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Abstract

Knowledge editing emerges as a promising ap-
proach for updating target knowledge in Large
Language Models (LLMs) in a timely manner,
thereby preventing undesirable behaviors stem-
ming from outdated, inaccurate, or incomplete
knowledge. However, existing methods mainly
focus on instance-level editing, which is prone
to over-editing risk featuring knowledge degra-
dation and general ability deterioration, due to
redundant instance-specific modifications for
knowledge. To mitigate the over-editing risk,
we explore the rule-level editing problem that
avoids case-by-case modification by generaliz-
ing rule-level knowledge to update rule-derived
instances. We further construct a benchmark
called RuleEdit for systematic evaluation on
rule-level editing. Moreover, we propose a
Rule-Transfer Editing (RTE) method to facil-
itate effective updates and generalizations of
rule-level knowledge in LLMs. Experimental
results highlight our significant improvements,
with the enhancements of 28.1% in portabil-
ity and 8.1% in average performance over the
best-performing baselines for LLaMA-2-7B on
RULEmix.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable intelligence in performing Natu-
ral Language Processing (NLP) tasks (Chang et al.,
2024). As the world evolves dynamically, outdated,
incorrect, or missing knowledge in LLMs may lead
to impaired performance in NLP tasks (Zhang et al.,
2024b). To address this limitation, Sinitsin et al.
(2020) introduces Knowledge Editing to enable
timely update for the target knowledge in LLMs,
which has garnered widespread interest.

Existing knowledge editing methods (Meng
et al., 2022; Hartvigsen et al., 2023; Mitchell et al.,

*Equal Contributions
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Figure 1: (a) Illustration of instance-level editing with
case-by-case modification. (b) Illustration of rule-level
editing with a generalized editing process.

2022a) for LLMs primarily focus on instance-level
editing (Wang et al., 2024b), which involves modi-
fying specific and detailed information (i.e., char-
acteristics, attributes.) of individual instances or
cases. However, as illustrated in Figure 1(a), nu-
merous specific instances (e.g., "Premise: If some-
one’s Breath Alcohol Concentration is 0.56% while
driving, what is the penalty? → Conclusion: 6-
month license suspension and a $1000 fine.") can
be derived from the general rule (e.g., "Premise: If
driver’s Breath Alcohol Concentration is between
0.20% and 0.80%, what is the penalty? → Con-
clusion: 6-month license suspension and a $1000
fine."). It is redundant to modify case by case in
instance-level editing. With inefficient large-scale
updates to rule-derived instances, instance-level
editing is vulnerable to over-editing risk (Zheng
et al., 2023). Specifically, as indicated in Fig-
ure 2(a), with increasing editing steps in instance-
level editing, LLMs tend to suffer from significant
performance deterioration in both knowledge up-
dates (success rate drops from 93.33% to 6.44%)
and general tasks (reasoning accuracy drops from
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97.65% to 0.00%).
To mitigate the above over-editing risk arising

from redundant modifications to rule-derived in-
stances in instance-level editing, we explore the
rule-level editing problem, which involves editing
rule-level knowledge encompassing abstract un-
derstandings of principles. As illustrated in Fig-
ure 1(b), since rule-level knowledge can derive
numerous relevant instances, it is expected that
the modifications and generalizations of rule-level
knowledge in rule-level editing encourage the ef-
fective updates of numerous rule-derived instances.
Since existing knowledge editing methods are pri-
marily designed for instance-specific modifications,
they struggle to accurately modify rule-level knowl-
edge and effectively generalize edited knowledge
to update corresponding rule-derived instances. As
observed in Figure 2(b), these methods exhibit sub-
optimal (F1 scores are below 15.0% in ROME,
MEND, and LoRA) or imbalanced performance
(GRACE achieves 94.0% in reliability, but drops
significantly to 4.4% in generalization ability and
2.2% in portability) in rule-level editing task.

Moreover, existing knowledge editing datasets
(e.g., zsRE (De Cao et al., 2021) and CounterFact
(Meng et al., 2022)) are primarily designed to eval-
uate instance-level editing, leaving the potential
of LLMs in rule-level editing underexplored. Be-
sides, although ConceptEdit (Wang et al., 2024b)
is introduced for editing concept definitions, it is
confined to evaluating affiliation influence on asso-
ciated instances (e.g., "whether FrancoAngeli be-
longs to category publisher?"), and is incapable of
measuring the impact of rule changes in real-world
scenarios (e.g., the effects of modifying drunk driv-
ing penalty provisions in legal texts on real-world
cases). Consequently, to bridge these gaps, we con-
struct a new benchmark RuleEdit for the rule-level
editing task, covering three distinct domains (i.e.,
historical, medical, and legal) which respectively
necessitate capabilities of numerical reasoning, hi-
erarchical knowledge inheritance, and semantic rea-
soning in real-world scenarios.

In our work, we propose the Rule-Transfer Edit-
ing (RTE) method, which mitigates over-editing
risk caused by redundant instance-specific modi-
fications through effective knowledge generaliza-
tion. Specifically, RTE efficiently updates rule-
level knowledge by modularly compressing it into
semantic-centralized representations using a T5-
based amortization network (Raffel et al., 2020).
To facilitate effective generalization of rule-level

Figure 2: (a) Over-editing risk in LLaMA-2-7B after
editing with ROME in instance-level. The editing suc-
cess rate is evaluated on RULEmix. The reasoning per-
formance is evaluated on GSM8K. (Cobbe et al., 2021).
(b) Rule-level editing performance of existing methods
on LLaMA-2-7B with 100 editing steps in RULEmix.

knowledge, RTE further aggregates and propagates
query-relevant rule-level knowledge to the query
for informative knowledge inference in LLMs,
leveraging the prefix tuning technique (Li and
Liang, 2021). Moreover, RTE effectively pre-
vents the deterioration of general ability in base
LLMs owing to the preservation of original param-
eters. Experimental results demonstrate that RTE
achieves robust rule-level editing performance and
strikes a good balance among reliability, general-
ization ability, and portability.

Our contributions are summarized as follows:
• We explore the rule-level editing problem,

aiming to achieve effective knowledge up-
dates in LLMs through rule-level knowledge
generalization.

• We construct RuleEdit benchmark for com-
prehensive rule-level editing evaluation, cov-
ering three domains necessitating abilities of
numerical reasoning, hierarchical knowledge
inheritance, and semantic reasoning in real-
world rule-level knowledge generalization.

• We propose the RTE method to propagate
edited rule-level knowledge during inference
for effective updates of relevant rule-derived
instances, which avoids redundant instance-
specific modifications and thereby mitigates
over-editing risk. Our experimental results
highlight that RTE achieves significant im-
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provements in overall editing performance.

2 Related Work

Current knowledge editing methods can be broadly
divided into three lines, including locate-and-edit,
meta-learning, and memory-based editing methods,
which are briefly reviewed in this section.

Locate-and-edit. Recently, several studies man-
age to localize and modify specific knowledge
within transformers, guided by the "key-value neu-
ral memory" theory (Geva et al., 2021), while
retraining- or fine-tuning-based editing methods
(Hu et al., 2022; Kirkpatrick et al., 2017) are com-
putationally expensive. Rather than individually
altering parameters of located knowledge neurons
or feedforward layers (Dai et al., 2022; Meng
et al., 2022, 2023) through causal tracing, Li et al.
(2024) simultaneously optimizes the hidden states
of multi-head self-attention and feedforward net-
works to update target knowledge. Additionally,
Wang et al. (2024a) attempts to locate the toxic
region by measuring distribution separation across
layers. However, causal tracing does not always
pinpoint the actual effective model layers for edit-
ing, despite being a reasonable localization method
(Hase et al., 2023). Furthermore, in sequential edit-
ing scenario, existing locate-and-edit methods are
prone to overediting risk (Hartvigsen et al., 2023),
leading to knowledge degradation issues.

Meta-learning. Considering the overfitting is-
sue associated with fine-tuning on a single example,
existing meta-learning-based editing methods em-
ploy the hypernetwork to better initialize model
parameters and encourage faster training on the
model. Specifically, Mitchell et al. (2022a) pro-
pose an editor network with a low-rank decom-
position of the gradient, facilitating scalable and
fast editing for large pre-trained language models.
Furthermore, Tan et al. (2024) formulates param-
eter shift aggregation as a least-squares problem
to encourage massive scale editing. Despite fast
editing adaptation to new knowledge, current meta-
learning-based methods still face the risk of catas-
trophic forgetting, which deteriorates the editing
reliability and generalization ability during large-
scale edits.

Memory-based Editing. Memory-based edit-
ing methods achieve knowledge preservation by
incorporating external working memory. These
methods can be briefly classified into two cate-
gories: (1) Weight-preserved methods (Zheng et al.,

2023; Hartvigsen et al., 2023; Madaan et al., 2022;
Dong et al., 2022), which perform knowledge edit-
ing through in-context learning and knowledge re-
trieval. Nevertheless, they mostly struggle with
the challenge of processing unaffordable massive
inputs in sequential editing or exhibit poor edit-
ing generalization ability. (2) Optimization-based
method. Mitchell et al. (2022b) introduces a semi-
parametric editor that stores model edits in external
memory. However, its performance is limited by
the scope classifier which relies on the training
of the editing dataset. Although current memory-
based editing methods achieve reliable editing for
target knowledge, they encounter a generalization
bottleneck due to the limitation of knowledge re-
trieval.

To sum up, existing knowledge editing methods
are primarily designed for instance-specific modi-
fications and struggle to balance the performance
of reliability, generalization ability, and portability
in knowledge editing. Although knowledge editing
for structured knowledge (Zhong et al., 2023; Meng
et al., 2022) has garnered considerable attention,
substantial challenges remain in handling more
complex knowledge representations (e.g., multi-
modal knowledge (Wang et al., 2024c; Yuan et al.,
2025, 2023) and unstructured knowledge (Akyürek
et al., 2023; Deng et al., 2025)). Therefore, in
this work, we explore efficient knowledge updates
through generalization in rule-level editing.

3 Rule-Level Editing

3.1 Task Definition

Rule-level editing aims to modify general rule-level
knowledge and propagate updates to rule-derived
instances within LLMs. Specifically, given i-th new
input-output rule-level knowledge pair (Rx

i ,Ry
i ),

which is accompanied by k relevant input-output
rule-derived instance pairs {(Ix

i,j , Iy
i,j)}kj=1 ∈

(Ix
i , Iy

i ), the LLMs need to be edited on rule-level
knowledge to obtain a new model F∗. After edit-
ing on (Rx

i ,Ry
i ), it is expected that the relevant

input-output rule-derived instances can be correctly
updated as: F∗(Ix

i,j) = Iy
i,j .

3.2 Rule-Level Editing Evaluation

In this work, we conduct comprehensive evalu-
ations of knowledge editing across three dimen-
sions and three metrics described as follows. For
rule-level knowledge updates, we measure in both
Reliability (Rel.) and Generalization (Gen.) di-
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mensions (Zhang et al., 2024b; Yao et al., 2023)
to reveal whether rule-level knowledge can be ro-
bustly edited. For relevant rule-derived instance
knowledge, we measure in Portability (Port.) di-
mension to reflect whether relevant instances can
be successfully updated through inference.

(1) Reliability: The success rate of editing rule-
level knowledge:

Exe,ye∼Rx,RyScore(F∗(xe), ye) (1)

(2) Generalization: The success rate of edit-
ing rule-level knowledge with rephrased rule input
within the editing scope:

Exe,ye∼Rx′ ,Ry′Score(F∗(xe), ye) (2)

where (Rx′
,Ry′) set represents the rephrased rule-

level knowledge.
(3) Portability: The success rate of updating the

relevant rule-derived instance knowledge, which
provides a superior reflection of the model’s gener-
alization ability (Zhang et al., 2024a):

Exe,ye∼Ix,IyScore(F∗(xe), ye) (3)

To ensure the robustness of the evaluation, we
simultaneously calculate the score using three met-
rics: (1) Accuracy (ACC). The proportion of match-
ing tokens between the target and edited result, cal-
culated based on exact position alignment in the
sequence. (2) Exact Match (EM). If the edit result
fully matches the target, it is considered correct.
(3) F1. It is obtained by calculating the overlap of
tokens between the target and prediction.

4 Rule-Transfer Editing Method

Inspired by Tack et al. (2024) that addresses online
adaptation problem with the key idea of document
feature extraction and memory-augmentation, we
introduce a Rule-Transfer Editing method for effec-
tive modifications and generalizations of rule-level
knowledge in the rule-level editing task, as depicted
in Figure 3.

In RTE, the rule-level knowledge are modu-
larly compressed into semantic-centralized repre-
sentations using a T5-based amortization network
(Phang et al., 2023), while preserving original out-
of-scope knowledge by freezing parameters of base
LLMs. To update rule-derived instances by rule-
level knowledge generalization, relevant rule-level
knowledge are aggregated into virtual prefix to-
kens according to the semantic relevancy with the

query measured by aggregration network, and sub-
sequently prepended to the query in LLMs by prefix
tuning technique (Li and Liang, 2021) for infor-
mative knowledge inference. Moreover, the meta-
learning paradigm encourages faster adaption to
new knowledge updates in RTE during meta-testing
phase.

4.1 Meta-Training Phase
In meta-training phase, the key idea is to better
initialize the amortization network and the aggre-
gation network in an end-to-end training manner,
consequently encouraging faster editing adaptation
in meta-testing phase.

Given a training edit set Dtr
edit, for each input-

output rule-level knowledge pair (Rx
i ,Ry

i ) ∈
Dtr

edit, we concatenate it and modularly encode it
into a compact representation ϕi by a learnable
T5-based hyper-amortization network H with pa-
rameter ξamort (Raffel et al., 2020):

ϕi = H(ξamort; [Rx
i ;Ry

i ]) (4)

such that we obtain a compact rule-level knowl-
edge representation with the shape of [L, 2, 2,P,H],
where L represents the number of layers, the first
2 corresponds to the dimensions of encoder and
decoder, the latter 2 corresponds the key and value
prefixs, P denotes the number of virtual prefix to-
kens, and H is the hidden size.

In order to generalize edited rule-level knowl-
edge to the probing query xq (which belongs to
Rx during training), unlike existing memory-based
editing methods (e.g., IKE (Zheng et al., 2023)
and GRACE (Hartvigsen et al., 2023)) which re-
quire massive prompts in sequential edit or directly
replace the layer’s hidden states, we consider aggre-
gating the relevant rule-level knowledge representa-
tions within query scope as soft prefix ϕ∗

r , which en-
compasses prefixed model-internal key-value pair
for each layer in LLMs. Thus, we utilize cross-
attention block (Kim et al., 2019) as a learnable
knowledge aggregation network G to measure the
semantic relevancy between the encoded query and
the compressed rule-level knowledge set {ϕi}ni=1,
and we subsequently obtain the aggregated soft
prefix as:

ϕ∗
r = G(H(ξinput;xq); {ϕi}ni=1) (5)

where the query is encoded by the T5-based en-
coder with parameter ξinput and same architecture
as the above amortization network, and n denotes
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Figure 3: Overview of RTE. In meta-training phase, the T5-based amortization network modularly compresses the
updated rule-level knowledge into semantic-centralized representations. For each query, the aggregation network
aggregates the representations of relevant knowledge into soft prefix, which encompasses model-internal key-value
representations for all layers in LLM. Subsequently, leveraging the prefix tuning technique, each learned key-value
pair derived from soft prefix is prepended to the original key-value pairs layer-wise during inference, thus facilitating
the propagation of edited rule-level knowledge in RuleBank to update rule-derived instances in meta-testing phase.

the number of edited knowledge. Other than specif-
ically choosing a knowledge modulation, the ag-
gregation network expands the utilization of the
knowledge set and avoids the wrong choice of rele-
vant knowledge.

LLMs are built on the Transformer architecture,
which mainly consists of a self-attention module
and a feed-forward module. Assuming the frozen
LLMs (F ) consist of L layers, to propagate ag-
gregated relevant knowledge to the query, in each
attention module Attnl of layer l, we prepend the
learned model-internal key and value representa-
tion K l

r and V l
r derived from soft prefix ϕ∗

r to the
original key and value representations K l

q and V l
q

of query calculated from the former layer l − 1.
Throughout the above simple yet effective deep
prefix tuning process utilizing P-Tuning v2 (Liu
et al., 2022), we have informative knowledge dur-
ing the inference:

K l
e = [K l

r;K
l
q], V l

e = [V l
r ;V

l
q ],

Attnl(Ql
q,K

l
e, V

l
e ) = softmax(Ql

q(K
l
e)

T )V l
e ,

Z l = LN(Attnl(Ql
q,K

l
e,V

l
e ) +X l−1),

hl = LN(FFN(Z l) + Z l)

(6)

where X l−1 denotes the output of former layer l−1,
LN represents the layer normalization operation,
FFN represents the feed-forward network, and hl

denotes the output of layer l with query matrix Ql
q.

To efficiently optimize the T5-based amortiza-
tion network and aggregation network over the
frozen LLMs, we train the model F∗ in an end-
to-end manner with the objective of:

Ledit =Lr(F∗(Rx
i ,Ry

i )

+ cg ∗ Lg(F∗(Rx′
i ,Ry′

i ))

+ cp ∗ Lp(F∗(Ix
i , Iy

i ))

(7)

where Lr, Lg and Lp are negative log-likelihood
functions used to compute the loss, and both cg and
cp are hyperparameters that govern the loss weight.

4.2 Meta-Testing Phase
Associating with the meta-learned hyper-model ini-
tialized in the meta-training phase, we manage
to compress the rule-level knowledge of testing
edit set Dtest

edit into a set of modularized representa-
tions, which is called the RuleBank. For each query,
we aggregate and propagate the relevant rule-level
knowledge from the RuleBank, thereby facilitating
generalizing the rule-level knowledge to update the
rule-derived instances during the inference phase
of LLMs.

5 Experiments

In this section, we provide construction details of
our benchmark RuleEdit. Moreover, we conduct
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extensive experiments to explore the potential of
LLMs in mitigating over-editing risk through rule-
level editing and comprehensively evaluate the ef-
fectiveness of RTE.

5.1 Datasets
For comprehensive evaluations of rule-level editing
performance in real-world scenarios, we construct
RuleEdit benchmark, which is composed of both
specific instances and the corresponding general
rule-level knowledge covering three domains, in-
cluding legal, medical, and historical domains.

We separately introduce the dataset generation
processes for three domains: (1) For legal domain
RULElegal, we collect a set of legal judgments
with 16,000 laws from DISC-Law-SFT (Yue et al.,
2023) dataset. Sequentially, we prompt the LLMs
(e.g., GPT-4o-mini (OpenAI, 2024)) to generate 3
statutory rules for each law, accompanied by cor-
responding rephrased rules and 10 legal instances.
(2) For medical domain RULEmedical, we collect
480 medicine classes categorized by NLM 1. For
each, we obtain 10 associated medicinal substances
by LLM, based on the hierarchical relationship of
pharmacological effect, therapeutic usage, action
mechanism, and chemical structure. (3) For his-
torical domain RULEhistorical, we collect 3441
historical events from ATOKE dataset (Yin et al.,
2024) and construct corresponding historical in-
stances within the timeline. More detailed exam-
ples and the construction process are provided in
Appendix A.

Dataset legal medical historical mix
rule-level 16,482 3,186 3,441 9,450

instance-level 164,672 17,539 46,018 90,675
instance:rule 10.0:1 5.5:1 13.4:1 9.6:1

Table 1: Statistics of RuleEdit across legal, medical,
historical and mixed domains.

Moreover, Table 1 demonstrates the statistics of
collected rule-level knowledge and relevant rule-
derived instances for each domain after quality con-
trol. To encourage balanced and comprehensive
evaluations of rule-level editing across three do-
mains, we further randomly sample 3,150 input-
output rule-level knowledge pairs and correspond-
ing accompanied instances for each domain. Sub-
sequently, the samples are mixed and shuffled to-
gether to obtain the composed dataset RULEmix.
We compute the ratio of instances to rules in each

1https://www.ncbi.nlm.nih.gov/mesh/68008511

domain. It is noticed that the mere difference
among ratios is due to the motivation of ensuring
generation quality while cascading unqualified data
through quality control. In quality control, we mod-
ify or cascade unqualified cases according to the
following guidelines (Details in Appendix A.2.1):
(1) Clarity and completeness of knowledge. (2)
Logical relevance between rules and instances. (3)
Distinguishability among instances. (4) Factual re-
liability of the rules. (5) Inner-annotator agreement
and expert review.

5.2 Experimental Settings

In our experiments, we compare against four
representative distinct baselines, including (1)
Parameter-efficient tuning method: LoRA (Hu
et al., 2022); (2) Locate-and-edit method: ROME
(Meng et al., 2022); (3) Meta-learning method:
MEND (Mitchell et al., 2022a); (4) Memory-
based method: GRACE (Hartvigsen et al., 2023).
Besides, we utilize prevalent open-source LLMs
LLaMA-2-7B (Touvron et al., 2023) and GPT2-XL
(1.5B) (Radford et al., 2019) as base models and
conduct experiments on our constructed RuleEdit
covering legal, medical, historical, and mixed do-
mains for comprehensive evaluation. For RuleEdit
we use the same train/test split (9:1) as Mitchell
et al. (2022a). More details are provided in Ap-
pendix B.

5.3 Experimental Results

Rule-level editing is challenging to existing edit-
ing methods. The experimental result of rule-
level editing shown in Table 2 indicates that ex-
isting editing methods struggle to balance the per-
formance of reliability, generalization ability, and
portability. Specifically, it can be observed that
ROME suffers from overall performance collapse
for three aspects in sequential editing, since multi-
ple biased adjustments for parameters of predefined
layers significantly deteriorate the overall knowl-
edge in large-scale edits. Although GRACE ex-
hibits prominent reliability in editing rule-level
knowledge, it has trouble generalizing edited rule-
level knowledge to relevant rule-derived instances
(e.g., poor portability score of 1.9% in the final edit-
ing step on RULEmix). It is speculated that the
update strategy of codebook in GRACE is insuffi-
cient to support precise measurement of semantic
similarity, thereby limiting the retrieval of relevant
knowledge. With competitive generalization abil-
ity and portability to the other baselines, MEND
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Edit Method RULEmix RULEhistorical RULEmedical RULElegal

Step Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg.
LLaMA-2-7B

3

ROME 85.9 93.3 95.3 91.5 93.3 100.0 72.6 88.6 85.0 60.0 54.8 66.6 12.9 15.2 5.9 11.3
MEND 29.2 18.0 24.4 23.9 11.1 13.3 11.1 11.9 9.5 0.0 5.3 4.9 22.2 14.7 20.6 19.2
GRACE 93.3 3.9 3.9 33.7 93.3 11.1 0.0 34.8 93.3 7.4 8.3 36.3 100.0 31.7 6.5 46.1
LoRA 50.9 37.5 8.1 32.2 42.9 16.7 27.8 29.1 33.3 13.3 45.5 30.7 37.3 37.3 37.4 37.3
Ours 83.0 54.6 68.7 68.8 50.0 50.0 36.3 45.4 77.8 45.7 50.8 58.1 47.7 54.2 66.7 56.2

10

ROME 37.7 27.7 45.4 36.9 46.2 44.9 35.2 42.1 0.0 0.0 0.0 0.0 12.9 12.1 12.8 12.6
MEND 15.1 14.1 17.0 15.4 6.7 12.3 0.0 6.3 2.9 4.4 4.4 3.9 14.8 15.1 18.5 16.1
GRACE 88.2 3.2 0.6 30.7 88.6 3.3 0.0 30.6 98.0 2.2 3.8 34.7 98.6 9.5 3.6 37.2
LoRA 30.0 8.6 11.0 16.5 40.0 19.7 9.2 23.0 10.0 0.0 0.0 3.3 23.2 26.4 20.7 23.4
Ours 53.4 38.3 57.7 49.8 59.0 44.5 52.8 52.1 51.1 27.0 34.8 37.7 47.0 43.4 46.0 45.5

100

ROME 6.1 2.7 5.8 4.9 0.5 0.0 0.1 0.2 2.8 2.4 2.5 2.6 18.5 18.3 18.1 18.3
MEND 11.7 11.5 12.5 11.9 5.3 9.0 2.8 5.7 7.0 8.8 8.7 8.2 18.2 17.2 17.5 17.6
GRACE 94.0 4.4 2.2 33.5 90.3 6.8 0.1 32.4 81.0 6.4 2.8 30.1 91.8 2.5 3.9 32.7
LoRA 1.5 5.5 8.3 5.1 2.7 4.3 1.3 2.8 6.6 3.6 3.3 4.5 36.0 36.7 35.8 36.2
Ours 44.7 40.7 44.3 43.2 47.7 39.2 42.6 43.2 36.2 22.5 20.8 26.5 53.2 53.5 48.6 51.8

final

ROME 0.5 0.5 0.1 0.4 0.0 0.0 0.0 0.0 1.4 1.3 1.7 1.5 10.7 10.8 11.5 11.0
MEND 10.1 9.2 10.5 10.0 5.6 6.7 3.2 5.2 8.1 8.9 8.4 8.5 17.8 17.4 16.7 17.3
GRACE 85.8 4.3 1.9 30.6 88.7 5.4 0.2 31.5 74.1 5.8 2.6 27.5 93.9 2.3 3.2 33.1
LoRA 10.2 10.4 11.2 10.6 7.0 0.7 4.6 4.1 1.0 2.0 2.8 1.9 0.2 0.2 0.2 0.2
Ours 38.8 38.0 39.3 38.7 53.1 40.8 50.5 48.2 31.6 22.9 22.4 25.6 53.9 53.3 47.7 51.6

Ours(w/o SP) 5.11 4.75 3.95 4.60 1.96 1.88 2.07 1.97 7.93 6.65 5.26 6.61 5.07 4.86 4.88 4.94

Table 2: Main Results of Rule-Level Editing on LLaMA-2-7B with Multiple Edit Steps Measured by F1 Metric. We
evaluate all the methods in three aspects under RuleEdit, which consists of three domain-specific sets and a mixed
domain set. Avg. indicates the average score of three aspects. SP indicates soft prefix. The final edit step indicates
that all the rule-level knowledge of corresponding set are edited. Best and suboptimal results of each edit step are
marked in bold and underline respectively.

and LoRA are prone to overfitting on training data
and struggle with the adaptation of new knowledge,
thereby resulting in poor reliability of edits (e.g.,
reliability scores of 10.1% in MEND and 10.2%
in LoRA in the final editing step on RULEmix).
Additional experimental results for ACC and EM
metrics and analysis are provided in Appendix B.4.

Effective knowledge updates through our RTE
method. As shown in Table 2, our RTE method
exhibits remarkable average performance within
most domains in sequential rule-level editing, re-
vealing the effective updates of both rule-level
knowledge and corresponding rule-derived in-
stance knowledge in RTE through rule-level edit-
ing. Although GRACE achieves higher scores in
reliability, it makes huge sacrifices in generaliza-
tion ability and portability. Instead, RTE leads the
best performances in both aspects, achieving the
enhancement of 27.6% in generalization score and
28.1% in portability score over the best baseline for
LLaMA-2-7B in final editing step on RULEmix.
Moreover, the experiment highlights the adaptabil-
ity of RTE across multiple domains, which necessi-
tates capabilities in numerical reasoning, hierarchi-
cal knowledge inheritance, and semantic reasoning,
as analyzed in Appendix A. This confirms that RTE

achieves reliable rule-level editing through efficient
knowledge amortization and robust knowledge gen-
eralization in inference.

Forward passing aggregated soft prefixes facil-
itates knowledge generalization. As shown in
Table 2, the comparative experiment reveals sig-
nificant performance gaps (e.g., a discrepancy of
34.11% in the average score on RULEmix in final
step) in LLMs depending on whether relevant ag-
gregated soft prefix knowledge is injected (Ours
and Ours(w/o SP)). In comparison to GRACE,
which directly replaces the activated state with the
retrieved value and thus limits the generalization
ability, our RTE demonstrates robust portability
in inference, as indicated by the comparative ex-
periment in Appendix B.3. Leveraging the prefix
tuning technique, the prepended informative key-
value representations derived from aggregated soft
prefixes are forward passed to each attention layer
in LLMs, thus facilitating thorough inference over
edited rule-level knowledge to update correspond-
ing rule-derived instances.

RuleBank serves as a safeguard against knowl-
edge degradation. In Figure 4, as edit steps in-
crease, it is worth noting that methods involved
in multiple adjustments to parameters (including
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Method RULEmix RULEhistorical RULEmedical RULElegal

Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg.
GPT2-XL (1.5B)

ROME 0.63 0.68 0.63 0.65 13.72 16.90 18.70 16.44 7.27 6.71 7.18 7.06 15.59 14.92 14.97 15.16
MEND 17.56 12.76 4.66 11.66 3.41 4.96 0.44 2.94 12.82 8.71 2.70 8.07 30.96 24.48 5.42 20.29
GRACE 90.17 3.00 0.00 31.06 98.06 1.36 0.00 33.14 71.21 3.26 0.01 24.83 100.00 6.88 0.00 35.63
LoRA 8.96 4.42 6.79 6.72 20.41 5.85 4.17 10.14 4.15 4.42 3.98 4.18 5.83 5.30 6.27 5.80
Ours 43.40 39.86 34.91 39.39 54.88 49.13 50.71 51.57 29.25 20.39 20.33 23.32 57.46 55.54 50.07 54.36

Table 3: Comparative Results of Rule-Level Editing on GPT2-XL in Final Edit Steps Measured by F1 Metric. We
evaluate all the methods under RuleEdit, which consists of three domain-specific sets and a mixed domain set. Best
and suboptimal results are marked in bold and underline respectively.

Figure 4: Comparisons of rule-level editing results with
multiple editing steps over different methods, which are
evaluated on RULEmix with F1 metric across three
dimensions using LLaMA-2-7B and GPT2-XL.

MEND, LoRA, and ROME) suffer from catas-
trophic performance collapse in all dimensions.
GRACE retains stable reliability performance ow-
ing to the memory codebook, but fails in general-
ization due to the limitation of knowledge retrieval
ability. Contrarily, RTE achieves stable and excel-
lent performance, owing to the preservation and
propagation of rule-level knowledge from Rule-
Bank. Furthermore, RTE achieves a leading porta-
bility score in GPT2-XL, indicating the superior
generalization ability in rule-level editing.

Robust adaptability and pluggability in various
backbones. In addition, Table 3 presents the ex-
perimental rule-level editing results conducted on
GPT2-XL (1.5B). The prominent results reveal the
robust adaptability of RTE to various LLMs back-
bones with distinct scales and indicate the promis-
ing potential of rule-level editing. Since the base
LLMs is frozen and the edited rule-level knowl-

edge is integrated flexibly through prefix tuning,
our framework exhibits pluggability among LLMs.
Moreover, comprehensive comparisons among edit-
ing methods in both LLaMA-2-7B and GPT2-XL
are demonstrated in Appendix B.4.

5.3.1 Case Study

Figure 5: Examples of knowledge editing results for
different methods. Evaluated on the final edit step of
RULEmix using LLaMA-2-7B.

As illustrated in Figure 5, we perform a compara-
tive case study over existing methods. It can be ob-
served from the results that both ROME and LoRA
produce unreliable and hasty generations, featuring
typical over-editing results of repeated or mean-
ingless tokens. It is indicated that an overfitting
phenomenon occurs due to multiple biased modifi-
cations to the parameters. Mend produces incorrect
answers due to erroneous generalization, revealing
the limited generalization ability. As analyzed in
the above experiments, the generalization ability
of GRACE is constrained by retrieval performance,
resulting in inaccurate generation with missing in-
formation. In contrast, our method delivers satisfac-
tory results, demonstrating the promising potential
to effectively generalize rule-level knowledge to
update relevant rule-derived instances, thereby mit-
igating the over-editing risk.
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6 Conclusion

In this work, we explore the rule-level editing prob-
lem to achieve effective knowledge updates and
mitigate over-editing risk in LLMs, and construct
a new benchmark RuleEdit across three domains
for comprehensive evaluations. Additionally, we
further propose RTE method to facilitate effective
modifications and propagations of rule-level knowl-
edge. Our experimental results demonstrate exces-
sive rule-level editing performance of RTE with
prevalent portability for effective knowledge gener-
alization.

7 Limitations

Similar to most memory-based methods, our RTE
method faces the challenge that RuleBank grows in
scale as rule-level knowledge accumulates, leading
to increased memory consumption. Future work
may consider neighborhood knowledge fusion to
reduce memory scale while maintaining editing
performance, especially since RTE exhibits com-
petitive performance in GPT2-XL compared with
other baselines in LLAMA-2-7B. Additionally, a
possible improvement involves designing a gate
mechanism to selectively determine whether to in-
tegrate knowledge from RuleBank, thereby enhanc-
ing flexibility in knowledge integration.
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A Dataset

A.1 Data Samples
Table 4 presents data samples from our constructed
benchmark RuleEdit. Specifically, RuleEdit is
collected from three domains, including the legal
domain, the medical domain, and the historical
domain. Each dataset unit consists of rule-level
knowledge for editing, rephrased rule-level knowl-
edge for generalization evaluation, and relevant
instances derived from the rule for portability eval-
uation.

As observed from the samples, dataset in the le-
gal domain aims to enable proper judgment for spe-
cific cases after editing the corresponding statute,
which requires robust semantic reasoning ability
over edited legal rules for LLMs. Dataset in the
medical domain aims to enable hierarchical knowl-
edge inheritance from the edited universal medical
knowledge. Moreover, dataset in the historical do-
main involves knowledge inference with specific
time constraints, which requires solid numerical
reasoning ability for LLMs.

A.2 Dataset Construction
Figure 6 outlines the detailed construction process
of RuleEdit. Firstly, we collect knowledge from
different corpuses across three domains. Based
on the collected knowledge, we manage to extract
and generate rule-level knowledge for editing, and
rephrase the expression for generalization evalua-
tion. Subsequently, we generate relevant instances

that can be derived from the edited rule-level knowl-
edge. As shown in Figure 7 and Figure 8, we
prompt GPT-4o-mini to assist in the generation
of rule-level knowledge and relevant instances in
both legal and medical domains. Under quality con-
trol and random sampling, the dataset RuleEdit is
obtained, which consists of separate data in three
domains and a mixture set.

A.2.1 Dataset Quality Control Guidelines

To ensure high-quality annotations, we employ
three well-educated annotators during the construc-
tion of the RuleBank and adhere to the following
quality control guidelines: (1) Clarity and com-
pleteness of knowledge. Each input-output knowl-
edge pair of rule-level knowledge and relevant rule-
derived instances must be clearly described, leav-
ing no ambiguity in interpretation or application.
(2) Logical relevance between rules and instances.
Rule-derived instances should be logically infer-
able from the corresponding rule-level knowledge
without additional information. (3) Distinguisha-
bility among instances. Instances should be distinct
and non-redundant, ensuring the diversity and cov-
erage within the scope of the corresponding rule.
(4) Factual reliability of the rules. Rules must be ac-
curately derived from knowledge sources and free
from contradictions. (5) Inner-annotator agree-
ment and expert review. Annotators independently
assess the quality of each input-output knowledge
pair by assigning a score within the range of zero
to five. Discrepancies are resolved through collab-
orative discussions, with final decisions made by a
senior expert to refine the dataset.

B Experiments Details

B.1 Baselines

Here we provide a detailed introduction and im-
plementation information for all baselines in the
experiments.

ROME ROME (Meng et al., 2022) uses causal
tracing to investigate the decisive feedforward
MLPS associated with knowledge, and alters corre-
sponding parameters by rank-one model with least
squares approximation. For the experiments, the
learning rate is set to 5e-1, the kl factor is set to
0.0625. For LLaMA-2-7B, ROME is executed in
layer 5 with 25 optimization steps. For GPT2-XL,
ROME is executed in layer 17 with 20 optimization
steps.
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Domain Rule-level knowledge Rephrased knowledge Relevant knowledge
Legal If an individual intention-

ally destroys property with
significant value, what is the
criminal prosecution? Im-
prisonment of up to three
years, detention, or a fine.

If an individual willfully
damages property that is of
considerable worth, what
is the criminal prosecution?
Imprisonment of up to three
years, detention, or a fine.

If Tom destroys property
valued at $10,000 or more,
what is the criminal prose-
cution? Imprisonment of up
to three years, detention, or
a fine.

Medical If a medicine is a type of
anticoagulant, what is the
pharmacological effect of
it? Blood clot prevention.

What is the pharmacologi-
cal effect of a medicine that
belongs to the class of anti-
coagulants? Blood clot pre-
vention.

Warfarin is a type of antico-
agulant. What is the phar-
macological effect of war-
farin? Blood clot preven-
tion.

Historical Which club does Giorgio
Morini affiliate with from
1976 to 1981? A.C. Milan.

From 1976 to 1981, Giorgio
Morini played for? A.C. Mi-
lan.

Which club does Giorgio
Morini affiliate with from
1979 to 1980? A.C. Milan.

Table 4: Examples of RuleEdit.

Figure 6: Construction process of RuleEdit.

MEND MEND (Mitchell et al., 2022a) designs a
hypernetwork to decompose standard fine-tuning
gradient of knowledge editing into corresponding
rank-1 outer product form, and further adopts a
meta-learning objective comprising the autoregres-
sive loss and KL divergence loss. For the experi-
ments, MEND edits in the last 3 transformer blocks,
and the learning rate is set to 1e-6, while the scale
of autoregressive loss and KL divergence loss are
set to 0.1 and 1, respectively.

GRACE GRACE (Hartvigsen et al., 2023) main-
tains a discrete key-value codebook for a chosen
layer to cache embedding for updated knowledge,
and selectively replaces the activation of hidden
state output with the retrieved value from the code-
book during inference. For the experiments, the
learning rate is set to 1. and the codebook is exe-
cuted in layer 27 for LLaMA-2-7B and layer 35 for
GPT2-XL.

LoRA LoRA (Hu et al., 2022) performs direct
optimization for rank decomposition matrices of
each layers, while keeping the pre-trained weight
frozen. For the experiments, the learning rate is set
to 5e-3, the rank is set to 8, and the dropout rate is
set to 0.1.

B.2 Implementation Details

We conduct all the experiments on two NVIDIA
A800 GPUs, and follow the default hyperparameter
settings of the baselines. In our method, we utilize
Adam optimizer (Kingma, 2014) with a learning
rate of 1e-5 and train for 20 epochs for all datasets.
We set the virtual output token number of T5-based
amortization network to 24 and the training batch
size to 16. Besides, following Tack et al. (2024),
we utilize T5-large model and an individual two-
layered MLP for each output virtual token for the
amortization network, and T5-based model (Raffel
et al., 2020) for the input encoder. For the aggrega-
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Figure 7: Sample prompt in the legal domain to assist generations of rule-level knowledge and relevant instances.

Figure 8: Sample prompt in the medical domain to assist generations of rule-level knowledge and relevant instances.

Figure 9: Portability comparison of rule-level editing
with EM, ACC, and F1 metrics under different methods,
which are evaluated on RULEmix using LLaMA-2-7B.

tion network, we utilize four cross-attention blocks,
which each consist of a cross-attention and a feed-
forward network. According to the comparative
results of different settings shown in Figure 10, we
configure both the generalization loss weight cg
and the portability loss weight cp to 0.1.

B.3 Solid Portability for Knowledge
Generalization

As shown in Figure 9, we conduct rule-level editing
experiments evaluated on EM, ACC, and F1 met-
rics, aiming to sufficiently compare the portability
of current knowledge editing methods. It can be
observed that RTE surpasses the other baseline in
all metrics, indicating efficient generalization of
rule-level knowledge. Compared with redundant
case-by-case edits brought by instance-level edit-
ing, rule-level editing effectively avoids massive
editing scale by solid portability to achieve efficient
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updates on rule-derived instances.

B.4 Comprehensive Evaluation on RuleEdit
As shown in Table 5, 6, 7, 8, and 9, we conduct
complementary experiments to comprehensively
evaluate the performance of representative knowl-
edge editing methods on both LLaMA-2-7B and
GPT2-XL using ACC, EM, and F1 metrics. It can
be observed from the results that RTE leads a favor-
able overall performance in both LLaMA-2-7B and
GPT2-XL with ACC and F1 metrics, and exhibits
superior generalization ability and portability com-
pared with other baselines in EM metrics for both
LLaMA-2-7B and GPT2-XL, which highlights the
robustness and effectiveness of our method.

(a) Results on different set-
ting of learning rate.

(b) Results on different setting
of loss weight.

Figure 10: Comparisons of avg. score on F1 metric
among different parameter settings over LLaMA-2-7B
on RULEmix.
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Edit Method RULEmix RULEhistorical RULEmedical RULElegal

Step Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg.
LLaMA-2-7B

3

ROME 52.78 61.67 72.40 62.28 41.67 41.67 20.71 34.68 93.33 100.00 72.59 88.64 3.33 1.23 0.25 1.60
MEND 16.73 6.08 5.88 9.57 12.50 9.72 0.00 7.41 11.11 13.33 11.11 11.85 9.14 9.14 13.10 10.46
GRACE 61.67 0.00 0.26 20.64 41.67 0.00 0.00 13.89 93.33 11.11 0.00 34.81 88.77 1.23 1.67 30.56
LoRA 46.11 30.56 4.22 26.96 16.67 16.67 26.19 19.84 42.86 16.67 27.78 29.10 26.67 26.67 27.00 26.78
Ours 40.66 14.42 15.65 23.58 56.19 50.00 42.61 49.60 50.00 50.00 36.25 45.42 33.10 35.67 50.66 39.81

10

ROME 12.38 5.71 16.75 11.62 2.00 2.00 3.18 2.39 1.25 0.00 0.74 0.66 3.17 7.30 5.90 5.46
MEND 11.84 2.73 6.05 6.87 2.50 5.42 1.74 3.22 8.75 5.21 1.77 5.25 17.17 11.95 12.34 13.82
GRACE 44.99 0.00 0.23 15.07 28.00 0.00 0.00 9.33 66.37 1.25 0.31 22.64 78.63 0.37 0.78 26.59
LoRA 8.93 2.93 1.51 4.46 6.00 9.93 0.00 5.31 13.19 0.00 0.00 4.40 16.68 13.70 11.22 13.87
Ours 43.06 16.40 21.81 27.09 63.94 59.00 43.21 55.38 65.87 43.83 30.99 46.89 33.07 38.22 42.69 38.00

100

ROME 2.63 1.69 3.78 2.70 1.85 1.05 1.87 1.59 0.98 0.50 1.09 0.85 5.35 4.32 5.52 5.06
MEND 9.91 6.82 6.14 7.62 7.43 5.82 2.48 5.24 8.80 7.60 3.75 6.72 11.37 11.39 8.62 10.46
GRACE 59.11 0.88 0.29 20.09 36.98 2.02 0.20 13.07 47.09 0.31 0.14 15.85 73.35 0.95 0.69 25.00
LoRA 0.50 0.00 0.00 0.17 8.54 9.71 3.95 7.40 13.19 0.00 0.00 4.40 15.00 14.64 14.87 14.83
Ours 45.20 30.39 24.65 33.41 55.01 47.67 39.88 47.52 65.87 43.83 30.99 46.89 38.37 39.90 39.26 39.18

final

ROME 0.34 0.42 0.35 0.37 4.68 2.05 6.89 4.54 0.19 0.03 0.20 0.14 4.36 4.56 4.68 4.54
MEND 11.41 8.01 6.26 8.56 7.95 5.07 0.17 4.40 10.05 6.35 2.95 6.45 12.87 11.80 10.03 11.57
GRACE 51.29 1.01 0.43 17.58 32.14 1.26 0.13 11.18 46.95 0.46 0.15 15.86 73.85 0.67 0.86 25.12
LoRA 5.14 2.69 4.31 4.05 9.65 9.62 2.59 7.28 0.43 0.52 0.89 0.61 0.66 0.94 0.30 0.63
Ours 45.13 29.35 23.40 32.63 59.64 53.15 51.90 36.35 47.53 41.39 35.54 41.49 42.27 42.07 38.68 41.01

Table 5: Comparative Results of Rule-Level Editing on LLaMA-2-7B with Multiple Edit Steps Measured by ACC
Metric.

Edit Method RULEmix RULEhistorical RULEmedical RULElegal

Step Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg.
LLaMA-2-7B

3

ROME 66.67 100.00 84.38 83.68 100.00 100.00 36.51 78.84 66.67 66.67 54.55 62.63 0.00 0.00 0.00 0.00
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRACE 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33
LoRA 33.33 33.33 0.00 22.22 33.33 0.00 3.17 12.17 33.33 0.00 45.45 26.26 33.33 33.33 33.33 33.33
Ours 33.33 0.00 37.50 23.61 33.33 33.33 21.43 29.37 66.67 0.00 45.45 37.37 0.00 0.00 0.00 0.00

10

ROME 30.00 20.00 42.11 30.70 40.00 40.00 27.55 35.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRACE 90.00 0.00 0.00 30.00 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33
LoRA 30.00 0.00 0.00 10.00 50.00 0.00 0.00 16.67 10.00 0.00 0.00 3.33 10.00 10.00 2.00 7.33
Ours 20.00 0.00 33.33 17.78 50.00 40.00 41.45 43.82 40.00 20.00 16.18 25.39 0.00 10.00 9.00 6.33

100

ROME 1.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MEND 1.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRACE 94.00 0.00 0.00 31.33 99.00 1.00 0.00 33.33 83.00 0.00 0.00 27.67 83.00 0.00 0.00 27.67
LoRA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.33 1.00 1.00 0.60 0.87
Ours 21.00 13.00 26.13 20.04 34.00 28.00 33.17 31.72 24.00 16.00 16.70 18.90 5.00 7.00 14.37 8.79

final

ROME 0.00 0.00 0.00 0.00 1.56 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MEND 0.11 0.00 0.50 0.20 0.00 0.58 0.00 0.19 0.31 0.00 0.11 0.14 0.00 0.00 0.00 0.00
GRACE 86.02 0.32 0.03 28.79 98.55 0.29 0.00 32.95 73.98 0.00 0.31 24.76 86.66 0.00 0.00 28.89
LoRA 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ours 17.25 14.81 25.46 19.17 40.87 27.25 41.75 36.62 19.12 14.73 18.05 17.30 8.85 8.25 15.20 10.77

Table 6: Comparative Results of Rule-Level Editing on LLaMA-2-7B with Multiple Edit Steps Measured by EM
Metric.
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Edit Method RULEmix RULEhistorical RULEmedical RULElegal

Step Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg.
GPT2-XL

3

ROME 73.64 57.92 2.69 44.75 75.56 22.22 0.56 32.78 55.30 55.30 53.18 54.60 3.33 3.33 1.97 2.88
MEND 0.00 13.81 12.24 8.68 0.00 0.00 6.00 2.00 0.00 16.67 0.41 5.69 1.28 10.00 2.00 4.43
GRACE 87.92 6.67 0.00 31.53 75.56 6.67 0.07 27.43 55.30 15.15 0.00 23.49 88.72 0.00 0.00 29.57
LoRA 46.97 46.97 51.53 48.49 30.30 30.30 41.32 33.98 30.30 30.30 41.32 33.98 26.67 26.67 26.79 26.71
Ours 33.33 33.33 37.50 34.72 33.33 33.33 21.43 29.37 25.51 17.17 0.00 14.23 20.00 20.00 34.90 24.97

10

ROME 48.10 18.38 11.56 26.01 55.00 14.67 19.63 29.77 35.89 28.78 28.70 31.12 34.88 31.54 9.96 25.46
MEND 13.08 13.48 9.91 12.16 2.00 9.25 4.73 5.33 5.33 11.36 0.50 5.73 7.92 9.11 1.29 6.11
GRACE 72.36 7.43 0.00 26.60 71.00 6.00 0.02 25.67 66.56 4.55 0.00 23.70 78.62 0.00 0.00 26.21
LoRA 26.34 12.34 19.24 19.31 13.19 13.19 7.62 11.34 13.19 13.19 7.62 11.34 16.20 16.20 16.20 16.20
Ours 32.86 38.75 30.87 34.16 41.67 31.67 21.27 31.54 51.12 20.15 0.77 24.02 34.33 33.34 29.98 32.55

100

ROME 13.85 13.04 13.77 13.55 32.22 22.56 21.71 25.50 2.00 5.61 4.07 3.89 8.09 7.89 8.03 8.00
MEND 10.41 14.70 5.84 10.32 1.15 6.73 2.77 3.55 8.23 12.48 0.01 6.91 5.43 6.25 1.68 4.46
GRACE 73.35 2.45 0.00 25.27 65.71 7.12 0.01 24.28 54.65 0.88 0.00 18.51 82.45 0.08 0.00 27.51
LoRA 0.25 0.25 0.32 0.27 0.65 0.65 0.41 0.57 0.65 0.65 0.41 0.57 6.06 5.71 6.53 6.10
Ours 30.41 28.50 22.55 27.16 40.52 39.52 34.73 38.25 34.86 21.29 4.54 20.23 31.79 30.73 27.78 30.10

final

ROME 1.46 1.22 0.48 1.05 16.10 16.53 21.02 17.88 3.41 2.79 2.77 2.99 5.53 5.57 4.69 5.27
MEND 11.08 14.19 6.03 10.43 1.28 7.34 3.10 3.91 8.56 9.17 0.60 6.11 6.78 6.18 1.74 4.90
GRACE 65.07 2.33 0.00 22.47 66.85 7.62 0.00 24.82 46.58 0.45 0.00 15.68 79.54 0.39 0.00 26.64
LoRA 1.94 2.00 2.22 2.06 0.55 0.92 1.24 0.90 0.55 0.92 1.24 0.90 6.33 5.72 7.75 6.60
Ours 34.17 30.63 20.58 28.46 46.51 40.99 42.71 43.40 29.70 18.13 5.50 17.78 35.21 34.02 28.60 32.61

Table 7: Comparative Results of Rule-Level Editing on GPT2-XL with Multiple Edit Steps Measured by ACC
Metric.

Edit Method RULEmix RULEhistorical RULEmedical RULElegal

Step Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg.
GPT2-XL

3

ROME 66.67 33.33 57.22 52.41 100.00 33.33 19.44 50.92 66.67 66.67 66.67 66.67 0.00 0.00 0.00 0.00
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRACE 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33
LoRA 33.33 33.33 31.25 32.64 33.33 33.33 45.45 37.37 33.33 33.33 45.45 37.37 33.33 33.33 33.33 33.33
Ours 33.33 33.33 37.50 34.72 33.33 33.33 21.43 29.37 0.00 0.00 0.00 0.00 0.00 0.00 33.33 11.11

10

ROME 60.00 30.00 27.71 39.24 80.00 30.00 36.92 48.97 40.00 20.00 49.00 36.33 30.00 20.00 10.00 20.00
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRACE 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33 100.00 0.00 0.00 33.33
LoRA 30.00 0.00 0.00 10.00 10.00 10.00 10.29 10.10 10.00 10.00 10.29 10.10 10.00 10.00 10.00 10.00
Ours 30.00 30.00 37.72 32.57 40.00 30.00 20.39 30.13 30.00 10.00 2.94 14.31 10.00 10.00 20.00 13.33

100

ROME 7.00 6.00 2.30 5.10 36.00 28.00 21.55 28.52 2.00 6.00 4.27 4.09 1.00 1.00 0.30 0.77
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.33 0.00 0.00 0.00 0.00
GRACE 100.00 0.00 0.00 33.33 98.00 1.00 0.00 33.00 85.00 0.00 0.00 28.33 100.00 0.00 0.00 33.33
LoRA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ours 21.00 19.00 23.65 21.22 37.00 34.00 31.50 34.17 19.00 13.00 12.90 14.97 7.00 7.00 10.55 8.18

final

ROME 0.00 0.00 0.00 0.00 10.14 8.99 10.06 9.73 0.63 0.31 0.31 0.42 0.06 0.00 0.05 0.04
MEND 0.32 0.11 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.63 0.00 0.21 0.06 0.00 0.00 0.02
GRACE 91.31 0.00 0.00 30.44 99.13 0.29 0.00 33.14 72.73 0.00 0.00 24.24 99.94 0.00 0.00 33.31
LoRA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ours 20.74 18.10 17.93 18.92 42.90 35.65 39.46 39.34 16.61 10.03 11.83 12.83 11.22 10.67 13.98 11.96

Table 8: Comparative Results of Rule-Level Editing on GPT2-XL with Multiple Edit Steps Measured by EM Metric.
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Edit Method RULEmix RULEhistorical RULEmedical RULElegal

Step Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg. Rel. Gen. Port. Avg.
GPT2-XL

3

ROME 88.89 52.94 65.64 69.16 100.00 82.22 52.71 78.31 93.33 93.33 68.86 85.18 11.94 13.46 6.01 10.47
MEND 31.36 29.44 2.01 20.94 0.00 16.67 0.00 5.56 0.00 9.52 0.00 3.17 40.92 22.54 7.28 23.58
GRACE 100.00 5.13 0.00 35.04 100.00 0.00 0.00 33.33 100.00 11.11 0.06 37.06 99.28 3.22 0.00 34.17
LoRA 50.88 50.88 47.70 49.82 44.44 44.44 58.73 49.21 33.33 33.33 45.45 37.37 37.78 37.78 37.78 37.78
Ours 87.97 84.05 86.45 86.16 50.00 50.00 41.96 47.32 22.86 22.86 26.48 24.06 50.17 50.17 58.57 52.97

10

ROME 83.11 64.42 43.47 63.67 80.00 37.78 56.38 58.05 50.55 34.86 56.89 47.43 50.59 53.47 18.38 40.81
MEND 20.91 11.33 3.05 11.77 4.00 5.00 0.44 3.15 6.94 5.36 2.91 5.07 27.21 25.93 5.50 19.55
GRACE 98.89 4.40 0.00 34.43 98.57 0.00 0.00 32.86 99.09 8.69 0.02 35.93 99.58 3.04 0.00 34.21
LoRA 30.00 15.00 19.30 21.43 50.00 50.00 32.14 44.05 10.00 10.00 10.29 10.10 27.14 27.14 27.14 27.14
Ours 59.80 60.63 51.09 57.17 49.00 39.00 32.83 40.28 45.75 27.94 16.70 30.13 44.78 49.65 50.20 48.21

100

ROME 21.75 18.24 17.77 19.26 46.60 40.14 33.38 40.04 12.92 14.14 10.96 12.67 21.42 19.66 22.44 21.17
MEND 18.24 13.33 4.74 12.11 3.40 7.84 0.90 4.05 10.67 8.21 0.03 6.30 30.95 26.89 5.38 21.07
GRACE 99.04 2.58 0.00 33.87 98.02 1.73 0.01 33.25 85.00 4.35 0.01 29.79 100.00 2.06 0.00 34.02
LoRA 1.34 1.58 1.38 1.43 1.17 0.00 0.00 0.39 1.14 1.14 0.62 0.96 17.12 18.10 17.71 17.64
Ours 48.48 43.93 41.25 44.55 49.90 46.47 41.25 45.87 36.54 25.97 20.06 27.52 57.63 53.34 51.63 54.20

final

ROME 0.63 0.68 0.63 0.65 13.72 16.90 18.70 16.44 7.27 6.71 7.18 7.06 15.59 14.92 14.97 15.16
MEND 17.56 12.76 4.66 11.66 3.41 4.96 0.44 2.94 12.82 8.71 2.70 8.07 30.96 24.48 5.42 20.29
GRACE 90.17 3.00 0.00 31.06 98.06 1.36 0.00 33.14 71.21 3.26 0.01 24.83 100.00 6.88 0.00 35.63
LoRA 8.96 4.42 6.79 6.72 20.41 5.85 4.17 10.14 4.15 4.42 3.98 4.18 5.83 5.30 6.27 5.80
Ours 43.40 39.86 34.91 39.39 54.88 49.13 50.71 51.57 29.25 20.39 20.33 23.32 57.46 55.54 50.07 54.36

Table 9: Comparative Results of Rule-Level Editing on GPT2-XL with Multiple Edit Steps Measured by F1 Metric.
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