. To create
the dataset for intent shifts, we begin with Single-
Question-Single-Answer instances. We then ran-
domly replace a user input with a function call for
a different API, simulating a sudden intent change,
resulting in 1,098 intent shift instances.

Additionally, we consider two types of argument
shifts: slot overriding and API repurposing.

Slot Overriding: Users may provide different
values for the same parameter, with only the most
recent one being relevant. We generate these in-
stances by modifying dialogues to include turns
where users explicitly override previous arguments,
resulting in 1,462 instances.

API Repurposing: Users may update certain
parameters of a previous function call while keep-
ing others unchanged. To model this, we add a user
input turn after a function call, introducing new
values for some parameters while retaining others,
yielding 1,066 instances.

4.1.4 References to External Individual Data
In AI assistant interactions, users often refer to
external data indirectly using pronouns, instead of
explicitly stating specific values. To evaluate the
model’s anaphora resolution ability, we propose
a method to generate datasets with references to
external data. These references can come from
any function call instance, with data retrieved from
various external sources.

We select nine common information entities
(e.g., names, company names, product IDs, license
plates, etc.) and use LLMs to identify argument
values corresponding to these entities. Instances
containing such references are retained for further
processing. One identified argument is then re-
placed by a pronoun referring to the external en-
tity, and a new instance is generated by rephrasing
the original text to include the pronoun. All in-
stances are validated semantically and manually
to ensure accuracy. Based on our practical experi-
ence, this allows the efficiency of constructing this
type of data to reach 200 data points within one
person-day, which is much higher than the previ-
ous method (Basu et al. (2024), Li et al. (2023))–
40 data points within one person-day. This pro-

cess results in 1,175 single-turn and 487 multi-turn
instances involving external references.

4.2 Function Calling Snapshots
In complex interactions, models must assess
whether the historical context provides enough in-
formation to fulfill user intent and identify missing
details for API parameters. When information is
incomplete, agents should generate follow-up ques-
tions to request the missing inputs. A common
approach is the Learning to Ask paradigm, where
models are fine-tuned to generate questions at each
turn and then make a function call once all parame-
ters are gathered.

We suggest an alternative, the Function Call-
ing Snapshots, where models generate a formatted
function call, or Snapshot, at each turn, regardless
of context completeness. This call is then compared
to the function definition using rule-based logic to
identify missing information, enabling the genera-
tion of relevant follow-up questions. By decoupling
the identification of missing data from question
generation, this approach allows for more focused
information recognition and detailed analysis, such
as detecting Missing Parameters or Hallucination.
For more details, please refer to Appendix B.3.

We evaluated this mechanism through a com-
parative experiment by fine-tuning Qwen2.5-7B
on both paradigms and testing on 100 out-of-
distribution (OOD) conversations with human eval-
uation. As shown in Table 4, the Function Calling
Snapshots approach outperformed Learning to Ask
by 16% in task success rate, demonstrating its su-
perior effectiveness.

4.3 Fine-Grained Evaluation Metrics
We use several key metrics to assess function-
calling performance:

Accuracy (Acc.): a traditional metric, the accu-
racy when function and parameter names are all
correctly predicted.

Function Name Accuracy (Func. Acc.): the ac-
curacy of predicted function names, without taking
the parameters into account.

Function-Irrelevant Accuracy (Irrelevant):
the proportion of samples where irrelevant func-
tions are correctly excluded.

Parameter Hallucination and Missing Rate
(PHR/PMR): PHR tracks incorrect parameter
names, while PMR tracks missing parameters.
These measure the accuracy and completeness of
parameter predictions.
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Model Overall (Acc.%)

Single-turn (Acc.%) Multi-turn (Acc.%)

Perfect Imperfect External Irrelevant Diverse
Q&A

Argument
shifts External Intent

shifts

Prompt

GPT-4o 71.4(2.1) 78.7(1.8) 78.8(1.4) 56.2(2.8) 69.5(2.1) 73.8(2.5) 68.3(1.7) 69.6(2.4) 76.2(2.5)

Claude3.5-sonnet 70.3(2.2) 79.9(1.7) 79.4(1.4) 55.8(2.8) 68.2(2.1) 74.9(2.5) 73.6(1.6) 71.8(2.3) 58.7(2.9)

Qwen2.5-72B-Instruct 71.5(2.1) 80.9(1.7) 68.6(1.6) 67.4(2.7) 73.1(2.0) 65.9(2.7) 65.2(1.7) 61.1(2.5) 89.8(1.8)

Qwen2.5-7B-Instruct 58.8(2.3) 75.8(1.8) 58.1(1.7) 58.9(2.8) 41.0(2.2) 57.6(2.8) 53.2(1.8) 53.9(2.6) 72.0(2.7)

Llama-3.1-70B-Instruct 61.6(2.1) 76.0(1.8) 69.5(1.6) 59.6(2.8) 12.5(1.3) 73.1(2.6) 69.7(1.7) 69.3(2.4) 63.0(2.9)

Llama-3.1-8B-Instruct 49.1(2.2) 73.0(1.9) 51.1(1.7) 57.6(2.8) 8.1(1.2) 53.5(2.9) 48.6(1.8) 50.1(2.6) 50.6(3.0)

Ministral-8B-Instruct 37.4(2.0) 78.0(1.8) 32.2(1.6) 57.7(2.8) 3.9(0.8) 39.2(2.8) 38.7(1.8) 35.0(2.5) 14.8(2.1)

Function Call

Hammer2.1-7b 65.8(2.1) 68.9(2.0) 59.3(1.7) 50.2(2.9) 89.7(1.4) 59.1(2.8) 55.7(1.8) 48.7(2.6) 94.7(1.3)
xLAM-7b-fc-r 50.8(2.4) 73.5(1.9) 48.8(1.7) 48.9(2.9) 50.0(2.2) 52.3(2.9) 46.2(1.8) 48.3(2.6) 38.3(2.9)

ToolACE-8B 50.5(2.3) 78.8(1.7) 51.9(1.7) 56.9(2.8) 26.6(2.0) 49.4(2.9) 48.4(1.8) 49.2(2.6) 43.0(2.9)

Table 3: HammerBench leaderboard (Single-Turn and Multi-Turn) including Acc. and 95% confidence intervals,
where the best performances are highlighted.

Training Paradigm SR

Learning to Ask 68%
Function Calling Snapshots 84%

Table 4: Comparison between Learning to Ask and
Function Calling Snapshots paradigms.

Progress Rate (PR): the proportion of correct
function calls up to the turns of error, defined as
PR = k

n , where k is the number of correct turns
and n is the total number of turns.

Success Rate (SR): the overall accuracy of func-
tion calls across all turns in a conversation, with
higher values indicating better final performance.

These metrics—Acc., Func. Acc., PHR, PMR,
SR, and PR—provide a comprehensive framework
for evaluating function calls in both individual and
multi-turn dialogues.

5 Experiment

In this section, we demonstrate the superiority
of HammerBench through a series of experi-
ments with 10 commonly used or function-calling-
specific LLMs. We provide detailed analyses of
the experimental results, followed by in-depth dis-
cussions and valuable insights that could be used
to guide subsequent model optimization.

5.1 Experimental Setups

To validate the effectiveness of HammerBench,
we benchmark the following baseline mod-
els: GPT-4o (Hurst et al., 2024), Claude3.5-
sonnet(Anthropic, 2024), Llama-3.1-70B-Instruct
(Dubey et al., 2024), Qwen2.5-72B-Instruct (Qwen
Team, 2024), Llama-3.1-8B-Instruct, Qwen2.5-7B-

Instruct, Ministral-8B-Instruct (AI, 2024), xLAM-
7b-fc-r (Liu et al., 2024b) and ToolACE-8B (Liu
et al., 2024a). For all models, we impose a strict
requirement on the output format in the prompt,
as detailed in Appendix D. All open-source mod-
els are deployed on 4 A100 80G GPUs, with a
temperature setting of 0.0 and bfloat16 precision.

5.2 Results Analysis of Evaluation Types

Table 3 shows the overall result of HammerBench
in different evaluation types including single-turn
and multi-turn. Models like Qwen2.5-72B-Instruct
(Prompt), GPT-4o (Prompt), and Claude3.5-sonnet
(Prompt) are among the top performers, with a
strong ability to handle both single-turn and multi-
turn interactions, while models like Hammer2.1-
7b (FC) and Ministral-8B-Instruct (Prompt) show
more specialized strengths or weaknesses depend-
ing on the task type. Specifically, with the help of
diverse scenarios, the following key insights pri-
marily emerge regarding Intent Shifts, Argument
Shifts, and External Individual Information.

Intent Shifts. In the scenario of intent shifts,
we assess the LLM’s ability to recognize chang-
ing user intentions. As shown in Table 3, LLMs
with stronger single-turn irrelevance detection ca-
pabilities tend to perform better in handling intent
shifts.

Argument Shifts. As seen in experiments from
Table 5, a major challenge in multi-turn interactions
occurs when users modify the same slot multiple
times before or after function execution. This tests
the model’s ability to track and update slot values.
LLMs often struggle to handle such shifts, like
when a user changes a date from June 1st to July
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Model
Diverse Q&A (PR%) Argument shifts (PR%) External (PR%)

IS (Acc.%)
sQsA mQmA mQsA sQmA w/o SO w/ SO w/o mSv w/ mSv w/o External w/ External

Prompt

GPT-4o 66.0(4.1) 73.2(3.8) 68.5(4.0) 70.8(3.8) 67.9(2.9) 68.7(2.9) 68.5(2.5) 56.5(2.1) 74.4(3.5) 66.3(3.4) 76.2(2.5)

Claude3.5-sonnet 70.6(4.0) 73.7(3.8) 68.9(4.0) 72.6(3.8) 71.7(2.9) 72.5(2.9) 72.0(2.5) 63.9(2.4) 76.6(3.4) 68.6(3.4) 58.7(2.9)

Qwen2.5-72B-Instruct 56.3(4.2) 64.8(4.3) 56.9(4.3) 64.2(4.3) 61.1(3.1) 60.3(3.1) 63.2(2.6) 57.4(2.6) 65.9(3.8) 59.6(3.7) 89.8(1.8)

Llama-3.1-70B-Instruct 64.7(4.2) 67.4(4.2) 61.6(4.2) 68.0(4.2) 65.3(3.1) 62.0(3.1) 65.7(2.7) 58.6(2.6) 72.6(3.7) 63.5(3.6) 63.0(2.9)

Qwen2.5-7B-Instruct 48.9(4.3) 53.1(4.4) 43.6(4.2) 53.0(4.4) 50.7(3.2) 45.8(3.0) 51.7(2.8) 41.8(2.4) 58.1(4.0) 50.0(3.7) 72.0(2.7)

Llama-3.1-8B-Instruct 38.4(3.7) 51.2(4.4) 38.4(3.7) 50.4(4.3) 41.5(2.9) 38.0(2.8) 42.8(2.6) 35.0(2.3) 47.8(3.7) 43.6(3.5) 50.6(3.0)

Ministral-8B-Instruct-2410 26.8(3.9) 28.6(4.0) 19.0(3.0) 28.4(4.0) 27.8(2.9) 26.2(2.8) 28.2(2.5) 22.0(2.1) 31.3(3.9) 25.1(3.2) 14.8(2.1)

Function Call

Hammer2.1-7b 52.4(4.3) 57.6(4.3) 41.5(3.8) 57.2(4.3) 53.9(3.2) 49.8(3.0) 54.8(2.7) 43.9(2.3) 60.6(4.0) 46.3(3.4) 94.7(1.3)
xLAM-7b-fc-r 39.3(4.4) 40.7(4.5) 30.4(3.8) 41.1(4.5) 39.0(3.2) 34.4(3.0) 39.1(2.8) 29.1(2.1) 49.1(4.2) 39.8(3.7) 38.3(2.9)

ToolACE-8B 42.6(4.0) 46.4(4.2) 25.9(2.8) 46.1(4.1) 44.1(3.1) 40.1(2.9) 44.8(2.7) 35.1(2.2) 51.1(3.9) 43.6(3.6) 43.0(2.9)

Table 5: Ablation results: The evaluation (PR and 95% confidence intervals) on HammerBench for different
multi-turn data types, while “w/o” refers to subsets of sQsA datasets with the same user queries with “w/”. The IS
represents the success rate of LLM terminating correctly when encountering intent shifts. This table is a snippet
from Table 9.

Model Func. Acc.(%)
First snapshot(%) Last snapshot(%)

PHR PMR Other Error Rate PHR PMR Other Error Rate

Prompt

GPT-4o 88.8(1.9) 8.5(1.8) 3.4(1.1) 2.9(1.1) 6.6(1.6) 8.8(1.8) 8.4(1.8)
Claude3.5-sonnet 90.2(1.8) 8.6(1.8) 2.4(1.0) 1.5(0.8) 7.0(1.6) 8.0(1.7) 4.8(1.3)
Qwen2.5-72B-Instruct 85.4(2.1) 12.8(2.1) 1.3(0.7) 1.8(0.9) 11.0(2.0) 6.0(1.5) 4.1(1.3)
Llama-3.1-70B-Instruct 91.6(1.6) 19.1(2.4) 2.2(0.9) 2.0(0.9) 11.1(1.9) 2.1(0.9) 5.9(1.5)
Qwen2.5-7B-Instruct 82.9(2.2) 24.7(2.8) 2.9(1.1) 1.3(0.7) 14.6(2.3) 5.8(1.5) 5.5(1.5)
Llama-3.1-8B-Instruct 89.3(1.8) 36.8(3.0) 1.6(0.8) 1.2(0.7) 15.2(2.3) 22.1(2.6) 4.2(1.3)
Ministral-8B-Instruct-2410 74.6(2.6) 52.5(3.4) 2.9(1.2) 1.0(0.7) 18.1(2.6) 7.0(1.7) 5.4(1.6)

Function Call

Hammer2.1-7b 83.1(2.2) 19.1(2.6) 3.7(1.2) 1.2(0.7) 13.3(2.2) 9.4(1.9) 4.8(1.4)
xLAM-7b-fc-r 88.8(1.9) 47.2(3.1) 3.4(1.1) 1.0(0.6) 18.1(2.4) 8.7(1.8) 4.1(1.3)
ToolACE-8B 81.8(2.3) 29.6(3.0) 3.9(1.3) 1.2(0.7) 25.5(2.9) 4.9(1.4) 4.5(1.4)

Table 6: Evaluations on the first and last snapshots in the sQsA dataset. First snapshot: the first turn of the
conversation, Last snapshot: the last turn of the conversation. Other Error Rate: parameter values error rate. The
corresponding 95% confidence intervals are in brackets.

8th but the model retains the old value. This issue
is particularly evident in scenarios with similar pa-
rameters, such as updating train orders. The Slot
Overriding task effectively detects this flaw, reveal-
ing that many open-source LLMs are slow to adapt
to changes, while GPT-4o shows stronger perfor-
mance in tracking dynamic slot updates. Another
challenge arises when users modify a slot after a
tool has been executed, leading to issues with main-
taining consistency across multiple values. Even
GPT-4o, though less affected, sometimes fails to
track all updated parameters. This is likely due to
the model perceiving the tool call as “complete”
after execution, which causes it to disregard prior
input. The Multiple Slot Values task highlights this
issue, where slot values are inconsistently managed
across turns. This task underscores the difficulty
models face in maintaining parameter consistency
over extended interactions. Appendix C.4 shows
examples of these challenges.

External Information. User queries contain-
ing external individual information often introduce
noise, affecting slot-filling accuracy. The Exter-
nal Information task effectively detects this issue,
showing how LLMs struggle with indirect refer-
ences like pronouns or contextual information, lead-
ing to lower accuracy as shown in Table 5 and Ap-
pendix C.3. This task reveals the vulnerability of
LLMs to external factors like personalized data or
context, significantly disrupting function-calling
accuracy. It highlights the importance of models
being able to separate core inputs from external
noise, making it a critical metric for real-world
performance. Further results are available in Ap-
pendix F.

5.3 Results Analysis of Evaluation Metrics

In addition to the results from diverse scenarios,
the fine-grained metric design of HammerBench
allows for a more detailed identification of specific

3357



issues in models within particular contexts. We
will analyze the effectiveness of the metrics from
different scenarios. Some interesting insights are
revealed with the metrics defined in HammerBench,
with more details in Appendix F.

Progress Rate. In diverse Q&A dataset Table 5,
interactions often lead open-source LLMs to hal-
lucinate additional parameters, particularly when
addressing multi-question-single-answer (mQsA)
scenarios, which results in parameter mispredic-
tions, as elaborated in Appendix C.2. Progress
Rate (PR) can help gauge model resilience effec-
tively. For instance, GPT-4o demonstrates minimal
degradation in PR, suggesting its robustness against
hallucination issues.

PHR/PMR. Based on the results presented in
Table 6, the PHR in the initial snapshot, where
the context is incomplete, is significantly higher
compared to the final snapshot, where the context is
complete. This indicates that an incomplete context
leads to a higher frequency of hallucinations in
parameters, which remains a persistent bottleneck
for many open-source LLMs.

6 Conclusion

This paper presents HammerBench, a fine-grained
evaluation benchmark for multi-turn function call-
ing tasks, assessing imperfect instructions, diverse
question-answer trajectories, intent and argument
shifts, and user queries with external individual in-
formation. These components reflect real-world
user scenarios. We decompose multi-turn slot-
filling interactions into a series of function-calling
snapshots, allowing evaluation of each conversa-
tional turn. Additionally, we introduce random
merging of dialogue trajectories to assess question-
answer trajectory variability. A method for gen-
erating data with external individual information
is also released, enabling evaluation of a model’s
ability to resolve pronouns and anaphora.

Our experimental results highlight the chal-
lenges LLMs face in handling argument shifts and
external information, e.g. tracking dynamic slot up-
dates. Additionally, metrics such as Progress Rate
and PHR/PMR reveal critical areas of improve-
ment, notably in model resilience against hallucina-
tions and handling evolving user intents, underscor-
ing the need for further advancements to enhance
LLM robustness in real-world applications.

Limitations

Although HammerBench can assess certain multi-
turn real-world scenarios and facilitates the eval-
uation of multi-turn interactions in more complex
contexts by incorporating multi-dimensional data
generation methods, its evaluations are confined to
fixed, pre-generated datasets. This limitation inher-
ently restricts the benchmark’s capacity to fully cap-
ture the diverse range of behaviors and capabilities
that a large language model (LLM) might exhibit
in a dynamic, real-world setting. When compared
to the approach of using LLMs to generate real-
time, dynamic trajectories during the evaluation
process(Lu et al., 2024), the scope of trajectories
covered by HammerBench is less comprehensive,
and it does not assess the model’s ability to self-
explore.

The datasets used in HammerBench are automat-
ically generated by synthesizing real-world scenar-
ios, which inevitably introduces some discrepan-
cies when compared to actual user queries. While
this benchmark does support the evaluation of
multi-turn interactions in more complex scenarios
by incorporating data generation techniques from
various dimensions, exhaustively capturing all pos-
sible user queries remains infeasible. The reliance
on fixed evaluation trajectories, while making the
evaluation process more convenient and control-
lable, limits HammerBench to only a partial step
towards automated evaluations that more closely
mirror real user interactions.
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A Analysis of Benchmark Dataset

The overall structure of the datasets generated for HammerBench is summarized in Table 2. The dataset
comprises four single-turn datasets, each with four distinct types, and eight multi-turn datasets, categorized
into three types.

Statistics Perfect Imperfect External

# of categories 60 60 55
# of tools 1063 894 463

# of queries 2116 3240 1175

Table 7: Statistics of single-turn datasets.

Statistics: Our HammerBench dataset includes 60 functional categories, 1,063 tools, and a total of
6,531 queries, distributed across three types, as shown in Table 7. Figure 3(a) illustrates the correlation
between the number of tools and the number of parameters defined in the toolset. For the parts of
multi-turn test data, there are 1098 sQsA conversations generated from single-turn imperfect instructions,
spanning 59 categories and 494 APIs. If we define the number of turns as the total number of questions
asked by the agent, there are approximately 404 conversations with turns greater than 1. Figure 3(b)
presents the distribution of conversations according to the number of turns. Because conversations can
only be merged with more than one turn, there are 404 conversations in mQmA, mQsA, and sQmA. And
the distribution of multi-turn dataset types is depicted in Figure 3(c).

Quality: The dataset quality is rigorously ensured through the LLM validation module. Initially, data
that fails the LLM check is manually corrected on a case-by-case basis. Data that passes the LLM’s
double-check are subject to a random sample review, with 100 instances selected for human recheck.
Our quality assurance procedures have shown that the data availability rate exceeds 95%. Given that
our fine-grained multi-turn dataset is constructed from single-question-single-answer multi-turn data, the
quality of the underlying single-turn instances is of paramount importance. Consequently, we conducted a
manual review of 1,098 multi-turn instances to ensure their compliance with the logical flow of everyday
conversations.

Authenticity: Within the goal of reflecting real-world user experience, we argue that the authenticity of
queries and APIs should be interpreted primarily in terms of semantic distribution—i.e., the distribution
of user intents and API functionalities—rather than their surface linguistic expressions. To ensure this,
we first extracted a seed dataset from a large-scale real user interaction log and data from application
markets. This dataset is designed to faithfully represent the underlying distribution of genuine user needs
and API capabilities. For example, the distribution of tool categories invoked by users in our seed dataset
is as follows: System Settings (32.26%), Alarm (10.84%), Phone Call (10.12%), Weather (7.75%), Music
(6.37%), Pay (3.28%), Map (1.97%), and Others (27.41%).

Building on this seed dataset, we employed LLMs to rewrite, expand, and diversify the queries and APIs.
This augmentation process does not alter the statistical semantics of the dataset; the overall distribution
remains aligned with real-world user behavior. Consequently, our open-sourced dataset retains both the
coverage and distribution of real-world usage scenarios.

Moreover, directly releasing raw user queries or APIs could entail legal or ethical risks—such as
unintentional exposure of private user information or commercial APIs without permission. Therefore,
the rewriting process using LLMs also serves as a protective mechanism, helping us strike a practical
balance between open access and responsible data sharing.
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(a) Distribution of #parameter (b) Distribution of conversation turns (c) Distribution of data types

Figure 3: Statistics: a)The number of tools corresponding to different parameter counts in our toolset; b)The
number of conversations corresponding to different turn counts in sQsA; c)Various number of multi-turn data cases
constructed based on the Imperfect and External in Table 7.

B Examples

B.1 Single-turn
normal user query

User: Please help me send the traffic violation record of PDX-1234 in Portland yesterday to Manager
Zhang by email.
Agent: {"name":"shareViolationDetail", "arguments":{"city": "Portland", "media": "email", "name":
"Manager Zhang", "plate_number": "PDX-1234", "time":"yesterday"}}

missing arguments user query
User: Share the traffic violation information in Portland.
Agent: {"name":"shareViolationDetail", "arguments":{"city": "Portland", "media": "", "name": "",
"plate_number": "", "time":""}}

user query with external individual information
User: I found the license plate number mentioned in my notepad and would like to share the traffic
violation information I encountered in Portland yesterday with Manager Zhang via email. Is that okay?
EK: At 3pm today, I saw a car with license plate number PDX-1234 in the parking lot. The owner
seemed to have forgotten to turn off the lights, and the lights were on until the evening. I am worried
about violating traffic rules. If you know the owner, please remind him.
Agent: {"name":"shareViolationDetail", "arguments":{"city": "Portland", "media": "email", "name":
"Manager Zhang", "plate_number": "PDX-1234", "time":"yesterday"}}

B.2 Multi Turn
conversation with external individual information

User: Share the violation information.
Agent: Which city did the violation occur in?
User: The violation occurred in Portland.
Agent: Please provide a way to share.
User: Share the link via email.
Agent: Please provide the recipients of the shared content.
User: The recipient was Manager Zhang.
Agent: Please provide the license plate number.
User: The license plate number mentioned in the notebook
EK: At 3pm today, I saw a car with license plate number PDX-1234 in the parking lot. The owner
seemed to have forgotten to turn off the lights, and the lights were on until the evening. I am worried
about violating traffic rules. If you know the owner, please remind him.
Agent: When is the order opening time?
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User: It was yesterday.
Agent: {"name":"shareViolationDetail", "arguments":{"city": "Portland", "media": "email", "name":
"Manager Zhang", "plate_number": "PDX-1234", "time":"yesterday"}}

B.3 Function Calling Snapshots
Two snapshot evaluation examples are in the following:

First example: Suppose a tool is missing four required parameters: A, B, C, and D. In this case, we
have no predefined script (e.g., should select A first). Instead, asking for any subset of A, B, C, D is
considered a correct action. Besides, if the LLM requests parameters outside of this set, it is treated as an
incorrect response, often indicative of hallucination. This is directly reflected in an increased PHR score,
enabling us to detect such cases effectively.

Second example: Again, assume the tool is missing parameters A, B, C, and D; if the LLM asks for
slot B, but the user input provides content for slot A. The key focus here shifts to whether the LLM
correctly interprets the information provided by the user during each interaction round. A correct behavior
in this context requires the LLM to accurately extract and fill the content into slot A, and then continue
querying any subset of the remaining missing parameters B, C, D. We covered this type of case in our
Diverse Q&A dataset.
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C Examples of Model Output Errors

C.1 Imperfect instruction
Parameter hallucination

User: Help me find a mail.
Agent: {"name":"searchMail", "arguments":{"keyword": "mail", "max_results": "10"}}

The user does not provide any parameter information, but the parameter slots are filled in by LLMs.

C.2 Diverse Q&A trajectories
Parameter hallucination

User: See how much airline points I have.
Agent: What’s your rider’s name Provide the rider’s ID number.
User: The passenger’s name is Bob.
Agent: {"name":"getFlightAirlinePoints", "arguments":{"name": "Bob", "passenger_id":
"123456789"}}

Due to aske ID number, although the user does not answer, LLMs also mistakenly fills in this parameter
slot.

C.3 External Individual Information
Redundant Information

User: Share my taxi ride.
Agent: What time is the order
User: The time mentioned in the Facebook message sent to me by Xiao Ming<EK>:Yesterday evening
at 8pm, we had a virtual meeting to discuss next week’s work schedule. Everyone put forward a lot of
good suggestions and felt that the meeting was efficient. Hopefully our team can continue to maintain
this positive attitude!
Agent: {"name":"shareTaxiOrder", "arguments":{"time": "yesterday evening at 8pm", "media": "Face-
book"}}

The user only mentions that the time is in the Facebook, but does not mention that the media is
Facebook.

C.4 Argument shifts
slot overriding

User: Is there any way to change the train ticket standby order I applied for previously?
Agent: What number of trips did you book
User: The number I booked is G123. I’m sorry, Booked trips is D789.
Agent: {"name":"updateTrainWaitlistOrder", "arguments":{"train_number": "D789", "after_number":
"G123"}}

The user provides two values for the same slot, but LLMs fail to recognize.
multiple slot values

User: Find me a way. How do I get there?
Agent: Please provide your departure location name or address If using your current location please
confirm directly
User: People’s Square
Agent: Please provide your destination name or address
User: Shanghai Hongqiao International Airport
Agent: {"name":"vehicleNavigationRoute", "arguments":{"departure": "People’s Square", "destina-
tion": "Shanghai Hongqiao International Airport"}}
User: I also want to see that Name or address of the destination is Bondi Beach
Agent: {"name":"vehicleNavigationRoute", "arguments":{"destination": "Bondi Beach"}}

When another destination is given again, the original departure parameter is lost.
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D Prompts of Function Calling

format prompt
You have access to the following functions.
<tools>
To call a function, please respond with JSON for a function call.Respond in the format “‘json{"name":
function name, "parameters": dictionary of argument name and its value}.“‘
Attention! For time parameters, please fill in the format as described in the user request, and do not
automatically convert the format! For example:
user: Set an alarm for 8 a.m. tomorrow
assistant: {"name":"UtilityTools.AlarmClock.addAlarm", "arguments":{"time":"8 a.m. tomorrow"}}

## Note! Please do not hallucinate parameters. If some parameters are not mentioned in the
user request, please directly output an empty string ” For example:
user:Check my traffic violation record to see what happened.
assistant:“‘json{"name": "Navigation.TrafficViolations.viewViolationDetail", "argu-
ments":{"plate_number": "","city": "","time": ""}}“‘.
Never ask to the user for missing parameters!Output tool call!
## If all the above tools are not suitable, you must output: Sorry, no tool is suitable for your request.

Let’s start!

E Prompts of Dataset Construction

E.1 Tool Generation
Generating Tools

# System
You are a tool builder! Your task is to generate realistic and versatile toolkits that will be used by
Large Language Models (LLMs) to enhance their ability to solve real-world tasks. You must generate
toolkits that are useful, cohesive, complete, and diverse. You should focus on generating toolkits that
are commonly used by average users.
### Core requirements
1. Realism requirement: Ensure that the generated toolkit has a realistic design and can be seamlessly
integrated with LLMs for practical real-world applications. Specifically, the toolkit should either have
a tangible prototype that has been deployed in the real world, such as those developed using existing
APIs (such as Weibo or NetEase Mail), or demonstrate strong potential for future development and
accessibility through APIs (such as industrial automation toolkits).
2. Diversity requirement: Ensure that the generated toolkit is diverse, meeting a wide range of domains,
types, functions, and use cases.
3. Compatibility requirement: Ensure that the generated toolkit is compatible with the textual interfaces
of LLMs. In particular, LLMs can only interact with the toolkit through textual and programmatic
APIs. Therefore, the tool API should mainly accept and return text as input and output. Therefore,
the toolkit’s API should mainly accept and return text as input and output. In cases where the input
or output involves alternative types such as files, images, videos, or audio, these should be interfaced
through data paths or URLs, rather than raw data.
4. Cohesion requirement: Ensure that the generated toolkit is a cohesive collection of related tools
designed to facilitate the completion of a specific core target task. It should contain a variety of tool
APIs that serve different purposes within the scope of the intended functionality. For example, the
NetEase Mailbox toolkit may include tools for sending, searching, reading, and deleting emails.
5. Completeness requirement: Ensure that the toolkit is functionally complete and self-contained. Each
toolkit should contain comprehensive tool APIs that are sufficient to complete its core target tasks
without relying on any external tools or resources. In particular, if a toolkit involves operating data
resources (such as tasks in the Trello toolkit), the tool APIs should generally support relevant CRUD
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(create, read, update, delete) operations on these resources, or similar operations. In addition, these tool
APIs should generally operate using unique identifiers of the data source. You should not assume that
such unique identifiers will be provided by the user. Instead, there should be a tool API (e.g., a search
tool API) in the toolkit for retrieving unique identifiers. A typical design of a complete toolkit is as
follows:
- A search tool for retrieving unique identifiers (and possibly primary content) of data resources, such as
by keyword search.
- A read tool that takes a unique identifier as a parameter and returns the detailed data resource.
- An update tool that takes a unique identifier and the updated data resource as parameters and updates
the data resource, returning the unique identifier of the updated data resource.
- A delete tool that takes a unique identifier as a parameter and deletes the data resource, returning the
success status of the deletion.
- A create tool that takes a data resource as a parameter and creates a new data resource, returning the
unique identifier of the created data resource.
### Additional Requests
1. Unique target user requirement: Ensure that the toolkit is designed for a specific target user group
and that all tools will be used by the same target user group. The designated user group can vary -
individual users, enterprise users, developers, etc. For example, in the case of an e-commerce toolkit,
all tools should target either individual users or enterprise users, but not both.
2. Compactness requirement: Ensure that the toolkit API is compact, meaning that if tools have similar
interfaces and functionality, they should be unified into one tool. For example, tools for searching for
different types of items should be unified into one tool API with a parameter for specifying the type of
items to search for.
3. Search limit requirement: For toolkits that involve searching the tool API to retrieve data resources,
ensure that there is a parameter for specifying the maximum number of results returned by the search
tool API. This parameter can be optional, and the default value is specified in the tool description.
4. Avoid unnecessary authentication requirements: In most cases, toolkits are designed for personal use
by a single user, and it is reasonable to assume that the user has completed authentication before using
the toolkit. In this case, ensure that all tools do not require login, authentication, or personal ID. For
example, all tools in a personal banking toolkit should not require a login or a ‘user_id‘ parameter for
the tool. This also means that "unauthorized evaluation" should not be considered a potential risk for
the toolkit.
5. Avoid unnecessary ID requirements: Ensure that the tool does not introduce unnecessary unique
identifiers. Unique identifiers are only necessary when multiple data resource instances of the same type
need to be distinguished and operated on by the unique identifier. For example, for an online shopping
toolkit, an ‘order_id‘ needs to be introduced because there are usually multiple orders in a user account,
and it is necessary for operations on orders such as retrieval, read or cancel. However, unique identifiers
are unnecessary when the data source is singular, eliminating the need for distinction. For example,
for an online shopping toolkit, a ‘cart_id‘ for a user’s shopping cart or a ‘profile_id‘ for the user’s own
profile are redundant because a user account usually contains only one of each.
6. Stored data access requirements: For cases where some tools in the toolkit require specific user
details such as address or payment method, and it is reasonable to assume that the user has previously
provided this information to the toolkit, there must be a tool API that can access the stored data. For
example, in a toolkit for food delivery or e-commerce, there should be a tool API for accessing a user’s
saved addresses and payment methods.
7. Operation Status Indication Requirement: For tool APIs that involve operations such as creating,
updating, or deleting data resources, it is critical to include the operation status (e.g., a Boolean value of
"success") as part of the return value. Other return values should also align with the operation status.
For example, if a tool returns a unique identifier for a created data resource, it should return null or an
empty string if the operation failed.
8. File/Media Management Requirement: Toolkits that involve file or media resources (such as the
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Twitter toolkit that requires media attachments) need to carefully distinguish between local and remote
file management. Remote files located on a remote server should be identified and managed by their
remote file path or unique identifier. Whereas local files located on the user’s system should be identified
and managed by local file paths. Different tools may require remote or local files as input parameters or
return values, depending on the specific use case. For example, for the Twitter toolkit, a tool for posting
a tweet should require the local path of the media file to be posted, while a tool for retrieving tweets
should return the remote file identifier of the media file in the tweet. Additionally, there should be a tool
for downloading remote media files to the local system.
### Output Format
Toolkit specifications should be in a valid JSON list separated by “‘json‘ and “‘. Each item in the list
should contain the following fields:
‘tool‘: The name of the tool, which should be in "CamelCase" format.
‘name‘: The Chinese name of the tool, which should express the function of the tool as concisely as
possible.
‘description‘: The summary of the tool, which should be a clear and concise description of the purpose
and function of the tool without any ambiguity. It must be in Chinese.
‘parameters‘: The parameter list of the tool, each parameter should contain the fields including ‘name‘,
‘type‘ and ‘description‘, ‘required‘ (whether the parameter is required). ‘description‘ must be in
Chinese.
‘returns‘: The return list of the tool, each return should contain ‘name‘, ‘type‘ and ‘description‘.

Please note:
1. For tool ‘parameters‘ and ‘returns‘, ‘name‘ should not contain spaces and should be in "snake_case"
format.
2. For tool ‘parameters‘ and ‘returns‘, ‘type‘ should be a valid JSON type, i.e. one of ["string",
"integer", "number", "boolean", "array", "object", "null"].
3. For tool ‘parameters‘ and ‘returns‘, ‘description‘ should be a clear and concise description of the
parameter or return, without any ambiguity. If the parameter or return is subject to some specific format
or value constraints, these constraints should be explicitly specified in ‘description‘.
4. If a tool ‘parameters‘ or ‘returns‘ is an object, the exact fields of the object should be explicitly
specified in ‘description‘.
### Format example
You should output the toolkit as a JSON object, strictly following the structure shown in the following
example tool spec:
*WARNING! ** You need to check your JSON format carefully!!! Output the detailed toolkit spec as:
“‘json
<Output toolkit spec follows [format description]>
“‘
Try to generate tools that users might use in their daily lives.
Do not output the same string repeatedly!!!
Make sure to meet the above format requirements, especially do not lose "parameters"
Question: You need to generate tools for the following toolkits related to map navigation: Reference
message: Turn on navigation sound, turn off navigation sound, change navigation sound, query real-time
bus, view my footprints, find charging piles, add common addresses, view common addresses, delete
common addresses, add favorite places, view favorite places, delete favorite places, add favorite routes,
view favorite routes, delete common routes

E.2 Query Generation

Generating Single-turn Queries
You are now a mobile phone user. Your task is to fill in the corresponding parameters according to the
actual scenario based on the provided description and parameters, and then generate a user request
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based on the filled parameters.

Please make sure that the generated user requests are different from each other. You can feel
free to use different sentence styles, such as instructions or requests, and change the degree of detail as
needed.
Related requirements:
1. Use as few questions and polite tones as possible;
2. Natural questions similar to human conversations need to be more humane and colloquial, and in line
with people’s daily life
3. The parameters in the generated user request should be as reasonable as possible. For example, if it
involves image parameters, the user request needs to have representative information like test.jpg
4. Fill in parameters carefully, output the corresponding JSON format and wrap it with “‘json...“‘
5. Information such as test.jpg contained in parameters also needs to be included in the user request!!
6. All parameters must be filled in all given parameters!! Do not miss any one!
7. The user request needs to be wrapped with <user0>...<user1>. Your task is to generate natural and
colloquial user requests, make sure to clearly mention the tool name {name_for_human} in the request,
and avoid using stiff or direct imperative tones. For example, do not generate requests like ’Dianping,
show me my group purchases’, but use more humane and daily conversation expressions, such as ’Help
me see the group purchases on Dianping’. Please generate a user request that meets the specifications
according to this requirement.
8. You can generate parameters first, and then generate user requests based on the generated parameters.
9. The text descriptions in parameters must be in Chinese!
10. For time parameters, please use Chinese text! And the expressions before and after must be
consistent!
11. When no parameter definition is given, please generate a statement that does not contain any
parameters! Output Format:
1. Parameters: “‘json parameter dictionary“‘. <user0>[user request]<user1>
2. Parameters: “‘json parameter dictionary“‘. <user0>[user request]<user1>
. . . Here are two examples for your reference:
description: Modify alarm time, ring mode, weekday settings, custom settings
parameters:

Must include parameters:
Output:
1. Parameters:“‘json{}“‘. <user0>I want to modify the alarm time<user1>

description: Modify the alarm time, ring mode, weekday settings, custom settings
parameters:[{"name": "clock_time","type": "string","description": "Alarm
time","required": false},{"name": "target_time","type": "string","description":
"Modified target time","required": true}]
Must include parameters: clock_time, target_time Output:
1. Parameters:“‘json{"clock_time": "8 o’clock","target_time": "15 o’clock"}“‘. <user0>Change
the alarm at 8 o’clock to 15 o’clock in the afternoon<user1> The description of the tool and the
corresponding parameters are as follows:
description:{description}
parameters:{parameters}
Must include parameters:{param_list} Please refer to the example and generate {num} [user
requests] and [parameter dictionaries] that conform to the output format according to the above
requirements and tool conditions.
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E.3 Parameters Selection
Selecting parameters

Please select the specified number of parameters that best suit your daily habits based on the tool
description and corresponding parameter definitions. ## Selection Principles:
1. Simulate daily user usage scenarios and give priority to parameters that are more commonly used in
daily life ## Output Format:
1. Output your thoughts first, then output the parameter name you selected, and wrap it with “‘...“‘
2. Use commas to separate parameter names ## For examples:
Tool description: Create a new alarm
Parameter definition:
["name": "clock_time_name","type": "string","description": "Alarm name, empty by
default","required": false,"name": "clock_time","type": "string","description":
"Alarm time","required": true,"name": "kwargs","type": "array","description":
"Ring mode, weekday settings, custom settings","required": false]
Output 2 parameters: clock_time, clock_time_name

Start now! Tool description: {tool_desc}
Parameter definition: {parameters}
Output {num} parameters:

E.4 LLM Check Prompt
LLM Check Prompt

## System
You are an expert who can accurately judge the information matching relationship between texts, and
you have a keen insight into the information matching between two structured texts.
## Task Description
1. Given a query, model_output and the label of the corresponding tool call, your task is to determine
whether the model_output and label both express the same semantic meaning and are derived from the
information found in the query. output your judgment True/False

2. If model_output and label have different number of parameters, such as {’A’:1,’B’:2} and
{’A’:1}, output False
3. model_output and label do not have to be exactly the same. As long as they express the same
meaning and can solve query needs, only True is output.
4. If model_output is the same as label, or only a slight difference between them in terms of singular
and plural, output True! such as {} and {}, {"departure": "office"} and {"departure": "Offices"}, you
need output True
## Output Format
1. Following Task Description, Only output True/False, Never answer more text! For examples:
1. Different characters but same semantics, output True:
query: Add a note of the address of Starbucks Zhongguancun store on the map, and write "frequently
visited writing place"
label: {"address": "Starbucks Zhongguancun store", "remake": "often come to write"}
model_output: {"address": "Starbucks Zhongguancun store", "remake": "frequently visited writing
place"}
Output: True
2. model_output contains parameters that are not in label, output False:
query: How many times have you ridden this year?
label: {}
model_output: {"time": "this year"}
answer: False
3. The model_output is missing the parameters of label, output False:
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query: I want to know which five-star hotels are there in Nanshan District, Shenzhen
label: {"destination": "Nanshan District, Shenzhen", "checkin_date":"", "checkout_date":"",
"price_range":"", "kwargs":"five-star hotel"}
model_output: {"destination": "Nanshan District, Shenzhen", "checkin_date":"", "checkout_date":"",
"kwargs":"five-star hotel"}
answer: False
4. Time hallucination occurs, output False:
query: Make an appointment to test drive Xiaomi su7 at 10 am this Saturday
label: {"test_drive_time": "This Saturday at 10 am", "name":"", "phone":"", "kwargs":""}
model_output: {"test_drive_time": "2023-04-20 10:00", "name":"", "phone":"", "kwargs":""} answer:
False
5. The time format is different, but it expresses the same time, output True:
query: Make an appointment to test drive Xiaomi su7 at 10 am this Saturday
label: {"test_drive_time": "This Saturday at 10 am", "name":"", "phone":"", "kwargs":""}
model_output: {"test_drive_time": "This Saturday at 10:00", "name":"", "phone":"", "kwargs":""}
answer: True
6. All are empty characters, output True:
query: Open TikTok
label: {}
model_output: {}
answer: True
Start now!

query: {query}
label: {label}
model_output: {model_output}
answer:

E.5 Irrelevant tools selection
Irrelevant tools selection

Given a query and the corresponding tool description and parameter definition, please judge whether
the tool can complete the query.
## Output Format:
Only outputs boolean strings: True/False

Start now!
query:{query}
tool:{tool}
answer:

E.6 Generation with external individual information
classify entity

Please determine whether a parameter is in the entity category
## Output Format:
Please select which entity it belongs to. The selected entity category is enclosed in “‘...“‘
entity:{entities}
Parameter name and description:{param_desc}
Output:

pronoun generation
Please rewrite the following content into a sentence in the form of adjective + noun that is more in line
with daily habits and has more specific information.
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For example:
Input: The time mentioned in the message received from SMS
Requirement: Cannot contain specific time
Output: The time mentioned in the text message sent to me by Tom

Start now! Output only the rewritten 1 sentence!

Input: {entity} mentioned in the message received from {Tool_} Requirement: Cannot con-
tain specific {entity} Output:

external individual information simulation
Please simulate a message in {app} as required

## Related requirements
The content must involve entity;
The content should be as detailed as possible, and no referential content such as that or this should
appear. The message should contain a clear {entity}: {param_value} The content must not contain the
following: {param_forbid} ## Output format
Only output simulated messages, do not ask or output other content!

Simulated message:

rewrite query
Please generate the corresponding user query according to the label and the corresponding tool function
description
## Related requirements
1. Try to be consistent with the language of daily conversation interaction, smooth and concise
## Output format:
Only output the query, do not include other information

Tool description: {desc}
label: {label}
query:

E.7 Multi-turn Prompt
Question prompt

You are a function call agent, currently processing the {description} function call task, but the
parameters {miss_args_desc} are missing. Please ask the user for the missing parameter values

**Requirements**
- Do not include the existing parameters: {args_desc}
- Be brief and concise, do not add additional explanations
- Ask only about the missing parameters
- Ask multiple missing parameters together, do not use special symbols to separate, such as colons,
newlines, etc.
- Just ask questions, do not tell the user how to answer
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F Extra Experiment Details

Our experiments are all conducted in the HammerBench datasets generated by open-source LLMs. When
generating these data, we only summarized the behaviors and scenarios based on anonymous user logs,
without involving any privacy information of users. And HammerBench’s evaluations strictly follow the
license of the corresponding LLMs. Qwen2.5-72B-Instruct, Qwen2.5-7B-Instruct(Qwen Team, 2024) and
ToolACE-8B(Liu et al., 2024a) are Apache-2.0 LICENSE; xLAM-7b-fc-r(Liu et al., 2024b) is CC-by-
NC-4.0 LICENSE; Llama-3.1-70B-Instruct(Dubey et al., 2024) and Llama-3.1-8B-Instruct are llama3.1
LICENSE; Ministral-8B-Instruct(AI, 2024) is mrl LICENSE. They all allow developers to use their
technology for non-commercial purposes and to support research work. And GPT-4o(Hurst et al., 2024)
and Claude3.5-sonnet(Anthropic, 2024) are also widely used in research. Without using LLM judge, it
takes approximately 90 minutes for the 7B LLMs to inference all single turn(6500+ samples) and multi
turn data(6400+ samples) using a single A1OO 80G GPU. As for GPT-4o, one evaluation approximately
cost 75 dollars.

The experiment result of single-turn dataset is shown in Table 8. As for single-turn dataset with missing
arguments (Imperfect), PHR is much larger than other single-turn dataset. It reveals that user query with
missing arguments can easily lead to parameter hallucinations. In these cases, LLMs tend to fill in missing
arguments based on their internal model of the world rather than the actual user input, as detailed in
Appendix C.1. Since snapshots are often imperfect, these inaccuracies significantly impact multi-turn
success rates, further highlighting the challenges posed by incomplete or unclear user input. As a result,
the overall effectiveness of function-calling tasks is diminished when the instructions provided to the
model are less than ideal. And the single-turn dataset with external individual information has the lower
end-to-end Acc. .

We also evaluate function-calling snapshots across three types for detailed investigation. (1) every turn
throughout the conversation in Table 12, (2) the turn when the user changes slot values in Table 13, and
(3) the first and last turn of the conversation in Table 6. Some additional observations are as follows.

Fluctuations in Conversation Success Rate Across Diverse Q&A Trajectories: As shown in
Table 12, different conversation trajectories introduce varying degrees of disturbance to the overall success
rate of function calling. Consistent with expectations, we find that the progress rate tends to be higher
when slot values are provided more rapidly within the conversation (e.g. mQmA and sQmA, where users
provide multiple slot values at once and thus answer models’ questions faster.), highlighting the impact of
the timing and flow of user input on function-calling accuracy.

Generalization and Handling of Argument Shifts and External information: As shown in Table 13,
open-source LLMs are generally slow to detect and adjust to slot overriding. Only GPT-4o and Claude3.5-
sonnet, with its more robust generalization abilities, is able to perform this task more effectively. As for
external individual information, external noise increases Parameter Mismatch Rate (PMR) and causes the
model to miss crucial arguments, hindering its ability to fill slots correctly.

Imperfect Instructions and Parameter Name Hallucinations: As illustrated in Table 6, the PHR
in the first snapshot is significantly higher than in the last snapshot for all LLMs, with the PHR being
positively correlated with the rate of parameter name hallucinations. Furthermore, when all parameter
names are predicted correctly, the end-to-end function call is typically accurate as well, i.e. Other Error
Rate≈ 0%, emphasizing the importance of precise initial instruction. We can see similar observations
from Table 8.
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Data type Model Func. Acc. PHR PMR Acc. Irrelevant

Perfect

GPT-4o (Prompt) 89.74% 0.16% 10.63% 78.69% 64.38%
Claude3.5-sonnet (Prompt) 89.89% 0.26% 7.72% 79.86% 69.35%

Qwen2.5-72B-Instruct (Prompt) 90.50% 1.98% 3.92% 80.86% 74.59%
Llama-3.1-70B-Instruct (Prompt) 91.87% 6.64% 4.27% 75.99% 14.19%

Qwen2.5-7B-Instruct (Prompt) 89.41% 5.50% 3.96% 75.75% 37.36%
Llama-3.1-8B-Instruct (Prompt) 87.75% 5.22% 3.39% 73.01% 9.93%

Ministral-8B-Instruct-2410 (Prompt) 88.32% 0.43% 4.23% 78.02% 1.14%
Hammer2.1-7b (FC) 80.29% 1.06% 7.95% 68.85% 89.35%
xLAM-7b-fc-r (FC) 83.17% 0.34% 5.00% 73.48% 49.76%
ToolACE-8B (FC) 91.44% 0.78% 4.96% 78.82% 22.98%

Imperfect

GPT-4o (Prompt) 88.86% 7.61% 4.48% 78.77% 71.17%
Claude3.5-sonnet (Prompt) 88.94% 8.15% 2.49% 79.38% 67.90%

Qwen2.5-72B-Instruct (Prompt) 84.59% 16.27% 1.68% 68.64% 78.97%
Llama-3.1-70B-Instruct (Prompt) 91.20% 20.87% 1.90% 69.47% 19.04%

Qwen2.5-7B-Instruct (Prompt) 82.09% 26.72% 2.52% 58.08% 49.04%
Llama-3.1-8B-Instruct (Prompt) 89.35% 40.72% 1.80% 51.08% 8.50%

Ministral-8B-Instruct-2410 (Prompt) 75.03% 54.17% 2.59% 32.19% 6.09%
Hammer2.1-7b (FC) 81.88% 24.38% 3.02% 59.29% 89.23%
xLAM-7b-fc-r (FC) 86.45% 41.05% 2.61% 48.82% 54.51%
ToolACE-8B (FC) 82.53% 33.58% 3.96% 51.94% 29.37%

External

GPT-4o (Prompt) 87.91% 2.81% 29.11% 56.16% 73.02%
Claude3.5-sonnet (Prompt) 82.13% 2.49% 25.27% 55.83% 67.23%

Qwen2.5-72B-Instruct (Prompt) 93.10% 5.58% 12.52% 67.40% 65.70%
Llama-3.1-70B-Instruct (Prompt) 93.70% 5.72% 14.35% 59.57% 4.26%

Qwen2.5-7B-Instruct (Prompt) 88.51% 9.90% 8.94% 58.89% 36.59%
Llama-3.1-8B-Instruct (Prompt) 89.87% 9.94% 8.52% 57.61% 5.96%

Ministral-8B-Instruct-2410 (Prompt) 90.12% 11.89% 6.70% 57.70% 4.34%
Hammer2.1-7b (FC) 77.87% 7.65% 13.44% 50.21% 90.63%
xLAM-7b-fc-r (FC) 86.89% 10.08% 15.08% 48.85% 45.78%
ToolACE-8B (FC) 92.25% 11.71% 10.70% 56.93% 27.40%

Overall

GPT-4o (Prompt) 88.83% 3.52% 14.74% 71.21% 69.52%
Claude3.5-sonnet (Prompt) 86.99% 3.63% 11.82% 71.69% 68.16%

Qwen2.5-72B-Instruct (Prompt) 89.40% 7.94% 6.04% 72.30% 73.09%
Llama-3.1-70B-Instruct (Prompt) 92.25% 11.07% 6.84% 68.34% 12.49%

Qwen2.5-7B-Instruct (Prompt) 86.67% 14.04% 5.14% 64.24% 41.00%
Llama-3.1-8B-Instruct (Prompt) 88.99% 18.63% 4.57% 60.57% 8.13%

Ministral-8B-Instruct-2410 (Prompt) 84.49% 22.16% 4.51% 55.97% 3.86%
Hammer2.1-7b (FC) 80.01% 11.03% 8.13% 59.45% 89.74%
xLAM-7b-fc-r (FC) 85.50% 17.16% 7.56% 57.05% 50.02%
ToolACE-8B (FC) 88.74% 15.35% 6.54% 62.56% 26.58%

Table 8: Experiment result for single-turn dataset.
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Data type Model Func. Acc. PHR PMR Acc. PR SR

sQsA

GPT-4o (Prompt) 89.85% 9.31% 5.11% 72.52% 66.03% 54.95%
Claude3.5-sonnet (Prompt) 91.08% 9.02% 4.28% 76.62% 70.64% 62.37%

Qwen2.5-72B-Instruct (Prompt) 82.17% 12.29% 6.35% 64.59% 56.28% 44.55%
Llama-3.1-70B-Instruct (Prompt) 91.83% 12.86% 1.71% 75.05% 64.72% 55.19%
Qwen2.5-7B-Instruct (Prompt) 82.67% 19.50% 5.23% 60.08% 48.90% 37.62%
Llama-3.1-8B-Instruct (Prompt) 90.59% 22.87% 19.18% 51.53% 38.43% 18.56%

Ministral-8B-Instruct-2410 (Prompt) 71.28% 33.17% 4.81% 43.19% 26.78% 20.29%
Hammer2.1-7b (FC) 81.68% 15.71% 6.13% 62.26% 52.37% 41.08%
xLAM-7b-fc-r (FC) 91.33% 29.19% 6.81% 58.03% 39.28% 32.17%
ToolACE-8B (FC) 80.69% 28.11% 3.11% 54.54% 42.55% 26.98%

mQmA

GPT-4o (Prompt) 90.84% 7.12% 5.60% 75.63% 73.22% 64.35%
Claude3.5-sonnet (Prompt) 90.84% 7.93% 4.43% 75.52% 73.74% 65.59%

Qwen2.5-72B-Instruct (Prompt) 81.93% 10.58% 2.71% 67.82% 64.75% 57.67%
Llama-3.1-70B-Instruct (Prompt) 91.58% 12.22% 2.54% 73.20% 67.42% 59.40%
Qwen2.5-7B-Instruct (Prompt) 82.42% 20.64% 5.29% 58.12% 53.06% 44.55%
Llama-3.1-8B-Instruct (Prompt) 90.59% 23.65% 10.83% 57.70% 51.15% 40.59%

Ministral-8B-Instruct-2410 (Prompt) 71.28% 35.34% 6.48% 40.29% 28.59% 21.28%
Hammer2.1-7b (FC) 82.17% 14.87% 8.67% 60.86% 57.57% 46.53%
xLAM-7b-fc-r (FC) 91.33% 33.79% 7.64% 52.53% 40.74% 34.40%
ToolACE-8B (FC) 80.44% 27.54% 4.96% 52.63% 46.39% 33.41%

mQsA

GPT-4o (Prompt) 90.34% 9.17% 7.88% 73.00% 68.52% 59.15%
Claude3.5-sonnet (Prompt) 90.59% 9.15% 6.42% 73.34% 68.93% 59.65%

Qwen2.5-72B-Instruct (Prompt) 81.93% 13.74% 5.11% 63.90% 56.93% 47.27%
Llama-3.1-70B-Instruct (Prompt) 91.33% 15.07% 3.68% 70.74% 61.63% 52.47%
Qwen2.5-7B-Instruct (Prompt) 82.17% 25.62% 6.76% 54.40% 43.62% 32.42%
Llama-3.1-8B-Instruct (Prompt) 90.59% 27.01% 19.78% 48.59% 38.42% 19.05%

Ministral-8B-Instruct-2410 (Prompt) 71.28% 45.38% 7.79% 32.94% 19.02% 8.91%
Hammer2.1-7b (FC) 81.68% 26.24% 11.26% 52.63% 41.50% 25.24%
xLAM-7b-fc-r (FC) 91.33% 40.49% 10.62% 46.00% 30.36% 19.80%
ToolACE-8B (FC) 80.44% 47.84% 7.76% 38.55% 25.87% 8.42%

sQmA

GPT-4o (Prompt) 91.83% 8.22% 7.18% 74.05% 70.79% 59.90%
Claude3.5-sonnet (Prompt) 91.33% 7.77% 6.84% 73.94% 72.62% 62.12%

Qwen2.5-72B-Instruct (Prompt) 82.42% 11.42% 2.82% 67.40% 64.19% 56.68%
Llama-3.1-70B-Instruct (Prompt) 91.83% 11.85% 3.68% 73.52% 68.00% 60.39%
Qwen2.5-7B-Instruct (Prompt) 82.17% 20.46% 5.18% 57.70% 53.04% 44.55%
Llama-3.1-8B-Instruct (Prompt) 90.59% 24.35% 11.18% 56.22% 50.35% 39.10%

Ministral-8B-Instruct-2410 (Prompt) 71.28% 36.08% 6.19% 40.18% 28.37% 21.03%
Hammer2.1-7b (FC) 81.93% 14.13% 8.95% 60.65% 57.18% 46.28%
xLAM-7b-fc-r (FC) 91.33% 33.79% 7.75% 52.63% 41.08% 34.65%
ToolACE-8B (FC) 80.69% 27.60% 6.51% 51.68% 46.10% 32.42%

w/ SO

GPT-4o (Prompt) 90.37% 8.52% 4.90% 72.98% 68.65% 57.93%
Claude3.5-sonnet (Prompt) 90.44% 8.83% 3.58% 76.49% 72.54% 65.01%

Qwen2.5-72B-Instruct (Prompt) 85.08% 13.62% 5.08% 65.40% 60.25% 50.17%
Llama-3.1-70B-Instruct (Prompt) 91.47% 16.17% 1.56% 70.25% 62.01% 52.09%
Qwen2.5-7B-Instruct (Prompt) 82.88% 23.21% 3.92% 54.21% 45.78% 33.05%
Llama-3.1-8B-Instruct (Prompt) 90.10% 27.30% 14.56% 48.84% 37.99% 22.54%

Ministral-8B-Instruct-2410 (Prompt) 74.22% 37.75% 3.60% 40.29% 26.21% 19.93%
Hammer2.1-7b (FC) 82.95% 19.92% 5.03% 57.85% 49.83% 36.83%
xLAM-7b-fc-r (FC) 89.89% 34.70% 6.51% 48.37% 34.44% 24.94%
ToolACE-8B (FC) 81.51% 32.96% 3.05% 50.25% 40.07% 26.87%

w/ mSv

GPT-4o (Prompt) 90.68% 7.84% 6.45% 61.98% 56.45% 18.53%
Claude3.5-sonnet (Prompt) 90.02% 8.02% 5.36% 69.68% 63.94% 42.89%

Qwen2.5-72B-Instruct (Prompt) 86.17% 12.23% 5.66% 64.98% 57.35% 42.05%
Llama-3.1-70B-Instruct (Prompt) 91.62% 14.44% 5.21% 68.87% 58.64% 41.39%
Qwen2.5-7B-Instruct (Prompt) 83.06% 21.07% 4.85% 51.85% 41.75% 18.15%
Llama-3.1-8B-Instruct (Prompt) 89.84% 25.19% 13.85% 48.30% 34.97% 15.80%

Ministral-8B-Instruct-2410 (Prompt) 75.25% 33.64% 4.41% 36.47% 22.00% 7.53%
Hammer2.1-7b (FC) 83.25% 17.78% 10.81% 52.81% 43.87% 17.49%
xLAM-7b-fc-r (FC) 89.18% 26.90% 15.51% 43.23% 29.09% 4.80%
ToolACE-8B (FC) 81.93% 29.82% 3.82% 45.74% 35.07% 11.57%

w/ External

GPT-4o (Prompt) 90.81% 5.52% 13.36% 69.64% 66.34% 49.18%
Claude3.5-sonnet (Prompt) 90.40% 6.22% 9.18% 71.83% 68.62% 54.28%

Qwen2.5-72B-Instruct (Prompt) 84.48% 12.36% 8.98% 61.12% 59.58% 45.91%
Llama-3.1-70B-Instruct (Prompt) 92.04% 12.54% 3.77% 69.29% 63.47% 49.79%
Qwen2.5-7B-Instruct (Prompt) 81.22% 19.73% 6.35% 53.87% 50.04% 34.89%
Llama-3.1-8B-Instruct (Prompt) 89.79% 22.70% 14.95% 50.14% 43.56% 25.51%

Ministral-8B-Instruct-2410 (Prompt) 73.67% 33.52% 9.88% 35.00% 25.06% 14.08%
Hammer2.1-7b (FC) 82.85% 15.74% 17.72% 48.73% 46.32% 25.30%
xLAM-7b-fc-r (FC) 88.77% 26.38% 13.66% 48.30% 39.76% 25.91%
ToolACE-8B (FC) 83.87% 28.83% 5.45% 49.15% 43.61% 26.93%

Overall

GPT-4o (Prompt) 90.67 7.96 7.21 71.40 67.14 52.00
Claude3.5-sonnet (Prompt) 90.67 8.13 5.73 73.92 70.15 58.84

Qwen2.5-72B-Instruct (Prompt) 83.45 12.32 5.24 65.03 59.90 49.19
Llama-3.1-70B-Instruct (Prompt) 91.67 13.59 3.16 71.56 63.70 52.96
Qwen2.5-7B-Instruct (Prompt) 82.37 21.46 5.37 55.75 48.03 35.03
Llama-3.1-8B-Instruct (Prompt) 90.30 24.72 14.90 51.62 42.12 25.88
Ministral-8B-Instruct (Prompt) 72.61 36.41 6.17 38.34 25.15 16.15

Hammer2.1-7b (FC) 82.36 17.77 9.80 56.54 49.81 34.11
xLAM-7b-fc-r (FC) 90.45 32.18 9.79 49.87 36.39 25.24
ToolACE-8B (FC) 81.37 31.81 4.95 48.93 39.95 23.80

Table 9: Overall evaluation on HammerBench for different metrics of different data types.
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Data type Model Func. Acc. PHR PMR Acc. PR SR

w/o SO

GPT-4o (Prompt) 89.14% 8.65% 5.68% 72.35% 67.90% 58.76%
Claude3.5-sonnet (Prompt) 90.51% 8.69% 4.94% 76.03% 71.71% 64.39%

Qwen2.5-72B-Instruct (Prompt) 84.94% 12.70% 5.52% 66.73% 61.11% 51.82%
Llama-3.1-70B-Instruct (Prompt) 91.75% 14.34% 1.97% 73.88% 65.34% 58.41%

Qwen2.5-7B-Instruct (Prompt) 82.88% 20.27% 5.17% 59.71% 50.66% 42.06%
Llama-3.1-8B-Instruct (Prompt) 90.03% 25.08% 15.26% 52.66% 41.54% 27.69%

Ministral-8B-Instruct-2410 (Prompt) 74.22% 35.01% 5.10% 42.90% 27.76% 22.74%
Hammer2.1-7b (FC) 82.68% 16.92% 6.58% 61.83% 53.87% 44.46%
xLAM-7b-fc-r (FC) 89.69% 30.83% 6.55% 55.64% 39.01% 33.26%
ToolACE-8B (FC) 81.58% 28.32% 3.88% 54.23% 44.08% 32.71%

w/ SO

GPT-4o (Prompt) 90.37% 8.52% 4.90% 72.98% 68.65% 57.93%
Claude3.5-sonnet (Prompt) 90.44% 8.83% 3.58% 76.49% 72.54% 65.01%

Qwen2.5-72B-Instruct (Prompt) 85.08% 13.62% 5.08% 65.40% 60.25% 50.17%
Llama-3.1-70B-Instruct (Prompt) 91.47% 16.17% 1.56% 70.25% 62.01% 52.09%

Qwen2.5-7B-Instruct (Prompt) 82.88% 23.21% 3.92% 54.21% 45.78% 33.05%
Llama-3.1-8B-Instruct (Prompt) 90.10% 27.30% 14.56% 48.84% 37.99% 22.54%

Ministral-8B-Instruct-2410 (Prompt) 74.22% 37.75% 3.60% 40.29% 26.21% 19.93%
Hammer2.1-7b (FC) 82.95% 19.92% 5.03% 57.85% 49.83% 36.83%
xLAM-7b-fc-r (FC) 89.89% 34.70% 6.51% 48.37% 34.44% 24.94%
ToolACE-8B (FC) 81.51% 32.96% 3.05% 50.25% 40.07% 26.87%

w/o mSv

GPT-4o (Prompt) 88.80% 8.37% 5.98% 72.28% 68.47% 60.11%
Claude3.5-sonnet (Prompt) 90.21% 8.59% 5.32% 75.71% 71.99% 65.09%

Qwen2.5-72B-Instruct (Prompt) 85.88% 12.73% 5.07% 67.83% 63.15% 54.84%
Llama-3.1-70B-Instruct (Prompt) 91.62% 14.85% 2.05% 73.50% 65.70% 59.83%

Qwen2.5-7B-Instruct (Prompt) 83.16% 20.26% 5.23% 60.02% 51.71% 44.02%
Llama-3.1-8B-Instruct (Prompt) 89.65% 25.98% 13.73% 52.98% 42.76% 31.23%

Ministral-8B-Instruct-2410 (Prompt) 75.25% 35.55% 5.29% 42.89% 28.17% 23.61%
Hammer2.1-7b (FC) 83.16% 17.25% 6.79% 61.90% 54.76% 46.00%
xLAM-7b-fc-r (FC) 89.08% 31.37% 6.41% 54.93% 39.14% 33.96%
ToolACE-8B (FC) 81.93% 28.45% 4.23% 54.24% 44.81% 34.90%

w/ mSv

GPT-4o (Prompt) 90.68% 7.84% 6.45% 61.98% 56.45% 18.53%
Claude3.5-sonnet (Prompt) 90.02% 8.02% 5.36% 69.68% 63.94% 42.89%

Qwen2.5-72B-Instruct (Prompt) 86.17% 12.23% 5.66% 64.98% 57.35% 42.05%
Llama-3.1-70B-Instruct (Prompt) 91.62% 14.44% 5.21% 68.87% 58.64% 41.39%

Qwen2.5-7B-Instruct (Prompt) 83.06% 21.07% 4.85% 51.85% 41.75% 18.15%
Llama-3.1-8B-Instruct (Prompt) 89.84% 25.19% 13.85% 48.30% 34.97% 15.80%

Ministral-8B-Instruct-2410 (Prompt) 75.25% 33.64% 4.41% 36.47% 22.00% 7.53%
Hammer2.1-7b (FC) 83.25% 17.78% 10.81% 52.81% 43.87% 17.49%
xLAM-7b-fc-r (FC) 89.18% 26.90% 15.51% 43.23% 29.09% 4.80%
ToolACE-8B (FC) 81.93% 29.82% 3.82% 45.74% 35.07% 11.57%

w/o External

GPT-4o (Prompt) 89.38% 5.22% 3.64% 77.95% 74.36% 67.34%
Claude3.5-sonnet (Prompt) 90.20% 4.44% 4.36% 80.35% 76.60% 70.40%

Qwen2.5-72B-Instruct (Prompt) 85.10% 8.98% 5.29% 69.92% 65.94% 57.55%
Llama-3.1-70B-Instruct (Prompt) 92.44% 9.76% 1.30% 79.57% 72.55% 66.93%

Qwen2.5-7B-Instruct (Prompt) 81.42% 13.10% 3.91% 64.92% 58.13% 49.99%
Llama-3.1-8B-Instruct (Prompt) 89.79% 17.30% 16.13% 58.52% 47.80% 32.65%

Ministral-8B-Instruct-2410 (Prompt) 73.67% 28.87% 3.39% 47.60% 31.34% 26.73%
Hammer2.1-7b (FC) 82.65% 12.33% 4.06% 66.19% 60.62% 52.85%
xLAM-7b-fc-r (FC) 88.77% 22.59% 5.69% 63.09% 49.07% 43.46%
ToolACE-8B (FC) 83.87% 23.38% 2.68% 60.84% 51.12% 39.99%

w/ External

GPT-4o (Prompt) 90.81% 5.52% 13.36% 69.64% 66.34% 49.18%
Claude3.5-sonnet (Prompt) 90.40% 6.22% 9.18% 71.83% 68.62% 54.28%

Qwen2.5-72B-Instruct (Prompt) 84.48% 12.36% 8.98% 61.12% 59.58% 45.91%
Llama-3.1-70B-Instruct (Prompt) 92.04% 12.54% 3.77% 69.29% 63.47% 49.79%

Qwen2.5-7B-Instruct (Prompt) 81.22% 19.73% 6.35% 53.87% 50.04% 34.89%
Llama-3.1-8B-Instruct (Prompt) 89.79% 22.70% 14.95% 50.14% 43.56% 25.51%

Ministral-8B-Instruct-2410 (Prompt) 73.67% 33.52% 9.88% 35.00% 25.06% 14.08%
Hammer2.1-7b (FC) 82.85% 15.74% 17.72% 48.73% 46.32% 25.30%
xLAM-7b-fc-r (FC) 88.77% 26.38% 13.66% 48.30% 39.76% 25.91%
ToolACE-8B (FC) 83.87% 28.83% 5.45% 49.15% 43.61% 26.93%

Table 10: Ablation on HammerBench.
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Model Overall
Diverse Q&A Argument shifts

External Intent
shiftssQsA mQmA mQsA sQmA SO mSv

GPT-4o (Prompt) 72.00 72.52 75.63 73.00 74.05 72.98 61.98 69.64 76.22
Claude3.5-sonnet (Prompt) 72.02 76.62 75.52 73.34 73.94 76.49 69.68 71.83 58.74

Qwen2.5-72B-Instruct (Prompt) 68.12 64.59 67.82 63.90 67.40 65.40 64.98 61.12 89.79
Llama-3.1-70B-Instruct (Prompt) 70.49 75.05 73.20 70.74 73.52 70.25 68.87 69.29 63.02

Qwen2.5-7B-Instruct (Prompt) 57.78 60.08 58.12 54.40 57.70 54.21 51.85 53.87 72.04
Llama-3.1-8B-Instruct (Prompt) 51.49 51.53 57.70 48.59 56.22 48.84 48.30 50.14 50.63
Ministral-8B-Instruct (Prompt) 35.39 43.19 40.29 32.94 40.18 40.29 36.47 35.00 14.75

Hammer2.1-7b (FC) 61.31 62.26 60.86 52.63 60.65 57.85 52.81 48.73 94.71
xLAM-7b-fc-r (FC) 48.43 58.03 52.53 46.00 52.63 48.37 43.23 48.30 38.34
ToolACE-8B (FC) 48.19 54.54 52.63 38.55 51.68 50.25 45.74 49.15 42.98

Table 11: The evaluation (Acc.%) on HammerBench for different multi-turn data types. It is a snippet from Table 9.

Model
w/o (PR) | w/ (△ PR)

IS
Diverse Q&A Argument shifts External

mQmA mQsA sQmA SO mSv

GPT-4o (Prompt) 66.03% | +7.189% 66.03% | +2.487% 66.03% | +4.763% 67.90% | +0.745% 68.47% | -12.01% 74.36% | -8.023% 76.22%
Claude3.5-sonnet (Prompt) 70.64% | +3.101% 70.64% | -1.712% 70.64% | +1.977% 71.71% | +0.831% 71.99% | -8.048% 76.60% | -7.976% 58.74%

Qwen2.5-72B-Instruct (Prompt) 56.28% | +8.470% 56.28% | +0.652% 56.28% | +7.913% 61.11% | -0.862% 63.15% | -5.797% 65.94% | -6.352% 89.79%
Llama-3.1-70B-Instruct (Prompt) 64.72% | +2.704% 64.72% | -3.093% 64.72% | +3.282% 65.34% | -3.333% 65.70% | -7.057% 72.55% | -9.076% 63.02%
Qwen2.5-7B-Instruct (Prompt) 48.90% | +4.159% 48.90% | -5.280% 48.90% | +4.138% 50.66% | -4.878% 51.71% | -9.961% 58.13% | -8.093% 72.04%
Llama-3.1-8B-Instruct (Prompt) 38.43% | +12.72% 38.43% | -0.012% 38.43% | +11.92% 41.54% | -3.546% 42.76% | -7.786% 47.80% | -4.244% 50.63%

Ministral-8B-Instruct-2410 (Prompt) 26.78% | +1.805% 26.78% | -7.762% 26.78% | +1.589% 27.76% | -1.554% 28.17% | -6.172% 31.34% | -6.280% 14.75%
Hammer2.1-7b (FC) 52.37% | +5.194% 52.37% | -10.87% 52.37% | +4.806% 53.87% | -4.035% 54.76% | -10.89% 60.62% | -14.30% 94.71%
xLAM-7b-fc-r (FC) 39.28% | +1.457% 39.28% | -8.921% 39.28% | +1.793% 39.01% | -4.568% 39.14% | -10.05% 49.07% | -9.311% 38.34%
ToolACE-8B (FC) 42.55% | +3.843% 42.55% | -16.68% 42.55% | +3.554% 44.08% | -4.010% 44.81% | -9.745% 51.12% | -7.510% 42.98%

Table 12: Multi-turn fine-grained evaluation across different data types for all snapshots. Each cell consists of two
items: the absolute value of the baseline sQsA dataset and the change (△) in the metric after encountering the
corresponding situations. So that we can more clearly observe the impacts of these situations.

Model
w/o | w/ (△)

SO External

PHR PMR PR PHR PMR PR

GPT-4o (Prompt) 7.555% | +0.501% 8.251% | -2.508% 68.86% | -0.996% 5.492% | +0.477% 5.492% | +18.76% 75.06% | -18.91%
Claude3.5-sonnet (Prompt) 7.594% | +0.801% 6.845% | -3.348% 74.43% | -0.034% 4.690% | +2.987% 7.129% | +7.851% 75.54% | -15.61%

Qwen2.5-72B-Instruct (Prompt) 11.88% | +2.471% 6.804% | -1.116% 66.32% | -4.742% 9.716% | +6.643% 8.097% | +6.217% 66.83% | -13.97%
Llama-3.1-70B-Instruct (Prompt) 11.76% | +4.239% 2.023% | -0.858% 74.63% | -8.213% 8.302% | +5.055% 1.291% | +2.419% 78.94% | -15.71%
Qwen2.5-7B-Instruct (Prompt) 16.83% | +7.338% 6.052% | -2.569% 60.75% | -14.70% 13.71% | +12.29% 4.219% | +3.391% 62.89% | -19.35%
Llama-3.1-8B-Instruct (Prompt) 16.57% | +6.999% 23.39% | -5.054% 51.68% | -9.725% 12.28% | +9.829% 23.81% | -6.427% 54.69% | -10.10%

Ministral-8B-Instruct-2410 (Prompt) 21.67% | +7.864% 6.454% | -3.440% 50.72% | -9.175% 17.56% | +9.367% 4.683% | +14.28% 53.16% | -23.74%
Hammer2.1-7b (FC) 14.13% | +7.616% 8.469% | -3.306% 61.58% | -11.20% 11.52% | +4.699% 5.555% | +29.96% 64.72% | -31.59%
xLAM-7b-fc-r (FC) 19.47% | +10.16% 8.571% | +0.313% 62.33% | -19.62% 14.25% | +7.414% 6.653% | +14.06% 66.73% | -23.74%
ToolACE-8B (FC) 27.29% | +10.78% 4.461% | -2.101% 53.67% | -12.50% 23.38% | +11.29% 3.225% | +5.040% 58.06% | -19.42%

Table 13: Evaluations for snapshots at the moment of slot overriding (SO) and answering with pronouns (External).
Each cell in the table includes two items: the baseline absolute metrics under the sQsA dataset, and the changes (△)
in metrics after considering SO/External.
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