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Abstract

Model distillation—using outputs from a large
teacher model to teach a small student model—
is a practical means of creating efficient models
for a particular task. We ask: Can we identify
a students’ teacher based on its outputs? Such
“footprints” left by teacher LLMs would be in-
teresting artifacts. Beyond this, reliable teacher
inference may have practical implications as ac-
tors seek to distill specific capabilities of mas-
sive proprietary LLMs into deployed smaller
LMs, potentially violating terms of service.!
We consider practical task distillation targets
including summarization, question answering,
and instruction-following. We assume a finite
set of candidate teacher models, which we treat
as blackboxes. We design discriminative mod-
els that operate over lexical features. We find
that n-gram similarity alone is unreliable for
identifying teachers, but part-of-speech (PoS)
templates (Shaib et al., 2024b) preferred by
student models mimic those of their teachers.

1 Introduction

Model distillation (Bucilua et al., 2006; Hinton,
2015) entails teaching a small model using outputs
sampled from a larger model. In the LLM era, this
has proven an especially practical strategy: Distil-
lation can imbue efficient small language models
with task-specific capabilities competitive with (ex-
pensive) teacher LLMs (Xu et al., 2024). In this
work we assess the degree to which teachers in-
culcate “signatures” into student models during
distillation. Specifically, we ask: Given a distilled
student model can we identify its teacher from a
candidate set (Figure 1)?

This may have practical implications. Imagine
a start-up company distilling a particular piece of
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'Consider, e.g., speculation as to if DeepSeek was at least
partly distilled from OpenAI’s ChatGPT (Associated Press,
2025).
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Figure 1: We introduce the problem of feacher model
attribution: Given a distilled student model (e.g., a fine-
tuned GPT-2), determine which of a set of possible
teacher models was distilled (here, Mistral).

functionality (summarization, say) from a large
proprietary model and using this to power a paid
service. This may violate terms of service, so LLM
providers might be keen to identify such cases.

We consider a set of tasks for which distilla-
tion has proven successful in prior work. For
reasoning and math tasks, distillation targets of-
ten include “reasoning” elicited from the teacher,
as this has been shown to improve student per-
formance substantially (Ho et al., 2023; Li et al.,
2023b; Shridhar et al., 2023; Wadhwa et al., 2024a).
We also consider broader “distillation”, namely
general instruction-tuning using examples elicited
from a massive LLM, as done by Alpaca (Taori
et al., 2023).

One might think that simply measuring simi-
larity between the outputs generated by a student
model and candidate teachers would suffice to iden-
tify the teacher. However, we find that basic similar-
ity measurements over texts provide practically no
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useful signal in this respect. Another obvious strat-
egy would be to evaluate the likelihood of student
outputs under different teacher models. Intuitively,
the teacher should prefer (assign high likelihood
to) outputs generated by its pupil. But again we
find that such teacher perplexities are insufficient
to reliably pick a teacher from a candidate set.

If shallow measures of similarity do not suffice
to identify teachers, what might? We explore syn-
tactic Part-of-Speech (PoS) templates (Shaib et al.,
2024b) as an alternative means of identifying teach-
ers via higher-order lexical features. We find that
these templates—which are more abstract than raw
output texts—carry relatively strong signal about
the teacher used in distillation.

2 Problem Setup

Distilling LLMs involves training a small, cost-
efficient student model (e.g., GPT-2) using out-
puts from a much larger teacher model (e.g.,
GPT-4) to create an efficient yet capable model.
We assume a student model m trained on data
from one of several possible teacher LLMs,
M = {My,Ms,...,Mr}.> Our goal is to iden-
tify which teacher model M trained m, without
access to the original distillation data.

In our experiments, we use fine-tuned GPT-2
(Radford et al., 2019) and Olmo-1B (Groeneveld
et al., 2024) as student models (m) and a teacher
set M = {Llama3-8B, L1ama3-70B, Mistral-7B,
Mixtral, Gemma2-9B}, selecting open models for
reproducibility. The teachers range from 8B to 70B
parameters, all significantly larger than m.

Tasks and Datasets We experiment with tasks
where larger models have been successfully dis-
tilled, including summarization, question answer-
ing, and general instruction following.

For summarization, we use CNN-DailyMail (See
et al., 2017), Rotten Tomatoes (Leone, 2020), and
PubMed (Gupta et al., 2021). For question answer-
ing, we use OpenbookQA (Mihaylov et al., 2018)
and CommonsenseQA (Talmor et al., 2019). For
instruction following, we randomly sample 10K
instances from Alpaca (Taori et al., 2023).3

Training data is generated from all five teacher
models. For summarization and instruction follow-
ing, teachers generate outputs directly. For ques-
tion answering, following Li et al. (2023b), we

*In practice, a limited number of proprietary LLM:s (e.g.,
GPT-*, Claude, or Llama) are typically used for distillation.
’Downsampling details in Appendix B.

Teacher BoW BERTScore
Llama8B 0.54 0.65
Llama-70B x 0.56 0.71
Mistral-7B 0.53 0.62
OBQA
Mixtral x 0.56 0.65
Gemma2-9B 0.51 0.49
Llama8B 0.26 0.21
Llama-70B 0.22 0.25
Mistral-7B x 0.25 0.26
Alpaca
Mixtral x 0.27 0.26
Gemma2-9B 0.19 0.11
Llama8B v/ 0.71 0.67
Llama-70B x 0.60 0.68
Mistral-7B 0.43 0.49
C-D
Mixtral 0.41 0.48
Gemma2-9B 0.28 0.31
Table 1: Neither cosine similarities (BoW) nor

BERTScores between student (fine-tuned GPT-2) and
candidate teachers reliably reveal the true teacher
(Llama8B).

generate reasoning chains for correct labels, using
both chains and labels as student targets.

3 Teacher Attribution Methods

Here we describe models we considered to identify
a teacher model based on a set of student outputs.
These include approaches based on: (i) perplexity;
(i1) similarity metrics; and (iii) syntactic patterns.

LLMs “prefer” (assign lower perplexities to) text
that they have produced. This suggests that sim-
ply comparing perplexities of student-generated
text under each candidate teacher may be a viable
identification strategy: We would expect the true
teacher to assign lower perplexity to outputs from
their pupils. However, as shown in Figure 2, this is
insufficient to discriminate between teacher models.
For example, Gemma assigns much higher perplex-
ities to summaries produced by a model distilled
from its own outputs (2, a).

3.1 Similarity Metrics

One approach to matching students with their teach-
ers is to measure the similarity between the texts
that they generate. We would expect texts gener-
ated by a student model to resemble those produced
by its teacher (as compared to other LLMs).

We use BERTscore (Zhang et al., 2020) and
cosine similarity based on a bag-of-words repre-
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Figure 2: Perplexity under teacher models of texts generated by different pupils on (a) Rotten-Tomatoes, (b) QuaRel,
and (c) OpenBookQA. Teacher perplexity does not consistently identify the teacher.
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Figure 3: AUC-ROC curves for a one-vs-rest LR clas-
sifier using similarity score as the sole feature. Per-
formance across models is close to random (AUC =~
0.49-0.53), indicating limited discriminative power.

sentations as similarity measures. Table 14 shows
the similarity between student and teacher outputs,
as compared with other candidate teacher models
across each dataset. Raw similarities are unreliable
indicators of teacher models.

This limitation is further highlighted in Figure
3, which presents AUC-ROC curves for logistic
regression models using similarity scores as stan-
dalone features in a one-vs-rest classification setup.
The average AUC score hovers around 0.52, in-
dicating that similarity scores alone provide little
discriminatory power in distinguishing between
teacher models. These findings emphasize the need
for more robust approaches to accurately differenti-

4 Additional results in Appendix Figure 5.

ate teacher-student relationships.

3.2 Syntactic Patterns

We next test whether “syntactic templates” (PoS se-
quences) provide signal sufficient to distinguish be-
tween different student models, inspired by recent
work showing that LLMs prefer certain sentence
constructions, more so than human authors (Shaib
et al., 2024b). Student models may internalize such
structures, providing a signature of their teacher.

We extract PoS templates with the diversity
package, (Shaib et al., 2024a)° finding the 50 most
common PoS patterns of length 4 across all teach-
ers, for up to 200 test instances per model. This
yields a set of unique PoS patterns and correspond-
ing sentences. We construct a training dataset us-
ing PoS template indicators as features and teacher
models as targets. We train a simple logistic regres-
sion classifier and evaluate its performance on test
sets generated by student models.

Results are summarized in Table 2. PoS tem-
plates consistently outperform n-gram (up to n=4)
and BERT-based models in distinguishing between
teachers. For instance, when using GPT-2 as the
student model, on PubMed the PoS template-based
classifier achieves 0.68 accuracy, compared to 0.61
with n-grams. Similarly, on CommonsenseQA data
PoS templates yield 0.67 accuracy, vs. 0.48 for n-
grams. However, on Alpaca data n-grams slightly
outperform PoS templates (0.52 vs. 0.48), demon-
strating a marginal exception to the trend. Overall,
these findings highlight the robustness of syntactic
patterns as features for teacher model classification,

Shttps://pypi.org/project/diversity/
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“... The word "different" is used to indicate that the
meaning of the sentence is different from the input

1
1 - sentence. In this sentence, "new" is used to indicate that
| 1] . “.. Is there something specific you would like to the meaning of the sentence is new.”
know about the letter "A" or ...” Student 1
iy { . “... the question states that Melissa could not roll the
tube as fast on the patio compared to the kitchen floor,
- ....The smoother surface of the kitchen floor allows the
«_.. suggesting that the pickup would have tube to roll faster, making option B the correct answer.
traveled a shorter distance than the van.” Student 2
Meta “The answer is A because the question indicates . “... is set to break the Guinness Book of World
that Jim's garden has less friction ...” Records' record for most rounds played in a year, ...
—— - played all of his rounds at the Four Seasons Resort

and Club in Dallas, Texas, ...”

Student 3

Figure 4: Influence of teacher models on student outputs, highlighting the retention of Part-of-Speech (PoS)
templates. The color-coded PoS sequences illustrate how students inherit structural patterns from their respective
teachers, suggesting that syntactic characteristics are preserved to some extent during knowledge transfer. This
pattern indicates that PoS templates can serve as a distinguishing feature in identifying which teacher model was

used to train a given student.

C-D P-M R-T CSQA OBQA QRe Alpaca

BERT 0.46 0.55 0.40 0.44 0.38 0.35 0.51

GPT-2 n-grams (1-4) 0.58 0.68 0.44 0.56 0.48 0.50 0.56
PoS Templates 0.60 0.71 0.54 0.69 0.51 0.59 0.55

BERT 0.45 0.65 0.41 0.40 0.42 0.31 0.46

Olmo-1B n-grams 0.60 0.62 0.48 0.55 0.42 0.58 0.50
POS Templates 0.61 0.74 0.45 0.59 0.43 0.61 0.53

Table 2: Classification performance of logistic regression and BERT using different feature representations across
datasets. Models perform best when using PoS template features. This trend is consistent across different datasets,
suggesting that syntactic structures (captured by PoS Templates) and higher-order lexical patterns (captured by
n-grams) provide more discriminative power compared to simple word occurrence (BoW).

particularly when compared to simpler word-based
representations.

4 Related Work

Distillation with LLMs Smaller models can
learn from explanations (i.e., rationales) (Hase and
Bansal, 2022) despite lacking inherent step-by-step
reasoning (Wei et al., 2024). However, they can
be trained to generate such chains (Magister et al.,
2023). Recent studies (Wadhwa et al., 2024b; Ho
et al., 2023) show that rationales as training sig-
nals significantly improve student models. Li et al.
(2023b) explore factors influencing reacher corpus
creation for commonsense reasoning, while Fu et al.
(2023) examine trade-offs between generalizability
and CoT-generation, highlighting rationale quality
as crucial for performance. More recently, Wad-
hwa et al. (2024a) found that placing rationales
after labels enhances CoT-augmented distillation.

Origin Tracing Data provenance techniques like
watermarking can trace the origins of distilled mod-
els. Li et al. (2024b) introduce statistical tests
for identifying source models without requiring
access to model probabilities. Li et al. (2024a)
adopt generation-time watermarking, though this
assumes student training data is watermarked.
Most relevant to our work, Li et al. (2023a) use
perplexity and contrastive training for text origin
detection, whereas we investigate linguistic fea-
tures as model signatures.

5 Conclusions

We have introduced the problem of identifying
the teacher model used to train a distilled student
model. We demonstrated that standard approaches,
such as measuring similarity between teacher and
student outputs or using perplexity as a proxy, are
insufficient for reliable attribution. We introduced
syntactic part-of-speech (PoS) templates as higher-
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order linguistic features capable of capturing dis-
tinctive signals from teacher models that persist in
distilled student outputs.

We find that these linguistic patterns provide
comparatively strong signal about teachers across
tasks and datasets. This does not assume access
to teacher model internals or use of watermarking
strategies. While this approach achieves accuracy
well above chance (which would be 0.2 here), it
leaves considerable room for improvement, and the
practical implications of the accuracies we have
achieved are a bit unclear.

Nonetheless, this work lays the foundation for
further studies in teacher attribution, with potential
implications for understanding model behaviors,
ensuring compliance with usage agreements, and
enhancing the transparency of Al systems. Future
work could explore extensions to other types of
linguistic features, investigate more complex attri-
bution scenarios, or develop methods to counteract
attribution in privacy-sensitive applications.

Limitations

This work has several important limitations.

First, the effectiveness of syntactic templates
as distinguishing features is dependent on the ex-
tent to which a student model retains the linguistic
patterns of its teacher. This retention may be af-
fected by factors such as additional fine-tuning,
data augmentation, multi-teacher distillation, or
shared footprints among different teachers that are
trained on the same data, which could obscure at-
tribution signals. Investigating how these factors
impact our attribution framework is an important
direction for future research.

Second, while we show that syntactic patterns
provide stronger attribution signals than traditional
similarity metrics, our results indicate that there
is considerable room for improvement. While the
predictive accuracies we reported are well above
chance, they are far from perfect. Future work
could explore integrating multiple complementary
signals, such as semantic embeddings, paraphrase
consistency, or latent-space representations, to fur-
ther improve attribution accuracy.

Finally, our approach assumes a closed-set iden-
tification scenario where the true teacher model is
among a predefined set of candidate models. Ex-
tending our methods to accommodate an arbitrarily
large set of candidate teacher models is therefore
an open direction for future work.
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Appendix
A Implementation Details

We perform all experiments on two NVIDIA A100
GPUs. We use publicly available implementations
of all models via the Huggingface library (Wolf
et al., 2020). For all tasks, we use a learning rate
of 3e~® and a maximum input length of 1024. We
evaluated checkpoints every 500 steps with early
stopping. We used a batch size of 12 for question
answering, 2 for summarization, and 4 for instruc-
tion following. Default values were used for all
other hyperparameters.

B Datasets

CNN-DailyMail (See et al., 2017) is a large-
scale dataset for abstractive text summarization.
The dataset consists of online news articles from
CNN and the Daily Mail, paired with human-
written summaries in the form of bullet points.
Each article is accompanied by a summary that
captures its key points concisely. The dataset con-
tains over 300,000 news articles and summaries,
making it a widely used benchmark for training
and evaluating summarization models. The dataset
is divided into training, validation, and test sets,
with 287,227, 13,368, and 11,490 examples, re-
spectively.

SumPubMed (Guptaet al., 2021) is a large-scale
dataset for abstractive biomedical text summariza-
tion, derived from PubMed, a leading repository of
biomedical literature. Each document in the dataset
consists of a full-text research article paired with its
structured abstract, enabling the development and
evaluation of automatic summarization models in
the biomedical domain. The dataset contains over
30,000 articles spanning a diverse range of medical
and life sciences topics.

Rotten Tomatoes (Leone, 2020) is a dataset of
meta-reviews which which synthesize multiple in-
put reviews and and aggregate critic perception
of the film. The dataset contains information for
9,095 movies with meta-reviews constructed from
244,000 individual reviews.

CommonsenseQA (Talmor et al., 2019) is a
multiple-choice question-answering dataset requir-
ing commonsense knowledge. Each question has
five answer choices, with only one correct. The
dataset contains 12,102 questions, split into train-

_1.0 @ O0BQA
n B Alpaca ,
2 A cD A
1) 7
Sog @ PM )4
IS V QRe b
g d RT A ‘
Eos * &0
£ »®
n o
0,5) 0.4 p
2 ,/'\ 'y=x indicates equal
O [ 4 ~—» similarity between True
g 0.2 /’ and Non-True Teachers
@ .
g
<
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Average Cosine Sim. (Non-True Teachers)

Figure 5: Average cosine similarity of distilled student
outputs (across all student models) over Bag-of-Words
features with their true teachers vs. other teachers; these
features provide little in the way of signal about teach-
ers.

ing (9,741), development (1,221), and test (1,140)
sets.

OpenbookQA (Mihaylov et al.,, 2018) is a
multiple-choice question-answering dataset that
tests reasoning over elementary science facts. Each
question includes four answer choices and requires
applying scientific facts beyond direct recall. The
dataset consists of 5,957 questions, with 4,957 for
training, 500 for development, and 500 for testing.

QuaRel (Tafjord et al., 2018) is a multiple-choice
dataset focused on qualitative reasoning, requir-
ing understanding of physical relationships such
as speed, force, and heat. Each question has two
answer choices and is annotated with a logical rep-
resentation of the reasoning process. The dataset
contains 2,737 questions, split into train (1,911),
development (278), and test (548) sets.

Alpaca (Taori et al.,, 2023) is an instruction-
following dataset designed to fine-tune large lan-
guage models for improved task generalization.
Originally containing 52,000 synthetically gener-
ated instruction-response pairs from OpenAl’s text-
davinci-003, this version is downsampled to 10,000
instances, excluding any that contain programming-
related code for efficiency. The dataset spans di-
verse tasks such as reasoning, summarization, and
open-ended instruction following.

C Additional Results

To further assess the impact of support levels on
classification performance, we extend our evalua-
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Support (# test instances) — 50 200 1000 2000
Features
Data |
CNN-DailyMail 0.44 0.44 0.45 0.45
SumPubMed 0.54 0.55 0.53 0.53
Rotten Tomatoes 0.38 0.37 0.37 0.37
BoW CommonsenseQA 043 0.40 0.41 0.41
OpenbookQA 0.32 0.35 0.36 0.38
QuaRel 0.24 0.28 0.29 0.28
Alpaca 0.45 0.43 0.46 0.46
CNN-DailyMail 0.51 0.58 0.58 0.59
SumPubMed 0.61 0.68 0.68 0.69
N-grams Rotten Tomatoes 0.40 0.51 0.44 0.45
(n<=4) CommonsenseQA 0.48 0.55 0.56 0.56
OpenbookQA 0.45 0.48 0.48 0.49
QuaRel 0.43 0.47 0.50 0.50
Alpaca 0.52 0.55 0.56 0.56
CNN-DailyMail 0.59 0.60 0.60 0.62
SumPubMed 0.68 0.70 0.71 0.72
PoS Rotten Tomatoes 0.51 0.53 0.54 0.56
Templates CommonsenseQA 0.67 0.69 0.69 0.69
OpenbookQA 0.50 0.51 0.51 0.51
QuaRel 0.57 0.57 0.59 0.59
Alpaca 0.48 0.51 0.55 0.56

Table 3: Classification accuracy of logistic regression models using bag-of-words (BoW), n-grams (n1-4), and
PoS templates as features across varying support levels (50, 200, 1000, and 2000 test instances). PoS templates
consistently outperform BoW and n-grams across most datasets, with performance improving as support increases.
The Alpaca dataset presents a marginal exception, where n-grams slightly outperform PoS templates at higher
support levels. These results highlight the robustness of PoS templates for distinguishing between teacher models,
particularly in high-support settings. Baseline/random accuracy is 0.20..

tion by varying the number of test instances per
dataset. Table 3 presents results for logistic regres-
sion models trained using bag-of-words (BoW),
n-grams (up to n=4), and PoS templates as feature
representations. We consider support levels of 50,
200, 1000, and 2000 test instances to examine the
stability and effectiveness of these representations
across different data availability conditions.

Across all datasets and support levels, PoS tem-
plates consistently outperform BoW and n-grams
in most cases. Notably, the advantage of PoS tem-
plates becomes more pronounced as support in-
creases. For instance, in the SumPubMed dataset,
accuracy rises from 0.68 at 50 instances to 0.72 at
2000 instances, surpassing both n-grams and BoW
at every level. Similarly, in the CommonsenseQA
dataset, PoS templates achieve a peak accuracy of
0.69, significantly outperforming BoW (0.41) and
n-grams (0.56).

The Alpaca dataset remains an exception, where

n-grams achieve slightly better performance (0.56
at 2000 instances) compared to PoS templates
(0.56) but exhibit higher variability at lower support
levels. This suggests that while PoS templates pro-
vide strong structural signals, certain datasets may
benefit from richer lexical representations captured
by n-grams.

Overall, these findings reaffirm the robustness
of PoS templates as a reliable classification fea-
ture. Their advantage is particularly evident as
more data becomes available, reinforcing the hy-
pothesis that syntactic patterns are distinctive sig-
natures of teacher models. This extended analysis
further supports the main section’s conclusion that
PoS templates offer a scalable and effective alter-
native to traditional word-based representations.
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