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Abstract

Claim verification is a fundamental task in nat-
ural language processing (NLP), involving the
assessment of whether available evidence sup-
ports or refutes a given claim. While large
language models (LLMs) have shown promise
in this area, they continue to struggle with
domain-specific knowledge. Synthetic data
generation has emerged as an effective solu-
tion to this challenge. However, existing meth-
ods are often either inefficient to scale across
multiple domains or overly reliant on external
documents. We introduce SYNTHVERIFY, a
novel step-by-step prompting-based synthetic
data generation framework designed to enhance
zero-shot claim verification. Our core insight
is that guiding generation with domain-specific
claim patterns and structured evidence plans
can bridge LLMs’ knowledge gaps in special-
ized domains without requiring access to ex-
ternal corpora or sacrificing generalizability.
Using SYNTHVERIFY, we construct a diverse
synthetic dataset for zero-shot verification, en-
abling instruction fine-tuning tailored to the ver-
ification task. Empirical results across multiple
specialized domains demonstrate significant ac-
curacy improvements, including a 20.1-point
gain on the Llama-3-8B model. Our results
highlight the effectiveness of structured syn-
thetic data generation in addressing the limi-
tations of verification systems, particularly in
domain-specific tasks.

1 Introduction

Claim verification, the task of determining whether
a claim is supported by given evidence, has
emerged as a crucial component in combating
misinformation and ensuring information integrity
(Litou et al., 2017; Hassan et al., 2017; Shu et al.,
2017). While LLMs have shown impressive capa-
bilities in various NLP tasks, LLMs face several
critical challenges in claim verification (Zhang and
Gao, 2023; Guan et al., 2024; Augenstein et al.,
2024; Quelle and Bovet, 2024).

A primary concern is the lack of domain-specific
knowledge during verification. When evaluat-
ing claims in specialized fields such as medicine,
law, or scientific research, LLMs often fail to un-
derstand the relationships between these domain-
specific terminologies (Vladika and Matthes, 2024).
This limitation affects both the evidence analysis
step, where models must identify relevant domain-
specific information, and the logical reasoning step,
where they need to apply domain-specific con-
straints.

Fine-tuning on domain-specific datasets can
help LLMs mitigate these issues. While existing
datasets like FEVER (Thorne et al., 2018), and Vita-
minC (Schuster et al., 2021) have driven progress in
this field, they often focus on narrow domains (e.g.,
Wikipedia articles) or specific types of claims. This
specialization leads to poor generalization when
systems encounter claims from previously unseen
domains (Zhu et al., 2022; Nan et al., 2022; Gu
et al., 2023). Furthermore, the manual creation of
claim verification datasets is both time-consuming
and expensive, particularly when aiming to cover
multiple knowledge domains with sufficient depth
and diversity.

Synthetic data generation has emerged as a
promising solution to address this challenge (Pan
et al., 2021; Wright et al., 2022; Bussotti et al.,
2024). Despite its potential, existing approaches
face notable limitations. Some methods lack scala-
bility across diverse domains, making them imprac-
tical for broad deployment (Pan et al., 2021; Wright
et al., 2022), while others rely heavily on external
documents to guide data synthesis, introducing de-
pendencies that may not always be available or
reliable (Pan et al., 2021; Bussotti et al., 2024). As
a result, there is a growing need for more efficient
and self-contained strategies that can generalize
across multiple domains without compromising
data quality or diversity.

To address these challenges, we propose SYN-
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LLM

Domain: Political News
Description: Political news is characterized by rapid developments, partisan language, 
and selective reporting, making fact verification challenging.
Properties: [Real-time data; Bias and spin; Official vs. independent sources]

Domain: Political News
Description: Political news is 
characterized by rapid 
developments……
Properties: [Real-time data; 
Bias and spin;……]

(1)

Knowledge Domain 1

Knowledge Domain n

………….

Domain: Climate and Environment
Description: Climate reporting includes long-term trends, scientific projections, and 
politically charged interpretations, leading to disputes over data reliability and 
causality.
Properties: [Scientific modeling; Data interpretation; Policy framing]

Knowledge Domain Clustering

Domain: Health and Medicine
Description: Health news often includes emerging research, medical jargon, and 
conflicting expert opinions, complicating accurate interpretation and verification.
Properties: [Scientific uncertainty; Technical terminology; Expert disagreement]

Knowledge Domain 2

Knowledge Domain k
Introduction: [An Introduction that sets 
the description context.]
Key Facts: [Key Factual Elements that 
reflect the domain properties.]
Conclusion: [A Conclusion summarizing 
the key insight or challenge.]

Evidence Plan

Evidence Document
In a recent national debate, a prominent political figure claimed that public spending on 
infrastructure had increased by 12% over the last fiscal year. However, independent 
audits and official government records reveal that the actual increase was only 8%, 
largely due to delays in project implementation and discrepancies in budget reporting. 
This notable gap between the reported figure and the verified data highlights concerns 
…….

Evidence Document
In a recent national debate, a prominent political figure claimed that public spending on 
infrastructure had increased by 12% over the last fiscal year. …….

SUPPORTS claim: "Independent audits confirm that … "
REFUTES claim: "The audits found significant discrepancies …"
NEI claim: ”The evidence suggests the …"

(2)

(3)

Figure 1: Overview of our synthetic data generation framework for claim verification. The framework consists of
three main stages: (1) Knowledge Domain Generation (§3.2), (2) Plan-guided Evidence Synthesis (§3.3), and (3)
Aspect-Conditioned Claim Generation (§3.4).

THVERIFY, a novel step-by-step prompting-based
synthetic data generation framework. Our frame-
work carefully controls the generation process to
ensure data quality and verifiability. The core
insight is that guiding generation with domain-
specific claim patterns and structured evidence
plans, without requiring access to external corpora
or sacrificing generalizability.

First, we develop a structured domain specifica-
tion stage that captures the nature of domain knowl-
edge and verification requirements, providing a
foundation for domain-aware claim verification.
We then employ a simple but effective evidence
synthesis method that provides clear verification
signals, addressing the challenge of generating re-
alistic and verifiable evidence. Building upon this
stage, we implement an aspect-based claim genera-
tion approach that ensures both diversity in claim
types and verifiability of generated claims.

Through extensive evaluation, we demonstrate
that our synthetic data generation approach leads
to prominent improvements on multiple claim ver-
ification tasks. Models trained on our synthetic
dataset show improved zero-shot transfer capabili-
ties, better handling of complex claims, and more
robust verification across diverse knowledge do-
mains. Our further analysis reveals that the struc-
tured nature of our generation process helps mod-

els learn generalizable verification strategies rather
than superficial patterns specific to particular do-
mains. Overall, our main contributions are:

• We propose a step-by-step prompting-based
framework for generating synthetic claim ver-
ification data that enables zero-shot transfer
across domains (§3.1).

• We introduce a structured framework for spec-
ifying knowledge domains and claim pat-
terns that ensures both coverage and diversity
(§3.2).

• We develop a simple but effective method for
evidence synthesis (§3.3) and claim genera-
tion (§3.4) tailored to complex verification
scenarios.

• We conduct extensive evaluations demonstrat-
ing that our approach significantly outper-
forms existing synthetic data baselines across
multiple specialized domains (§5).

2 Background and Problem Setup

Problem Setup Following the prior work
(Thorne et al., 2018; Eisenschlos et al., 2021;
Schuster et al., 2021; Wadden et al., 2020), given a
sentence-level claim c and a set of sentence-level
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evidences 1 E = {e1, ..., e|E|}, the task of claim
verification is to determine whether E supports
or refutes c, or if there is insufficient information
to make a determination. Here, we assume that
each given claim c is check-worthy and can be fully
verified based on the evidence set E, without re-
lying on the external context. Formally, given an
LLM M , we define a verification function fM :
C × E → Y , where C represents the space of possi-
ble claims, E denotes the space of evidence sets and
Y = {SUPPORTS, REFUTES, NOT_ENOUGH_INFO} is
the set of verification labels.

For a given claim-evidence pair (c, E), the LLM
M performs the verification through three main
steps. First, M performs evidence analysis by pro-
cessing each evidence ei ∈ E to extract and under-
stand the information relevant to the claim. Second,
M performs logical reasoning to determine the re-
lationship between the extracted evidence and the
claim, applying its understanding of the domain
knowledge. Finally, M assigns a verification la-
bel y ∈ Y based on the aggregated evidence and
reasoning outcome.

Challenges of LLM-based Claim Verification
LLM-based claim verification systems face two
significant challenges in real-world applications.
First, although LLMs acquire extensive domain
knowledge during pre-training, they often demon-
strate limited generalization capabilities in unseen
domains (Pan et al., 2023b). Human-annotated,
domain-specific datasets can substantially enhance
performance in such contexts. However, the high
costs associated with annotation, both in terms
of time and resources, constrain the coverage, di-
versity, and scalability of these datasets. Second,
LLMs are susceptible to reasoning errors and over-
reliance on spurious correlations (Tang et al., 2023),
which can lead to incorrect veracity assessments.
This is particularly problematic when claims re-
quire complex reasoning or contextual understand-
ing that spans multiple knowledge types. In this
work, we introduce an innovative synthetic data
generation approach designed to bolster the capa-
bilities of LLMs in addressing these challenges
effectively.

1We acknowledge that retrieval is a critical component of
real-world fact-checking pipelines. However, our evaluation
setup assumes that claims are accompanied by evidences, fo-
cusing specifically on the claim verification stage rather than
evidence retrieval.

Domain: Climate Science
Description: A dynamic domain involving 
long-term alteration of temperature and 
typical weather patterns. Claims are 
challenging to verify due to reliance on 
complex climate models and long-term 
observational data.
Properties: [Temperature data, Weather 
patterns, Climate models]Kn

ow
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e 
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Figure 2: An example of the generated knowledge do-
mains. Our Knowledge Domain Generation module
(§3.2) generates a diverse set of knowledge domains,
coupled with a clustering-based diversity enforcement.

3 Methodology: Zero-Shot Claim
Verification Data Generation

In this section, we describe the details on how
we design a structured approach to generate syn-
thetic claim verification data that enables zero-shot
transfer across diverse domains. Our goal is to
construct a dataset D = {(Di, Ci, Ei, yi)}Ni=1 of
N instances, where Di represents a specification
of knowledge domain, Ci is a claim within that
domain, Ei is the corresponding evidence, and
yi ∈ {SUPPORTS, REFUTES, NOT_ENOUGH_INFO} is
the verification label.

3.1 Overview

As shown in Figure 1 , our synthetic data genera-
tion framework consists of three stages. First, the
Knowledge Domain Generation stage defines the
scope and constraints of the target domain, orga-
nizing knowledge hierarchically to ensure gener-
ated content remains focused and relevant. Second,
the Plan-guided Evidence Synthesis stage synthe-
sizes informative evidence documents by leverag-
ing the knowledge domains from the previous step.
Third, the Aspect-Conditioned Claim Genera-
tion stage generate three different types of claims
(Supported/Refuted/Not Enough Info) conditioned
on each generated evidence document.

3.2 Knowledge Domain Generation

First, to collect a diverse set of domains where evi-
dence and claims are sampled, a set of knowledge
domains are randomly sampled from an LLM as
structured triplets. Each knowledge domain Oi

is formally characterized by: Oi = (Di, Si, Pi),
where Di is the domain name, Si is a basic descrip-
tion of the domain explaining why claims in this
domain are challenging to verify. Pi = {p1, ..., pk}

3259



is a set of domain properties. The knowledge do-
main Oi will be used to guide the generation of
the evidence documents. The additional informa-
tion Si and Pi can lead to more non-trivial and
domain-diverse generations compared to using Di

alone.
We prompt an LLM to generate a list of knowl-

edge domains that require claim verification in
the real-world. The detailed prompt and a sam-
ple of generated knowledge domain is shown in
Appendix. However, naive LLM prompting often
results in redundant or overlapped domains when
generating full set of knowledge domains Oi, lead-
ing to low coverage (Ding et al., 2023).

To ensure broad coverage across knowledge
spaces, we employ an iterative clustering-based
generation and filtering process. Let f(·) be an
embedding function that maps each domain Di

to a d-dimensional semantic space. For a batch
of k generated knowledge domains, we compute
their embeddings: E = {ei = f(Di)}ki=1. To iden-
tify and remove near-duplicate domains, we apply
density-based clustering DBSCAN (Ester et al.,
1996):

clusters = DBSCAN(E, ϵ,min_samples) (1)

where ϵ and min_samples are empirically deter-
mined parameters. This process continues itera-
tively until we obtain n diverse domains.

3.3 Plan-guided Evidence Synthesis
In this stage, we generate an informative evidence
document by leveraging the knowledge domain
from the previous step. However, in a preliminary
experiment, prompting LLMs to get the evidence
document based on the knowledge domain resulted
in more generic content that lack sufficient details
to generate meaningful and check-worthy claims
in the future stage. To address this issue, inspired
by some prior studies in the story generation (Yang
et al., 2022, 2023), we generate the evidence docu-
ment from the knowledge domain in two steps.

The key idea is to leverage a knowledge domain
to generate a structured plan, which is subsequently
expanded into a coherent evidence document. This
two-step process ensures that the final output ad-
heres not only to the factual but also to the stylistic
nuances of the target domain but also maintains a
consistent academic structure.

Step 1: Evidence Plan Generation. We first
prompt the LLM to generate a concise plan that

Domain: Political News
Properties: [Real-time data; Bias and spin; Official vs.
independent sources]

Introduction: 
Briefly introduce a recent political event or debate.

Key Factual Elements:
- Reported statistic or claim by a political figure.
- Data from official sources (e.g., government records) 
versus independent audits.
- Mention of bias or discrepancies in reporting.

Conclusion: 
Summarize the discrepancy between the claimed figure 
and the verified data, emphasizing its impact on public 
trust.

Evidence Plan

In a recent national debate, a prominent political figure 
claimed that public spending on infrastructure had 
increased by 12% over the last fiscal year…

Evidence Document

Figure 3: Given a knowledge domain, our Plan-guided
Evidence Synthesis module (§3.3) first generates an
evidence plan (upper), then it outputs a concise evidence
document.

serves as a blueprint for the evidence document.
The plan is designed to capture a brief domain-
dependent statement and several specific details
drawn from the domain properties.

Step 2: Evidence Document Synthesis. Once
the plan is generated, the next step is to expand
it into a full evidence document. The model is
instructed to integrate all plan components into
a polished paragraph written in an information-
preserving style. This expansion ensures that the
evidence document is comprehensive, coherent,
and reflective of the domain-specific characteris-
tics.

Figure 3 provides an overview of the plan-
guided evidence synthesis process. By grounding
the generation process in a structured plan derived
from the knowledge domain, our method achieves
enhanced control over content structure, ensuring
both consistency and domain-specific nuance. This
approach has demonstrated improved quality in
synthetic evidence, thereby contributing to more ro-
bust downstream claim verification across diverse
domains.

3.4 Aspect-Conditioned Claim Generation
As shown in Figure 4, we generate three different
types of claims (Supported/Refuted/Not Enough
Info) conditioned on the generated evidence docu-
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In a recent national debate, a prominent political figure
claimed that public spending on infrastructure had
increased by 12% over the last fiscal year…

SUPPORTS: "Independent audits confirm that … "
REFUTES: "The audits found significant discrepancies …"
NEI: ”The evidence suggests the …"

Claim

Evidence Document

Aspect 1 Aspect 2 Aspect 3

Temporal Causal Contextual

Figure 4: Our Aspect-Conditioned Claim Generation
module (§3.4) takes in the generated evidence. It first
generates three aspect features (e.g., temporal, causal
and contextual) (middle), then it outputs the three claim
(lower) based on the generated key aspects.

ment. Our approach increases the diversity and
complexity of the generated claims through a
aspect-based generation method that ensures both
structural diversity and verifiability while maintain-
ing semantic coherence within each source docu-
ment. We first generate the supported claim based
on the evidence document, then generate the other
two claims conditioned on the supported claims.

Supported Claim Generation. We first extract
several key aspects from the evidence document.
These key aspects are concise descriptors that cap-
ture different dimensions or viewpoints present in
the evidence (e.g., contextual background, numeri-
cal details, source credibility, or timing). By subse-
quently conditioning the claim generation on each
identified aspect, the model produces multiple sup-
ported claims that, while all factually correct with
respect to the evidence, emphasize different details
or angles.

Given an evidence document and the associated
knowledge domain, the model is prompted to gen-
erate a list of key aspects. Each key aspect is a
short description that highlights a particular facet
of the evidence. For example, one aspect might fo-
cus on the statistical discrepancy mentioned in the
text, while another might highlight the reliability of
the sources. This step ensures that the extracted as-
pects are aligned with the unique properties defined
in the knowledge domain.

For each key aspect, a secondary prompt is cre-
ated that conditions the model on both the original
evidence and the specified aspect. The prompt in-
structs the LLM to generate a supported claim that

is not only consistent with the evidence but also
emphasizes the conditioned aspect. This encour-
ages the model to explore multiple views of the
evidence, thereby producing a diverse set of claim
formulations.

Refuted Claim Generation. Starting from a sup-
ported claim, we generate refuted claims by apply-
ing a series of controlled perturbations designed
to introduce discrepancies between the claim and
the underlying evidence. These perturbations in-
clude: (1) Entity Substitution: Replacing critical
entities with alternative, contextually plausible can-
didates. (2) Temporal Modification: Adjusting
time-related references while preserving overall
historical coherence. (3) Relationship Reversal:
Inverting the relational dynamics between entities
to alter the claim’s meaning. (4) Attribute Modi-
fication: Modifying specific properties or charac-
teristics to create a divergence from the original
details.

Not-Enough-Info (NEI) Claim Generation.
Given a supported claim, the model is instructed
to modify it by removing or replacing the identi-
fied key elements with more vague, qualitative, or
uncertain language. For example, a claim stating
“The study shows a 70% reduction in hospitaliza-
tion rates” may be transformed into “The study
suggests a significant reduction in hospitalization
rates,” where the exact figure is omitted.

3.5 Human Evaluation

In order to investigate the accuracy and quality
of the labels on our generated (evidence, claim)
pairs. We randomly sample 50 examples from the
generated dataset. Each example was annotated
with a label by three NLP researchers. The exam-
ples are unedited outputs from the models, with
no revisions made during annotation. The aver-
age Cohen’s κ score between annotators is 65.83%,
indicating substantial agreement. Furthermore, a
majority label (agreed upon by 2 out of 3 annota-
tors) was obtained for 94% of examples, while all
three annotators reached unanimous agreement on
72% of examples. The model achieved a high accu-
racy of 79.6% against the majority label and 88.5%
against the unanimous label. The Cohen’s κ scores
between the model’s labels and both the majority
and unanimous labels are 69.73% and 82.46%, re-
spectively.
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Instruction: You are given a claim and evidence. Your 
task is to verify the claim based solely on the 
evidence provided. Analyze the claim and evaluate 
the evidence. Based on your evaluation, return one of 
the following labels: "supports", "refutes" or "not 
enough info". 

Evidence: {EVIDENCE} 
Claim: {CLAIM} 
Label: {LABEL}

Figure 5: The instruction template that we use for com-
piling the final instruction tuning dataset to instruct tun-
ing LLMs for the claim verification.

3.6 The Final Instruction Tuning Dataset
Using our proposed framework SYNTHVERIFY,
we generate a domain-diverse synthetic claim veri-
fication dataset for training zero-shot verification
models. We use the generated dataset to fine-tune
the various LLMs (e.g., Llama-3.1-8B). To achieve
this, we combine the predefined instruction tem-
plate in Figure 5 and instance input into a single
prompt and train the LLMs in a standard super-
vised learning setup to generate the corresponding
instance output.

4 Experimental Setup

Evaluation Benchmarks. In this work, follow-
ing the prior work (Pan et al., 2023b), we use a wide
range of existing claim verification benchmarks
from various domains: (1) Wikipedia domain: We
use FEVER (Thorne et al., 2018), VitaminC (Schus-
ter et al., 2021) and FoolMeTwice (Eisenschlos
et al., 2021). These datasets were created based
on Wikipedia documents; (2) Climate domain: We
use Climate-FEVER (Diggelmann et al., 2020),
which consists of real-world claims related to cli-
mate change; (3) Science domain: We use Sci-
Fact (Wadden et al., 2020); (4) Health domain: We
use PubHealth (Kotonya and Toni, 2020); (5) Other
domains: we also use Covid-Fact (Saakyan et al.,
2021) from the forum domain and FAVIQ (Park
et al., 2022) from the question domain in our eval-
uations. The statistics of these benchmarks are
shown in Table 5. Please refer to Appendix A for
more details.

Evaluation Metric. Following the prior
work (Laban et al., 2022), we use the Balanced
Accuracy (BAcc), the average of recall obtained
on each label, as our evaluation metric. Here,
BAcc = 1

|Y|
∑

y∈Y
TPy

TPy+FNy
, where Y is the

set of all class labels (e.g., supports, refutes,
not_enough_info), TPy is the number of true
positives for class y, and FNy is the number of
false negatives for class y.

Baselines. (1) Zero-Shot: By default, we com-
pare the model fine-tuned by our synthetic dataset
to the zero-shot setting. We use the same prompt
as shown in Figure 5. (2) Zero-Shot Chain-of-
Thought (Kojima et al., 2022): We also compare
to the proposed zero-shot CoT prompting method.
We append the prompt “Let’s think step by step”
to the instruction prompt in Figure 5. (3) We also
compare our method to QACG (Pan et al., 2021),
which generates synthetic claims conditioned on
the Wikipidia data. We take their released dataset
and fine-tune Llama-3 and InternLM2.5 models.

Implementation Details. We compare against
various state-of-the-art instruction-tuned LLMs, in-
cluding: Qwen 2.5 (Yang et al., 2024), Gemma
2 (Team et al., 2024), InternLM (Cai et al., 2024),
Mistral (Jiang et al., 2023), and Llama-3 fam-
ily (Dubey et al., 2024).

For the synthetic data generation, we use GPT-
4o-mini with temperature 0.9 for all prompting gen-
eration. For domain similarity computation, we em-
ploy the all-MiniLM-L6-v2 sentence transformer,
which provides 384-dimensional embeddings. The
clustering parameters (ϵ = 0.3, min_samples = 2).
The all prompts, dataset statistics and fine-tuning
hyperparameters are available in Appendix.

5 Main Results

Table 1 presents a comprehensive evaluation of
various language models on eight claim verification
benchmarks. Several notable findings emerge from
our experimental results.

First, our synthetic data framework demonstrates
consistent and substantial improvements across all
variants of the model. Most notably, InternLM2.5-
7B-Chat with our method achieves the best overall
performance with an average balanced accuracy of
62.8, surpassing its base version by a large margin
of 13.2 absolute points (from 49.6 to 62.8). This
improvement is particularly pronounced in other
datasets like FEVER (+19.7 points) and VitaminC
(+25.4 points).

Second, we observe that larger model size does
not necessarily translate to better claim verifica-
tion performance. For example, Gemma-2-2B-it,
despite its relatively small size, achieves a com-
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Model FEVER FM2 VitaminC C-FEVER PubHealth SciFact CovidFact FAVIQ Avg

Qwen2.5-0.5B-Instruct 35.7 50.0 37.0 32.5 31.3 38.1 52.0 50.0 40.8
Qwen2.5-1.5B-Instruct 34.0 50.0 33.3 33.3 33.3 34.8 50.0 49.0 39.7
gemma-2-2b-it 55.7 78.5 47.7 49.6 38.7 52.9 66.5 57.5 55.9
Qwen2.5-3B-Instruct 49.7 61.0 38.0 39.0 32.7 51.9 60.5 53.0 48.2
gemma-2-9b-it 37.7 51.0 33.0 38.2 34.7 34.8 63.0 55.5 43.5
Llama-2-13b-hf 33.3 50.0 33.3 33.3 33.7 33.3 50.0 49.5 39.6
InternLM2-Chat-20B 59.3 69.5 47.3 43.1 29.3 54.3 64.0 54.0 52.6
InternLM2.5-20B-Chat 46.0 56.0 47.3 39.0 36.3 36.7 57.0 52.0 46.3

Llama-3.2-1B-Instruct 43.7 53.0 31.3 35.8 35.7 37.1 52.5 56.0 43.1
Llama-3.2-1B-Instruct (Ours) 56.7 64.0 58.0 53.7 44.0 48.1 61.5 60.0 55.8

Llama-3.2-3B-Instruct 43.7 63.0 36.7 48.8 38.7 54.8 64.5 57.0 50.9
Llama-3.2-3B-Instruct (Ours) 61.0 75.5 56.0 49.6 51.2 53.3 64.5 60.5 59.0

Mistral-7B-Instruct-v0.3 46.0 54.0 36.0 34.1 36.3 36.2 50.5 48.0 42.6
Mistral-7B-Instruct-v0.3 (Ours) 59.0 74.5 54.0 53.7 52.3 52.9 67.0 55.5 58.6

Llama-3.1-8B-Instruct 37.0 60.5 32.7 38.2 36.3 38.1 54.5 56.0 44.2
Llama-3.1-8B-Instruct (Ours) 60.3 76.0 56.7 50.4 45.3 59.5 68.0 59.5 59.5

Llama-3-8B-Instruct 33.3 50.0 33.3 33.3 33.7 33.3 50.5 51.0 39.8
+ Zero-Shot CoT 43.7 53.0 47.3 39.0 36.3 36.7 52.5 53.0 42.7
+ QACG (Pan et al., 2021) 37.7 53.0 38.0 38.2 35.7 34.8 52.5 52.0 42.7
Llama-3-8B-Instruct (Ours) 59.3 80.5 57.0 49.6 49.3 55.7 65.5 62.5 59.9

InternLM2.5-7B-Chat 44.3 76.5 33.3 35.0 34.0 46.7 67.0 60.0 49.6
+ Zero-Shot CoT 46.0 76.5 36.7 35.8 36.3 48.1 67.0 60.5 50.9
+ QACG (Pan et al., 2021) 46.0 78.5 37.7 42.3 32.7 51.0 67.0 60.0 51.9
InternLM2.5-7B-Chat (Ours) 64.0 83.5 58.7 53.7 49.3 57.1 71.0 65.0 62.8

Table 1: Zero-shot performance across different datasets, using Balanced Accuracy (BAcc). For Llama-3 and
InternLM2.5 models, we bold the best model for each dataset. Otherwise, we bold the best average score.

petitive average accuracy of 55.9, outperforming
several larger models such as InternLM2-Chat-20B
(52.6) and InternLM2.5-20B-Chat (46.3). This sug-
gests that verification performance is more closely
tied to a model’s capabilities than its size.

Third, our method shows remarkable consis-
tency in improving performance across different
model architectures and scales. The enhancement
is particularly evident in the Llama family: Llama-
3.2-1B-Instruct improves from 43.1 to 55.8 (+12.7
points), Llama-3.2-3B-Instruct from 50.9 to 59.0
(+8.1 points), and Llama-3.1-8B-Instruct from 44.2
to 59.5 (+15.3 points). This consistent improve-
ment pattern suggests the robustness and generaliz-
ability of our approach.

We also observe that our method is better than
zero-shot chain-of-thought (CoT) prompting. Zero-
shot CoT can usually get some improvements, but
fine-tuning models on domain-relevant data would
be more beneficial. Furthermore, our method is
also better than QACG (Pan et al., 2021). The ma-
jor reason is that our method benefits from LLMs.
LLMs store a lot of domain knowledge during the
pre-training stage.

Synthesis Framework VitaminC SciFact FAVIQ

No Training 33.3 46.7 60.0
Direct Prompting 35.0 34.8 58.5
R1 57.0 56.2 62.5
R2 54.0 51.0 60.5
R3 56.0 54.3 62.5
Full Framework 57.3 56.2 64.0

Table 2: The results of our ablation studies. R1 means
removing knowledge domain speficiation. R2 repre-
sents that removing the evidence plan generation. R3 is
removing the key aspect generation.

6 Further Analysis

In this section, we conduct more analysis studies,
comparing our framework to a direct prompting
method, analyzing the effect of training data size
and the impact of domain knowledge.

6.1 Ablation Study
To understand the contributions of each compo-
nent of our pipeline, we systematically evaluate
our framework’s three main components. We use
the same domains as our framework to generate
20k samples for each setting. We use InternLM2.5-
7B-Chat as our base model and evaluate on Vitam-
inc (Schuster et al., 2021), SciFact (Wadden et al.,
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2020), and FAVIQ (Park et al., 2022) datasets. The
full prompt is shown in Appendix.

Direct Prompting The most straightforward way
is the direct prompting without any intermediate
step. This method directly prompts the LLM to
generate the claim-evidence pairs when given a
domain label. Table 24 shows the prompt we use
to perform direct prompting.

Removing knowledge domain Specification (R1)
When removed, we replace the structured knowl-
edge domain with simple domain labels (e.g., cli-
mate science), eliminating the domain-specific con-
straints. This tests the impact of structured knowl-
edge domain representation in our framework. The
prompt is shown in Table 21.

Removing Evidence Plan Generation (R2) We
replace our evidence synthesis module with basic
prompting generation, removing the evidence plan
generation. This tests the value of the evidence
plan in guiding the evidence document generation.
The prompt is shown in Table 22.

Removing Key aspect Generation (R3) With-
out this component, we use basic prompt-based
generation without key aspects to generate the sup-
ported claim. This evaluates the benefit of our
diversity-oriented claim generation approach over
simple prompting. The prompt is shown in Ta-
ble 23.

Table 2 shows the results of our ablation stud-
ies. The results demonstrate the effectiveness of
our proposed framework. We can observe that per-
formance decreases slightly when removing a spe-
cific component. The results also show consistent
improvements over both the no-training baseline
and direct prompting approaches. Specifically, our
full framework achieves the highest performance
across all datasets. The improvement is particularly
pronounced for VitaminC, where our framework
outperforms the no-training baseline by 24 points.
Interestingly, direct prompting shows mixed results
compared to no training, performing slightly better
on VitaminC (+1.7 points) but worse on SciFact
(-11.9 points). These findings strongly suggest that
our designed framework contributes significantly
to the framework’s overall effectiveness.

6.2 Impact of the Budget Control

Since our data synthesis framework uses more API
calls compared to the direct prompting method.

Synthesis Framework VitaminC SciFact FAVIQ

No Training 33.3 46.7 60.0
Direct Prompting (30k) 38.0 48.1 60.0
Full Framework (5k) 56.0 55.7 62.5

Table 3: Ablation study by considering the budget con-
straints.
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Figure 6: The results of how the performance of Llama-
3.2-1B-Instruct and Llama-3-8B-Instruct models varies
when trained on different sizes of synthetic instruction
tuning data.

In order to investigate the benefit of the structure-
aware data synthesis, we also compare our frame-
work to the direct prompting method incorporating
budget constraints. Since it is hard to control the
synthesis budget directly, we conduct an additional
experiment under the rough estimation. The ta-
ble Table 3 compares a model fine-tuned with 30k
samples from direct prompting against a model
fine-tuned with only 5k samples generated using
our framework. As we can see, our framework is
still significantly better than the direct prompting
even under the similar budget.

6.3 Effect of the Training Dataset Size

Here we study the effect of the size of the training
dataset. In particular, we study how the perfor-
mance of the Llama-3.2-1B-Instruct and Llama-3-
8B-Instruct models varies when trained on differ-
ent sizes of synthetic instruction tuning data. Fig-
ure 6 shows that training on more steps typically
improves performance. We find that fine-tuned
LLMs on all datasets reach the peak performance
generally after 30,000 steps. It means training on
more of the synthetic data may not be necessary.
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Model C-FEVER SciFact CovidFact

Llama-3.2-1B-Instruct 35.8 37.1 52.5
w/ FEVER 38.2 43.8 54.5
w/ (SynthVerify & FEVER) 42.3 47.7 57.0

Llama-3-8B-Instruct 33.3 33.3 50.5
w/ FEVER 40.3 43.8 61.0
w/ (SynthVerify & FEVER) 50.4 58.6 67.0

Table 4: Performance comparison across C-FEVER,
SciFact, and CovidFact datasets.

6.4 Impact of Domain Knowledge

Fine-tuning models on unseen domains can im-
prove the verification performance (Pan et al.,
2023a). We hypothesize that the synthetic data
generated by SYNTHVERIFY can benefit models
further from the general verification training. To
investigate the effectiveness of SYNTHVERIFY in
domain adaptation setting, we conduct experiments
comparing the performance of two Llama models
(3.2-1B and 3-8B) across three distinct verification
datasets. We examine three training configurations
for each model: the base instruction-tuned model,
fine-tuning with FEVER data only, and fine-tuning
with both FEVER and our synthetic data generated
by SYNTHVERIFY.

The results in Table 4 demonstrate that Syn-
thVerify consistently enhances verification perfor-
mance across all domains. The improvement is
particularly pronounced in the Llama-3-8B model,
where the combination of SYNTHVERIFY and
FEVER training leads to substantial gains, im-
proving from 33.3 to 58.6 on SciFact. Notably,
even the smaller 3.2-1B model shows consistent
improvements with SynthVerify, suggesting that
our approach effectively improves domain adapta-
tion across model sizes.

7 Related Work

7.1 LLM-based Claim Verification

Numerous datasets have been compiled for fact
verification across various domains, such as pol-
itics (Vlachos and Riedel, 2014), encyclope-
dias (Thorne et al., 2018, 2021; Eisenschlos
et al., 2021), news (Pérez-Rosas et al., 2018), cli-
mate (Diggelmann et al., 2020), science (Wad-
den et al., 2020), and healthcare (Kotonya and
Toni, 2020). Honovich et al. (2022) consolidated
several datasets to evaluate the ability to mea-
sure input-output consistency. The statements in
these datasets are typically single sentences, gener-

ated either by crawling specific websites (Vlachos
and Riedel, 2014), manually altering factual sen-
tences (Thorne et al., 2018), or reformulating QA
pairs (Thorne et al., 2021). In this work, we study
the problem of LLM-based zero-shot claim verifi-
cation across multiple domains.

7.2 Synthetic Data Generation for Fact
Verification

Recent advancements in synthetic data generation
have significantly enhanced fact verification sys-
tems by reducing reliance on costly human annota-
tions. Pan et al. (2021) introduced QACG, a frame-
work that generates claims from Wikipedia by
transforming question–answer pairs into supported,
refuted, or unverifiable statements. Building upon
this, Wright et al. (2022) proposed CLAIMGEN-
BART and KBIN to automatically produce atomic
scientific claims and their negations in the biomed-
ical domain, enabling zero-shot fact checking with
performance reaching up to 90% of fully super-
vised models. Extending to multimodal data, Bus-
sotti et al. (2024) developed UNOWN, a system
that synthesizes training examples from both tex-
tual and tabular sources. Collectively, these works
underscore the effectiveness of synthetic data in
scaling fact verification across diverse domains and
data modalities. In contrast to these works, we
propose a step-by-step prompting-based genera-
tion framework that does not rely on external input
documents and remains scalable across diverse do-
mains.

8 Conclusion

We present SYNTHVERIFY, a novel synthetic data
generation framework for synthesizing domain-
diverse claim verification datasets. Our approach
addresses the critical challenge of limited domain
coverage in existing datasets through automated
generation of claim-evidence pairs across novel do-
mains. Experimental results demonstrate that mod-
els trained on SYNTHVERIFY-generated data sig-
nificantly outperform baselines on multiple bench-
marks. This success highlights that the step-by-step
nature of our generation process helps models learn
generalizable verification strategies.

Limitations

LLM Prompting Since our method is prompting
an LLM to generate synthetic data. Some less
powerfull LLMs may not be able to do this task.
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We will explore how to self-improve using small
LLMs.

Semantic Redundancy in Generated Data
While SYNTHVERIFY successfully generates valu-
able training datasets for zero-shot claim verifica-
tion, it does not ensure that each synthesized claim
is semantically unique. For zero-shot applications,
this limitation is less problematic, as such mod-
els are designed to adapt to any provided claims
and evidence to determine veracity. Addressing
this redundancy would improve the applicability of
SYNTHVERIFY for broader training scenarios.

Label Quality Given the fully automated nature
of our data synthesis process, some noise in the ve-
racity labels is unavoidable. This noise likely under-
estimates the true impact of training data domain
diversity on zero-shot claim verification, as models
trained on SYNTHVERIFY are inadvertently ex-
posed to, and learn to predict, this noise. Ideally,
a dataset with the same level of domain diversity
as SYNTHVERIFY, but with gold-standard veracity
labels, would serve as the basis for our experiments.
The lack of such a dataset underscores the motiva-
tion for our work.
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A Appendix: Evaluation Benchmarks
and Fine-Tuning Details

A.1 Dataset Statistics of the Evaluation
Benchmarks

In this study, we used the following pre-processed
datasets in Pan et al. (2023b). The statistics of
these dataset are shown in Table 5. Claims are
typically sentence-level statements, which can be
either real-world natural claims sourced from web-
sites, textbooks, and forums, or artificially gener-
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Dataset Domain Claim Evidence Label
# Claims Avg. # tokens

Train Test Claim Evid.

I

FEVER Wikipedia artificial sent-level S (52%), R (22%), N (26%) 145,327 19,972 9.4 35.9
VitaminC Wikipedia artificial sent-level S (50%), R (35%), N (15%) 370,653 63,054 12.6 29.5
FoolMeTwice Wikipedia artificial sent-level S (49%), R (51%) 10,419 1,169 15.3 37.0

II

ClimateFEVER Climate natural sent-level S (25%), R (11%), N (64%) 6,140 1,535 22.8 33.8
Sci-Fact Science natural sent-level S (43%), R (22%), N (35%) 868 321 13.8 61.9
PubHealth Health natural sent-level S (60%), R (36%), N (4%) 8,370 1,050 15.7 137.6
COVID-Fact Forum natural sent-level S (32%), R (68%) 3,268 818 12.4 82.5
FAVIQ Question natural doc-level S (50%), R (50%) 17,008 4,260 15.2 304.9

Table 5: List of the 8 fact verification datasets for our study and their characteristics.

ated by crowd-workers. Evidence, the key informa-
tion used to validate a claim, is often drawn from
textual sources such as news articles, academic
papers, and Wikipedia documents. Claim labels
vary, with common formats being binary (support-
s/refutes) or three-class labels (supports/refutes/not
enough info).

FEVER (Thorne et al., 2018) It treats Wikipedia
as the primary evidence source and instructs crowd-
workers to alter sentences from Wikipedia articles
to create claims, which are then classified as sup-
porting, refuting, or lacking sufficient information.

VitaminC (Schuster et al., 2021) It generates
contrastive evidence pairs for each claim, where the
pairs are nearly identical in wording and content,
except that one supports the claim while the other
does not.

FoolMeTwice (Eisenschlos et al., 2021) devel-
ops a multi-player game that encourages diverse
strategies for constructing claims (e.g., temporal
inference) based on Wikipedia, leading to more
complex claims with reduced lexical overlap with
the evidence.

Climate-FEVER (Diggelmann et al., 2020) It
consists of 1,535 real-world claims related to cli-
mate change, collected from the Internet. The five
most relevant sentences from Wikipedia are re-
trieved as evidence, and human annotators label
each sentence as supporting, refuting, or providing
insufficient information for verification.

Sci-Fact (Wadden et al., 2020) It includes 1.4K
expert-generated scientific claims, each linked to
abstracts containing supporting evidence, anno-
tated with labels and sentence-level rationales.

PubHealth (Kotonya and Toni, 2020) It con-
tains 11.8K claims accompanied by gold standard

judgments crafted by journalists to support or re-
fute the claims. The claims come from five fact
checking platforms, news headlines, and news re-
views. We pair each claim with its corresponding
judgment text as evidence.

COVID-Fact (Saakyan et al., 2021) It consists
of 4,086 claims related to the COVID-19 pandemic,
collected from the r/COVID19 subreddit. We use
the sentence-level evidence annotated by crowd-
workers as the supporting evidence.

FAVIQ (Park et al., 2022) It contains 26K
claims derived from naturally occurring ambiguous
questions posed by real users. Each claim is paired
with an answer-containing Wikipedia paragraph as
its document-level evidence.

Since many of the original datasets do not pro-
vide a publicly available test set, we use their
original dev splits as our evaluation sets. Further-
more, we standardize label naming conventions to
supports, refutes, and not enough info.

A.2 Fine-Tuning Details

We use LoRA (Hu et al., 2022) and FlashAttention-
2 (Dao, 2024) with a cosine learning rate schedule
and an initial learning rate of 1e−4 to fine-tune
LLMs. The maximum sequence length is 1024
and the batch size is 4. The LoRA rank is 16 for
all models. We use the Huggingface Transform-
ers (Wolf et al., 2020) library to train all models.

B Appendix: Prompts

This appendix provides the complete set of prompts
used in our synthetic data generation pipeline,
along with example outputs for each stage.
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Prompt Table Reference

Synthetic data generation
knowledge domain generation Table 7
Evidence plan generation Table 9
Evidence document synthesis Table 11
Key aspect extraction Table 13
Supported claim generation Table 15
Refuted claim generation Table 17
Not-Enough-Info claim generation Table 18

Model evaluation
Zero-shot evaluation Table 19
Zero-shot Chain-of-Thought evaluation Table 20

Ablation studies
Removing knowledge domain Specification Table 21
Removing Evidence Plan Generation Table 22
Removing Key Aspect Generation Table 23
Direct prompting Table 24

Table 6: A collection of all prompts used in synthetic
data generation, model evaluation and ablation studies.

B.1 Knowledge Domain Generation Prompt
B.2 Prompts for Plan-guided Evidence

Synthesis
B.3 Prompts for Aspect-Conditioned Claim

Generation
B.4 Prompts for Model Evaluation
B.5 Prompts for Ablation Studies
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Please generate a list of diverse domains that is highly relevant for claim verification tasks. For each domain, provide:

1. The domain name. Do not include “&” or “and” in the generated domain name. Do not combine two or more words together
to form a single domain name.
2. A concise description (1–2 sentences) highlighting its unique linguistic and factual characteristics and explaining why claims
in this domain are challenging to verify.
3. A list of several domain properties.

Format your response exactly as follows:
Domain: [Domain Name]
Description: [Your description here]
Properties: [Property 1;Property 2;Property 3]

Table 7: The prompt for knowledge domain generation.

Example Output:
Domain: Climate Science
Description: A dynamic domain involving long-term alteration of temperature and typical weather patterns. Claims are
challenging to verify due to reliance on complex climate models and long-term observational data.
Properties: [“Temperature data”, “Weather patterns”, “Climate models”]

Table 8: The example output for knowledge domain generation.

You are an expert academic writer in the field of claim verification. Given the following knowledge domain:

Domain: [Domain Name]
Description: [A concise description (1–2 sentences) highlighting its unique linguistic and factual characteristics and explaining
why claims in this domain are challenging to verify.]
Properties: [Property 1; Property 2; Property 3]

Please generate a concise bullet-point plan for a synthetic evidence document in this domain. Your plan should include:
• An Introduction that sets the description context.
• Key Factual Elements that reflect the domain properties.
• A Conclusion summarizing the key insight or challenge.

Table 9: The prompt for evidence plan generation.

Example Output:
Domain: Political News
Description: Political news is characterized by rapid developments, partisan language, and selective reporting, making fact
verification challenging.
Properties: Real-time data; Bias and spin; Official vs. independent sources

Evidence plan:
• Introduction: Briefly introduce a recent political event or debate.
• Key Factual Elements:

- Reported statistic or claim by a political figure.
- Data from official sources (e.g., government records) versus independent audits.
- Mention of bias or discrepancies in reporting.

• Conclusion: Summarize the discrepancy between the claimed figure and the verified data, emphasizing its impact on public
trust.

Table 10: The example output for evidence plan generation.

You are a domain expert in claim verification. Expand the following evidence plan into a full evidence document suitable for a
claim verification dataset. Ensure that the final document is coherent, detailed, and written in a formal academic style.

Evidence plan:
Insert the plan generated here.

Please generate the complete evidence document following this structure.

Table 11: The prompt for evidence document synthesis.
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Example Output:
Evidence Document:
In a recent national debate, a prominent political figure claimed that public spending on infrastructure had increased by 12%
over the last fiscal year. However, independent audits and official government records reveal that the actual increase was only
8%, largely due to delays in project implementation and discrepancies in budget reporting. This notable gap between the
reported figure and the verified data highlights concerns over potential bias and spin in political reporting, which may ultimately
undermine public trust in government accountability.

Table 12: The example output for evidence document synthesis.

You are a domain expert in claim verification. Given the following evidence document and its associated knowledge domain,
please extract and list three key Aspects that capture different facets of the evidence. Each key aspect should be a concise
description that highlights a distinct dimension (e.g., numerical details, source credibility, or temporal context) and aligns with
the domain properties.

Evidence:
In a recent national debate, a prominent political figure claimed that public spending on infrastructure increased by 12% last
fiscal year, while independent audits reported an actual increase of only 8%.

knowledge domain:
Domain: Political News
Description: Political news often features conflicting reports and varying interpretations due to partisan Aspects.
Properties: Real-time data; Bias and spin; Official vs. independent sources

Output Format:
1. [Key Aspect 1]
2. [Key Aspect 2]
3. [Key Aspect 3]

Table 13: The prompt for the key aspect extraction from the evidence document.

Example Output:
Statistical Aspect: Focuses on the numerical difference between the 12% claimed and the 8% audited increase.
Source Reliability Aspect: Emphasizes the contrast between the official claim and the independent audits.
Contextual Aspect: Highlights the influence of political debate and potential bias in reporting.

Table 14: The example output for the key aspect extraction from the evidence document.

You are a domain expert in claim verification. Based on the evidence document provided below and a specified key aspect,
generate a supported claim that is factually consistent with the evidence while emphasizing the given aspect.

Evidence:
In a recent national debate, a prominent political figure claimed that public spending on infrastructure increased by 12% last
fiscal year, while independent audits reported an actual increase of only 8%.

Key Aspect:
Statistical Aspect: Focuses on the numerical difference between the 12% claimed and the 8% audited increase.

Output Format:
Supported Claim: [Your claim here]

Table 15: The prompt for generating supported claims based on key aspects.

Example Output:
Supported Claim: Independent audits confirm that public spending on infrastructure actually increased by only 8% last fiscal
year, highlighting a significant statistical discrepancy compared to the 12% claimed by the political figure.

Table 16: The example output for generating supported claims based on key aspects.
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You are a highly skilled claim verification expert. Your task is to generate a refuted claim from a given supported claim by
applying controlled perturbations that introduce discrepancies between the claim and the underlying evidence. In doing so,
consider the following perturbation strategies:

1. Entity Substitution: Replace critical entities in the claim with alternative, contextually plausible candidates.
2. Temporal Modification: Adjust any time-related references, while maintaining overall historical coherence.
3. Relationship Reversal: Invert the relational dynamics between entities, altering the claim’s meaning.
4. Attribute Modification: Modify specific properties or characteristics to create a divergence from the original details.

Now, given the following information, generate a refuted claim.

Supported Claim: [Insert Supported Claim Here]
Evidence: [Insert Relevant Evidence Here]

Output your response in the following format:
Refuted Claim: [Your refuted claim here]

Table 17: The prompt for generating the refuted claim based on the supported claim.

You are a domain expert in claim verification. Given a supported claim that is fully detailed and verifiable based on the evidence,
your task is to generate a “Not-Enough-Info” (NEI) claim by intentionally omitting or generalizing the key verifiable elements.
Replace precise numerical figures and explicit qualifiers with vague, qualitative, or uncertain language, so that the claim no
longer contains enough concrete information for conclusive verification.

For example:
Supported Claim: The study shows a 70% reduction in hospitalization rates.
Not-Enough-Info Claim: The study suggests a significant reduction in hospitalization rates.

Now, please generate a Not-Enough-Info claim for the following input:

Supported Claim: [Insert Supported Claim Here]
Evidence: [Insert Evidence Here]

Output your response in the following format:
Not-Enough-Info Claim: [Your generated Not-Enough-Info claim here]

Table 18: The prompt for generating the Not-Enough-Info claim.

You are a highly skilled claim verification expert. You are given a claim and evidence. Your task is to verify the claim based
solely on the evidence provided. Analyze the claim and evaluate the evidence. Based on your evaluation, return one of the
following labels: “supports”, “refutes” or “not enough info”.

Evidence: {EVIDENCE}
Claim: {CLAIM}
Label: {LABEL}

Table 19: The prompt used for zero-shot evaluation.

You are a highly skilled claim verification expert. You are given a claim and evidence. Your task is to verify the claim based
solely on the evidence provided. Analyze the claim and evaluate the evidence. Based on your evaluation, return one of the
following labels: “supports”, “refutes” or “not enough info”. Let’s think step by step.

Evidence: {EVIDENCE}
Claim: {CLAIM}
Label: {LABEL}

Table 20: The prompt used for zero-shot chain-of-thought evaluation.

You are an expert academic writer in the field of claim verification. Given the following domain:

Domain: [Domain Name]
Please generate a concise bullet-point plan for a synthetic evidence document in this domain.

Table 21: The prompt for the ablation study of removing knowledge domain Specification.

3273



You are an expert academic writer. Generate an evidence document based on the following knowledge domain specification.
Ensure that the final document is coherent, detailed, and written in a formal academic style.

Domain: [Domain Name]
Description: [A concise description (1–2 sentences) highlighting its unique linguistic and factual characteristics and explaining
why claims in this domain are challenging to verify.]
Properties: [Property 1; Property 2; Property 3]
Please generate the complete evidence document following this structure.

Evidence Document:

Table 22: The prompt for the ablation study of removing evidence plan generation.

You are a domain expert in claim verification. Based on the evidence document provided below, generate a supported claim that
is factually consistent with the evidence.

Evidence:[Insert the evidence document here.]

Output Format:
Supported Claim: [Your claim here]

Table 23: The prompt for the ablation study of removing key aspect extraction.

You are a domain expert in claim verification. Given a predefine domain, generate one evidence document and three claims
about that domain so that their labels are “supports”, “refutes” and “not enough info”, respectively.

Domain: [Domain name]

Output Format:
Evidence Document: [Evidence Document]
Supported Claim: [Supported Claim]
Refuted Claim: [Refuted Claim]
Not-Enough-Info Claim: [Not-Enough-Info Claim]

Table 24: The prompt for the ablation study of the direct prompting method.
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